On some properties of a proximity

By Eiichi HAYASHI

(Received March 30, 1964) (Reveised July 3, 1964)

§ 1. Introduction.

Efremovich [1] defined a relation δ on a set, called a *proximity*. For a pair of subsets A and B of a point set R we usually write $A\delta B$ if A and B are proximate, otherwise $A\overline{\delta}B$. Throughout this paper we shall use the notations $(A,B)\in\delta$ and $(A,B)\notin\delta$ instead of $A\delta B$ and $A\overline{\delta}B$ respectively. (See Pervin [2].)

Efremovich required that the relation δ should satisfy the following four axioms:

Axiom 0. (Symmetry) $(A, B) \in \delta$ if and only if $(B, A) \in \delta$.

Axiom 1. Both $(A, C) \in \delta$ and $(B, C) \in \delta$ if and only if $(A \cup B, C) \in \delta$.

Axiom 2. For arbitrary two points $a, b \in R$, $(\{a\}, \{b\}) \in \delta$ if and only if a = b.

Axiom 3. (Separation) If $(A, B) \in \delta$ then there are disjoint subsets U and V of R such that $(A, R-U) \in \delta$ and $(B, R-V) \in \delta$.

Efremovich [1, p. 196] showed that every proximity on a set R yields a completely regular space if one defines the topology of R as follows: a subset U of R is a neighborhood of $A \subset R$ if and only if $(A, R-U) \in \delta$. This definition can be replaced by the following: (#) a subset G of R is defined to be open if and only if $(\{x\}, R-G) \in \delta$ for every $x \in G$. (See Császár et Mrówka [3, p. 195].)

In this paper we shall first (§ 2) define slightly different axioms from Efremovich's. In § 3 we shall show that our proximity on a set yields a completely normal space. The last section 4 will be devoted to an example of our proximity on a set.

§ 2. Definitions and lemmas.

By a paraproximity on a set R we mean a relation δ for pairs of subsets of R satisfying the following axioms:

Axiom I. $(A, \phi) \in \delta$ for every $A \subset R$.

376 E. Hayashi

Axiom II. $(A, B \cup C) \in \delta$ if and only if $(A, B) \in \delta$ or $(A, C) \in \delta$.

Axiom III. For an arbitrary index set Λ , $(\bigcup_{\lambda \in \Lambda} A_{\lambda}, B) \in \delta$ if and only if there is an index $\mu \in \Lambda$ satisfying the relation $(A_{\mu}, B) \in \delta$.

Axiom IV. For arbitrary two points $a, b \in R$ ($\{a\}, \{b\}$) $\in \delta$ if and only if a = b.

Axiom V. If $(A, B) \in \delta$ and $(B, A) \in \delta$, then there are two disjoint subsets U and V satisfying:

$$(A,R-U)\in\delta, \quad (U,R-U)\in\delta$$
:

$$(B, R-V) \in \delta$$
, $(V, R-V) \in \delta$.

We introduce Axiom I by the suggestion of Pervin [2]. We note that a paraproximity does not require the symmetry (Axiom 0) in general but it requires a new axiom III.

Before topologizing a set R we shall add lemmas which easily follow from our axioms.

LEMMA 1. If $(A, B) \in \delta$ then $(A, C) \in \delta$ for any $C \subset B$.

PROOF. Since $B = B \cup C$ and $(A, B \cup C) \notin \delta$, it follows that $(A, C) \notin \delta$ by Axiom II.

In a similar way we have the following:

LEMMA 2. If $(A, B) \notin \delta$, then $(C, B) \notin \delta$ for any $C \subset A$.

LEMMA 3. If $(A, B) \in \delta$, then $A \cap B = \phi$.

PROOF. Suppose that there exists a point $x \in A \cap B$. Then by Lemmas 1 and 2, $(\{x\}, \{x\}) \notin \delta$, contrary to Axiom IV.

LEMMA 4. $(R-x, \{x\}) \in \delta$ for any point $x \in R$.

PROOF. Let $R-x=\bigcup_{\lambda\in A}y_{\lambda}$. Then $y_{\lambda}\neq x$ for all λ . Suppose that $(R-x,\{x\})\in \delta$ or equivalently $(\bigcup_{\lambda\in A}y_{\lambda},\{x\})\in \delta$. Then there is an index μ satisfying $(\{y_{\mu}\},\{x\})\in \delta$ by Axiom III. From Axiom IV follows $y_{\mu}=x$ which is a contradiction.

We now remark the following:

- 1) In Axiom V, we may choose U and V such that $(U, V) \in \delta$ and $(V, U) \in \delta$. In fact, it follows that $V \subset R U$ since U and V are disjoint, and hence from $(U, R U) \in \delta$ and Lemma 1 follows that $(U, V) \in \delta$. In the same way we can prove $(V, U) \in \delta$.
- 2) In Axiom V we may deduce that $A \subset U$ and $B \subset V$. In fact, let us suppose that U does not contain A and so there is a point $x \in A U$. Because $x \in A$, $x \in R U$ and $(A, R U) \notin \delta$, it follows that $(\{x\}, \{x\}) \notin \delta$ from Lemmas 1 and 2. This is a contradiction. Similarly we have $B \subset V$.

§ 3. The main theorem.

We shall now topologize the set R as follows:

(*) A set U is open if and only if $(U, R-U) \in \delta$.

We note that the definition (*) is equivalent to the preceding definition (#). To show this, let U be open in the definition (*). Because of the hypothesis $(U,R-U) \in \delta$ and Lemma 2 it follows that $(\{x\},R-U) \in \delta$ for every $x \in U$. Hence U is also open in the definition (#). Conversely let U be open in (#). Putting $U = \bigcup_{\lambda} x_{\lambda}$, $(\{x_{\lambda}\},R-U) \in \delta$ for every λ . From Axiom III follows $(U,R-U) = (\bigcup_{\lambda} x_{\lambda},R-U) \in \delta$. Therefore U is open in (*).

The main result of this paper is the following:

Theorem 1. Let R be a set with a paraproximity δ satisfying Axioms I-V. Then the set R is a completely normal space if R is topologized by (*).

We shall call this space R a paraproximity space.

PROOF. First we show that R is a topological space. By Axiom I, $(R,R-R)=(R,\phi) \in \delta$; this means that the whole space R is open. Let U and V be open: $(U,R-U) \in \delta$ and $(V,R-V) \in \delta$. By Lemma 2 it follows that $(U \cap V,R-U) \in \delta$ and $(U \cap V,R-V) \in \delta$. Hence $(U \cap V,R-(U \cap V)) = (U \cap V,(R-U) \cup (R-V)) \in \delta$, by Axiom II. Consequently $U \cap V$ is open. Next suppose that U_{λ} is open, that is $(U_{\lambda},R-U_{\lambda}) \in \delta$ for every $\lambda \in \Lambda$. By Axiom III, $(\bigcup_{\lambda} U_{\lambda},R-U_{\lambda}) \in \delta$ for every λ and so $(\bigcup_{\lambda} U_{\lambda},R-\bigcup_{\lambda} U_{\lambda}) \in \delta$ by Lemma 1. This proves that $\bigcup_{\lambda} U_{\lambda}$ is open. Consequently the finite intersection and arbitrary union of open sets are also open.

From Lemma 4 it is easy to show that R satisfies the T_1 separation axiom or equivalently that for every point x of R, R-x is open.

It remains only to show that any subset of R satisfies the T_4 separation axiom. To this end it is sufficient to verify that if A and B are separated in the T_1 space R (i.e., $\overline{A} \cap B = \phi$ and $A \cap \overline{B} = \phi$), there are disjoint open sets U and V such that $A \subset U$ and $B \subset V$. Now $(R - \overline{A}, \overline{A}) \notin \delta$, because $R - \overline{A}$ is open. Since A and B are separated, it follows that $R - \overline{A} \supset B$ and so $(B, \overline{A}) \notin \delta$ by Lemma 2. Hence by Lemma 1 it follows that $(B, A) \notin \delta$. Similarly $(A, B) \notin \delta$. As a direct consequence of Axiom V and the foregoing remark 2), we can find the required open sets U and V. This completes the proof of Theorem 1.

The proof of this theorem implies the following:

COROLLARY. Let R be a set with a relation δ satisfying Axioms I, II and III. If the topology of R is defined by (*), then R is a topological space. Moreover if a relation δ satisfies Axioms I-IV, then R is a T_1 space.

In a proximity space R, $\overline{A} \cap \overline{B} \neq \phi$ implies $(A, B) \in \delta$. The converse implication holds if a space R is a compact proximity space (Efremovich [1, p.

378 E. Hayashi

198]). In this connection we have the following:

THEOREM 2. Let (R, δ) be a paraproximity space. Then $(A, B) \in \delta$ implies $A \cap \bar{B} \neq \phi$.

PROOF. Assume that $A \cap \bar{B} = \phi$, and so $A \subset R - \bar{B}$. If we choose all open sets O_{λ} which contain the closed set \bar{B} , then $\bigcap_{\lambda} \bar{O}_{\lambda} = \bar{B}$ by the regularlity of R. Therefore $A \subset R - \bar{B} = R - \bigcap_{\lambda} \bar{O}_{\lambda} = \bigcup_{\lambda} (R - \bar{O}_{\lambda})$. Since all sets $R - \bar{O}_{\lambda}$ are open, $(R - \bar{O}_{\lambda}, \bar{O}_{\lambda}) \notin \delta$ for all λ . Then by Axiom III $(\bigcup_{\lambda} (R - \bar{O}_{\lambda}), \bar{O}_{\lambda}) \notin \delta$ for all λ . Consequently it follows from Lemmas 1 and 2 that $(A, B) \notin \delta$. This contradicts our assumption $(A, B) \in \delta$.

COROLLARY. Let (R, δ) be a paraproximity space. Let x be a point of R and A be a subset of R. Then $(A, \{x\}) \in \delta$ if and only if $x \in A$. If $(\{x\}, A) \in \delta$, then $x \in \overline{A}$.

§ 4. An example.

Finally when a space R is completely normal, we may introduce a paraproximity δ in R. Our next method is similar to Pervin [2].

THEOREM 3. If R is a completely normal space and the relation δ is defined by setting " $(A, B) \in \delta$ if and only if $A \cap \overline{B} \neq \phi$ ", then δ is a paraproximity for R. (Of course, \overline{B} is the closure of B for the original topology of R.)

PROOF. Axiom I: For any $A \subset R$, $A \cap \bar{\phi} = \phi$ and so $(A, \phi) \in \delta$. We can easily prove that δ satisfies Axioms II and III. Axiom IV: For any point $a \in R$ it follows that $a \cap \bar{a} = a \neq \phi$ which means $(\{a\}, \{a\}) \in \delta$. Conversely if $a \cap \bar{b} \neq \phi$ then a = b since $b = \bar{b}$. Axiom V: Suppose that $(A, B) \notin \delta$ and $(B, A) \notin \delta$. Because $A \cap \bar{B} = \phi$, $\bar{A} \cap B = \phi$ and R is completely normal, there are two disjoint open sets U and V such that $A \subset U$ and $B \subset V$. Since $\bar{R} - \bar{U} = R - U$, $A \cap \bar{R} - \bar{U} = A \cap (R - U) = \phi$ and so $(A, R - U) \notin \delta$. Similarly $(B, R - V) \notin \delta$. We can easily deduce that $(U, R - U) \notin \delta$ and $(V, R - V) \notin \delta$.

COROLLARY. If R is a topological space and δ is defined as above, then δ satisfies Axioms I, II and III. Moreover if R is a T_1 space, then δ satisfies Axioms I-IV.

Aichi Gakugei University

Bibliography

- [1] V.A. Efremovich, Geometriya blizosti. I, Mat. Sb., 73 (1952), 189-200.
- [2] W.J. Pervin, Quasi-proximities for topological spaces, Math. Ann., 150 (1963), 325-326.
- [3] Á. Császár et S. Mrówka, Sur la compactification des espaces de proximité, Fund. Math., 46 (1959), 195-207.