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\S 1. Introduction.

An interesting sufficient condition for univalence due to Umezawa [18, $p$ .
213], [16, p. 191] and Kaplan [5, p. 173] has been generalized by Ogawa in
his paper [7] as ’ Main criterion ’ or as ‘ Theorem 2 ‘, while the last result
has also been extended by Sakaguchi [13] as follows.

THEOREM A. Let $ f(z)=z^{p}+\cdots$ $\varphi(z)$ be regular in $|z|\leqq r$ and $|z|<+\infty$

respectively, and let $f^{\prime}(z)\neq 0$ for $0<|z|\leqq r$ . If neither $f(z)$ nor $\varphi^{\prime}(\log f(z))$

vanishes on $|z|=r$ and the inequality

$\int_{c}d\arg d\varphi(\log f(z))>-\pi$

holds for any arc $C$ on $|z|=r_{J}$ then $f(z)$ is p-valent in $|z|\leqq r$ .
The purpose of this paper is to extend or improve the above results and

some of other ones in [6], [7] and [13] by a systematic method. Some of
our results may include, in a certain sense, a few new classes of uni-or multi-
valent functions.

\S 2. Fundamental propositions.

In this paper, we mainly consider the functions belonging to the class
which is defined as follows.

DEFINITION 1. A function $f(z)$ is said to be a member of the class
$\mathfrak{F}(p, D_{z})$ , where $p$ is a positive integer and $D_{z}$ is a simply connected closed
domain whose boundary $\partial D_{z}\equiv C_{z}$ consists of a piecewise regular curve [1, $p$ .
65] and whose interior contains the origin, if $f(z)$ is regular in $D_{z}$ and has the
expansion about the origin

$ f(z)=z^{p}+c_{p+1}z^{p+1}+c_{p+2}z^{p+2}+\cdots$

and if $f(z)f^{\prime}(z)\neq 0$ except at the origin in $D_{z}$ .
Let $C_{z}^{\prime}$ denote any continuous, directed sub-arc of $C_{z}\equiv\partial D_{z}$ , and let $C_{w}^{\prime}$ and

$C_{w}$ denote the images of $C_{z}^{\prime}$ and $C_{z}$ by the mapping $w=f(z)$ respectively. The
direction of $C_{z}^{\prime}$ is always generated, as usual, in the positive sense with respect
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to $D_{z}$ , while the direction of $C_{w}^{\prime}$ is induced by that of $C_{z}^{\prime}$ . The opposite arc
[1, p. 65] of an arc $C$ is denoted by $-C$ . Throughout this paper the above
notations are used in the above sense unless otherwise stated. We note that
an arc $C_{w}^{\prime}$ always corresponds to a continuous arc $C_{l}^{\prime}\subset C_{z}$ , and that in this
paper we leave ‘ a point curve [1, p. 66] ‘ out of consideration (cf. for example
(4.15)).

DEFINITION 2. For any fixed $D_{z}$ and $f(z)\in \mathfrak{F}(p, D_{z})$ , let $J[C_{w}^{\prime}]$ be a func-
tional with the following properties: (a) by a certain rule, a real number is
associated with each directed arc $C_{w}^{\prime}$ , and (b) if $C_{w}^{\prime}$ (directed as before) is a
simple closed curve whose interior does not contain the origin and whose
direction is clockwise, then $J[C_{yy}^{\prime}]\geqq 0$ . The family of such functionals is
denoted by $\Omega$ , and such a simple closed curve $C_{w}^{\prime}$ as in (b) is denoted by $\gamma$

A non-negative constant is the simplest element of $\Omega$ , but it is useless
for our purpose if it is used separately. The quantity

(2.1) $ J_{0}\equiv J_{0}[C_{w}^{\prime}]\equiv\int_{-c_{w}},d\arg dw-\pi$

has been used by Umezawa or Kaplan for their cases. While also for our
case it is seen that (a) for any $C_{w}^{\prime},$ $J_{0}$ exists, (b) if there exists a curve $\gamma$ as
in Def. 2 then $J_{0}[\gamma]\geqq 0$ , and that $ J_{0}\in\Omega$ .

Let us also put

(2.2) $J_{\psi}\equiv J_{\psi}[C_{w}^{\prime}]\equiv\int_{-C_{w}^{\prime}}d\psi(w)$ ,

where $\psi(w)$ is a real-valued function of bounded variation for each $C_{w}^{\prime}$ and is
subject to the relation

$\int_{-\gamma}d\psi(w)\geqq 0$ ,

when there exists $\gamma$ as before. Then we see that $ J_{\psi}\in\Omega$ .
REMARK 1. The integrals as in (2.1) or (2.2) should be interpreted as

Stieltjes integrals (cf. for example [4, 292-295]), and $\psi(w)$ is not necessarily
single-valued or continuous and, when $C_{\epsilon}^{\prime}$ is represented by the equation $z=z(t)$ ,
$t_{1}\leqq t\leqq t_{2},$ $\psi(f(z(t)))$ is not necessarily differentiable for $t_{1}\leqq t\leqq t_{2}$ .

In the following section, some examples of such functionals are listed,

while we can construct much more examples, by noting the following property
which is easily deduced by Def. 2.

(2.3) $J_{a},$ $J_{b}\in\Omega\subset>\left\{\begin{array}{l}J_{a}+J_{b}\in\Omega,\\J_{a}\cdot J_{b}\in\Omega,\\J_{a}/J_{b}\in\Omega,\end{array}\right.$

$(J_{b}\mp 0foranyC)(qJ_{a,}\in\Omega,whereq_{w}\geqq.0)$

,

Now we establish the following:
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PROPOSITION 1. Let $f(z)\in \mathfrak{F}(p, D_{z})$ . If a suitable functional $ J[C_{w}^{\prime}]\in\Omega$

can be found, such that
$J[C_{w}^{\prime}]<0$

for every $C_{w}^{\prime}$ (induced by the above $f(z)$ and $D_{z}$), then $f(z)$ is p-valent in $D_{z}$ .
PROOF. Suppose that $f(z)$ is at least $(p+1)$ -valent in D.. Then, taking a

function $z=\phi(\zeta)$ which maps the unit circle $|\zeta|<1$ onto the interior of $D_{z}$

one-to-one conformally with $\phi(0)=0$ , and noting that the function $f(\phi(\zeta))$

extended to $|\zeta|\leqq 1$ with the boundary values is continuous for $|\zeta|\leqq 1$ , we
can prove, in a similar way as in [7, 432-434], that in the set of $C_{w}^{\prime}$ there
exists a simple closed curve $\gamma$ as in Def. 2. Consequently $J[\gamma]\geqq 0$ since
$ J[C_{w}^{\prime}]\in\Omega$ . This contradicts the hypothesis, and the proposition follows.

More concretely (and less generally), we have the following:
PROPOSITION 2. Let $f(z)\in \mathfrak{F}(p, D_{z})$ . If a suitable functional $J\psi\equiv J\psi[C_{w}^{\prime}]$

as in (2.2) can be found, and if the relation

$q_{0}J_{0}+q_{1}J_{\psi}<0$ ,

holds for every $C_{w}^{\prime}$ , where $q_{0},$ $q_{1}$ are non-negative constants and $J_{0}$ is that of
(2.1), then $f(z)$ is p-valent in $D_{z}$ .

PROOF. This is clear from Prop. 1 and the relation (2.3).

REMARK 2. Even if $p=1$ , Prop. 2 is an extension of ‘ Main criterion ’ in
[7] as is seen from Remark 1.

Thus our problem is reduced to seeking the $J’ s$ which belong to $\Omega$ and
which are anyhow effective for our purpose. Each of such functionals we
shall call an ‘ element of criteria‘, for the present.

\S 3. Elements of criteria.

In this section, some elements of criteria are listed. Previous to this we
prepare the following two definitions.

DEFINITION 3. Let $\Gamma$ be a closed curve and let $A,$ $B$ be complex constants
or the point at infinity. Then $A\in U(B, \Gamma)$ means that it is possible to con-
nect the point $A$ with the point $B$ by a continuous curve none of whose points
including the end points is on $\Gamma$ .

DEFINITION 4. Let ($w=f(z),$ $C_{z},$ $C_{z}^{\prime},$ $C_{w}$ and) $C_{w}^{\prime}$ be as before. Let $A$ be a
complex constant. Then $A\in E(C_{w})$ means that $A\not\in C_{w}^{\prime}$ for every $C_{w}^{\prime}$ , and

$\int_{C_{w}^{\prime}}d\arg(w-A)\neq-2\pi$ .

Here and in what follows ’ $A\in\in C’$ means that $A$ does not lie on $C$ .
REMARK 3. $|A|>\max_{z\in C_{z}}|f(z)|\subset>A\in U(\infty, C_{w})\cap E(C_{w})$ .
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\langle 3.1) $ J_{1}\equiv J_{1}[C_{w}^{\prime}]\equiv q_{0}\int_{-c_{w}^{\prime}}d\arg dw-q_{0}\pi\in\Omega$ ,

where $q_{0}$ is a non-negative constant.
This is clear since $J_{1}=q_{0}J_{0}$ with $J_{0}$ in (2.1).

(3.2) $ J_{2i}\equiv J_{2i}[C_{w}^{\prime}]\equiv\int_{-c_{w}},d\arg(w-a_{i})^{\lambda_{i}}\in\Omega$ ,

where $\lambda_{i},$
$a_{i}$ are complex constants and $a_{i}\in U(0, C_{w})UU(\infty, C_{w})UE(C_{w})$ .

In fact, if there is $\gamma$ as in Def. 2, let $w_{1}$ and $w_{2}$ denote the initial and
terminal points of $\gamma$ respectively. Then, from the assumption on $a_{i}$ , we see
that

$J_{2i}[\gamma]^{\alpha}=s[\lambda_{i}\{\log(w_{1}-a_{i})-\log(w_{2}-a_{i})\}]=0$ .

(3.2) $ J_{2i}^{\prime}\equiv J_{2i}^{\prime}[C_{w}^{\prime}]\equiv\int_{-c_{w}^{\prime}}d\arg(w-a_{i}^{\prime})^{\lambda_{i}^{\prime}}\in\Omega$ ,

where $\text{\‘{A}}_{t}^{\prime},$ $a_{i}^{\prime}$ are complex constants and $\mathfrak{R}\lambda_{i}^{\prime}\geqq 0,$ $a_{i}^{\prime}\not\in C_{w}$ .
In fact, if there is $\gamma$ as before, it holds that

$J_{2i}^{\prime}[\gamma]=\left\{\begin{array}{l}0if\gamma doesnotcontaina_{i}^{\prime}within,\\2\pi \mathfrak{R}\lambda_{i}\geqq 0if\gamma containsa_{i}^{\prime}within.\end{array}\right.$

(3.3) $ J_{3i}\equiv J_{3i}[C_{w}^{\prime}]\equiv k_{i}\int_{-c_{w}},d|(w-b_{i})^{\mu_{i}}|\in\Omega$ ,

where $k_{i}$ is a real constant, $\mu_{i},$
$b_{i}$ are complex ones, and

$b_{i}\in U(0, C_{w})UU(\infty, C_{w})UE(C_{w})$ .
In fact, for $\gamma\equiv\overline{w_{1}w_{2}}$ as before,

$J_{3i}[\gamma]=\exp\{\mathfrak{R}(\mu_{i}\log(w_{1}-b_{i}))\}-\exp\{\mathfrak{R}(\mu_{i}\log(w_{2}-b_{i}))\}=0$ .
(3.3)i $ J_{3i}^{\prime}\equiv J_{3i}^{\prime}[C_{w}^{\prime}]\equiv k_{i}^{\prime}\int_{-c_{w}},d|(w-b_{i}^{\prime})^{\mu;}i|\in\Omega$ ,

where $k_{i}^{\prime}$ is a real constant, $\mu_{i}^{\prime},$ $b_{i}^{\prime}$ are complex ones and, $k_{i}^{\gamma\alpha}s\mu_{i}^{\prime}\leqq 0,$ $b_{i}^{\prime}\not\in C_{w}$ .
In fact, for $\gamma=\overline{w_{1}w_{2}}$ as before,

$J_{3i}^{\prime}[\gamma]=k_{i}^{\prime}\exp\{\mathfrak{R}(\mu_{i}^{\prime}\log(w_{1}-b_{i}^{\prime}))\}-k_{i}^{\prime}\exp\{\mathfrak{R}(\mu_{i}^{\prime}\log(w_{2}-b_{i}^{\prime}))\}$

$=k_{i}^{\prime}\exp\{\mathfrak{R}(\mu_{i}^{\prime}\log(w_{1}-b_{i}^{\prime}))\}$ [ $1-\exp\{\mathfrak{R}(\mu_{i}^{\prime}\times(-2\pi i$ or $0))\}$ ]

according as the point $b_{i}^{\prime}$ is inside or outside of $\gamma$ . Since, $k_{i}^{\prime}s\mu_{i}^{\prime}\infty\leqq 0$ , the value
of the above equality cannot be negative.

\langle 3.4) $ J_{4i}\equiv I_{4i}[C_{w}^{\prime}]\equiv q_{i}\int_{-C_{w}^{\prime}}d\arg F_{i}(\log(w-A_{i}))\in\Omega$ ,

where $q_{i}$ is a non-negative constant, $F_{i}(\zeta)$ is an integral function, $A_{i}$ is a com-
plex constant, $A_{i}\in U(0, C_{w})UU(\infty, C_{w})UE(C_{w})$ and $F_{i}(\log(w-A_{i}))\neq 0$ on $C_{w}$ .
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In fact, let $\gamma_{\zeta}$ be the map of $\gamma$ as before by $\zeta=\log(w-A_{i})$ , then $\gamma_{\zeta}$ is also
a simple closed curve which has the negative direction with respect to its
interior. Hence we have

$J_{4i}[\gamma]=q_{?}\int_{-\gamma_{\zeta}}d\arg F_{q}\cdot(\zeta)=2nq_{i}\pi\geqq 0$ ,

where $n$ is the number of zeros of $F_{i}(\zeta)$ inside $\gamma_{\zeta}$ .

(3.5) $ J_{5i}\equiv J_{5i}[C_{w}^{\prime}]\equiv r_{i}\int_{-C_{w}^{\prime}}d|G_{i}(\log(w-B_{i}))|\in\Omega$ ,

where $r_{i}$ is a real constant, $G_{i}(\zeta)$ is an integral function, B. is a complex con-
stant and $B_{i}\in U(0, C_{w})UU(\infty, C_{w})UE(C_{w})$ .

In fact, as in the above case, the map $\gamma_{\zeta}$ of $\gamma$ by $\zeta=\log(w-B_{i})$ is a
closed curve and the map of $\gamma_{\zeta}$ by $G_{i}(\zeta)$ is also a closed curve. Hence

$J_{5i}[\gamma]=r_{i}\int_{-\gamma_{\zeta}}d|G_{i}(\zeta)|=0$ .

\S 4. Some criteria for $p$-valence.

Now we have the following main theorem.
THEOREM 1. Let $f(z)\in \mathfrak{F}(p, D_{z})$ . If the following relation (4.1) holds for

any arc $C_{z}^{\prime}\subset C_{z}\equiv\partial D_{z}$ , then $f(z)$ is p-valent in $D_{z}$ :

(4.1) $\int_{-c_{z}},d[q_{0}\arg df(z)+\sum_{i=1}^{n_{1}}\arg(f(z)-a_{i})^{\lambda_{i}}+\sum_{i=1}^{n_{2}}k_{i}|(f(z)-b_{i})^{\mu_{i}}|$

$+\sum_{i=1}^{n_{8}}q_{i}\arg F_{i}(\log(f(z)-A_{i}))+\sum_{i=1}^{n_{4}}r_{i}|G_{i}(\log(f(z)-B_{?}\cdot))|]<q_{0}\pi$ ,

where $F_{i}(z),$ $G_{i}(z)$ are integral functions, $F_{i}(\log(f(z)-A_{i}))\neq 0$ on $C_{z}$ , and $q_{0},$ $q_{i}$

are non-negative, $k_{i},$
$r_{i}$ are real, $\lambda_{i},$

$\mu_{i},$ $a_{i},$
$b_{i},$ $A_{i}$ and $B_{i}$ are all complex con-

stants, and further
(a) $[a_{i}\in U(0, C_{\iota\iota},)UU(\infty, C_{w})UE(C_{w})]$ or [ $a_{i}\not\in C_{w}$ and $\mathfrak{R}\lambda_{i}\geqq 0$] ,

(b) $[b_{i}\in U(0, C_{w})UU(\infty, C_{w})UE(C_{w})]$ or [ $b_{i}\not\in C_{w}$ and $k_{i\delta\mu_{i}}^{\alpha}\leqq 0$] ,

(A) $A_{i}\in U(0, C_{w})UU(\infty, C_{w})UE(C_{w})$ ,

(B) $B_{i}\in U(0_{2}C_{w})UU(\infty, C_{w})UE(C_{w})$ .
PROOF. Using the same notations as in the previous section, we can write

the relation (4.1) in the form

(4.2) $I_{1}+\sum_{i=1}^{n_{1}}$ ( $J_{2i}$ or $J_{2i}^{\prime}$) $+\sum_{i=1}^{n_{2}}$ ( $J_{3i}$ or $J_{8i}^{\prime}$) $+\sum_{i=1}^{n_{S}}J_{4i}+\sum_{i=1}^{n_{4}}J_{5i}<0$ .

Each term in the above sum belongs to $\Omega$ as is shown in \S 3, and so, by the
relation (2.3), the sum itself belongs to $\Omega$ . Consequently, by Prop. 1, $f(z)$ is
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$p$-valent in $D_{z}$ , and the theorem follows.
COROLLARY 1. Let $f(z)\in \mathfrak{F}(p, D_{z})$ . Let $\varphi(z)$ be an integral function such

that $\varphi^{\prime}(\log(f(z)-A))\neq 0$ on $\partial D_{z}\equiv C_{z}$ , where A complex, $A\in U(O, C_{w})UU(\infty, C_{w})$ ,

$UE(C_{w})$ . If the inequality

(4.3) $\int_{c_{z}^{\prime}}d\arg d\varphi(\log(f(z)-A))>-\pi$

holds for any arc $C_{z}^{\prime}\subset C_{z}$ , then $f(z)$ is p-valent in $D_{z}$ .
PROOF. In Th. 1, let us put $q_{0}=1,$ $\lambda_{1}=-1,$ $q_{1}=1$ , and the other $\lambda_{i},$ $k_{i},$

$q_{i}$

and $r_{i}$ are all equal to zero, and let us also put $a_{1}=A_{1}=A$ and $F_{1}(z)=\varphi^{\prime}(z)$ .
Then, after a simple calculation, we have this corollary.

Cor. 1 is an extention of Th. A.
Henceforth, we denote the image of $|z|=r$ under $f(z)$ by $C_{r}$ , and we ab-

breviate the part ‘ for any pair of $t_{1},$ $t_{2}$ such that $0\leqq t_{1}<2\pi,$ $ 0<t_{2}-t_{1}<2\pi$

by ‘ for any $t_{1}<t_{2}$ ’.
COROLLARY 2. Let $f(z)\in \mathfrak{F}(p, |z|\leqq r)$ . If the inequality

(4.4) $\int_{t_{2}^{1}}^{t}\mathfrak{R}\{q(1+\frac{zf^{\prime\prime}(z)}{f(z)})+\sum_{i=1}^{m}(\lambda\frac{zf^{\prime}(z)}{{}^{t}f(z)-a_{i}})$

$+i\sum_{i=1}^{n}(k_{i}\mu_{i}\frac{|(f(z)-b_{i})^{\mu_{i}}|}{f(z)-b_{i}}zf^{\prime}(z))\}dt<q\pi,$ $z=re^{it}$ ,

holds for any $t_{1}<t_{2}$ , where $q$ is non-negative, $k_{i}$ are real, $\lambda_{i},$

$\mu_{i},$ $a_{i}$ and $b_{i}$ are
all complex, and the conditions (a) and (b) in Th. 1 are satisfied with $C_{r}$

instead of $C_{w}$ , then $f(z)$ is p-valent in $|z|\leqq r$ .
PROOF. In Th. 1, let us set $D_{z}$ : $|z|\leqq r,$ $q_{0}=q$, and $q_{i}$ and $r_{i}$ are all equal

to zero. Then a simple calculation leads this corollary.
COROLLARY 3. Let $f(z)\in \mathfrak{F}(p, |z|\leqq r)$ . If there holds

(4.5) $\int_{0^{\pi}}^{2}|\mathfrak{R}\{1+\frac{zf^{\prime/}(z)}{f’(z)}+\sum_{i=1}^{m}(\lambda\frac{zf^{\prime}(z)}{{}^{t}f(z)-a_{i}})+i\sum_{i=1}^{n}(k\frac{|f(z)-b_{i}|}{{}^{t}f(z)-b_{i}}zf^{\prime}(z))\}|dt$

$<2\pi\{1+p+\sum_{i=1}^{m}(n(a_{i})\mathfrak{R}\lambda_{i})\},$ $z=re^{it}$ ,

where $k_{i}$ are real, $\lambda_{i},$
$a_{i},$

$b_{i}$ are complex, and

$[a_{i}\in U(0, C_{\gamma})UU(\infty, C_{r})UE(C_{r})]$ or [ $a_{i}\not\in C_{\gamma}$ and $\mathfrak{R}\lambda_{i}\geqq 0$], $b_{i}\not\in C_{r}$ ,

and

$2\sum_{i=1}^{m}(n(a_{i})\mathfrak{R}\lambda_{i})>-(1+2p)$ ,

here $n(a_{i})$ denotes the number of $a_{i}$-points of $f(z)$ in $|z|<r$ ; then $f(z)$ is p-valent
in $|z|\leqq r$ .

PROOF. In Cor. 2, let us put $q=1$ and $\mu_{i}$ are all equal to 1, then Cor. 3
follows in a similar way to the proof of Cor. 2 in [13].
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Cor. 3 is an extension of Cor. 2 in [13].

COROLLARY 4. Let $f(z)\in \mathfrak{F}(p, D_{z})$ . If there holds, for any arc $C_{z}^{\prime}\subset C_{z}\equiv\partial D_{z}$ ,

\langle \langle 4.6) $\int_{C_{z}^{\prime}}[d\arg df(z)+d\arg(f(z)-A)^{\lambda}]>-\pi$ ,

where $\lambda,$ $A$ are complex constants and $A\in U(0, C_{u)})\cup U(\infty, C_{w})UE(C_{w})$ or
[ $A\not\in C_{w}$ and $\mathfrak{R}\lambda\geqq 0$], then $f(z)$ is p-valent in $D_{z}$ .

PROOF. In Th. 1, let us put $q_{0}=1,$ $a_{1}=A,$ $\lambda_{1}=\lambda$ and the other $\lambda_{i},$ $k_{i},$ $q_{i}$

and $r_{i}$ are all equal to zero. Then the corollary follows readily.
Cor. 4 is an extension of Cor. 1 in [13] and ‘ a fortiori ’ of Th. 2 in [7].

COROLLARY 5. Let $f(z)\in \mathfrak{F}(p, |z|\leqq r)$ . If there holds, for any $t_{1}<t_{2}$ ,

$t4.7)$ $\int_{t^{1}}^{t_{2}}\mathfrak{R}(1+z\frac{f^{\prime\gamma}(z)}{f’(z)}+ik\frac{|f(z)-A|}{f(z)-A}zf^{\prime}(z))dt<\pi,$ $z=re^{it}$ ,

where $k$ real and A complex such that $A\not\in C_{r}$ , then $f(z)$ is p-valent in $|z|\leqq r$ .
PROOF. In Cor. 2, let us put $q=1,$ $\mu_{1}=1,$ $k_{1}=k$ and the other $k_{i},$ $\lambda_{i}$ are

all equal to zero. Then Cor. 5 follows readily.
Cor. 5 is an extension of Th. 2 in [6] (even if $p=1$). In fact, in Cor. 5

let us set $A=\rho e^{i(3\pi/2-\omega)},$ $\rho>0$ , ru real, and $|A|>\max_{z\in D_{z}}|f(z)|$ . Then by tending
$\rho\rightarrow+\infty$ we have the following:

COROLLARY 6. Let $f(z)\in \mathfrak{F}(p, |z|\leqq r)$ . If there holds, for any $t_{1}<t_{2}$ ,

(4.8) $\int_{t_{2}}^{t_{1}}\mathfrak{R}(1+z\frac{f^{\prime\prime}(z)}{f(z)}+ke^{i\omega}zf^{\prime}(z))dt<\pi,$ $z=re^{it}$ ,

where $k,$ $\omega$ real, then $f(z)$ is p-valent in $|z|\leqq r$ .
COROLLARY 7. Let $f(z)\in \mathfrak{F}(p, D_{z})$ . If there holds

(4.9) $\int_{c}d\arg df(z)>-\pi$ ,

for all arcs $C\subset C_{z}\equiv\partial D_{z}$ , then $f(z)$ is p-valent in $D_{z}$ , and is ‘ at most $\pi$ -concave ’

[15] on $C_{z}$ .
PROOF. This is obtained by Cor. 4 by setting $\lambda=0$ .
The special case of Cor. 7 in which $p=1$ and $C_{z}$ is a regular curve is

essentially equivalent to Kaplan-Umezawa’s theorem [5], [18].

COROLLARY 8. Let $f(z)\in \mathfrak{F}(p, |z|\leqq r)$ . If there holds

\langle 4.10) $\mathfrak{R}\{\sum_{i=1}^{m}\lambda\frac{zf^{\prime}(z)}{{}^{t}f(z)-a_{i}}+i\sum_{i=1}^{n}(k_{i}\mu_{\iota}\frac{|(f(z)-b_{i})^{\prime 1}i|}{f(z)-b_{i}}zf^{\prime}(z))\}>0,$ $|z|=r$ ,

where $\lambda_{i},$ $k_{i},$
$\mu_{i},$ $a_{i}$ and $b_{i}$ are constants as in $Cor$ . $2$ , then $f(z)$ is p-valent in

$|z|\leqq r$ .
PROOF. In Cor. 2. let us put $q=0$ . Then Cor. 8 follows easily.
COROLLARY 9. Let $\Gamma(z)\in \mathfrak{F}(p, |z|\leqq r)$ . If there holds
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\langle 4.11) $\mathfrak{R}\{\lambda\frac{zf^{\prime}(z)}{f(z)-A}+ik\frac{|f(z)-B|}{f(z)-B}zf^{\prime}(z)\}>0,$ $|z|=r$ ,

where $k$ is real, $\lambda,$ $A$ and $B$ are complex, $A\in U(O, C_{r})UU(\infty, C_{r})UE(C_{r})$ or
[ $A\in\in C_{r}$ and $\mathfrak{R}\lambda\geqq 0$] and $B\not\in C_{r}$ ; then $f(z)$ is p-valent in $|z|\leqq r$.

PROOF. In Cor. 8, let us put $\mu_{1}=1,$ $\lambda_{1}=\lambda,$ $k_{1}=k$ and the other $\lambda_{i},$ $k_{i}$ are
all equal to zero. Then Cor. 9 follows readily.

COROLLARY 10. Let $f(z)\in \mathfrak{F}(p, |z|\leqq r)$ . If there holds

(4.12) $\mathfrak{R}\sum_{i-- 1}^{n}(\lambda_{i}\overline{f}\frac{zf^{\prime}(z)}{(z)-a_{i}})>0$ , $|z|=r$ ,

for complex constants $\lambda_{i},$
$a_{i}$ subject to (a) in Th. 1 with $C_{\gamma}$ instead of $C_{w}$ , then

$f(z)$ is p-valent in $|z|\leqq r$.
PROOF. In Cor. 8, let us put $k_{i}=0,$ $i=1,2$ , $\cdot$ .. , $n$ . Then we have Cor. 10.
COROLLARY 11. Let $ f(z)=z^{p}+\cdots$ be regular in $|z|<r$. If for some real

$\alpha,$ $|\alpha|<\pi/2$, the relation

(4.13) $\mathfrak{R}(e^{i\alpha}\frac{zf^{\prime}(z)}{f(z)})>0$ , $|z|<r$ ,

holds, then $f(z)$ is p-valent and spiral-like in $|z|<r,$ $[7],$ $[8]$ .
PROOF. The assumption shows that neither $f(z)$ nor $f^{\prime}(z)$ vanishes for

$ 0<|z|\leqq\rho$ , where $\rho$ is an arbitrary number such that $0<\rho<r$. Hence
we can appeal to Cor. 10 with $n=1,$ $a_{1}=0$ and $\lambda_{1}=e^{i\alpha}$ to conclude that $f(z)$

is $p$-valent in $|z|\leqq\rho$ . The spiral-likeness is due to the definition; cf. [3],
[17] or Def. 5 which will later be stated. The inequality $|\alpha|<\pi/2$ is a neces-
sary condition that (4.13) should hold. Thus the corollary follows.

COROLLARY 12. Let $f(z)\in \mathfrak{F}(p, |z|\leqq r)$ . If the relation

(4.14) $\mathfrak{R}\frac{zf^{\prime}(z)}{f(z)-A}>k_{S}^{\alpha}\frac{zf^{\prime}(z)}{f(z)-A}$ , $|z|=r$ ,

holds for $k$ real and A complex, then $f(z)$ is p-valent in $|z|\leqq r$.
PROOF. Our assumption shows that $f(z)\neq A$ on $|z|=r$. Hence we can

appeal to Cor. 10 with $n=1,$ $\lambda_{1}=1+ki$ and $a_{1}=A$ to conclude that $f(z)$ is
$p$-valent in $|z|\leqq r$ .

Now, setting $p=1$ for the sake of simplicity, we give a few examples
for some of our results.

EXAMPLE 1. Let $D_{z}$ be the rectangle $|\mathfrak{R}z|\leqq M(M>0)$ , $|_{S}^{\alpha}z|\leqq\pi-\epsilon$

\langle$ 0<\epsilon<\pi$), and let $ f(z)\equiv e^{z}-1=z+\cdots$ If we put $\varphi(z)\equiv z$ and $A=-1$ , then
we have the following relations.

$f(z)f^{\prime}(z)\neq 0$ for $z\neq 0$ in $D_{z},$ $\varphi^{\prime}(\log(f(z)-A))\neq 0$ on $C_{z}\equiv\partial D_{z}$ ,

and for any arc $C\subset C_{z}$
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$\int_{c}d\arg(f(z)-A)=\int_{c}d_{S}^{\alpha_{Z}}\neq-2\pi$ i.e. $A=-1\in E(C_{w})$ ,

and

$\int_{c}d\arg d\varphi(\log(f(z)-A))=\int_{c}d\arg dz\geqq 0>-\pi$ .

Hence by Cor. 1, $f(z)$ is univalent in $D_{z}$ .
EXAMPLE 2. Let $D_{w}$ be the closed domain whose boundary curve $C_{w}$ con-

sists of two curves
$C_{1}$ : $\rho=1-3\theta/4,0\geqq\theta\geqq-2\pi$ ,

$C_{2}$ : $\rho=1+4\pi/3-2\theta/3,$ $-2\pi\leqq\theta\leqq 2\pi$ ,

where $\rho,$

$\theta$ are the polar coordinates of a point $w$ . Let the direction of $C_{wr}$

as usual, generate to be positive with respect to its interior. Then there
holds

(4.15) $\int_{C_{w}^{\prime}}(d\arg w+d|w|)>0$

for every arc (different from a point) $C_{w}^{\prime}\subset C_{u)}$ . Let $D_{w}^{*}$ be a domain $(open)\backslash $

whose interior contains $D_{w}$ and whose boundary consists of a bounded Jordan
curve. Let $ w=f(z)=z+\cdots$ be the function which maps the circle $|z|<r$

with a suitable $r$ one-to-one conformally onto the domain $D_{w}^{*}$ , and let $C_{z}$ be
the map of $C_{w}$ by $z=f^{-1}(w)$ , where $f^{-1}$ is the inverse function of $f$, and
further let D. be the closed domain bounded by $C_{z}$ . Then, with these $f(z),$ $C_{z}$

and $D_{z}$ , a special case of the assumption of Th. 1 which is similar to that of
Cor. 9 is satisfied since we have (4.15) for $w=f(z)$ .

Clearly $f(z)$ is neither starlike [2], [12] nor close-to-convex (i.e. at most
$\pi$ -concave [15]) on the directed curve $C_{z}$ . Now, in order to compare with the
spiral-like case, we prepare the following:

DEFINITION 5. Let $\Gamma$ denote a directed rectifiable curve. Suppose that
$f(z)$ is regular and $f(z)\neq A$ on $\Gamma$ and that $\lambda\neq 0$ ($A,$ $\lambda$ complex). Then $f(z)$ is
said to be spiral-like with $\lambda$ and with respect to $A$ on $\Gamma$ if

(4.16) $\int_{\Gamma},d\arg(f(z)-A)^{\lambda}\geqq 0$

for all arcs $\Gamma^{\prime}\subset\Gamma$ . If $A=0$ , we shall omit reference to $A$ and say, briefly,
that $f(z)$ is spiral-like (with $\lambda$ ) on $\Gamma[3],$ $[17]$ .

Now, let $C$ be the part of $C_{1}$ such that $-\frac{1}{2}\pi\geqq\theta\geqq-\pi$ . The direction

of the curve is that generated by decreasing $\theta$ . Then we have

$\int_{c}(d\arg w+d|w|)=-\frac{\pi}{2}+\frac{2}{3}\pi=\frac{1}{6}\pi$ .

On the other hand, since
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$d\log|w|=d|w|/|w|<d|w|/3,$ $w\in C$ ,
we have that

$\int_{c}d\arg w^{1+i}=\int_{c}(d\arg w+d\log|w|)<-\frac{5}{18}\pi$ .
Accordingly, $f(z)$ is not spiral-like with $(1+i)$ on $C_{z}$ .

EXAMPLE 3. Let $D_{w}$ be the complement of the domain

$\{|w|>1\}U\{|\arg(w-1/3)-\pi/2|<\epsilon\}U\{|(\arg(w+1/2)-\pi|<\epsilon\}$ ,

where $\epsilon>0$ is a sufficiently small constant. Let us denote the boundary of
$D_{w}$ by $C_{w}$ . Then there holds the inequality

(4.17) $\int_{C_{y)}^{\prime}}(d\arg w+d\arg(w-\frac{2}{3}))>0$

for every arc (different from a point) $C_{w}^{\prime}\subset C_{w}$ . This may be proved by noting
that either the boundary of the domain

$|\arg(w-1/3)-\pi/2|<\epsilon$

or the two points $w=0$ and $w=2/3$ are symmetric with respect to the straight
line $\mathfrak{R}w=1/3$ . Consider (one of) the function $f(z)$ and the curve $C_{z}$ which are
obtained from the closed domain $D_{w}$ as in the above example. Then, for
these $w=f(z)$ and $C_{z}$ , we have (4.17) a special case of (4.1). Clearly, on $C_{z}$ ,
$f(z)$ is starlike neither with respect to the point $w=0$ nor with respect to
$w=2/3$ , though it is starlike with respect to the point $w=1/3-\partial i$ , where
$\delta>0$ is a sufficiently small constant.

\S 5. Some remarks for the above results.

In Th. 1, if only one element of criteria, for example $J_{1}$ , is used, we have
the following slightly more precise result.

THEOREM 2. Let $f(z)\in \mathfrak{F}(p, D_{z})$ (without the assumption $f(z)\neq 0$). If there
holds the relation

(5.1) $\int_{c_{z}^{J}}d\arg df(z)\geqq-\pi$ ,

for any arc $C_{z}^{\prime}\subset C_{z}\equiv\partial D_{z}$ , then $f(z)$ is p-valent in $D_{z}$ .
PROOF. If $f(z)$ is at least $(p+1)$-valent in $D_{z}$ , then as in the proof of Prop.

1, there exists such a simple closed piecewise regular curve $\gamma$ which is the
image of a curve $C_{z}^{*}\subset C_{z}$ by $w=f(z)$ and for which we have the inequality

$\int_{-r}d\arg dw\geqq\pi$ .

Here we note that, from the geometrical property of $\gamma$, there also exists a
sub-curve $C$ of $\gamma$ for which we have
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(5.2) $\int_{-C}d\arg dw>\pi$ .

From this fact the theorem follows easily.
Th. 2 is more general or precise than Umezawa-Kaplan’s result to which

we referred before or than the result due to Reade [10, p. 255].

Next we refer to Cor. 5 from which the following corollary follows easily.
COROLLARY 13. Let $f(z)\in \mathfrak{F}(1, |z|\leqq r)$ . If there holds

(5.3) $\mathfrak{R}\{1+z\frac{f^{\prime\prime}(z)}{f^{\prime}(z)}+ik\frac{|f(z)-A|}{f(z)-A}zf^{\gamma}(z)\}>0,$ $|z|=r$ ,

where $k$ real, A complex and $A\not\in C_{\gamma}$ , then $f(z)$ is univalent in $|z|\leqq r$ .
In the above corollary, if (5.3) holds then we have

(5.4) $\int_{c}\{d\arg df(z)+kd|f(z)-A|\}>0$

for every arc $C$ on $|z|=r$ . Now, let $w_{1},$ $w_{2}$ , if exist, be the intersections of
C. and the circle $K_{\rho}$ : $|w-A|=\rho$ . Then, since (5.4) holds, the argument of the
tangent vector of C. at $w_{2}$ is larger than the previous value at $w_{1}$ . This must
hold for any $\rho,$ $ 0<\rho<+\infty$ . Now we put $A=-ae^{i(\pi/2-\omega)},$ $a>0,$ $\omega$ real, and
we consider the case in which (5.3) remains for $ a\rightarrow+\infty$ . In this case, if we
make $ a\rightarrow+\infty$ , then, for example, the part of $K_{a}$ : $|w-A|=a$ inside $C_{r}$ tends
to a part of the straight line $L:\mathfrak{J}(we^{i\omega})=0$ , and from the fact stated above,
it is seen that $C_{r}$ has no intersecting points with any line parallel to $L$ more
than two. Moreover we have

$i|f(z)-A|/(f(z)-A)\rightarrow e^{i\omega}$ , when $ a\rightarrow+\infty$ .

Thus, we have the following:
COROLLARY 14. Let $f(z)\in \mathfrak{F}(1, |z|\leqq r)$ . If there folds

(5.5) $\mathfrak{R}\{1+z\frac{f^{\prime\prime}(z)}{f^{\prime}(z)}+ke^{i\omega}zf^{\prime}(z)\}>0,$ $|z|=r$ ,

where $k,$ $\omega$ real, then $f(z)$ is univalent, convex in one direction (cf. [11]) in
$|z|\leqq r$, and this direction coincides with that of the vector representing $e^{t(\pi-\omega)}$ .

Cor. 14 is equivalent to Th. 3 in [6, p. 10] and which has been generalized
as Cor. 13 in a certain sense. But it is unnatural. Indeed, under the assump-
tion of Cor. 13, there is a case such that $C_{r}$ is cut by some $K_{\rho}$ as before in
more than two points, as the case $f(z)\equiv z$ and $k=A=0$ . So, we generalize
the definition of the class of functions convex in one direction, which is denoted
by $(C)$ , as follows.

DEFINITION 6. We shall say $f(z)\in C(A)$ if $f(z)$ is regular for $|z|\leqq r,$ $f(O)=0$,

and if $C_{r}$ as before is cut by any one of circles of center $A\in U(\infty, C_{r})$ in not
more than two points. We interpret as $C(-\infty)=(C)$ -with the direction of
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the vector $i$ .
Using the above definition we have the following:
THEOREM 3. Let $f(z)\in \mathfrak{F}(1, |z|\leqq r)$ . If there holds

(5.6) $\mathfrak{R}\{1+z\frac{f^{\prime\prime}(z)}{f’(z)}+(\kappa i-1)_{f(}^{Z}-\frac{f^{\prime}(z)}{z)-}A-\}>0,$ $|z|=r$ ,

for suitable constants rc and $A$ such that $\kappa$ real and $A\in U(\infty, C_{r})$ ; then $f(z)$

belongs to $C(A)$ and is univalent in $|z|\leqq r$ .
PROOF. Since we have (5.6), the relation (4.6) holds for $\lambda=\kappa i-1$ and all

arcs $C_{z}^{\prime}$ on $|z|=r$. Hence by Cor. 4, $f(z)$ is univalent in $|z|\leqq r$ . Now let us
set

(5.7) $ g(z)=-A\{\log(f(z)-A)-\log(-A)\}=z+\cdots$

then we see that $g(z)\in \mathfrak{F}(1, |z|\leqq r)$ and a simple calculation shows that (5.6)
is reduced to

(5.8) $\mathfrak{R}\{1+z\frac{g^{\prime\prime}(z)\kappa i}{g^{\prime}(z)A}zg^{\prime}(z)\}>0,$ $|z|=r$ .

Hence by Cor. 14, $g(z)$ is convex in the direction of the vector $e^{i(\pi-\omega)}$ , where
$\omega=\pi/2-\arg(-A)$ . On the other hand, the part of the circles $|w-A|=\rho$

inside $C_{r}$ is univalently mapped by the function $-A\{\log(w-A)-\log(-A)\}$

onto the corresponding part of the lines parallel to the above vector $e^{i(\pi-\omega)}$ .
Noting the above facts we can deduce $f(z)\in C(A)$ . Thus, the theorem follows.

EXAMPLE 4. Let $f(z)\equiv e^{z}-1,$ $r=\pi-\epsilon(0<\epsilon<\pi)$ and $A=-1$ . Then (5.6)

is reduced to

(5.9) $\mathfrak{R}(1+\kappa iz)>0,$ $|z|=r$ ,

which holds for a sufficiently small $|\kappa|$ , and so we see $f(z)\in C(-1)$ .
REMARK 4. In Th. 3, set $A=-aie^{-i\omega}(a>0)$ and $\kappa=ka$ , then by making

$ a\rightarrow+\infty$ we again have Cor. 14. Th. 3 is more natural than Cor. 13 as an
extension of Cor. 14.

Yamanashi University
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