Sufficient conditions for \boldsymbol{p}-valence of regular functions

By Noriyuki Sone

(Received May 4, 1964)
(Revised July 7, 1964)

§ 1. Introduction.

An interesting sufficient condition for univalence due to Umezawa [18, p. 213], [16, p. 191] and Kaplan [5, p. 173] has been generalized by Ogawa in his paper [7] as 'Main criterion' or as 'Theorem 2', while the last result has also been extended by Sakaguchi [13] as follows.

Theorem A. Let $f(z)=z^{p}+\cdots, \varphi(z)$ be regular in $|z| \leqq r$ and $|z|<+\infty$ respectively, and let $f^{\prime}(z) \neq 0$ for $0<|z| \leqq r$. If neither $f(z)$ nor $\varphi^{\prime}(\log f(z))$ vanishes on $|z|=r$ and the inequality

$$
\int_{C} d \arg d \varphi(\log f(z))>-\pi
$$

holds for any arc C on $|z|=r$, then $f(z)$ is p-valent in $|z| \leqq r$.
The purpose of this paper is to extend or improve the above results and some of other ones in [6], [7] and [13] by a systematic method. Some of our results may include, in a certain sense, a few new classes of uni- or multivalent functions.

§ 2. Fundamental propositions.

In this paper, we mainly consider the functions belonging to the class which is defined as follows.

Definition 1. A function $f(z)$ is said to be a member of the class $\mathfrak{F}\left(p, D_{z}\right)$, where p is a positive integer and D_{z} is a simply connected closed domain whose boundary $\partial D_{z} \equiv C_{z}$ consists of a piecewise regular curve [1, p. 65] and whose interior contains the origin, if $f(z)$ is regular in D_{z} and has the expansion about the origin

$$
f(z)=z^{p}+c_{p+1} z^{p+1}+c_{p+2} z^{p+2}+\cdots,
$$

and if $f(z) f^{\prime}(z) \neq 0$ except at the origin in D_{z}.
Let C_{z}^{\prime} denote any continuous, directed sub-arc of $C_{z} \equiv \partial D_{z}$, and let C_{w}^{\prime} and C_{w} denote the images of C_{z}^{\prime} and C_{z} by the mapping $w=f(z)$ respectively. The direction of C_{z}^{\prime} is always generated, as usual, in the positive sense with respect
to D_{z}, while the direction of C_{w}^{\prime} is induced by that of C_{z}^{\prime}. The opposite arc [1, p. 65] of an $\operatorname{arc} C$ is denoted by $-C$. Throughout this paper the above notations are used in the above sense unless otherwise stated. We note that an $\operatorname{arc} C_{w}^{\prime}$ always corresponds to a continuous $\operatorname{arc} C_{2}^{\prime} \subset C_{z}$, and that in this paper we leave 'a point curve [1, p. 66]' out of consideration (cf. for example (4.15)).

Definition 2. For any fixed D_{z} and $f(z) \in \mathfrak{F}\left(p, D_{z}\right)$, let $J\left[C_{w}^{\prime}\right]$ be a functional with the following properties: (a) by a certain rule, a real number is associated with each directed $\operatorname{arc} C_{w}^{\prime}$, and (b) if C_{w}^{\prime} (directed as before) is a simple closed curve whose interior does not contain the origin and whose direction is clockwise, then $J\left[C_{w}^{\prime}\right] \geqq 0$. The family of such functionals is denoted by Ω, and such a simple closed curve C_{w}^{\prime} as in (b) is denoted by γ.

A non-negative constant is the simplest element of Ω, but it is useless for our purpose if it is used separately. The quantity

$$
\begin{equation*}
J_{0} \equiv J_{0}\left[C_{w}^{\prime}\right] \equiv \int_{-G^{\prime} w} d \arg d w-\pi \tag{2.1}
\end{equation*}
$$

has been used by Umezawa or Kaplan for their cases. While also for our case it is seen that (a) for any C_{w}^{\prime}, J_{0} exists, (b) if there exists a curve γ as in Def. 2 then $J_{0}[\gamma] \geqq 0$, and that $J_{0} \in \Omega$.

Let us also put

$$
\begin{equation*}
J_{\psi} \equiv J_{\psi}\left[C_{w}^{\prime}\right] \equiv \int_{-0^{\prime} w} d \psi(w), \tag{2.2}
\end{equation*}
$$

where $\phi(w)$ is a real-valued function of bounded variation for each C_{w}^{\prime} and is subject to the relation

$$
\int_{-r} d \psi(w) \geqq 0,
$$

when there exists γ as before. Then we see that $J_{\psi} \in \Omega$.
Remark 1. The integrals as in (2.1) or (2.2) should be interpreted as Stieltjes integrals (cf. for example [4, 292-295]), and $\psi(w)$ is not necessarily single-valued or continuous and, when C_{z}^{\prime} is represented by the equation $z=z(t)$, $t_{1} \leqq t \leqq t_{2}, \psi(f(z(t)))$ is not necessarily differentiable for $t_{1} \leqq t \leqq t_{2}$.

In the following section, some examples of such functionals are listed, while we can construct much more examples, by noting the following property which is easily deduced by Def. 2.

$$
J_{a}, J_{b} \in \Omega \Leftrightarrow\left\{\begin{array}{l}
J_{a}+J_{b} \in \Omega, \tag{2.3}\\
J_{a} \cdot J_{b} \in \Omega, \quad\left(q J_{a} \in \Omega, \text { where } q \geqq 0\right), \\
J_{a} / J_{b} \in \Omega, \quad\left(J_{b} \neq 0 \text { for any } C_{w}^{\prime}\right) .
\end{array}\right.
$$

Now we establish the following:

Proposition 1. Let $f(z) \in \varsubsetneqq\left(p, D_{z}\right)$. If a suitable functional $J\left[C_{w}^{\prime}\right] \in \Omega$ can be found, such that

$$
J\left[C_{w}^{\prime}\right]<0
$$

for every C_{w}^{\prime} (induced by the above $f(z)$ and D_{z}), then $f(z)$ is p-valent in D_{z}.
Proof. Suppose that $f(z)$ is at least $(p+1)$-valent in D_{z}. Then, taking a function $z=\phi(\zeta)$ which maps the unit circle $|\zeta|<1$ onto the interior of D_{z} one-to-one conformally with $\phi(0)=0$, and noting that the function $f(\phi(\zeta))$ extended to $|\zeta| \leqq 1$ with the boundary values is continuous for $|\zeta| \leqq 1$, we can prove, in a similar way as in [7, 432-434], that in the set of C_{w}^{\prime} there exists a simple closed curve γ as in Def. 2. Consequently $J[\gamma] \geqq 0$ since $J\left[C_{w}^{\prime}\right] \in \Omega$. This contradicts the hypothesis, and the proposition follows.

More concretely (and less generally), we have the following:
Proposition 2. Let $f(z) \in \mathfrak{F}\left(p, D_{z}\right)$. If a suitable functional $J_{\psi} \equiv J_{\psi}\left[C_{w}^{\prime}\right]$ as in (2.2) can be found, and if the relation

$$
q_{0} J_{0}+q_{1} J_{\psi}<0
$$

holds for every C_{w}^{\prime}, where q_{0}, q_{1} are non-negative constants and J_{0} is that of (2.1), then $f(z)$ is p-valent in D_{z}.

Proof. This is clear from Prop. 1 and the relation (2.3).
Remark 2. Even if $p=1$, Prop. 2 is an extension of 'Main criterion' in [7] as is seen from Remark 1.

Thus our problem is reduced to seeking the J 's which belong to Ω and which are anyhow effective for our purpose. Each of such functionals we shall call an 'element of criteria', for the present.

§ 3. Elements of criteria.

In this section, some elements of criteria are listed. Previous to this we prepare the following two definitions.

Definition 3. Let Γ be a closed curve and let A, B be complex constants or the point at infinity. Then $A \in U(B, \Gamma)$ means that it is possible to connect the point A with the point B by a continuous curve none of whose points including the end points is on Γ.

Definition 4. Let ($w=f(z), C_{z}, C_{z}^{\prime}, C_{w}$ and) C_{w}^{\prime} be as before. Let A be a complex constant. Then $A \in E\left(C_{w}\right)$ means that $A \notin C_{w}^{\prime}$ for every C_{w}^{\prime}, and

$$
\int_{C^{\prime} w} d \arg (w-A) \neq-2 \pi .
$$

Here and in what follows ' $A \notin C$ ' means that A does not lie on C.
REmARK 3. $|A|>\max _{z \in C_{z}}|f(z)| \Rightarrow A \in U\left(\infty, C_{w}\right) \cap E\left(C_{w}\right)$.

$$
\begin{equation*}
J_{1} \equiv J_{1}\left[C_{w}^{\prime}\right] \equiv q_{0} \int_{-C^{\prime} w} d \arg d w-q_{0} \pi \in \Omega, \tag{3.1}
\end{equation*}
$$

where q_{0} is a non-negative constant.
This is clear since $J_{1}=q_{0} J_{0}$ with J_{0} in (2.1),

$$
\begin{equation*}
J_{2 i} \equiv J_{2 i}\left[C_{w}^{\prime}\right] \equiv \int_{-C^{\prime} w} d \arg \left(w-a_{i}\right)^{\lambda_{i}} \in \Omega, \tag{3.2}
\end{equation*}
$$

where λ_{i}, a_{i} are complex constants and $a_{i} \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right)$.
In fact, if there is γ as in Def. 2, let w_{1} and w_{2} denote the initial and terminal points of γ respectively. Then, from the assumption on a_{i}, we see that

$$
\begin{align*}
J_{2 i}[\gamma] & =\Im\left[\lambda_{i}\left\{\log \left(w_{1}-a_{i}\right)-\log \left(w_{2}-a_{i}\right)\right\}\right]=0 . \\
J_{2 i}^{\prime} & \equiv J_{2 i}^{\prime}\left[C_{w}^{\prime}\right] \equiv \int_{-C_{w}^{\prime} w} d \arg \left(w-a_{i}^{\prime}\right)^{\lambda_{i}} \in \Omega, \tag{3.2}
\end{align*}
$$

where $\lambda_{i}^{\prime}, a_{i}^{\prime}$ are complex constants and $\Re \lambda_{i}^{\prime} \geqq 0, a_{i}^{\prime} \oplus C_{w}$.
In fact, if there is γ as before, it holds that

$$
J_{2 i}^{\prime}[\gamma]=\left\{\begin{array}{l}
0 \text { if } \gamma \text { does not contain } a_{i}^{\prime} \text { within, } \\
2 \pi \Re \not \lambda_{i}^{\prime} \geqq 0 \text { if } \gamma \text { contains } a_{i}^{\prime} \text { within. }
\end{array}\right.
$$

$$
\begin{equation*}
J_{3 i} \equiv J_{3 i}\left[C_{w}^{\prime}\right] \equiv k_{i} \int_{-C^{\prime} w} d\left|\left(w-b_{i}\right)^{\mu_{i}}\right| \in \Omega, \tag{3.3}
\end{equation*}
$$

where k_{i} is a real constant, μ_{i}, b_{i} are complex ones, and

$$
b_{i} \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right) .
$$

In fact, for $\gamma \equiv \widehat{w_{1} w_{2}}$ as before,

$$
J_{3 i}[\gamma]=\exp \left\{\mathscr{R}\left(\mu_{i} \log \left(w_{1}-b_{i}\right)\right)\right\}-\exp \left\{\mathscr{P}\left(\mu_{i} \log \left(w_{2}-b_{i}\right)\right)\right\}=0 .
$$

(3.3)'

$$
J_{3 i}^{\prime} \equiv J_{3_{i}^{\prime} i}^{\prime}\left[C_{w}^{\prime}\right] \equiv k_{i}^{\prime} \int_{-C^{\prime} w} d\left|\left(w-b_{i}^{\prime}\right)^{\mu^{\prime} i}\right| \in \Omega,
$$

where k_{i}^{\prime} is a real constant, $\mu_{i}^{\prime}, b_{i}^{\prime}$ are complex ones and, $k_{i}^{\prime} \mathcal{\Im} \mu_{i}^{\prime} \leqq 0, b_{i}^{\prime} \oplus C_{w}$.
In fact, for $\gamma=\widehat{w_{1} w_{2}}$ as before,

$$
\begin{aligned}
J_{3 i}^{\prime}[\gamma] & =k_{i}^{\prime} \exp \left\{\Re\left(\mu_{i}^{\prime} \log \left(w_{1}-b_{i}^{\prime}\right)\right)\right\}-k_{i}^{\prime} \exp \left\{\Re\left(\mu_{i}^{\prime} \log \left(w_{2}-b_{i}^{\prime}\right)\right)\right\} \\
& =k_{i}^{\prime} \exp \left\{\Re\left(\mu_{i}^{\prime} \log \left(w_{1}-b_{i}^{\prime}\right)\right)\right\}\left[1-\exp \left\{\Re\left(\mu_{i}^{\prime} \times(-2 \pi i \text { or } 0)\right)\right\}\right]
\end{aligned}
$$

according as the point b_{i}^{\prime} is inside or outside of γ. Since, $k_{i}^{\prime} \mathcal{S} \mu_{i}^{\prime} \leqq 0$, the value of the above equality cannot be negative.

$$
\begin{equation*}
J_{4 i} \equiv J_{4 i}\left[C_{w}^{\prime}\right] \equiv q_{i} \int_{-C^{\prime} w} d \arg F_{i}\left(\log \left(w-A_{i}\right)\right) \in \Omega, \tag{3.4}
\end{equation*}
$$

where q_{i} is a non-negative constant, $F_{i}(\zeta)$ is an integral function, A_{i} is a complex constant, $A_{i} \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right)$ and $F_{i}\left(\log \left(w-A_{i}\right)\right) \neq 0$ on C_{w}.

In fact, let γ_{ζ} be the map of γ as before by $\zeta=\log \left(w-A_{i}\right)$, then γ_{ζ} is also a simple closed curve which has the negative direction with respect to its interior. Hence we have

$$
J_{4 i}[\gamma]=q_{i} \int_{-r_{\zeta}} d \arg F_{i}(\zeta)=2 n q_{i} \pi \geqq 0,
$$

where n is the number of zeros of $F_{i}(\zeta)$ inside γ_{ζ}.

$$
\begin{equation*}
J_{5 i} \equiv J_{5 i}\left[C_{w]}^{\prime}\right] \equiv r_{i} \int_{-C^{\prime} w} d\left|G_{i}\left(\log \left(w-B_{i}\right)\right)\right| \in \Omega, \tag{3.5}
\end{equation*}
$$

where r_{i} is a real constant, $G_{i}(\zeta)$ is an integral function, B_{i} is a complex constant and $B_{i} \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right)$.

In fact, as in the above case, the map γ_{5} of γ by $\zeta=\log \left(w-B_{i}\right)$ is a closed curve and the map of γ_{ζ} by $G_{i}(\zeta)$ is also a closed curve. Hence

$$
J_{5 i}[\gamma]=r_{i} \int_{-r_{\zeta}} d\left|G_{i}(\zeta)\right|=0 .
$$

§ 4. Some criteria for \boldsymbol{p}-valence.

Now we have the following main theorem.
Theorem 1. Let $f(z) \in \mathfrak{F}\left(p, D_{z}\right)$. If the following relation (4.1) holds for any arc $C_{z}^{\prime} \subset C_{z} \equiv \partial D_{z}$, then $f(z)$ is p-valent in D_{z} :

$$
\begin{align*}
& \int_{-C^{\prime} z} d\left[q_{0} \arg d f(z)+\sum_{i=1}^{n_{1}} \arg \left(f(z)-a_{i}\right)^{\lambda_{i}}+\sum_{i=1}^{n_{2}} k_{i}\left|\left(f(z)-b_{i}\right)^{\mu_{i}}\right|\right. \tag{4.1}\\
& \left.\quad+\sum_{i=1}^{n_{3}} q_{i} \arg F_{i}\left(\log \left(f(z)-A_{i}\right)\right)+\sum_{i=1}^{n_{4}} r_{i}\left|G_{i}\left(\log \left(f(z)-B_{i}\right)\right)\right|\right]<q_{0} \pi,
\end{align*}
$$

where $F_{i}(z), G_{i}(z)$ are integral functions, $F_{i}\left(\log \left(f(z)-A_{i}\right)\right) \neq 0$ on C_{z}, and q_{0}, q_{i} are non-negative, k_{i}, r_{i} are real, $\lambda_{i}, \mu_{i}, a_{i}, b_{i}, A_{i}$ and B_{i} are all complex constants, and further
(a) $\quad\left[a_{i} \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right)\right]$ or $\left[a_{i} \oplus C_{w}\right.$ and $\left.\mathfrak{R} \lambda_{i} \geqq 0\right]$,
(b) $\quad\left[b_{i} \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right)\right]$ or $\left[b_{i} \oplus C_{w}\right.$ and $\left.k_{i} \Im \mu_{i} \leqq 0\right]$,
(A)

$$
\begin{aligned}
& A_{i} \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right), \\
& B_{i} \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right) .
\end{aligned}
$$

Proof. Using the same notations as in the previous section, we can write the relation (4.1) in the form

$$
\begin{equation*}
J_{1}+\sum_{i=1}^{n_{1}}\left(J_{2 i} \text { or } J_{2 i}^{\prime}\right)+\sum_{i=1}^{n_{2}}\left(J_{3 i} \text { or } J_{3 i}^{\prime}\right)+\sum_{i=1}^{n_{3}} J_{4 i}+\sum_{i=1}^{n_{4}} J_{5 i}<0 . \tag{4.2}
\end{equation*}
$$

Each term in the above sum belongs to Ω as is shown in $\S 3$, and so, by the relation (2.3), the sum itself belongs to Ω. Consequently, by Prop. $1, f(z)$ is
p-valent in D_{z}, and the theorem follows.
Corollary 1. Let $f(z) \in \mathfrak{F}\left(p, D_{z}\right)$. Let $\varphi(z)$ be an integral function such that $\varphi^{\prime}(\log (f(z)-A)) \neq 0$ on $\partial D_{z} \equiv C_{z}$, where A complex, $A \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right)$ $\cup E\left(C_{w}\right)$. If the inequality

$$
\begin{equation*}
\int_{C^{\prime} z} d \arg d \varphi(\log (f(z)-A))>-\pi \tag{4.3}
\end{equation*}
$$

holds for any arc $C_{z}^{\prime} \subset C_{z}$, then $f(z)$ is p-valent in D_{z}.
Proof. In Th. 1, let us put $q_{0}=1, \lambda_{1}=-1, q_{1}=1$, and the other $\lambda_{i}, k_{i}, q_{i}$ and r_{i} are all equal to zero, and let us also put $a_{1}=A_{1}=A$ and $F_{1}(z)=\varphi^{\prime}(z)$. Then, after a simple calculation, we have this corollary.

Cor. 1 is an extention of Th. A.
Henceforth, we denote the image of $|z|=r$ under $f(z)$ by C_{r}, and we abbreviate the part 'for any pair of t_{1}, t_{2} such that $0 \leqq t_{1}<2 \pi, 0<t_{2}-t_{1}<2 \pi$ '. by 'for any $t_{1}<t_{2}$ '.

Corollary 2. Let $f(z) \in \mathfrak{F}(p,|z| \leqq r)$. If the inequality

$$
\begin{align*}
& \int_{t_{2}}^{t_{1}} \mathfrak{R}\left\{q\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\sum_{i=1}^{m}\left(\lambda_{i} \frac{z f^{\prime}(z)}{f(z)-a_{i}}\right)\right. \tag{4.4}\\
& \left.\quad+i \sum_{i=1}^{n}\left(k_{i} \mu_{i} \frac{\left|\left(f(z)-b_{i}\right)^{\mu_{i}}\right|}{f(z)-b_{i}} z f^{\prime}(z)\right)\right\} d t<q \pi, z=r e^{i t},
\end{align*}
$$

holds for any $t_{1}<t_{2}$, where q is non-negative, k_{i} are real, $\lambda_{i}, \mu_{i}, a_{i}$ and b_{i} are all complex, and the conditions (a) and (b) in Th. 1 are satisfied with C_{r} instead of C_{w}, then $f(z)$ is p-valent in $|z| \leqq r$.

Proof. In Th. 1 , let us set $D_{z}:|z| \leqq r, q_{0}=q$, and q_{i} and r_{i} are all equal to zero. Then a simple calculation leads this corollary.

Corollary 3. Let $f(z) \in \mathfrak{F}(p,|z| \leqq r)$. If there holds

$$
\begin{gather*}
\int_{0}^{2 \pi}\left|\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\sum_{i=1}^{m}\left(\lambda_{i} \frac{z f^{\prime}(z)}{f(z)-a_{i}}\right)+i \sum_{i=1}^{n}\left(k_{i} \frac{\left|f(z)-b_{i}\right|}{f(z)-b_{i}} z f^{\prime}(z)\right)\right\}\right| d t \tag{4.5}\\
<2 \pi\left\{1+p+\sum_{i=1}^{m}\left(n\left(a_{i}\right) \Re \lambda_{i}\right)\right\}, z=r e^{i t},
\end{gather*}
$$

where k_{i} are real, $\lambda_{i}, a_{i}, b_{i}$ are complex, and

$$
\left[a_{i} \in U\left(0, C_{r}\right) \cup U\left(\infty, C_{r}\right) \cup E\left(C_{r}\right)\right] \text { or }\left[a_{i} \oplus C_{r} \text { and } \Re \lambda_{i} \geqq 0\right], b_{i} \notin C_{r},
$$

and

$$
2 \sum_{i=1}^{m}\left(n\left(a_{i}\right) \Re \lambda_{i}\right)>-(1+2 p),
$$

here $n\left(a_{i}\right)$ denotes the number of a_{i}-points of $f(z)$ in $|z|<r$; then $f(z)$ is p-valent in $|z| \leqq r$.

Proof. In Cor. 2, let us put $q=1$ and μ_{i} are all equal to 1 , then Cor. 3 follows in a similar way to the proof of Cor. 2 in [13].

Cor. 3 is an extension of Cor. 2 in [13].
Corollary 4. Let $f(z) \in \mathfrak{F}\left(p, D_{z}\right)$. If there holds, for any $\operatorname{arc} C_{z}^{\prime} \subset C_{z} \equiv \partial D_{z}$,

$$
\begin{equation*}
\int_{C^{\prime} z}\left[d \arg d f(z)+d \arg (f(z)-A)^{\lambda}\right]>-\pi \tag{4.6}
\end{equation*}
$$

where λ, A are complex constants and $A \in U\left(0, C_{w}\right) \cup U\left(\infty, C_{w}\right) \cup E\left(C_{w}\right)$ or [$A \oplus C_{w}$ and $\left.\mathfrak{R} \lambda \geqq 0\right]$, then $f(z)$ is p-valent in D_{z}.

Proof. In Th. 1, let us put $q_{0}=1, a_{1}=A, \lambda_{1}=\lambda$ and the other $\lambda_{i}, k_{i}, q_{i}$ and r_{i} are all equal to zero. Then the corollary follows readily.

Cor. 4 is an extension of Cor. 1 in [13] and 'a fortiori' of Th. 2 in [7].
Corollary 5. Let $f(z) \in \mathfrak{F}(p,|z| \leqq r)$. If there holds, for any $t_{1}<t_{2}$,

$$
\begin{equation*}
\int_{t_{2}}^{t_{1}} \Re\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+i k \frac{|f(z)-A|}{f(z)-A} z f^{\prime}(z)\right) d t<\pi, z=r e^{i t} \tag{4.7}
\end{equation*}
$$

where k real and A complex such that $A \notin C_{r}$, then $f(z)$ is p-valent in $|z| \leqq r$.
Proof. In Cor. 2, let us put $q=1, \mu_{1}=1, k_{1}=k$ and the other k_{i}, λ_{i} are all equal to zero. Then Cor. 5 follows readily.

Cor. 5 is an extension of Th. 2 in [6] (even if $p=1$). In fact, in Cor. 5 let us set $A=\rho e^{i(3 \pi / 2-\omega)}, \rho>0, \omega$ real, and $|A|>\max _{z \in D_{z}}|f(z)|$. Then by tending $\rho \rightarrow+\infty$ we have the following:

Corollary 6. Let $f(z) \in \mathfrak{F}(p,|z| \leqq r)$. If there holds, for any $t_{1}<t_{2}$,

$$
\begin{equation*}
\int_{t_{2}}^{t_{1}} \Re\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k e^{i \omega} z f^{\prime}(z)\right) d t<\pi, z=r e^{i t} \tag{4.8}
\end{equation*}
$$

where k, ω real, then $f(z)$ is p-valent in $|z| \leqq r$.
Corollary 7. Let $f(z) \in \mathfrak{F}\left(p, D_{z}\right)$. If there holds

$$
\begin{equation*}
\int_{C} d \arg d f(z)>-\pi, \tag{4.9}
\end{equation*}
$$

for all arcs $C \subset C_{z} \equiv \partial D_{z}$, then $f(z)$ is p-valent in D_{z}, and is 'at most π-concave, [15] on C_{z}.

Proof. This is obtained by Cor. 4 by setting $\lambda=0$.
The special case of Cor. 7 in which $p=1$ and C_{z} is a regular curve is essentially equivalent to Kaplan-Umezawa's theorem [5], [18].

Corollary 8. Let $f(z) \in \mathfrak{F}(p,|z| \leqq r)$. If there holds

$$
\begin{equation*}
\mathfrak{R}\left\{\sum_{i=1}^{m} \lambda_{i} \frac{z f^{\prime}(z)}{f(z)-a_{i}}+i \sum_{i=1}^{n}\left(k_{i} \mu_{i} \frac{\left|\left(f(z)-b_{i}\right)^{\mu_{i}}\right|}{f(z)-b_{i}} z f^{\prime}(z)\right)\right\}>0,|z|=r, \tag{4.10}
\end{equation*}
$$

where $\lambda_{i}, k_{i}, \mu_{i}, a_{i}$ and b_{i} are constants as in Cor. 2, then $f(z)$ is p-valent in $|z| \leqq r$.

Proof. In Cor. 2. let us put $q=0$. Then Cor. 8 follows easily.
Corollary 9. Let $f(z) \in \mathfrak{F}(p,|z| \leqq r)$. If there holds

$$
\begin{equation*}
\mathfrak{R}\left\{\lambda \frac{z f^{\prime}(z)}{f(z)-A}+i k \frac{|f(z)-B|}{f(z)-B} z f^{\prime}(z)\right\}>0,|z|=r \tag{4.11}
\end{equation*}
$$

where k is real, λ, A and B are complex, $A \in U\left(0, C_{r}\right) \cup U\left(\infty, C_{r}\right) \cup E\left(C_{r}\right)$ or $\left[A \oplus C_{r}\right.$ and $\left.\Re \lambda \geqq 0\right]$ and $B \notin C_{r}$; then $f(z)$ is p-valent in $|z| \leqq r$.

Proof. In Cor. 8, let us put $\mu_{1}=1, \lambda_{1}=\lambda, k_{1}=k$ and the other λ_{i}, k_{i} are all equal to zero. Then Cor. 9 follows readily.

Corollary 10. Let $f(z) \in \mathfrak{F}(p,|z| \leqq r)$. If there holds

$$
\begin{equation*}
\Re \sum_{i=1}^{n}\left(\lambda_{i} \frac{z f^{\prime}(z)}{f(z)-a_{i}}\right)>0, \quad|z|=r, \tag{4.12}
\end{equation*}
$$

for complex constants λ_{i}, a_{i} subject to (a) in Th. 1 with C_{r} instead of C_{w}, then $f(z)$ is p-valent in $|z| \leqq r$.

Proof. In Cor. 8 , let us put $k_{i}=0, i=1,2, \cdots, n$. Then we have Cor. 10.
Corollary 11. Let $f(z)=z^{p}+\cdots$ be regular in $|z|<r$. If for some real $\alpha,|\alpha|<\pi / 2$, the relation

$$
\begin{equation*}
\mathfrak{R}\left(e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad|z|<r, \tag{4.13}
\end{equation*}
$$

holds, then $f(z)$ is p-valent and spiral-like in $|z|<r,[7]$, [8].
Proof. The assumption shows that neither $f(z)$ nor $f^{\prime}(z)$ vanishes for $0<|z| \leqq \rho$, where ρ is an arbitrary number such that $0<\rho<r$. Hence we can appeal to Cor. 10 with $n=1, a_{1}=0$ and $\lambda_{1}=e^{i \alpha}$ to conclude that $f(z)$ is p-valent in $|z| \leqq \rho$. The spiral-likeness is due to the definition; cf. [3], [17] or Def. 5 which will later be stated. The inequality $|\alpha|<\pi / 2$ is a necessary condition that (4.13) should hold. Thus the corollary follows.

Corollary 12. Let $f(z) \in \mathfrak{F}(p,|z| \leqq r)$. If the relation

$$
\begin{equation*}
\Re \frac{z f^{\prime}(z)}{f(z)-A}>k \Im \frac{z f^{\prime}(z)}{f(z)-A}, \quad|z|=r \tag{4.14}
\end{equation*}
$$

holds for k real and A complex, then $f(z)$ is p-valent in $|z| \leqq r$.
Proof. Our assumption shows that $f(z) \neq A$ on $|z|=r$. Hence we can appeal to Cor. 10 with $n=1, \lambda_{1}=1+k i$ and $a_{1}=A$ to conclude that $f(z)$ is p-valent in $|z| \leqq r$.

Now, setting $p=1$ for the sake of simplicity, we give a few examples for some of our results.

Example 1. Let D_{z} be the rectangle $|\Re z| \leqq M(M>0),|\Im z| \leqq \pi-\varepsilon$ $(0<\varepsilon<\pi)$, and let $f(z) \equiv e^{z}-1=z+\cdots$. If we put $\varphi(z) \equiv z$ and $A=-1$, then we have the following relations.

$$
f(z) f^{\prime}(z) \neq 0 \text { for } z \neq 0 \text { in } D_{z}, \varphi^{\prime}(\log (f(z)-A)) \neq 0 \text { on } C_{z} \equiv \partial D_{z},
$$

and for any $\operatorname{arc} C \subset C_{z}$

$$
\int_{C} d \arg (f(z)-A)=\int_{C} d \Im z \neq-2 \pi \text { i.e. } A=-1 \in E\left(C_{w}\right)
$$

and

$$
\int_{C} d \arg d \varphi(\log (f(z)-A))=\int_{C} d \arg d z \geqq 0>-\pi
$$

Hence by Cor. $1, f(z)$ is univalent in D_{z}.
Example 2. Let D_{w} be the closed domain whose boundary curve C_{w} consists of two curves

$$
\begin{aligned}
& C_{1}: \quad \rho=1-3 \theta / 4,0 \geqq \theta \geqq-2 \pi, \\
& C_{2}: \quad \rho=1+4 \pi / 3-2 \theta / 3,-2 \pi \leqq \theta \leqq 2 \pi,
\end{aligned}
$$

where ρ, θ are the polar coordinates of a point w. Let the direction of C_{w}, as usual, generate to be positive with respect to its interior. Then there holds

$$
\begin{equation*}
\int_{C^{\prime} w}(d \arg w+d|w|)>0 \tag{4.15}
\end{equation*}
$$

for every arc (different from a point) $C_{w}^{\prime} \subset C_{w}$. Let D_{w}^{*} be a domain (open) whose interior contains D_{w} and whose boundary consists of a bounded Jordan curve. Let $w=f(z)=z+\cdots$ be the function which maps the circle $|z|<r$ with a suitable r one-to-one conformally onto the domain D_{w}^{*}, and let C_{z} be the map of C_{w} by $z=f^{-1}(w)$, where f^{-1} is the inverse function of f, and further let D_{z} be the closed domain bounded by C_{z}. Then, with these $f(z), C_{z}$ and D_{z}, a special case of the assumption of Th. 1 which is similar to that of Cor. 9 is satisfied since we have (4.15) for $w=f(z)$.

Clearly $f(z)$ is neither starlike [2], [12] nor close-to-convex (i.e. at most π-concave [15]) on the directed curve C_{z}. Now, in order to compare with the spiral-like case, we prepare the following:

Definition 5. Let Γ denote a directed rectifiable curve. Suppose that $f(z)$ is regular and $f(z) \neq A$ on Γ and that $\lambda \neq 0$ (A, λ complex). Then $f(z)$ is said to be spiral-like with λ and with respect to A on Γ if

$$
\begin{equation*}
\int_{\Gamma^{\prime}} d \arg (f(z)-A)^{\lambda} \geqq 0 \tag{4.16}
\end{equation*}
$$

for all $\operatorname{arcs} \Gamma^{\prime} \subset \Gamma$. If $A=0$, we shall omit reference to A and say, briefly, that $f(z)$ is spiral-like (with λ) on $\Gamma[3]$, [17].

Now, let C be the part of C_{1} such that $-\frac{1}{2} \pi \geqq \theta \geqq-\pi$. The direction of the curve is that generated by decreasing θ. Then we have

$$
\int_{C}(d \arg w+d|w|)=-\frac{\pi}{2}+\frac{2}{3} \pi=\frac{1}{6} \pi .
$$

On the other hand, since

$$
d \log |w|=d|w| /|w|<d|w| / 3, w \in C,
$$

we have that

$$
\int_{C} d \arg w^{1+i}=\int_{C}(d \arg w+d \log |w|)<-\frac{5}{18} \pi .
$$

Accordingly, $f(z)$ is not spiral-like with $(1+i)$ on C_{z}.
Example 3. Let D_{w} be the complement of the domain

$$
\{|w|>1\} \cup\{|\arg (w-1 / 3)-\pi / 2|<\varepsilon\} \cup\{\mid(\arg (w+1 / 2)-\pi \mid<\varepsilon\},
$$

where $\varepsilon>0$ is a sufficiently small constant. Let us denote the boundary of D_{w} by C_{w}. Then there holds the inequality

$$
\begin{equation*}
\int_{C^{\prime} w}\left(d \arg w+d \arg \left(w-\frac{2}{3}\right)\right)>0 \tag{4.17}
\end{equation*}
$$

for every arc (different from a point) $C_{w}^{\prime} \subset C_{w}$. This may be proved by noting that either the boundary of the domain

$$
|\arg (w-1 / 3)-\pi / 2|<\varepsilon
$$

or the two points $w=0$ and $w=2 / 3$ are symmetric with respect to the straight line $\Re w=1 / 3$. Consider (one of) the function $f(z)$ and the curve C_{z} which are obtained from the closed domain D_{w} as in the above example. Then, for these $w=f(z)$ and C_{z}, we have (4.17) a special case of (4.1). Clearly, on C_{z}, $f(z)$ is starlike neither with respect to the point $w=0$ nor with respect to $w=2 / 3$, though it is starlike with respect to the point $w=1 / 3-\delta i$, where $\delta>0$ is a sufficiently small constant.

§5. Some remarks for the above results.

In Th. 1, if only one element of criteria, for example J_{1}, is used, we have the following slightly more precise result.

Theorem 2. Let $f(z) \in \mathfrak{F}\left(p, D_{z}\right)$ (without the assumption $\left.f(z) \neq 0\right)$. If there holds the relation

$$
\begin{equation*}
\int_{C^{\prime}} d \arg d f(z) \geqq-\pi, \tag{5.1}
\end{equation*}
$$

for any arc $C_{z}^{\prime} \subset C_{z} \equiv \partial D_{z}$, then $f(z)$ is p-valent in D_{z}.
Proof. If $f(z)$ is at least $(p+1)$-valent in D_{z}, then as in the proof of Prop. 1 , there exists such a simple closed piecewise regular curve γ which is the image of a curve $C_{z}^{*} \subset C_{z}$ by $w=f(z)$ and for which we have the inequality

$$
\int_{-r} d \arg d w \geqq \pi .
$$

Here we note that, from the geometrical property of γ, there also exists a sub-curve C of γ for which we have

$$
\begin{equation*}
\int_{-c} d \arg d w>\pi . \tag{5.2}
\end{equation*}
$$

From this fact the theorem follows easily.
Th. 2 is more general or precise than Umezawa-Kaplan's result to which we referred before or than the result due to Reade [10, p. 255].

Next we refer to Cor. 5 from which the following corollary follows easily.
Corollary 13. Let $f(z) \in \mathfrak{F}(1,|z| \leqq r)$. If there holds

$$
\begin{equation*}
\mathfrak{\Re}\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+i k \frac{|f(z)-A|}{f(z)-A} z f^{\prime}(z)\right\}>0,|z|=r \tag{5.3}
\end{equation*}
$$

where k real, A complex and $A \oplus C_{r}$, then $f(z)$ is univalent in $|z| \leqq r$.
In the above corollary, if (5.3) holds then we have

$$
\begin{equation*}
\int_{C}\{d \arg d f(z)+k d|f(z)-A|\}>0 \tag{5.4}
\end{equation*}
$$

for every $\operatorname{arc} C$ on $|z|=r$. Now, let w_{1}, w_{2}, if exist, be the intersections of C_{r} and the circle $K_{\rho}:|w-A|=\rho$. Then, since (5.4) holds, the argument of the tangent vector of C_{r} at w_{2} is larger than the previous value at w_{1}. This must hold for any $\rho, 0<\rho<+\infty$. Now we put $A=-a e^{i(\pi / 2-\omega)}, a>0, \omega$ real, and we consider the case in which (5.3) remains for $a \rightarrow+\infty$. In this case, if we make $a \rightarrow+\infty$, then, for example, the part of $K_{a}:|w-A|=a$ inside C_{r} tends to a part of the straight line $L: \mathfrak{I}\left(w e^{i \omega}\right)=0$, and from the fact stated above, it is seen that C_{r} has no intersecting points with any line parallel to L more than two. Moreover we have

$$
i|f(z)-A| /(f(z)-A) \rightarrow e^{i \omega} \text {, when } a \rightarrow+\infty .
$$

Thus, we have the following:
Corollary 14. Let $f(z) \in \mathfrak{F}(1,|z| \leqq r)$. If there folds

$$
\begin{equation*}
\Re\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+k e^{i \omega} z f^{\prime}(z)\right\}>0,|z|=r \tag{5.5}
\end{equation*}
$$

where k, ω real, then $f(z)$ is univalent, convex in one direction (cf. [11]) in $|z| \leqq r$, and this direction coincides with that of the vector representing $e^{i(\pi-\omega)}$.

Cor. 14 is equivalent to Th. 3 in [6, p. 10] and which has been generalized as Cor. 13 in a certain sense. But it is unnatural. Indeed, under the assumption of Cor. 13, there is a case such that C_{r} is cut by some K_{ρ} as before in more than two points, as the case $f(z) \equiv z$ and $k=A=0$. So, we generalize the definition of the class of functions convex in one direction, which is denoted by (C), as follows.

Definition 6. We shall say $f(z) \in C(A)$ if $f(z)$ is regular for $|z| \leqq r, f(0)=0$, and if C_{r} as before is cut by any one of circles of center $A \in U\left(\infty, C_{r}\right)$ in not more than two points. We interpret as $C(-\infty)=(C)$-with the direction of
the vector i.
Using the above definition we have the following:
Theorem 3. Let $f(z) \in \mathfrak{F}(1,|z| \leqq r)$. If there holds

$$
\begin{equation*}
\Re\left\{1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+(\kappa i-1) \frac{z f^{\prime}(z)}{f(z)-A}\right\}>0,|z|=r, \tag{5.6}
\end{equation*}
$$

for suitable constants κ and A such that κ real and $A \in U\left(\infty, C_{r}\right)$; then $f(z)$. belongs to $C(A)$ and is univalent in $|z| \leqq r$.

Proof. Since we have (5.6), the relation (4.6) holds for $\lambda=\kappa i-1$ and all $\operatorname{arcs} C_{z}^{\prime}$ on $|z|=r$. Hence by Cor. $4, f(z)$ is univalent in $|z| \leqq r$. Now let us, set

$$
\begin{equation*}
g(z)=-A\{\log (f(z)-A)-\log (-A)\}=z+\cdots, \tag{5.7}
\end{equation*}
$$

then we see that $g(z) \in \mathscr{F}(1,|z| \leqq r)$ and a simple calculation shows that (5.6) is reduced to

$$
\begin{equation*}
\mathfrak{R}\left\{1+z \frac{g^{\prime \prime}(z)}{g^{\prime}(z)}-\frac{\kappa i}{A} z g^{\prime}(z)\right\}>0,|z|=r \tag{5.8}
\end{equation*}
$$

Hence by Cor. 14, $g(z)$ is convex in the direction of the vector $e^{i(\pi-\omega)}$, where $\omega=\pi / 2-\arg (-A)$. On the other hand, the part of the circles $|w-A|=\rho$. inside C_{r} is univalently mapped by the function $-A\{\log (w-A)-\log (-A)\}$ onto the corresponding part of the lines parallel to the above vector $e^{i(\pi-\omega)}$. Noting the above facts we can deduce $f(z) \in C(A)$. Thus, the theorem follows.

Example 4. Let $f(z) \equiv e^{z}-1, r=\pi-\varepsilon(0<\varepsilon<\pi)$ and $A=-1$. Then (5.6). is reduced to

$$
\begin{equation*}
\Re(1+\kappa i z)>0,|z|=r, \tag{5.9}
\end{equation*}
$$

which holds for a sufficiently small $|\kappa|$, and so we see $f(z) \in C(-1)$.
Remark 4. In Th. 3, set $A=-a i e^{-i \omega}(a>0)$ and $\kappa=k a$, then by making $a \rightarrow+\infty$ we again have Cor. 14. Th. 3 is more natural than Cor. 13 as an extension of Cor. 14.

Yamanashi University

References

[1] L. V. Ahlfors, Complex analysis, New York, 1953.
[2] S. D. Bernardi, Convex, starlike, and level curves, Duke Math. J., 28 (1961), 57-72.
[3] R. K. Brown, Univalent solutions of $W^{\prime \prime}+p W=0$, Canad. J. Math., 14 (1962), 6978.
[4] E. Hille, Analytic function theory, I, Boston, 1961/62.
[5] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169185.
[6] S. Ogawa, Some criteria for univalence, J. Nara Gakugei Univ., 10 (1961), 7-12.
[7] S. Ogawa, On some criteria for p-valence, J. Math. Soc. Japan, 13 (1961), 431-441.
[8] S. Ozaki, Some remarks on the univalency and multivalency of functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2 (1934), 42-55.
[9] G. Pólya und Szegö, Aufgaben und Lehrsätze aus der Analysis, I, Berlin, 1954.
[10] M. O. Reade, On Umezawa's criteria for univalence II, J. Math. Soc. Japan, 10 (1958), 255-259.
[11] M.S. Robertson, Analytic functions star-like in one direction, Amer. J. Math., 58 (1936), 465-472.
[12] W.C. Royster, Convexity and starlikeness of analytic functions, Duke Math. J., 19 (1952), 447-457.
[13] K. Sakaguchi, A note on p-valent functions, J. Math. Soc. Japan, 14 (1962), 312321.
[14] K. Sakaguchi, A representation theorem for a certain class of regular functions, J. Math. Soc. Japan, 15 (1963), 202-209.
[15] N. Sone, A generalization of the concept 'convexity or starlikeness', Mem. Fac. Liberal Arts and Education Yamanashi Univ., 1962, 115-119.
[16] N. Sone, Univalent functions and non-convex domains, J. Math. Soc. Japan, 15 (1963), 191-201.
[17] Lad. Špaček, Contribution à la théorie des fonctions univalentes, Časopis Pě̌st. Mat. Fys., 62 (1936), 12-19.
[18] T. Umezawa, On the theory of univalent functions, Tôhoku Math. J., 7 (1955), 212-228.

