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Introduction.

It is well known that the so-called one-quarter theorem plays an important
role in the theory of regular and univalent functions in $|z|<1$ . This theorem
was extended to the case of circumferentially mean univalence (defined in \S 1)
by Hayman [6] and moreover to the case of areally mean univalence by Gara-
bedian and Royden [5]. Their method was based on the fact that inner
radius does not decrease by circular symmetrization (cf. [7]). On the other
hand, corresponding to the one-quarter theorem, the following Montel-Bieber-
bach’s theorem ([2], [3], [13], [14]) is well known in the case of meromorphic
and univalent functions.

If $ f(z)=z+a_{2}z^{2}+\cdots$ is meromorphic and univalent in $|z|<1$ , then at
least one of the circles $|w|<\delta$ or $|w|>\delta^{-1}(\delta=\sqrt{5}-2)$ is wholly covered by
the image-domain under $w=f(z)$ .

In this paper we shall first prove a fundamental theorem on meromorphic
and circumferentially mean univalent functions in $|z|<1$ , by means of the
fact that transfinite diameter does not increase by circular symmetrization
and then generalized Montel-Bieberbach’s theorem to the case of circumferen-
tially mean univalence or $p$ -valence.

Secondly we shall deal with values omitted by meromorphic and circum-
ferentially mean univalent functions in $|z|<1$ also by means of the above
mentioned property of transfinite diameter.

Thirdly we consider meromorphic and circumferentially mean univalent
functions in $|z|<1$ , whose Taylor expansions about the origin are given by
$ f(z)=z+a_{2}z^{2}+\cdots$ and whose poles are explicitly denoted by $z=z_{\infty}$ , (as will be
remarked in \S 1, $f(z)$ has only one simple pole in $|z\uparrow<1$). By means of the
pole $z=z_{\infty}$ we shall evaluate the values taken by $w=f(z)$ and its second
Taylor coefficient $a_{2}$ . Moreover a type of distortion theorem based on the
pole $z=z_{\infty}$ will be derived.
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\S 1. Preliminary.

Let $w=Re^{i\Phi}=f(z)$ be regular or meromorphic in $|z|<1$ , and let $n(R, \Phi)$

denote the number of the roots of the equation $Re^{i\Phi}=f(z)$ in $|z|<1$ .
If for a positive number $p$

$\frac{1}{2\pi}\int_{0^{\pi}}^{2}n(R, \Phi)d\Phi\leqq p$ $(R>0)$ ,

then $f(z)$ is called “ circumferentially mean p-valent in $|z|<1$ ”. (Biernacki [4])

If $p=1,$ $f(z)$ is also called “ circumferentially mean univalent in $|z|<1$ ‘’.
Let $ f(z)=z+a_{2}z^{2}+\cdots$ be meromorphic and circumferentially mean univalent

in $||z|<1$ . These functions will be denoted by $\mathfrak{F}_{1}$ It is easily seen by the
definition that any $f(z)\in \mathfrak{F}_{1}$ has at most only one simple pole in $|z|<1$ .

Let $ f(z)=z^{p}+a_{p+1}z^{p+1}+\cdots$ be circumferentially mean $p$-valent and regular
except for a pole of order $p$ in $|z|<1$ . These functions will be denoted by
$\mathfrak{F}_{p}$ , which is a natural generalization of $\mathfrak{F}_{1}$

Now we shall state the following lemma showing a closed relation between
$\mathfrak{F}_{1}$ and $\mathfrak{F}_{p}$

LEMMA 1. Let $f(z)\in \mathfrak{F}_{p}$ Then

$(f(z))^{1/p}=z+\frac{a_{p+1}}{p}z^{2}+\cdots$

belongs to $\mathfrak{F}_{1}$ .
PROOF. It is clear by the definition that $(f(z))^{1/P}=z+\cdots$ is regular except

for a simple pole in $|z|<1$ . By means of the same method as in the case of
regular functions by Hayman ([6] or [7]), we can prove

$\int_{0}^{2\pi}n(R, \Phi)d\Phi=p\int_{0^{\pi}}^{2}n(\rho, \varphi)d\varphi$

and therefore
$\frac{1}{2\pi}\int_{0^{\pi}}^{2}n(\rho, \varphi)d\varphi\leqq 1$ ,

where $(f(z))^{1/p}=\rho e^{i\varphi}$ . Therefore we see $(f(z))^{1/p}\in \mathfrak{F}_{1}$

\S 2. Values taken by $\mathfrak{F}_{1}$ or $\mathfrak{F}_{p}$ .
We shall first quote the following Hayman’s result [8].

LEMMA 2. Let $ f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic in $|z|<1$ , and let
$\tau_{f}$ denote the transfinite diameter of the complement $E_{f}$ of the image-domain
under $w=f(z)$ . Then

$\tau_{f}\leqq 1$ .
Equality holds only when $f(z)$ is univalent.
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Next we shall state the following lemma which is nothing but an appli-
cation of $P6lya- Szeg\ddot{o}’ s$ result [15]. The proof can be easily given by means
of P\’olya-Szeg\"o’s idea (cf. [7], 81-83).

LEMMA 3. Let $E_{f}$ and $\tau_{f}$ be defned in Lemma 2. Moreover let $E_{f}^{*}$ be
the circular symmetrization of $E_{f}$ with respect to the positive real axis and $\tau_{f}^{\star}$

be the transfinite diameter of $E_{f}^{*}$ . Then we have

$\tau_{f}\geqq\tau_{f}^{*}$ .
Here we shall state Darboux’s theorem in a slightly generalized form.
LEMMA 4. Let $D$ be a simply connected domain enclosed by a rectifiable

Jordan curve C. Let $f(z)$ be regular in the closed domain $\overline{D}=D+C$ , or $f(z)$

be regular there except for a simple pole in D. Moreover if $C$ is mapped
univalently on a Jordan curve $\Gamma$ by $w=f(z)$ , then $D$ is also univalently mapped
into the interior or exterior domain with respect to $\Gamma$ respectively.

Now we shall prove the following fundamental theorem useful for the
generalization of Montel-Bieberbach’s theorem.

THEOREM 1. Let $ f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic and circumferen-
tially mean univalent in $|z|<1$ . If we put $M=\max|w_{c}$ , $m=\min|w_{c}$ , where
$w_{c}$ denotes any point belonging to the complement $E_{f}$ of the image-domain $D_{f}$

under $w=f(z)$ . Then
$M-m\leqq 4$ .

Equality holds only when $f(z)=1/z+a_{0}+e^{i\epsilon}z(\epsilon=2\arg a_{0}, |a_{0}|\geqq 2)$ .
PROOF. We make the circular symmetrization of the complement $E_{f}$ of

the image-domain $D_{f}$ , with respect to the positive real axis. The intersection
of the symmetrized set $E_{f}^{*}$ and the positive real axis is denoted by $S$ . Then
$S$ is contained in the closed interval $[m, M]$ . Now we prove that $S$ is truely
the interval $[m, M]$ . Suppose that $m\leqq r\leqq M$ and $r\not\in S$. Then the circle
$|w|=r$ must be wholly contained in $D_{f}$ . Since $f(z)$ is circumferentially mean
univalent in $|z|<1$ , the circle $|w|=r$ is univalently covered by $D_{f}$ , that is,
a Jordan curve $C$ in the z-plane is univalently mapped onto the circle $|w|=r$.
On the other hand by the reason of circumferentially mean univalence in
$|2|<1,$ $f(z)$ has only one simple pole at $z=0$ . Now we denote by $D$ the
domain enclosed by $C$ and consider the following two cases:

(i) if $D$ contains the simple pole $z=0$, then by means of Lemma 4 $D$ is
univalently mapped to the circle $|w|>r$. If it is so, the closed annulus
$r\leqq|w|\leqq M$ is wholly contained in $D_{f}$ . This is incompatible with the defini-
tion of $M$.

(ii) if $D$ does not contain the pole $z=0$ , then we see similarly by means
of Lemma 4 that the closed annulus, $m\leqq|w|\leqq r$ is wholly contained in $D_{f}$ .
This is also absurd.
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Therefore we see that $S=[m, M]$ . Hence we have by the well known
result on transfinite diameter (cf. Tsuji [17, p. 84]), $\tau(S)=(M-m)/4$ where
$\tau(S)$ denotes the transfinite diameter of $S$.

On the other hand by Lemma 2 and Lemma 3 we have
$1\geqq\tau(E_{f})\geqq\tau(E_{f}^{*})$

where $\tau(E_{f})$ and $\tau(E_{f}^{*})$ respectively denote the transfinite diameters of $E_{f}$ and
$E_{f}^{*}$ . Since $E_{f}^{*}\supseteqq S$, we have also $\tau(E_{f}^{*})\geqq\tau(S)$ . Therefore we see the follow-
ing inequality.

$M-m\leqq 4$ .
According to Lemma 2, equality holds only when $ f(z)=1/z+a_{0}+a_{1}z+\cdots$ is
univalent in $|2|<1$ . $f(z)=1/z+a_{0}+e^{is}z(\epsilon=2\arg a_{0}, |a_{0}|\geqq 2)$ maps the unit
circle $|z|<1$ univalently onto the w-plane cut by a segment of length 4. On
the other hand, the equality sign in the one-quarter theorem is attained only
by the Koebe function $f(z)=z/(1-e^{t_{-}^{-}}z)^{2}$ ( $\epsilon$ real). Therefore we see that the
equality sign in Theorem 1 is attained only by the function $f(z)=1/z+a_{0}+$

$e^{i^{\underline{\epsilon}}}z(\epsilon=2\arg a_{0}, |a_{0}|\geqq 2)$ . This completes the proof.
COROLLARY 1. Let $ f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic and circumferen-

tially mean univalent in $|z|<1$ . Then the image-domain under $w=f(z)$ covers
wholly and univalently at least one of the circles $|w|<\delta$ or $|w|>\delta^{-1}(\delta=\sqrt{5}-2)$ .
This result is best possible as is shown by

$f(z)=\frac{1}{z}+\sqrt{5}e^{is}+e^{i_{\lrcorner}^{96}}z$ ( $\epsilon$ real).

PROOF. Considering the relation $\delta^{-1}-\delta=4(\delta=\sqrt{5}-2)$ it is easily seen
by means of Theorem 1 that the circles $|w|<\delta$ or $|w|>\delta^{-1}$ are wholly covered
by the image-domain. The univalency of the covering of these circles by the
image-domain is seen similarly as in the proof of Theorem 1. Here the proof
is completed.

From Corollary 1 we can extend Montel-Bieberbach’s theorem to the case
of circumferentially mean univalence as follows.

THEOREM 2. Let $f(z)\in \mathfrak{F}_{1}$ . Then the image-domain under $w=f(z)$ covers
wholly and univalently at least one of the circles, $|w|<\delta$ or $|w|>\delta^{-1}$

$(\delta=\sqrt{5}-2)$ . This result is best possible as is shown by

$f(z)=\frac{z}{1+\sqrt{5}e^{i_{\vee}^{\epsilon}}z+e^{i2^{\underline{e}}}z^{2}}$ ( $\epsilon$ real).

PROOF. Since $g(z)=1/f(z)$ satisfies the same conditions as in Corollary 1,
we can apply Theorem 1 for $g(z)$ . This completes the proof.

THEOREM 3. Let $f(z)\in \mathfrak{F}_{p}$ Then the image-domain under $w=f(z)$ covers
exactly $p$ times at least one of the circles $|w|<\delta^{p}$ or $|w|>\delta^{-p}(\delta=\sqrt{5}-2)$ .
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This result is best possible as is shown by

$f(z)=\frac{z^{p}}{(1+\Gamma 5e^{i^{-}}z+e^{i2\epsilon}z^{2})^{p}}$ ( $\epsilon$ real).

PROOF. We put

$ g(z)=(f(z))^{1/p}=z+\frac{a_{p+1}}{p}z^{2}+\cdots$ .

Then since $g(z)\in \mathfrak{F}_{1}$ by means of Lemma 1, we see that Theorem 2 holds for
$g(z)$ . Therefore we have Theorem 3.

REMARK. Generalization of Montel-Bieberbach’s theorem to the case of
$p$-valent functions was done by the author [1].

\S 3. Values omitted by $\mathfrak{F}_{1}$ or the related functions.

By means of symmetrization and inner radius Jenkins [9] has dealt with
values omitted by regular and univalent functions in $|z|<1$ . Here we shall
first study the related problem on meromorphic functions in $|z|<1$ , by means
of transfinite diameter and symmetrization similarly as in \S 2. Next we shall
remark that we can deal more precisely with the same problem on meromor-
phic and circumferentially mean univalent functions in $|z|<1$ .

We consider a family of meromorphic functions $ f(z)=1/z+a_{0}+a_{1}z+\cdots$ in
$|z|<1$ . Let $E_{f}$ be the complement of the image-domain under each of these
functions. Among these functions there exists such a function that the circle
$|w|=R(R\leqq 1)$ is wholly contained in $E_{f}$ . For example $f(z)=1/z$ . Now,
considering this fact, we shall state the following theorem.

THEOREM. 4. Let $ f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic in $|z|<1$ . Let
the intersection of the complement $E_{f}$ of the image-domain under $w=f(z)$ and
the circle $|w|=R$ be denoted by $S_{R}$ whose angular measure with respect to
the origin is denoted by $\theta(S_{R})$ . Then

$\theta(S_{R})\leqq 4\sin^{-1}(R^{-1})$ $(R>1)$ .
This result is best possible as is shown by

$f(z)=\frac{R(1-Rz)}{z(R-z)}$ $(R>1)$ .

PROOF. Let $E_{f}^{*}$ be denoted by the circular symmetrization of $E_{f}$ with
respect to the positive real axis. Moreover let $S_{R}^{*}$ be the intersection of $E_{f}^{*}$

and the circle $|w|=R$ . Then we see
$\theta(S_{R})=\theta(S_{R}^{*})$

where $\theta(S_{R}^{*})$ denotes the angular measure of the single arc $S_{R}^{*}$ with respect to
the origin.
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Quite similarly as in the proof of Theorem 1, we have by Lemma 2 and
Lemma 3

$1\geqq\tau(E_{f})\geqq\tau(E_{f}^{*})$ .
Since $\tau(E_{f}^{*})\geqq\tau(S_{R}^{*})$ , we have

$\tau(S_{R}^{*})\leqq 1$ .
On the other hand it is easily verified (cf. Komatu [12]) that

$f(z)=\frac{R(1-Rz)}{z(R-z)}$ $(R>1)$

maps the unit circle $|z|<1$ univalently onto the w-plane cut by a single arc
$A_{R}$ on the circle $|w|=R$ whose angular measure is equal to

4 $\sin^{-1}(R^{-1})$ .
Now, considering that $\tau(A_{R})=1$ (cf. Tsuji [16, p. 84]) and $\tau(S_{R}^{*})\leqq 1$ , we have

$\theta(S_{R}^{*})\leqq 4\sin^{-1}(R^{-1})$ .
Since $\theta(S_{R})=\theta(S_{R}^{*})$ , the proof is completed.

From Theorem 4 we can directly prove the following.
COROLLARY 2. Let $ f(z)=z+a_{2}z^{2}+\cdots$ be meromorphic in $|z|<1$ . Let the

intersection of the complement $E_{f}$ of the image-domain under $w=f(z)$ and the
circle $|w|=R$ be denoted by $S_{R}$ whose angular measure with respect to the
origin is denoted by $\theta(S_{R})$ . Then

$\theta(S_{R})\leqq 4\sin^{-1}(R)$ $(R<1)$ .
This result is best possible as is shown by

$f(z)=\frac{Rz(1-Rz)}{R-z}$ $(R<1)$ .

PROOF. Applying Theorem 4 for $g(z)=1/f(z)$ , Corollary 2 is easily derived.
The condition $R<1$ means that the circle $|w|\geqq 1$ is not covered by the func-
tion $f(z)=z$ which is also one of meromorphic functions $ f(z)=z+a_{2}z^{2}+\cdots$ in
$|z|<1$ .

Adding the condition of circumferentially mean univalence to Theorem 4,
we can prove the following, since we have by Theorem 1 bounds on values
omitted by meromorphic and circumferentially mean univalent functions $f(z)$

$=1/z+a_{0}+a_{1}z+\cdots$ in $|z|<1$ .
THEOREM 5. Let $ f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic and circumferen-

tially mean univalent in $|z|<1$ . Let the intersection of the complement of
the image-domain under $w=f(z)$ and the circle $|w|=R$ be denoted by $S_{R}$

whose angular measure with respect to the origin is denoted by $\theta(S_{R})$ . Suppose
that $m>1$ , where $m=\min|w_{c}|(w_{c}\in E_{f})$ . Then

(i) $\theta(S_{R})\leqq 4\sin^{-1}(R^{-1})$ $((1<)m\leqq R\leqq m+4)$ .
(ii) $\theta(S_{R})=0$ $(m+4<R)$ .



348 H. ABE

This result is best possible as is shown by

$f(z)=\frac{R(1-Rz)}{z(R-z)}$ $(R>1)$ .

PROOF. If the circle $|w|=R(\geqq m)$ is not wholly contained in the image-
domain under $|w|=f(z)$ , then $R$ is equal to $m+4$ at the largest. Therefore
(ii) in Theorem 5 is clear. Moreover it is evident that (i) in Theorem 5 holds
quite similarly as in Theorem 4. This completes the proof.

Here we can also deal by means of Corollary 2 with $\mathfrak{F}_{1}$ similarly as in
Theorem 5. The details will be omitted.

\S 4. Some evaluations based on a pole.

As was remarked before, meromorphic and circumferentially mean univa-
lent functions $ f(z)=z+a_{2}z^{2}+\cdots$ , in $|z|<1$ , have at most only one simple pole
in $|z|<1$ . We shall derive some results by giving this simple pole explicitly.

We shall first state the following theorem closely related to Theorem 2.
THEOREM 6. Let $f(z)$ be meromorphic and circumferentially mean univa-

lent in $|z|<1$ and let $f(z)$ be expanded about its pole $z=z_{\infty}$ as follows.
$f(z)=\frac{1}{z-z_{\infty}}+\sum_{n=0}^{\infty}a_{n}(z-z_{\infty})^{n}$ .

The image-domain under $w=f(z)$ covers at least one of the circles $|w|<\delta$ or
$|w|>\delta^{-1}$ , where

$\delta=\frac{-2}{1-|z_{\infty}|^{2}}+\sqrt{\frac{4}{(1-|z_{\infty}|^{2})^{2}}+1}$ .

This result is best possible as is shown by

$f(z)=\frac{1}{1-|z_{\infty}|^{2}}(\frac{1-\overline{z}_{\infty}z}{z-z_{\infty}}+\frac{z-z_{\infty}}{1-\overline{z}_{\infty}z})+\sqrt{\frac{4}{(1-|z_{\infty}|^{2})^{2}}+1}$.
PROOF. By a linear transformation

$\frac{z-z_{\infty}}{1-\overline{z}_{\infty}z}=\zeta$ , that is, $z=\frac{z_{\infty}+\zeta}{1+\overline{z}_{\infty}\zeta}$ ,

we have

$f(z)=f(\frac{z_{\infty}+\zeta}{1+\overline{z}_{\infty}\zeta})=\frac{11}{1-|z_{\infty}|^{2}\zeta}+(\frac{\overline{z}_{\infty}}{1-|z_{\infty}|^{2}}+a_{0})+\cdots(|\zeta|<1)$ .

Here $ g(\zeta)=(1-|z_{\infty}|^{2})f(z)=1/\zeta+\overline{z}_{\infty}+a_{0}(1-|z_{\infty}|^{2})+\cdots$ satisfies the same condi-
tions as in Corollary 1. Therefore if we put $M=\max|w_{c}|,$ $m=\min|w_{c}|(w_{c}\in E_{f})$ ,

where $E_{f}$ denotes the complement of the image-domain under $w=f(z)$ , then

$M-m\leqq\frac{4}{1-|z_{\infty}|^{2}}$ .
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Since $\delta=-2/(1-|z_{\infty}|^{2})+(4/(1-|z_{\infty}|^{2})^{2}+1)^{1/2}$ satifies the following relation

$\delta^{-1}-\delta=\frac{4}{1-|z_{\infty}|^{2}}$ .
we see that Theorem 6 holds.

Now we shall quote Hayman’s result [6].

LEMMA 4. Let $ f(z)=z+a_{2}z^{2}+\cdots$ be regular and circumferentially mean
univalent in $|z|<1$ . Then

(i) the image-domain under $w=f(z)$ contains the circle $|w|<1/4$ .
(ii) $|a_{2}|\leqq 2$ .
THEOREM 7. Let $ f(z)=z+a_{2}z^{2}+\cdots$ belong to $\mathfrak{F}_{1}$ and its pole be denoted by

$z=z_{\infty}$ . Then
(i) the image-domain under $w=f(z)$ wholly covers the circle

$|w|<|z_{\infty}|/(1+|z_{\infty}|)^{2}$ .
(ii) $|a_{2}|\leqq|z_{\infty}|+\frac{1}{|z_{\infty}|}\neg$.

These results are best possible as is shown by

$f(z)=\frac{z}{(1-(|z_{\infty}|+|z_{\infty}|^{-1})e^{i\epsilon}z+e^{i2\sim}-\rightarrow z^{2})}$ $(\epsilon=-\arg z_{\infty})$ .

PROOF. Without loss of generality we may suppose $z_{\infty}<0$ . Otherwise
we may make a rotation $z^{\prime}=ze^{i\alpha},$ $(\alpha=\pi-\arg z_{\infty})$ . We consider the following
L\"owner mapping $z=z(\zeta)$ by which the unit circle $|\zeta|<1$ is mapped univa-
lently and conformally onto the circle $|z|<1$ cut by a segment $[-1, z_{\infty}]$ .

$\frac{z}{(1-z)^{2}}=q\frac{\zeta}{(1-\zeta)^{2}}$ , $q=\frac{4|z_{\infty}|}{(1+|z_{\infty}|)^{2}}$ .

Then
$ q^{-1}f(z(\zeta))=g(\zeta)=\zeta+(2(1-q)+qa_{2})\zeta^{2}+\cdots$ $(|\zeta|<1)$ .

Since $g(\zeta)$ satisfies the same conditions as in Lemma 4, the image-domain
under $w=g(\zeta)$ covers the circle $|w|<1/4$ . Therefore (i) in Theorem 7 holds.
Next by means of Lemma 4 we have also

$|2(1-q)+qa_{2}|\leqq 2$ .
From this inequality we have directly

$|a_{2}|\leqq|z_{\infty}|+\frac{1}{|z_{\infty}|}$ .
This completes the proof.

REMARK 1. (ii) in Theorem 7 was proved by Komatu [11] urlder the con-
dition of univalency.

REMARK 2. We note that (i) and (ii) in Theorem 7 can be proved under
a weak condition of areally mean univalence by means of Spencer’s result
[16], and Garabedian-Royden’s one [5].
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Now we can directly derive the following result from Theorem 7.
COROLLARY 3. Let $ f(z)=z^{p}+a_{p+1}z^{p+1}+\cdots$ belong to $\mathfrak{F}_{p}$ and let its pole be

denoted by $z=z_{\infty}$ .
(i) The image-domain under $w=f(z)$ covers exactly $p$ times the circle

$|w|<\frac{|z_{\infty}|^{p}}{(1+|z_{\infty}|)^{2p}}$ .

(ii) $|a_{p+1}|\leqq p(|z_{\infty}|+\frac{1}{|z_{\infty}|})$ .

These results are best possible as is shown by

$f(z)=\frac{z^{p}}{(1-(|z_{\infty}|+|z_{\infty}|^{-1})e^{i_{\vee}^{\epsilon}}z+e^{i2}\underline{=}z^{2})^{p}}$ $(\epsilon=-\arg z_{\infty})$ .
PROOF. Since $ g(z)=(f(z))^{1/p}=z+\frac{a_{p+1}}{p}z^{2}+\cdots$ satisfies the same conditions

as in Theorem 7 and has only one simple pole at $z=z_{\infty}$ , we see that Corollary
3 holds.

Here we shall derive a type of distortion theorems on $\mathfrak{F}_{1}$ or $\mathfrak{F}_{p}$ , as an
application of Theorem 7. But these estimates are not sharp.

THEOREM 8. Let $f(z)\in \mathfrak{F}_{1}$ and let its pole be denoted by $z=z_{\infty}$ . Then

$|f(z)|\geqq\frac{4r|\zeta_{\infty}|}{(1+r)^{2}(1+|\zeta_{\infty}|)^{2}}$ $(|z|=r<1)$ ,

where $\zeta_{\infty}$ is such the root of the following equation as satisfies the condition
$|\zeta_{\infty}|<1$ .

$\frac{z_{\infty}e^{i\epsilon}}{(1-z_{\infty}e^{i_{\vee}^{-}}\sim)^{2}}=\frac{4r\zeta_{\infty}}{(1+r)^{2}(1-\zeta_{\infty})^{2}}$ $(\epsilon=\pi-\arg z)$ .

PROOF. We suppose $z=-|z|=-r<0$ . Otherwise we may consider
$z^{\prime}=ze^{ie}(\epsilon=\pi-\arg z)$ . Similarly as in the proof of Theorem 7, we consider
the following L\"owner mapping

$\frac{z}{(1-z)^{2}}=q\frac{\zeta}{(1-\zeta)^{2}}$ , $q=\frac{4r}{(1+r)^{2}}$ ,

where $z=z_{\infty}$ is mapped to $\zeta=\zeta_{\infty}$ .
$ g(\zeta)=f(z(\zeta))/q=\zeta+\cdots$ satisfies the same conditions as in Theorem 7 and

has only one simple pole at $\zeta=\zeta_{\infty}$ . Therefore the image-domain under
$w=g(\zeta)$ contains the circle $|w|<|\zeta_{\infty}|/(1+|\zeta_{\infty}|)^{2}$ . Hence $f(-r)=qg(-1)$ is
not covered by $w=f(z)$ , that is,

$f(-r)\geqq q\frac{|\zeta_{\infty}|}{(1+|\zeta_{\infty}|)^{2}}$ .
This completes the proof.

Now from Theorem 8 we can directly derive the following.



Meromorphic and circumferentially mean univalent functions 351

COROLLARY 4. Let $f(z)\in \mathfrak{F}_{p}$ and let its pole be denoted by $z=z_{\infty}$ . Then

$|f(z)|\geqq\frac{(4r)^{p}}{(1+r)^{2p}}\frac{|\zeta_{\infty}|^{p}}{(1+|\zeta_{\infty}|)^{2p}}$ $(|z|=r<1)$ ,

where $\zeta_{\infty}$ satisfies the same conditions as in Theorem 8.
REMARK. Under the condition of p-valence some distortion theorems on

$\mathfrak{F}_{p}$ were derived from another point of view by Kobori [10] and the author
$[1\underline{\neg}$ .
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