Sufficient conditions for *p*-valence of regular functions

By Noriyuki SONE

(Received May 4, 1964) (Revised July 7, 1964)

§1. Introduction.

An interesting sufficient condition for univalence due to Umezawa [18, p. 213], [16, p. 191] and Kaplan [5, p. 173] has been generalized by Ogawa in his paper [7] as 'Main criterion' or as 'Theorem 2', while the last result has also been extended by Sakaguchi [13] as follows.

THEOREM A. Let $f(z) = z^p + \cdots$, $\varphi(z)$ be regular in $|z| \leq r$ and $|z| < +\infty$ respectively, and let $f'(z) \neq 0$ for $0 < |z| \leq r$. If neither f(z) nor $\varphi'(\log f(z))$ vanishes on |z| = r and the inequality

 $\int_{\boldsymbol{c}} d \arg d\varphi(\log f(\boldsymbol{z})) > -\pi$

holds for any arc C on |z| = r, then f(z) is p-valent in $|z| \leq r$.

The purpose of this paper is to extend or improve the above results and some of other ones in [6], [7] and [13] by a systematic method. Some of our results may include, in a certain sense, a few new classes of uni- or multivalent functions.

§2. Fundamental propositions.

In this paper, we mainly consider the functions belonging to the class which is defined as follows.

DEFINITION 1. A function f(z) is said to be a member of the class $\mathfrak{F}(p, D_z)$, where p is a positive integer and D_z is a simply connected closed domain whose boundary $\partial D_z \equiv C_z$ consists of a piecewise regular curve [1, p. 65] and whose interior contains the origin, if f(z) is regular in D_z and has the expansion about the origin

$$f(z) = z^{p} + c_{p+1} z^{p+1} + c_{p+2} z^{p+2} + \cdots$$

and if $f(z)f'(z) \neq 0$ except at the origin in D_z .

Let C'_z denote any continuous, directed sub-arc of $C_z \equiv \partial D_z$, and let C'_w and C_w denote the images of C'_z and C_z by the mapping w = f(z) respectively. The direction of C'_z is always generated, as usual, in the positive sense with respect

to D_z , while the direction of C'_w is induced by that of C'_z . The opposite arc [1, p. 65] of an arc C is denoted by -C. Throughout this paper the above notations are used in the above sense unless otherwise stated. We note that an arc C'_w always corresponds to a continuous arc $C'_z \subset C_z$, and that in this paper we leave 'a point curve [1, p. 66]' out of consideration (cf. for example (4.15)).

DEFINITION 2. For any fixed D_z and $f(z) \in \mathfrak{F}(p, D_z)$, let $J[C'_w]$ be a functional with the following properties: (a) by a certain rule, a real number is associated with each directed arc C'_w , and (b) if C'_w (directed as before) is a simple closed curve whose interior does not contain the origin and whose direction is clockwise, then $J[C'_w] \ge 0$. The family of such functionals is denoted by Ω , and such a simple closed curve C'_w as in (b) is denoted by γ .

A non-negative constant is the simplest element of Ω , but it is useless for our purpose if it is used separately. The quantity

(2.1)
$$J_0 \equiv J_0 [C'_w] \equiv \int_{-C'_w} d \arg dw - \pi$$

has been used by Umezawa or Kaplan for their cases. While also for our case it is seen that (a) for any C'_w , J_0 exists, (b) if there exists a curve γ as in Def. 2 then $J_0[\gamma] \ge 0$, and that $J_0 \in \Omega$.

Let us also put

(2.2)
$$J_{\psi} \equiv J_{\psi} [C'_{w}] \equiv \int_{-C'_{w}} d\psi(w) ,$$

where $\phi(w)$ is a real-valued function of bounded variation for each C'_w and is subject to the relation

$$\int_{-\gamma} d\psi(w) \ge 0$$
 ,

when there exists γ as before. Then we see that $J_{\psi} \in \Omega$.

REMARK 1. The integrals as in (2.1) or (2.2) should be interpreted as Stieltjes integrals (cf. for example [4, 292-295]), and $\psi(w)$ is not necessarily single-valued or continuous and, when C'_{z} is represented by the equation z = z(t), $t_1 \leq t \leq t_2$, $\psi(f(z(t)))$ is not necessarily differentiable for $t_1 \leq t \leq t_2$.

In the following section, some examples of such functionals are listed, while we can construct much more examples, by noting the following property which is easily deduced by Def. 2.

(2.3)
$$J_a, J_b \in \Omega \Rightarrow \begin{cases} J_a + J_b \in \Omega, \\ J_a \cdot J_b \in \Omega, & (qJ_a \in \Omega, \text{ where } q \ge 0), \\ J_a / J_b \in \Omega, & (J_b \neq 0 \text{ for any } C'_w). \end{cases}$$

Now we establish the following:

PROPOSITION 1. Let $f(z) \in \mathfrak{F}(p, D_z)$. If a suitable functional $J[C'_w] \in \Omega$ can be found, such that

 $J[C'_w] < 0$

for every C'_w (induced by the above f(z) and D_z), then f(z) is p-valent in D_z .

PROOF. Suppose that f(z) is at least (p+1)-valent in D_z . Then, taking a function $z = \phi(\zeta)$ which maps the unit circle $|\zeta| < 1$ onto the interior of D_z one-to-one conformally with $\phi(0) = 0$, and noting that the function $f(\phi(\zeta))$ extended to $|\zeta| \leq 1$ with the boundary values is continuous for $|\zeta| \leq 1$, we can prove, in a similar way as in [7, 432-434], that in the set of C'_w there exists a simple closed curve γ as in Def. 2. Consequently $J[\gamma] \geq 0$ since $J[C'_w] \in \Omega$. This contradicts the hypothesis, and the proposition follows.

More concretely (and less generally), we have the following:

PROPOSITION 2. Let $f(z) \in \mathfrak{F}(p, D_z)$. If a suitable functional $J_{\psi} \equiv J_{\psi}[C'_w]$ as in (2.2) can be found, and if the relation

$$q_{\scriptscriptstyle 0} J_{\scriptscriptstyle 0} \! + \! q_{\scriptscriptstyle 1} J_{\psi} \! < \! 0$$
 ,

holds for every C'_w , where q_0 , q_1 are non-negative constants and J_0 is that of (2.1), then f(z) is p-valent in D_z .

PROOF. This is clear from Prop. 1 and the relation (2.3).

REMARK 2. Even if p=1, Prop. 2 is an extension of 'Main criterion' in [7] as is seen from Remark 1.

Thus our problem is reduced to seeking the J's which belong to Ω and which are anyhow effective for our purpose. Each of such functionals we shall call an 'element of criteria', for the present.

§3. Elements of criteria.

In this section, some elements of criteria are listed. Previous to this we prepare the following two definitions.

DEFINITION 3. Let Γ be a closed curve and let A, B be complex constants or the point at infinity. Then $A \in U(B, \Gamma)$ means that it is possible to connect the point A with the point B by a continuous curve none of whose points including the end points is on Γ .

DEFINITION 4. Let $(w = f(z), C_z, C'_z, C_w$ and) C'_w be as before. Let A be a complex constant. Then $A \in E(C_w)$ means that $A \notin C'_w$ for every C'_w , and

$$\int_{C'w} d \arg (w-A) \neq -2\pi .$$

Here and in what follows ' $A \in C$ ' means that A does not lie on C.

REMARK 3. $|A| > \max_{z \in C_z} |f(z)| \Rightarrow A \in U(\infty, C_w) \cap E(C_w).$

(3.1)
$$J_1 \equiv J_1 \llbracket C'_w \rrbracket \equiv q_0 \int_{-C'_w} d \arg dw - q_0 \pi \in \Omega ,$$

where q_0 is a non-negative constant.

This is clear since $J_1 = q_0 J_0$ with J_0 in (2.1).

(3.2)
$$J_{2i} \equiv J_{2i} [C'_w] \equiv \int_{-C'_w} d \arg (w - a_i)^{\lambda_i} \in \Omega ,$$

where λ_i , a_i are complex constants and $a_i \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w)$.

In fact, if there is γ as in Def. 2, let w_1 and w_2 denote the initial and terminal points of γ respectively. Then, from the assumption on a_i , we see that

$$J_{2i}[\gamma] = \Im[\lambda_i \{\log(w_1 - a_i) - \log(w_2 - a_i)\}] = 0$$

$$(3.2)' J_{2i} \equiv J_{2i} [C_w] \equiv \int_{-C_w} d \arg (w - a_i)^{\lambda' i} \in \mathcal{Q} ,$$

where λ'_i , a'_i are complex constants and $\Re \lambda'_i \ge 0$, $a'_i \in C_w$.

In fact, if there is γ as before, it holds that

$$J_{2i}[\gamma] = \left\{ egin{array}{c} 0 \ {
m if} \ \gamma \ {
m does} \ {
m not} \ {
m contain} \ a_i' \ {
m within}, \ 2\pi \Re \lambda_i' \ge 0 \ {
m if} \ \gamma \ {
m contains} \ a_i' \ {
m within}. \end{array}
ight.$$

(3.3)
$$J_{3i} \equiv J_{3i} [C'_w] \equiv k_i \int_{-C'_w} d |(w-b_i)^{\mu_i}| \in \Omega,$$

where k_i is a real constant, μ_i , b_i are complex ones, and

$$b_i \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w)$$
.

In fact, for $\gamma \equiv \widehat{w_1 w_2}$ as before,

$$J_{3i}[\gamma] = \exp \{\Re(\mu_i \log (w_1 - b_i))\} - \exp \{\Re(\mu_i \log (w_2 - b_i))\} = 0.$$

(3.3)'
$$J'_{3i} \equiv J'_{3i} [C'_w] \equiv k'_i \int_{-C'_w} d|(w - b'_i)^{\mu'_i}| \in \Omega,$$

where k'_i is a real constant, μ'_i , b'_i are complex ones and, $k'_i\Im\mu'_i \leq 0$, $b'_i \in C_w$. In fact, for $\gamma = \widehat{w_1w_2}$ as before,

$$\begin{aligned} J_{3i}[\gamma] &= k'_i \exp \left\{ \Re(\mu'_i \log (w_1 - b'_i)) \right\} - k'_i \exp \left\{ \Re(\mu'_i \log (w_2 - b'_i)) \right\} \\ &= k'_i \exp \left\{ \Re(\mu'_i \log (w_1 - b'_i)) \right\} [1 - \exp \left\{ \Re(\mu'_i \times (-2\pi i \text{ or } 0)) \right\}] \end{aligned}$$

according as the point b'_i is inside or outside of γ . Since, $k'_i\Im\mu'_i \leq 0$, the value of the above equality cannot be negative.

(3.4)
$$J_{4i} \equiv J_{4i} [C'_w] \equiv q_i \int_{-C'_w} d \arg F_i (\log (w - A_i)) \in \mathcal{Q} ,$$

where q_i is a non-negative constant, $F_i(\zeta)$ is an integral function, A_i is a complex constant, $A_i \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w)$ and $F_i(\log (w - A_i)) \neq 0$ on C_w .

In fact, let γ_{ζ} be the map of γ as before by $\zeta = \log (w - A_i)$, then γ_{ζ} is also a simple closed curve which has the negative direction with respect to its interior. Hence we have

$$J_{4i}[\gamma] = q_i \int_{-\gamma_{\zeta}} d \arg F_i(\zeta) = 2nq_i \pi \ge 0$$
,

where n is the number of zeros of $F_i(\zeta)$ inside γ_{ζ} .

(3.5)
$$J_{5i} \equiv J_{5i} [C'_w] \equiv r_i \int_{-C'_w} d| G_i (\log (w - B_i))| \in \Omega,$$

where r_i is a real constant, $G_i(\zeta)$ is an integral function, B_i is a complex constant and $B_i \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w)$.

In fact, as in the above case, the map γ_{ζ} of γ by $\zeta = \log (w - B_i)$ is a closed curve and the map of γ_{ζ} by $G_i(\zeta)$ is also a closed curve. Hence

$$J_{5i}[\gamma] = r_i \int_{-\gamma_{\zeta}} d \mid G_i(\zeta) \mid = 0.$$

§4. Some criteria for *p*-valence.

Now we have the following main theorem.

THEOREM 1. Let $f(z) \in \mathfrak{F}(p, D_z)$. If the following relation (4.1) holds for any arc $C'_z \subset C_z \equiv \partial D_z$, then f(z) is p-valent in D_z :

(4.1)
$$\int_{-C'_{z}} d\left[q_{0} \arg df(z) + \sum_{i=1}^{n_{1}} \arg (f(z) - a_{i})^{\lambda_{i}} + \sum_{i=1}^{n_{2}} k_{i} | (f(z) - b_{i})^{\mu_{i}} | + \sum_{i=1}^{n_{3}} q_{i} \arg F_{i} (\log (f(z) - A_{i})) + \sum_{i=1}^{n_{4}} r_{i} | G_{i} (\log (f(z) - B_{i})) | \right] < q_{0}\pi ,$$

where $F_i(z)$, $G_i(z)$ are integral functions, $F_i(\log (f(z)-A_i)) \neq 0$ on C_z , and q_0 , q_i are non-negative, k_i , r_i are real, λ_i , μ_i , a_i , b_i , A_i and B_i are all complex constants, and further

(a)
$$[a_i \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w)]$$
 or $[a_i \in C_w \text{ and } \Re \lambda_i \geq 0]$,

(b)
$$[b_i \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w)] \text{ or } [b_i \notin C_w \text{ and } k_i \Im \mu_i \leq 0],$$

(A)
$$A_i \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w),$$

(B)
$$B_i \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w).$$

PROOF. Using the same notations as in the previous section, we can write the relation (4.1) in the form

(4.2)
$$J_1 + \sum_{i=1}^{n_1} (J_{2i} \text{ or } J_{2i}') + \sum_{i=1}^{n_2} (J_{3i} \text{ or } J_{3i}') + \sum_{i=1}^{n_3} J_{4i} + \sum_{i=1}^{n_4} J_{5i} < 0.$$

Each term in the above sum belongs to Ω as is shown in §3, and so, by the relation (2.3), the sum itself belongs to Ω . Consequently, by Prop. 1, f(z) is

p-valent in D_z , and the theorem follows.

COROLLARY 1. Let $f(z) \in \mathfrak{F}(p, D_z)$. Let $\varphi(z)$ be an integral function such that $\varphi'(\log(f(z)-A)) \neq 0$ on $\partial D_z \equiv C_z$, where A complex, $A \in U(0, C_w) \cup U(\infty, C_w)$. $\cup E(C_w)$. If the inequality

(4.3)
$$\int_{C'_z} d\arg d\varphi(\log (f(z) - A)) > -\pi$$

holds for any arc $C'_z \subset C_z$, then f(z) is p-valent in D_z .

PROOF. In Th. 1, let us put $q_0 = 1$, $\lambda_1 = -1$, $q_1 = 1$, and the other λ_i , k_i , q_i and r_i are all equal to zero, and let us also put $a_1 = A_1 = A$ and $F_1(z) = \varphi'(z)$. Then, after a simple calculation, we have this corollary.

Cor. 1 is an extention of Th. A.

Henceforth, we denote the image of |z| = r under f(z) by C_r , and we abbreviate the part 'for any pair of t_1 , t_2 such that $0 \le t_1 < 2\pi$, $0 < t_2 - t_1 < 2\pi$ ' by 'for any $t_1 < t_2$ '.

COROLLARY 2. Let $f(z) \in \mathfrak{F}(p, |z| \leq r)$. If the inequality

(4.4)
$$\int_{t_2}^{t_1} \Re\left\{q\left(1 + \frac{zf''(z)}{f'(z)}\right) + \sum_{i=1}^{m} \left(\lambda_i \frac{zf'(z)}{f(z) - a_i}\right) + i\sum_{i=1}^{n} \left(k_i \mu_i \frac{|(f(z) - b_i)^{\mu_i}|}{f(z) - b_i} zf'(z)\right)\right\} dt < q\pi, \ z = re^{it},$$

holds for any $t_1 < t_2$, where q is non-negative, k_i are real, λ_i , μ_i , a_i and b_i are all complex, and the conditions (a) and (b) in Th. 1 are satisfied with C_r instead of C_w , then f(z) is p-valent in $|z| \leq r$.

PROOF. In Th. 1, let us set $D_z: |z| \leq r$, $q_0 = q$, and q_i and r_i are all equal to zero. Then a simple calculation leads this corollary.

COROLLARY 3. Let $f(z) \in \mathfrak{F}(p, |z| \leq r)$. If there holds

(4.5)
$$\int_{0}^{2\pi} \left| \Re \left\{ 1 + \frac{zf''(z)}{f'(z)} + \sum_{i=1}^{m} \left(\lambda_i \frac{zf'(z)}{f(z) - a_i} \right) + i \sum_{i=1}^{n} \left(k_i \frac{|f(z) - b_i|}{f(z) - b_i} zf'(z) \right) \right\} \right| dt$$
$$< 2\pi \left\{ 1 + p + \sum_{i=1}^{m} (n(a_i) \Re \lambda_i) \right\}, \ z = re^{it},$$

where k_i are real, λ_i , a_i , b_i are complex, and

 $[a_i \in U(0, C_r) \cup U(\infty, C_r) \cup E(C_r)] \text{ or } [a_i \notin C_r \text{ and } \Re \lambda_i \ge 0], \ b_i \notin C_r \text{,}$ and

$$2\sum_{i=1}^{m} (n(a_i)\Re\lambda_i) > -(1+2p),$$

here $n(a_i)$ denotes the number of a_i -points of f(z) in |z| < r; then f(z) is p-valent in $|z| \le r$.

PROOF. In Cor. 2, let us put q=1 and μ_i are all equal to 1, then Cor. 3 follows in a similar way to the proof of Cor. 2 in [13].

Cor. 3 is an extension of Cor. 2 in [13].

COROLLARY 4. Let $f(z) \in \mathfrak{F}(p, D_z)$. If there holds, for any arc $C'_z \subset C_z \equiv \partial D_z$,

(4.6)
$$\int_{C'_z} [d \arg df(z) + d \arg (f(z) - A)^{\lambda}] > -\pi,$$

where λ , A are complex constants and $A \in U(0, C_w) \cup U(\infty, C_w) \cup E(C_w)$ or $[A \notin C_w \text{ and } \Re \lambda \ge 0]$, then f(z) is p-valent in D_z .

PROOF. In Th. 1, let us put $q_0 = 1$, $a_1 = A$, $\lambda_1 = \lambda$ and the other λ_i , k_i , q_i and r_i are all equal to zero. Then the corollary follows readily.

Cor. 4 is an extension of Cor. 1 in [13] and 'a fortiori' of Th. 2 in [7]. COROLLARY 5. Let $f(z) \in \mathfrak{F}(p, |z| \leq r)$. If there holds, for any $t_1 < t_2$,

(4.7)
$$\int_{t_2}^{t_1} \Re\left(1 + z \frac{f''(z)}{f'(z)} + ik \frac{|f(z) - A|}{f(z) - A} z f'(z)\right) dt < \pi, \ z = re^{it},$$

where k real and A complex such that $A \in C_r$, then f(z) is p-valent in $|z| \leq r$.

PROOF. In Cor. 2, let us put q=1, $\mu_1=1$, $k_1=k$ and the other k_i , λ_i are all equal to zero. Then Cor. 5 follows readily.

Cor. 5 is an extension of Th. 2 in [6] (even if p = 1). In fact, in Cor. 5 let us set $A = \rho e^{i(3\pi/2-\omega)}$, $\rho > 0$, ω real, and $|A| > \max_{z \in D_z} |f(z)|$. Then by tending $\rho \rightarrow +\infty$ we have the following:

COROLLARY 6. Let $f(z) \in \mathfrak{F}(p, |z| \leq r)$. If there holds, for any $t_1 < t_2$,

(4.8)
$$\int_{t_2}^{t_1} \Re\left(1 + z \frac{f''(z)}{f'(z)} + k e^{i\omega} z f'(z)\right) dt < \pi, \ z = r e^{it},$$

where k, ω real, then f(z) is p-valent in $|z| \leq r$.

COROLLARY 7. Let $f(z) \in \mathfrak{F}(p, D_z)$. If there holds

(4.9)
$$\int_{c} d \arg df(z) > -\pi ,$$

for all arcs $C \subset C_z \equiv \partial D_z$, then f(z) is p-valent in D_z , and is 'at most π -concave' [15] on C_z .

PROOF. This is obtained by Cor. 4 by setting $\lambda = 0$.

The special case of Cor. 7 in which p=1 and C_z is a regular curve is essentially equivalent to Kaplan-Umezawa's theorem [5], [18].

COROLLARY 8. Let $f(z) \in \mathfrak{F}(p, |z| \leq r)$. If there holds

(4.10)
$$\Re\left\{\sum_{i=1}^{m} \lambda_{i} \frac{zf'(z)}{f(z) - a_{i}} + i\sum_{i=1}^{n} \left(k_{i}\mu_{i} \frac{|(f(z) - b_{i})^{\mu_{i}}|}{f(z) - b_{i}} zf'(z)\right)\right\} > 0, |z| = r,$$

where λ_i , k_i , μ_i , a_i and b_i are constants as in Cor. 2, then f(z) is p-valent in $|z| \leq r$.

PROOF. In Cor. 2. let us put q=0. Then Cor. 8 follows easily. COROLLARY 9. Let $f(z) \in \mathfrak{F}(p, |z| \leq r)$. If there holds Sufficient conditions for p-valence

(4.11)
$$\Re\left\{\lambda \frac{zf'(z)}{f(z)-A} + ik \frac{|f(z)-B|}{f(z)-B} zf'(z)\right\} > 0, |z| = r,$$

where k is real, λ , A and B are complex, $A \in U(0, C_r) \cup U(\infty, C_r) \cup E(C_r)$ or $[A \in C_r \text{ and } \Re \lambda \ge 0]$ and $B \in C_r$; then f(z) is p-valent in $|z| \le r$.

PROOF. In Cor. 8, let us put $\mu_1 = 1$, $\lambda_1 = \lambda$, $k_1 = k$ and the other λ_i , k_i are all equal to zero. Then Cor. 9 follows readily.

COROLLARY 10. Let $f(z) \in \mathfrak{F}(p, |z| \leq r)$. If there holds

(4.12)
$$\Re \sum_{i=1}^{n} \left(\lambda_i \frac{z f'(z)}{f(z) - a_i} \right) > 0, \quad |z| = r,$$

for complex constants λ_i , a_i subject to (a) in Th. 1 with C_r instead of C_w , then f(z) is p-valent in $|z| \leq r$.

PROOF. In Cor. 8, let us put $k_i = 0$, $i = 1, 2, \dots, n$. Then we have Cor. 10. COROLLARY 11. Let $f(z) = z^p + \cdots$ be regular in |z| < r. If for some real α , $|\alpha| < \pi/2$, the relation

(4.13)
$$\Re\left(e^{i\alpha}\frac{zf'(z)}{f(z)}\right) > 0, \quad |z| < r,$$

holds, then f(z) is p-valent and spiral-like in |z| < r, [7], [8].

PROOF. The assumption shows that neither f(z) nor f'(z) vanishes for $0 < |z| \le \rho$, where ρ is an arbitrary number such that $0 < \rho < r$. Hence we can appeal to Cor. 10 with n = 1, $a_1 = 0$ and $\lambda_1 = e^{i\alpha}$ to conclude that f(z) is *p*-valent in $|z| \le \rho$. The spiral-likeness is due to the definition; cf. [3], [17] or Def. 5 which will later be stated. The inequality $|\alpha| < \pi/2$ is a necessary condition that (4.13) should hold. Thus the corollary follows.

COROLLARY 12. Let $f(z) \in \mathfrak{F}(p, |z| \leq r)$. If the relation

(4.14)
$$\Re \frac{zf'(z)}{f(z) - A} > k \Im \frac{zf'(z)}{f(z) - A}, \quad |z| = r,$$

holds for k real and A complex, then f(z) is p-valent in $|z| \leq r$.

PROOF. Our assumption shows that $f(z) \neq A$ on |z| = r. Hence we can appeal to Cor. 10 with n=1, $\lambda_1=1+ki$ and $a_1=A$ to conclude that f(z) is *p*-valent in $|z| \leq r$.

Now, setting p=1 for the sake of simplicity, we give a few examples for some of our results.

EXAMPLE 1. Let D_z be the rectangle $|\Re z| \leq M$ (M > 0), $|\Im z| \leq \pi - \varepsilon$ $(0 < \varepsilon < \pi)$, and let $f(z) \equiv e^z - 1 = z + \cdots$. If we put $\varphi(z) \equiv z$ and A = -1, then we have the following relations.

 $f(z)f'(z) \neq 0$ for $z \neq 0$ in D_z , $\varphi'(\log(f(z) - A)) \neq 0$ on $C_z \equiv \partial D_z$,

and for any arc $C \subset C_z$

N. SONE

$$\int_{C} d \arg (f(z) - A) = \int_{C} d\Im z \neq -2\pi$$
 i.e. $A = -1 \in E(C_w)$,

and

$$\int_{c} d \arg d\varphi (\log (f(z) - A)) = \int_{c} d \arg dz \ge 0 > -\pi.$$

Hence by Cor. 1, f(z) is univalent in D_z .

J

EXAMPLE 2. Let D_w be the closed domain whose boundary curve C_w consists of two curves

$$egin{aligned} C_1:&
ho=1{-}3 heta/4,\ 0&\geqq heta\geqq{-}2\pi$$
 , $C_2:&
ho=1{+}4\pi/3{-}2 heta/3,\ -2\pi&\le heta\le{2\pi}$, \end{aligned}

where ρ , θ are the polar coordinates of a point w. Let the direction of C_w , as usual, generate to be positive with respect to its interior. Then there holds

(4.15)
$$\int_{C'w} (d \arg w + d | w |) > 0$$

for every arc (different from a point) $C'_w \subset C_w$. Let D^*_w be a domain (open) whose interior contains D_w and whose boundary consists of a bounded Jordan curve. Let $w = f(z) = z + \cdots$ be the function which maps the circle |z| < r with a suitable r one-to-one conformally onto the domain D^*_w , and let C_z be the map of C_w by $z = f^{-1}(w)$, where f^{-1} is the inverse function of f, and further let D_z be the closed domain bounded by C_z . Then, with these $f(z), C_z$ and D_z , a special case of the assumption of Th. 1 which is similar to that of Cor. 9 is satisfied since we have (4.15) for w = f(z).

Clearly f(z) is neither starlike [2], [12] nor close-to-convex (i.e. at most π -concave [15]) on the directed curve C_z . Now, in order to compare with the spiral-like case, we prepare the following:

DEFINITION 5. Let Γ denote a directed rectifiable curve. Suppose that f(z) is regular and $f(z) \neq A$ on Γ and that $\lambda \neq 0$ (A, λ complex). Then f(z) is said to be spiral-like with λ and with respect to A on Γ if

(4.16)
$$\int_{\Gamma'} d\arg (f(z) - A)^{\lambda} \ge 0$$

for all arcs $\Gamma' \subset \Gamma$. If A = 0, we shall omit reference to A and say, briefly, that f(z) is spiral-like (with λ) on Γ [3], [17].

Now, let C be the part of C_1 such that $-\frac{1}{2}\pi \ge \theta \ge -\pi$. The direction of the curve is that generated by decreasing θ . Then we have

$$\int_{c} (d \arg w + d | w |) = -\frac{\pi}{2} + \frac{2}{3}\pi = \frac{1}{6}\pi.$$

On the other hand, since

414

$$d \log |w| = d |w| / |w| < d |w| / 3, w \in C$$

we have that

$$\int_{c} d \arg w^{1+i} = \int_{c} (d \arg w + d \log |w|) < -\frac{5}{18}\pi.$$

Accordingly, f(z) is not spiral-like with (1+i) on C_z .

EXAMPLE 3. Let D_w be the complement of the domain

$$\{|w| > 1\} \cup \{|\arg(w-1/3) - \pi/2| < \varepsilon\} \cup \{|(\arg(w+1/2) - \pi| < \varepsilon\},$$

where $\varepsilon > 0$ is a sufficiently small constant. Let us denote the boundary of D_w by C_w . Then there holds the inequality

(4.17)
$$\int_{C'w} \left(d \arg w + d \arg \left(w - \frac{2}{3} \right) \right) > 0$$

for every arc (different from a point) $C'_w \subset C_w$. This may be proved by noting that either the boundary of the domain

$$|\arg(w-1/3)-\pi/2|<\varepsilon$$

or the two points w = 0 and w = 2/3 are symmetric with respect to the straight line $\Re w = 1/3$. Consider (one of) the function f(z) and the curve C_z which are obtained from the closed domain D_w as in the above example. Then, for these w = f(z) and C_z , we have (4.17) a special case of (4.1). Clearly, on C_z , f(z) is starlike neither with respect to the point w = 0 nor with respect to w = 2/3, though it is starlike with respect to the point $w = 1/3 - \delta i$, where $\delta > 0$ is a sufficiently small constant.

§5. Some remarks for the above results.

In Th. 1, if only one element of criteria, for example J_1 , is used, we have the following slightly more precise result.

THEOREM 2. Let $f(z) \in \mathfrak{F}(p, D_z)$ (without the assumption $f(z) \neq 0$). If there holds the relation

(5.1)
$$\int_{C'_z} d\arg df(z) \ge -\pi ,$$

for any arc $C'_z \subset C_z \equiv \partial D_z$, then f(z) is p-valent in D_z .

PROOF. If f(z) is at least (p+1)-valent in D_z , then as in the proof of Prop. 1, there exists such a simple closed piecewise regular curve γ which is the image of a curve $C_z^* \subset C_z$ by w = f(z) and for which we have the inequality

$$\int_{-r}^{} d \arg dw \ge \pi \, .$$

Here we note that, from the geometrical property of γ , there also exists a sub-curve C of γ for which we have

N. Sone

(5.2)
$$\int_{-c} d \arg dw > \pi$$

From this fact the theorem follows easily.

Th. 2 is more general or precise than Umezawa-Kaplan's result to which we referred before or than the result due to Reade [10, p. 255].

Next we refer to Cor. 5 from which the following corollary follows easily. COROLLARY 13. Let $f(z) \in \mathfrak{F}(1, |z| \leq r)$. If there holds

(5.3)
$$\Re\left\{1+z\frac{f''(z)}{f'(z)}+ik\frac{|f(z)-A|}{f(z)-A}zf'(z)\right\}>0, |z|=r,$$

where k real, A complex and $A \in C_r$, then f(z) is univalent in $|z| \leq r$. In the above corollary, if (5.3) holds then we have

(5.4)
$$\int_{C} \{d \arg df(z) + kd | f(z) - A| \} > 0$$

for every arc C on |z|=r. Now, let w_1, w_2 , if exist, be the intersections of C_r and the circle $K_{\rho}: |w-A| = \rho$. Then, since (5.4) holds, the argument of the tangent vector of C_r at w_2 is larger than the previous value at w_1 . This must hold for any $\rho, 0 < \rho < +\infty$. Now we put $A = -ae^{i(\pi/2-\omega)}, a > 0, \omega$ real, and we consider the case in which (5.3) remains for $a \to +\infty$. In this case, if we make $a \to +\infty$, then, for example, the part of $K_a: |w-A| = a$ inside C_r tends to a part of the straight line $L: \Im(we^{i\omega}) = 0$, and from the fact stated above, it is seen that C_r has no intersecting points with any line parallel to L more than two. Moreover we have

$$i|f(z)-A|/(f(z)-A) \rightarrow e^{i\omega}$$
, when $a \rightarrow +\infty$.

Thus, we have the following:

COROLLARY 14. Let $f(z) \in \mathfrak{F}(1, |z| \leq r)$. If there folds

(5.5)
$$\Re\left\{1+z\frac{f''(z)}{f'(z)}+ke^{i\omega}zf'(z)\right\}>0, \ |z|=r$$

where k, ω real, then f(z) is univalent, convex in one direction (cf. [11]) in $|z| \leq r$, and this direction coincides with that of the vector representing $e^{i(\pi-\omega)}$.

Cor. 14 is equivalent to Th. 3 in [6, p. 10] and which has been generalized as Cor. 13 in a certain sense. But it is unnatural. Indeed, under the assumption of Cor. 13, there is a case such that C_r is cut by some K_{ρ} as before in more than two points, as the case $f(z) \equiv z$ and k = A = 0. So, we generalize the definition of the class of functions convex in one direction, which is denoted by (C), as follows.

DEFINITION 6. We shall say $f(z) \in C(A)$ if f(z) is regular for $|z| \leq r$, f(0)=0, and if C_r as before is cut by any one of circles of center $A \in U(\infty, C_r)$ in not more than two points. We interpret as $C(-\infty) = (C)$ -with the direction of

416

the vector i.

Using the above definition we have the following: THEOREM 3 Let $f(z) \in \Re(1 | z| \le r)$ If there holds

THEOREM 3. Let
$$f(z) \in \mathfrak{G}(1, |z| \ge r)$$
. If there notes

(5.6)
$$\Re\left\{1+z\frac{f''(z)}{f'(z)}+(\kappa i-1)\frac{zf'(z)}{f(z)-A}\right\}>0, |z|=r,$$

for suitable constants κ and A such that κ real and $A \in U(\infty, C_r)$; then f(z) belongs to C(A) and is univalent in $|z| \leq r$.

PROOF. Since we have (5.6), the relation (4.6) holds for $\lambda = \kappa i - 1$ and all arcs C'_z on |z| = r. Hence by Cor. 4, f(z) is univalent in $|z| \leq r$. Now let us set

(5.7)
$$g(z) = -A\{\log(f(z) - A) - \log(-A)\} = z + \cdots,$$

then we see that $g(z) \in \mathfrak{F}(1, |z| \leq r)$ and a simple calculation shows that (5.6) is reduced to

(5.8)
$$\Re\left\{1+z\frac{g''(z)}{g'(z)}-\frac{\kappa i}{A}zg'(z)\right\}>0, \ |z|=r.$$

Hence by Cor. 14, g(z) is convex in the direction of the vector $e^{i(\pi-\omega)}$, where $\omega = \pi/2 - \arg(-A)$. On the other hand, the part of the circles $|w-A| = \rho$ inside C_r is univalently mapped by the function $-A\{\log(w-A)-\log(-A)\}$ onto the corresponding part of the lines parallel to the above vector $e^{i(\pi-\omega)}$. Noting the above facts we can deduce $f(z) \in C(A)$. Thus, the theorem follows.

EXAMPLE 4. Let $f(z) \equiv e^z - 1$, $r = \pi - \varepsilon$ ($0 < \varepsilon < \pi$) and A = -1. Then (5.6) is reduced to

(5.9)
$$\Re(1+\kappa i z) > 0, |z| = r$$

which holds for a sufficiently small $|\kappa|$, and so we see $f(z) \in C(-1)$.

REMARK 4. In Th. 3, set $A = -aie^{-i\omega}$ (a > 0) and $\kappa = ka$, then by making $a \rightarrow +\infty$ we again have Cor. 14. Th. 3 is more natural than Cor. 13 as an extension of Cor. 14.

Yamanashi University

References

- [1] L.V. Ahlfors, Complex analysis, New York, 1953.
- [2] S.D. Bernardi, Convex, starlike, and level curves, Duke Math. J., 28 (1961), 57-72.
- [3] R.K. Brown, Univalent solutions of W''+pW=0, Canad. J. Math., 14 (1962), 69-78.
- [4] E. Hille, Analytic function theory, I, Boston, 1961/62.
- [5] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185.
- [6] S. Ogawa, Some criteria for univalence, J. Nara Gakugei Univ., 10 (1961), 7-12.
- [7] S. Ogawa, On some criteria for p-valence, J. Math. Soc. Japan, 13 (1961), 431-441.

N. Sone

- [8] S. Ozaki, Some remarks on the univalency and multivalency of functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2 (1934), 42-55.
- [9] G. Pólya und Szegö, Aufgaben und Lehrsätze aus der Analysis, I, Berlin, 1954.
- [10] M.O. Reade, On Umezawa's criteria for univalence II, J. Math. Soc. Japan, 10 (1958), 255-259.
- [11] M.S. Robertson, Analytic functions star-like in one direction, Amer. J. Math., 58 (1936), 465-472.
- [12] W.C. Royster, Convexity and starlikeness of analytic functions, Duke Math. J., 19 (1952), 447-457.
- [13] K. Sakaguchi, A note on p-valent functions, J. Math. Soc. Japan, 14 (1962), 312-321.
- [14] K. Sakaguchi, A representation theorem for a certain class of regular functions, J. Math. Soc. Japan, 15 (1963), 202-209.
- [15] N. Sone, A generalization of the concept 'convexity or starlikeness', Mem. Fac. Liberal Arts and Education Yamanashi Univ., 1962, 115-119.
- [16] N. Sone, Univalent functions and non-convex domains, J. Math. Soc. Japan, 15 (1963), 191-201.
- [17] Lad. Špaček, Contribution à la théorie des fonctions univalentes, Časopis Pěst. Mat. Fys., 62 (1936), 12-19.
- [18] T. Umezawa, On the theory of univalent functions, Tôhoku Math. J., 7 (1955), 212-228.