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§1. Introduction.

Efremovich defined a relation 0 on a set, called a proximity. For a
pair of subsets A and B of a point set R we usually write AoB if A and B
are proximate, otherwise A6B. Throughout this paper we shall use the nota-
tions (4, B)ed and (A4, B)&d instead of A0B and AdB respectively. (See
Pervin [27])

Efremovich required that the relation é should satisfy the following four
axioms:

Axiom 0. (Symmetry) (A, B)< é if and only if (B, A) 4.

Axiom 1. Both (A, C)& é and (B, C) <« 6 if and only if (AU B, C) & 0.

Axiom 2. For arbitrary two points a, b= R, ({a}, {b})= o if and only if

a=".

Axiom 3. (Separation) If (A, B) € 0 then there are disjoint subsets U and

V of R such that (4, R—U)& 0 and (B, R—V) & 0.
Efremovich [1, p. 196] showed that every proximity on a set R yields a com-
pletely regular space if one defines the topology of R as follows: a subset U
of R is a neighborhood of AC R if and only if (4, R—U) <« d. This definition
can be replaced by the following: (¥) a subset G of R is defined to be open
if and only if ({x}, R—G)& d for every x< G. (See Csdszar et Mréowka [3, p.
1957.)

In this paper we shall first (§2) define slightly different axioms from
Efremovich’s. In §3 we shall show that our proximity on a set yields a com-
pletely normal space. The last section 4 will be devoted to an example of
our proxXimity on a set.

§ 2. Definitions and lemmas.

By a paraproximity on a set R we mean a relation ¢ for pairs of subsets
of R satisfying the following axioms:
Axiom 1. (A, ¢) &0 for every ACR.
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Axiom II. (A, BUC)e<0 if and only if (A,B)€d or (4, C)eE 0.
Axiom III. For an arbitrary index set A, Z(&ﬁ A;, B0 if and only if there

is an index p< A satisfying the relation (A,, B) € 0.

Axiom IV. For arbitrary two points a,b<= R ({a}, {b}) =0 if and only if
a=>h.

Axiom V. If (A, B) <6 and (B, A) & 0, then there are two disjoint subsets
U and V satisfying:

(A, R-U) <9, (U,R=U)&d:
B,R—=V)e&9, (V,R=V)«ao.

We introduce Axiom I by the suggestion of Pervin [2]. We note that a
paraproximity does not require the symmetry (Axiom 0) in general but it
requires a new axiom III.

Before topologizing a set R we shall add lemmas which easily follow
from our axioms.

LEMMA 1. If (A, B)& 0 then (A4, C) &0 for any CC B.

PrROOF. Since B=B\JC and (A, BUC)& 4, it follows that (4, C)< 0 by
Axiom II.

In a similar way we have the following:

LEMMA 2. If (A, B)& 0, then (C,B) &0 for any CC A.

LEMMA 3. If (A, B)& 0, then ANB=4¢.

PROOF. Suppose that there exists a point x= A B. Then by Lemmas
1 and 2, ({x}, {x}) € 0, contrary to Axiom IV.

LEMMA 4. (R—x, {x}) €0 for any point x< R.

PrROOF. Let R_x:ngy" Then y,;+# x for all . Suppose that (R—x, {x})

€0 or equivalently (Zk{‘yl, {x})=d. Then there is an index g satisfying
=

{yuh {x}) =0 by Axiom III. From Axiom IV follows y,=x which is a con-
tradiction.

We now remark the following :

1) In Axiom V, we may choose U and V such that (U, V)& o and
(V,U)«o. In fact, it follows that VC R—U since U and V are disjoint, and
hence from (U, R—U) <« 0 and Lemma 1 follows that (U, V)& d. In the same
way we can prove (V, U)< 4.

2) In Axiom V we may deduce that AC U and BC V. In fact, let us
suppose that U does not contain A and so there is a point xe A—U. Because
x€ A, xe R—U and (A, R—U) < 0, it follows that ({x}, {x}) & d from Lemmas
1 and 2. This is a contradiction. Similarly we have BC V.
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§3. The main theorem.

We shall now topologize the set R as follows:

(x) A set U is open if and only if (U, R—U) & 0.
We note that the definition (¥) is equivalent to the preceding definition (%).
To show this, let U be open in the definition (*). Because of the hypothesis
(U, R—-U)«¢ 0 and it follows that ({x}, R—U) <& d for every x& U.
Hence U is also open in the definition (). Conversely let U be open in (¥).
Putting U= l\ZJ x5, {x}, R—U)&d for every A. From Axiom III follows

, R~U):(’\Rj x;, R—U)& d. Therefore U is open in (x).

The main result of this paper is the following:

THEOREM 1. Let R be a set with a parvaproximity 0 satisfying Axioms I-V.
Then the set R is a completely normal space if R is topologized by (x).

We shall call this space R a paraproximity space.

PrROOF. First we show that R is a topological space. By Axiom I,
(R, R—R)=(R, ¢) & 0; this means that the whole space R is open. Let U and
V be open: (U, R—U)& d and (V, R—V)&éd. By it follows that
UnNnV,R—U)s&d and UNV,R-V)e«d. Hence (UNV,R—(UNV))
=(UnNV,(R—U)J(R-V)) <0, by Axiom II. Consequently UV is open.
Next suppose that U, is open, that is (U;, R—U)) & d for every 1 4. By
Axiom III, (kﬂ) U, R—U)) & o for every A and so (&zj U, R— kxj Uy & o0 by [Lemmal

1. This proves that &XJUA is open. Consequently the finite intersection and

arbitrary union of open sets are also open.

From it is easy to show that R satisfies the T, separation axiom
or equivalently that for every point x of R, R—x is open.

It remains only to show that any subset of R satisfies the T, separation
axiom. To this end it is sufficient to verify that if A and B are separated
in the 7, space R (i.e., AnB=¢ and A B=4¢), there are disjoint open sets
U and V such that ACU and B V. Now (R—A, A)& 4, because R—A is
open. Since A and B are separated, it follows that R—A D B and so (B, A) & 6
by Hence by it follows that (B, A)&d. Similarly
(4, By« 0. As a direct consequence of Axiom V and the foregoing remark 2),
we can find the required open sets U and V. This completes the proof of
Theorem 1.

The proof of this theorem implies the following :

COROLLARY. Let R be a set with a relation 0 satisfying Axioms I, 11 and
III. If the topology of R is defined by (%), then R is a topological space.
Moreover if a relation 0 satisfies Axioms I-1V, then R is a T, space.

In a proximity space R, A B+ ¢ implies (4, B)ed. The converse im-
plication holds if a space R is a compact proximity space (Efremovich [1, p.
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1987). In this connection we have the following:

THEOREM 2. Let (R, ) be a paraproximity space. Then (A, B) € 6 implies
ANB# ¢.

PROOF. Assume that A\ B=¢, and so Ac R—B. If we choose all open
sets 0, which contain the closed set B, then C\@A:E by the regularlity of R.

Therefore ACR——B_:Rn—QC")l:kxj(R—@). Since all sets R—O0, are open,

(R—0,0)e&d for all 2. Then by Axiom I (J(R—0,),0,)«d for all A
P

Consequently it follows from Lemmas 1 and 2 that (A4, B) ¢ . This contradicts
our assumption (4, B)=o. .

COROLLARY. Let (R, d) be a paraproximity space. Let x be a point of R
and A be a subset of R. Then (A, {x})€dif and onlyif x A. If ({x}, A4,
then x< A.

§4. An example.

Finally when a space R is completely normal, we may introduce a para-
proximity ¢ in R. Our next method is similar to Pervin [2].

THEOREM 3. If R is a completely normal space and the relation ¢ is de-
fined by setting “ (A, BYed if and only if ANB=+¢?”, then & is a paraprox-
imity for R. (Of course, B is the closure of B for the original topology of R.)

Proor. Axiom I: For any ACR, Ané=¢ and so (4, )&= d. We can
easily prove that 0 satisfies Axioms II and III. Axiom IV: For any point
acs R it follows that a "@=a # ¢ which means ({a}, {a}) 0. Conversely if
anb+¢ then a=b since b=>b. Axiom V: Suppose that (4, B)&d and
(B, A)&d. Because AnB=¢, A NB=¢ and R is completely normal, there
are two disjoint open sets U and V such that ACU and BC V. Since
R—U=R-U, ANR—U=ANn{R-U)=¢ and so (4, R—U)ed. Similarly
(B,R—V)&d. We can easily deduce that (U, R—U) e d and (V, R—V) e 0.

COROLLARY. If R is a topological space and 0 is defined as above, then 0
satisfies Axioms I, 11 and 1II. Moreover if R is a T, space, then 0 satisfies
Axioms 1-IV.
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