On meromorphic and circumferentially mean univalent functions

By Hitoshi ABE

(Received Nov, 25, 1963) (Revised March 21, 1964)

Introduction.

It is well known that the so-called one-quarter theorem plays an important role in the theory of regular and univalent functions in $|z|<1$. This theorem was extended to the case of circumferentially mean univalence (defined in $\S 1$) by Hayman [\[6\]](#page-9-0) and moreover to the case of areally mean univalence by Garabedian and Royden [\[5\].](#page-9-1) Their method was based on the fact that inner radius does not decrease by circular symmetrization (cf. [\[7\]\)](#page-9-2). On the other hand, corresponding to the one-quarter theorem, the following Montel-Bieberbach's theorem $([2], [3], [13], [14])$ $([2], [3], [13], [14])$ $([2], [3], [13], [14])$ $([2], [3], [13], [14])$ $([2], [3], [13], [14])$ $([2], [3], [13], [14])$ $([2], [3], [13], [14])$ is well known in the case of meromorphic and univalent functions.

If $f(z)=z+a_{2}z^{2}+\cdots$ is meromorphic and univalent in $|z|<1$, then at least one of the circles $|w|<\delta$ or $|w|>\delta^{-1}(\delta=\sqrt{5}-2)$ is wholly covered by the image-domain under $w=f(z)$.

In this paper we shall first prove a fundamental theorem on meromorphic and circumferentially mean univalent functions in $|z|<1$, by means of the fact that transfinite diameter does not increase by circular symmetrization and then generalized Montel-Bieberbach's theorem to the case of circumferentially mean univalence or p -valence.

Secondly we shall deal with values omitted by meromorphic and circumferentially mean univalent functions in $|z|$ <1 also by means of the above mentioned property of transfinite diameter.

Thirdly we consider meromorphic and circumferentially mean univalent functions in $|z|$ <1, whose Taylor expansions about the origin are given by $f(z)=z+a_{2}z^{2}+\cdots$ and whose poles are explicitly denoted by $z=z_{\infty}$, (as will be remarked in § 1, $f(z)$ has only one simple pole in $|z|$ < 1). By means of the pole $z=z_{\infty}$ we shall evaluate the values taken by $w=f(z)$ and its second Taylor coefficient a_{2} . Moreover a type of distortion theorem based on the pole $z=z_{\infty}$ will be derived.

§ 1. Preliminary.

Let $w=Re^{i\phi}=f(z)$ be regular or meromorphic in $|z|<1$, and let $n(R, \Phi)$ denote the number of the roots of the equation $Re^{i\phi}=f(z)$ in $|z|<1$.

If for a positive number \dot{p}

$$
\frac{1}{2\pi} \int_0^{2\pi} n(R, \Phi) d\Phi \leq p \qquad (R > 0),
$$

then $f(z)$ is called "circumferentially mean p-valent in $|z|<1$ ". (Biernacki [\[4\]\)](#page-9-7)

If $p=1$, $f(z)$ is also called "circumferentially mean univalent in $|z|<1$ ".

Let $f(z)=z+a_{2}z^{2}+\cdots$ be meromorphic and circumferentially mean univalent in $|z|$ < 1. These functions will be denoted by \mathfrak{F}_{1} . It is easily seen by the definition that any $f(z) \in \mathfrak{F}_{1}$ has at most only one simple pole in $|z|<1$.

Let $f(z)=z^{p}+a_{p+1}z^{p+1}+\cdots$ be circumferentially mean p-valent and regular except for a pole of order $p \in |z| < 1$. These functions will be denoted by $\mathfrak{F}_{p},$ which is a natural generalization of $\mathfrak{F}_{1}.$

Now we shall state the following lemma showing a closed relation between \mathfrak{F}_{1} and \mathfrak{F}_{p} .

LEMMA 1. Let $f(z) \in \mathfrak{F}_{p}$. Then

$$
(f(z))^{1/p} = z + \frac{a_{p+1}}{p}z^2 + \cdots
$$

belongs to \mathfrak{F}_{1} .

PROOF. It is clear by the definition that $(f(z))^{1/p}=z+\cdots$ is regular except for a simple pole in $|z|<1$. By means of the same method as in the case of regular functions by Hayman ($[6]$ or $[7]$), we can prove

$$
\int_0^{2\pi} n(R, \Phi) d\Phi = p \int_0^{2\pi} n(\rho, \varphi) d\varphi
$$

and therefore

$$
\frac{1}{2\pi}\int_0^{2\pi} n(\rho, \varphi) d\varphi \leq 1,
$$

where $(f(z))^{1/p} = \rho e^{i\varphi}$. Therefore we see $(f(z))^{1/p}\in \mathfrak{F}_{1}$.

$\S 2.$ Values taken by \mathfrak{F}_{1} or \mathfrak{F}_{p} .

We shall first quote the following Hayman's result [\[8\].](#page-9-8)

LEMMA 2. Let $f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic in $|z|<1$, and let τ_{f} denote the transfinite diameter of the complement E_{f} of the image-domain under $w=f(z)$. Then

$$
\tau_f\!\leq\!1\,.
$$

Equality holds only when $f(z)$ is univalent.

Next we shall state the following lemma which is nothing but an application of $P6$ lya-Szegö's result [\[15\].](#page-9-9) The proof can be easily given by means of Pólya-Szegö's idea (cf. $[7]$, 81-83).

LEMMA 3. Let E_{f} and τ_{f} be defined in Lemma 2. Moreover let E_{f}^{*} be the circular symmetrization of E_{f} with respect to the positive real axis and τ_{f}^{\ast} be the transfinite diameter of $E_{f}^{*}.$ Then we have

 $\tau_{f}\leq\tau_{f}$.

Here we shall state Darboux's theorem in a slightly generalized form.

LEMMA 4. Let D be a simply connected domain enclosed by a rectifiable Jordan curve C. Let $f(z)$ be regular in the closed domain $\overline{D}=D+C$, or $f(z)$ be regular there except for a simple pole in D . Moreover if C is mapped univalently on a Jordan curve Γ by $w=f(z)$, then D is also univalently mapped into the interior or exterior domain with respect to Γ respectively.

Now we shall prove the following fundamental theorem useful for the generalization of Montel-Bieberbach's theorem.

THEOREM 1. Let $f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic and circumferentially mean univalent in $|z|<1$. If we put $M=\max|w_{c}|$, $m=\min|w_{c}|$, where w_{c} denotes any point belonging to the complement E_{f} of the image-domain D_{f} under $w=f(z)$. Then

$$
M-m\leq 4.
$$

Equality holds only when $f(z)=1/z+a_{0}+e^{i\epsilon}z$ ($\varepsilon=2\arg a_{0}$, $|a_{0}|\geq 2$).

PROOF. We make the circular symmetrization of the complement E_{f} of the image-domain D_{f} , with respect to the positive real axis. The intersection of the symmetrized set E_{f}^{*} and the positive real axis is denoted by S. Then S is contained in the closed interval $[m, M]$. Now we prove that S is truely the interval $[m, M]$. Suppose that $m\leq r\leq M$ and $r\in S$. . Then the circle $|w|=r$ must be wholly contained in D_{f} . Since $f(z)$ is circumferentially mean univalent in $|z|$ <1, the circle $|w|=r$ is univalently covered by D_{f} , that is, a Jordan curve C in the z-plane is univalently mapped onto the circle $|w|=r$. On the other hand by the reason of circumferentially mean univalence in $|z|<1, f(z)$ has only one simple pole at $z=0$. Now we denote by D the domain enclosed by C and consider the following two cases:

(i) if D contains the simple pole $z=0$, then by means of Lemma 4 D is univalently mapped to the circle $|w|>r$. If it is so, the closed annulus $r\leq |w|\leq M$ is wholly contained in D_{f} . This is incompatible with the definition of M .

(ii) if D does not contain the pole $z=0$, then we see similarly by means of Lemma 4 that the closed annulus, $m\leq\mid w\mid\leq r$ is wholly contained in D_{f} . This is also absurd.

Therefore we see that $S = [m, M]$. Hence we have by the well known result on transfinite diameter (cf. Tsuji [17, p. 84]), $\tau(S)=(M-m)/4$ where $\tau(S)$ denotes the transfinite diameter of S.

On the other hand by [Lemma](#page-1-0) 2 and [Lemma](#page-2-0) 3 we have

$$
1\geq \tau(E_f)\geq \tau(E_f^*)
$$

where $\tau(E_{f})$ and $\tau(E_{f}^{*})$ respectively denote the transfinite diameters of E_{f} and E_{f}^{*} . Since $E_{f}^{*}\supseteq$ S, we have also $\tau(E_{f}^{*})\geq\tau(S)$. Therefore we see the following inequality.

$$
M-m\leq 4.
$$

According to [Lemma](#page-1-0) 2, equality holds only when $f(z)=1/z+a_{0}+a_{1}z+\cdots$ is univalent in $|z|<1$. $f(z)=1/z+a_{0}+e^{iz}z$ ($\varepsilon=2\arg a_{0}$, $|a_{0}|\geq 2$) maps the unit circle $|z|$ <1 univalently onto the w-plane cut by a segment of length 4. On the other hand, the equality sign in the one-quarter theorem is attained only by the Koebe function $f(z)=z/(1-e^{iz}z)^{2}$ (s real). Therefore we see that the equality sign in [Theorem](#page-2-1) 1 is attained only by the function $f(z)=1/z+a_{0}+$ $e^{i\epsilon}z$ ($\varepsilon=2\arg a_{0}$, $|a_{0}|\geq 2$). This completes the proof.

COROLLARY 1. Let $f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic and circumferentially mean univalent in $|z|<1$. Then the image-domain under $w=f(z)$ covers wholly and univalently at least one of the circles $|w|<\delta$ or $|w|>\delta^{-1}(\delta=\sqrt{5}-2)$. This result is best possible as is shown by

$$
f(z) = \frac{1}{z} + \sqrt{5} e^{iz} + e^{i2\epsilon} z \quad (\varepsilon \text{ real}).
$$

PROOF. Considering the relation $\delta^{-1}-\delta=4$ ($\delta=\sqrt{5}-2$) it is easily seen by means of Theorem 1 that the circles $|w|<\delta$ or $|w|>\delta^{-1}$ are wholly covered by the image-domain. The univalency of the covering of these circles by the image-domain is seen similarly as in the proof of Theorem 1. Here the proof is completed.

From Corollary ¹ we can extend Montel-Bieberbach's theorem to the case of circumferentially mean univalence as follows.

THEOREM 2. Let $f(z) \in \mathfrak{F}_{1}$. Then the image-domain under $w = f(z)$ covers wholly and univalently at least one of the circles, $|w|<\delta$ or $|w|>\delta^{-1}$ ($\delta=\sqrt{5}-2$). This result is best possible as is shown by

$$
f(z) = \frac{z}{1+\sqrt{5}e^{iz}z+e^{i2z}z^2}
$$
 (s real).

PROOF. Since $g(z)=1/f(z)$ satisfies the same conditions as in Corollary 1, we can apply Theorem 1 for $g(z)$. This completes the proof.

THEOREM 3. Let $f(z) \in \mathfrak{F}_{p}$. Then the image-domain under $w=f(z)$ covers exactly p times at least one of the circles $\|w\|<\delta^{p}$ or $\|w\|>\delta^{-p}$ ($\delta=\sqrt{5}-2$).

346 H. ABE

This result is best possible as is shown by

$$
f(z) = \frac{z^p}{(1+\sqrt{5}e^{iz}z+e^{i2\epsilon}z^2)^p} \text{ (s real)}.
$$

PROOF. We put

$$
g(z) = (f(z))^{1/p} = z + \frac{a_{p+1}}{p}z^2 + \cdots
$$

Then since $g(z) \in \mathfrak{F}_{1}$ by means of [Lemma](#page-1-1) 1, we see that [Theorem](#page-3-0) 2 holds for $g(z)$. Therefore we have [Theorem](#page-3-1) 3.

REMARK. Generalization of Montel-Bieberbach's theorem to the case of *-valent functions was done by the author [\[1\].](#page-9-10)*

§ 3. Values omitted by \mathfrak{F}_{1} or the related functions.

By means of symmetrization and inner radius Jenkins $[9]$ has dealt with values omitted by regular and univalent functions in $|z|<1$. Here we shall first study the related problem on meromorphic functions in $|z|$ < 1, by means of transfinite diameter and symmetrization similarly as in $\S 2$. Next we shall remark that we can deal more precisely with the same problem on meromorphic and circumferentially mean univalent functions in $|z|<1$.

We consider a family of meromorphic functions $f(z)=1/z+a_{0}+a_{1}z+\cdots$ in $|z|$ <1. Let E_{f} be the complement of the image-domain under each of these functions. Among these functions there exists such a function that the circle $|w|=R$ ($R \leq 1$) is wholly contained in E_{f} . For example $f(z)=1/z$. Now, considering this fact, we shall state the following theorem.

THEOREM. 4. Let $f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic in $|z|<1$. Let the intersection of the complement E_{f} of the image-domain under $w=f(z)$ and the circle $|w|=R$ be denoted by S_{R} whose angular measure with respect to the origin is denoted by $\theta(S_{R})$. Then

$$
\theta(S_R) \leq 4 \sin^{-1}(R^{-1}) \quad (R > 1).
$$

This result is best possible as is shown by

$$
f(z) = \frac{R(1 - Rz)}{z(R - z)} \quad (R > 1).
$$

PROOF. Let E_{f}^{*} be denoted by the circular symmetrization of E_{f} with respect to the positive real axis. Moreover let S_{R}^{*} be the intersection of E_{I}^{*} and the circle $|w|=R$. Then we see

$$
\theta(S_R) = \theta(S_R^*)
$$

where $\theta(S_{R}^{*})$ denotes the angular measure of the single arc S_{R}^{*} with respect to the origin.

Quite similarly as in the proof of [Theorem](#page-2-1) 1, we have by [Lemma](#page-1-0) ² and [Lemma](#page-2-0) 3

$$
1\geq \tau(E_f)\geq \tau(E_f^*)
$$
.

Since $\tau(E_{f}^{*})\geqq\tau(S_{R}^{*})$, we have

$$
\tau(S_R^*) \leq 1.
$$

On the other hand it is easily verified (cf. Komatu $\lceil 12 \rceil$) that

$$
f(z) = \frac{R(1 - Rz)}{z(R - z)} \quad (R > 1)
$$

maps the unit circle $|z|$ <1 univalently onto the w-plane cut by a single arc- A_{R} on the circle $|w|=R$ whose angular measure is equal to

$$
4 \sin^{-1}(R^{-1})
$$
.

Now, considering that $\tau(A_{R})\!=\!1$ (cf. Tsuji [16, p. 84]) and $\tau(S_{R}^{*})\!\leq\! 1$, we have $\theta(S_{R}^{*})\leq 4\sin^{-1}(R^{-1})$.

Since $\theta(S_{R}) = \theta(S_{R}^{*})$, the proof is completed.

From Theorem 4 we can directly prove the following.

COROLLARY 2. Let $f(z)=z+a_{2}z^{2}+\cdots$ be meromorphic in $|z|<1$. Let the intersection of the complement E_{f} of the image-domain under $w=f(z)$ and the circle $|w|=R$ be denoted by S_{R} whose angular measure with respect to the origin is denoted by $\theta(S_{R})$. Then

$$
\theta(S_R) \leq 4 \sin^{-1}(R) \quad (R < 1).
$$

This result is best possible as is shown by

$$
f(z) = \frac{Rz(1-Rz)}{R-z} \quad (R < 1).
$$

PROOF. Applying Theorem 4 for $g(z)=1/f(z)$, Corollary 2 is easily derived. The condition $R<1$ means that the circle $|w|\geq 1$ is not covered by the function $f(z)=z$ which is also one of meromorphic functions $f(z)=z+a_{2}z^{2}+\cdots$ in $|z|$ < 1.

Adding the condition of circumferentially mean univalence to Theorem 4, we can prove the following, since we have by Theorem ¹ bounds on values omitted by meromorphic and circumferentially mean univalent functions $f(z)$ $=1/z+a_{0}+a_{1}z+\cdots$ in $|z|<1$.

THEOREM 5. Let $f(z)=1/z+a_{0}+a_{1}z+\cdots$ be meromorphic and circumferentially mean univalent in $|z|<1$. Let the intersection of the complement of the image-domain under $w=f(z)$ and the circle $|w|=R$ be denoted by S_{R} whose angular measure with respect to the origin is denoted by $\theta(\mathsf{S_{\mathit{R}}}).$ Suppose that $m>1$, where $m=\min|w_{c}|$ ($w_{c}\in E_{f}$). Then

(i) $\theta(S_{R}) \leq 4\sin^{-1}(R^{-1})$ $((1<)m\leq R\leq m+4)$.

(ii) $\theta(S_{R})=0$ $(m+4 < R)$.

348 H. ABE

This result is best possible as is shown by

$$
f(z) = \frac{R(1-Rz)}{z(R-z)} \quad (R>1).
$$

PROOF. If the circle $|w|=R(\geq m)$ is not wholly contained in the imagedomain under $|w| = f(z)$, then R is equal to $m+4$ at the largest. Therefore (ii) in Theorem 5 is clear. Moreover it is evident that (i) in Theorem 5 holds quite similarly as in Theorem 4. This completes the proof.

Here we can also deal by means of Corollary 2 with \mathfrak{F}_{1} similarly as in Theorem 5. The details will be omitted.

$\S 4.$ Some evaluations based on a pole.

As was remarked before, meromorphic and circumferentially mean univalent functions $f(z)=z+a_{2}z^{2}+\cdots$, in $|z|<1$, have at most only one simple pole in $|z|$ <1. We shall derive some results by giving this simple pole explicitly. We shall first state the following theorem closely related to [Theorem](#page-3-0) 2.

THEOREM 6. Let $f(z)$ be meromorphic and circumferentially mean univalent in $|z|$ <1 and let $f(z)$ be expanded about its pole $z=z_{\infty}$ as follows.

$$
f(z) = \frac{1}{z-z_{\infty}} + \sum_{n=0}^{\infty} a_n (z-z_{\infty})^n.
$$

The image-domain under $w=f(z)$ covers at least one of the circles $|w|<\delta$ or $\lVert w\rVert>\delta^{-1}$, where

$$
\delta = \frac{-2}{1-|z_\infty|^2} + \sqrt{\frac{4}{(1-|z_\infty|^2)^2} + 1}.
$$

This result is best possible as is shown by

$$
f(z) = \frac{1}{1-|z_{\infty}|^2} \left(\frac{1-\overline{z}_{\infty}z}{z-z_{\infty}} + \frac{z-z_{\infty}}{1-\overline{z}_{\infty}z} \right) + \sqrt{\frac{4}{(1-|z_{\infty}|^2)^2}+1}.
$$

PROOF. By a linear transformation

$$
\frac{z-z_{\infty}}{1-\overline{z}_{\infty}z}=\zeta, \text{ that is, } z=\frac{z_{\infty}+\zeta}{1+\overline{z}_{\infty}\zeta},
$$

we have

$$
f(z)=f\left(\frac{z_{\infty}+\zeta}{1+\bar{z}_{\infty}\zeta}\right)=\frac{1}{1-|z_{\infty}|^2}\cdot\frac{1}{\zeta}+\left(\frac{\bar{z}_{\infty}}{1-|z_{\infty}|^2}+a_0\right)+\cdots\;(|\zeta|<1)\,.
$$

Here $g(\zeta)=(1-|z_{\infty}|^{2})f(z)=1/\zeta+\overline{z}_{\infty}+a_{0}(1-|z_{\infty}|^{2})+\cdots$ satisfies the same conditions as in Corollary 1. Therefore if we put $M=\max|w_{c}|, m=\min|w_{c}|(w_{c} \in E_{f})$, where E_{f} denotes the complement of the image-domain under $w=f(z)$, then

$$
M-m\leq \frac{4}{1-|z_{\infty}|^2}.
$$

Since $\delta=-2/(1-|z_{\infty}|^{2})+(4/(1-|z_{\infty}|^{2})^{2}+1)^{1/2}$ satifies the following relation

$$
\delta^{-1} - \delta = \frac{4}{|1-|z_\infty|^2} \;,
$$

we see that [Theorem](#page-6-0) 6 holds.

Now we shall quote Hayman's result $\lceil 6 \rceil$.

LEMMA 4. Let $f(z)=z+a_{2}z^{2}+\cdots$ be regular and circumferentially mean univalent in $|z|<1$. Then

(i) the image-domain under $w=f(z)$ contains the circle $|w|<1/4$.

(ii)
$$
|a_2| \leq 2
$$
.

THEOREM 7. Let $f(z)=z+a_{2}z^{2}+\cdots$ belong to \mathfrak{F}_{1} and its pole be denoted by $z=z_{\infty}$. Then

(i) the image-domain under $w=f(z)$ wholly covers the circle $|w|<|z_{\infty}|/(1+|z_{\infty}|)^{2}$.

(ii)
$$
|a_2| \leq |z_{\infty}| + \frac{1}{|z_{\infty}|}
$$

These results are best possible as is shown by

$$
f(z) = \frac{z}{(1 - (|z_{\infty}| + |z_{\infty}|^{-1}))e^{iz}z + e^{i2z}z^2)} \quad (\varepsilon = -\arg z_{\infty}).
$$

Proof. Without loss of generality we may suppose $z_{\infty} < 0$. Otherwise we may make a rotation $z^{\prime}=z e^{i\alpha}$, $(\alpha=\pi-\arg z_{\infty})$. We consider the following Löwner mapping $z=z(\zeta)$ by which the unit circle $|\zeta|<1$ is mapped univalently and conformally onto the circle $|z|$ $<$ 1 cut by a segment [$-1, z_{\infty}$].

$$
\frac{z}{(1-z)^2} = q \frac{\zeta}{(1-\zeta)^2}, \quad q = \frac{4|z_{\infty}|}{(1+|z_{\infty}|)^2}.
$$

Then

$$
q^{-1}f(z(\zeta)) = g(\zeta) = \zeta + (2(1-q) + qa_2)\zeta^2 + \cdots \quad (|\zeta| < 1).
$$

Since $g(\zeta)$ satisfies the same conditions as in Lemma 4, the image-domain under $w = g(\zeta)$ covers the circle $|w| < 1/4$. Therefore (i) in Theorem 7 holds. Next by means of Lemma 4 we have also

$$
|2(1-q)+qa_{2}| \leq 2.
$$

From this inequality we have directly

$$
|a_{2}|\leq |z_{\infty}|+\frac{1}{|z_{\infty}|}.
$$

This completes the proof.

REMARK 1. (ii) in Theorem 7 was proved by Komatu [11] under the condition of univalency.

REMARK 2. We note that (i) and (ii) in Theorem 7 can be proved under a weak condition of areally mean univalence by means of Spencer's result [16], and Garabedian-Royden's one [5].

Now we can directly derive the following result from [Theorem](#page-7-0) 7.

COROLLARY 3. Let $f(z)=z^{p}+a_{p+1}z^{p+1}+\cdots$ belong to \mathfrak{F}_{p} and let its pole be denoted by $z=z_{\infty}$.

(i) The image-domain under $w=f(z)$ covers exactly p times the circle

(ii)
$$
|w| < \frac{|z_{\infty}|^p}{(1+|z_{\infty}|)^{2p}}.
$$

$$
|a_{p+1}| \leq p(|z_{\infty}| + \frac{1}{|z_{\infty}|}).
$$

These results are best possible as is shown by

$$
f(z) = \frac{z^p}{(1 - (|z_{\infty}| + |z_{\infty}|^{-1})e^{iz}z + e^{i2z}z^2)^p} \quad (\varepsilon = -\arg z_{\infty}) .
$$

PROOF. Since $g(z)=(f(z))^{1/p}=z+\frac{a_{p+1}}{p}z^{2}+\cdots$ satisfies the same conditions as in Theorem 7 and has only one simple pole at $z=z_{\infty}$, we see that Corollary 3 holds.

Here we shall derive a type of distortion theorems on \mathfrak{F}_{1} or $\mathfrak{F}_{p},$ as an application of Theorem 7. But these estimates are not sharp.

THEOREM 8. Let $f(z)\in \mathfrak{F}_{1}$ and let its pole be denoted by $z=z_{\infty}$. Then

$$
|f(z)| \geq \frac{4r}{(1+r)^2} \frac{|\zeta_{\infty}|}{(1+|\zeta_{\infty}|)^2} \quad (|z| = r < 1),
$$

where ζ_{∞} is such the root of the following equation as satisfies the condition $|\zeta_{\infty}| \leq 1$.

$$
\frac{z_{\infty}e^{i\epsilon}}{(1-z_{\infty}e^{i\epsilon})^2}=\frac{4r}{(1+r)^2}\frac{\zeta_{\infty}}{(1-\zeta_{\infty})^2}\quad(\epsilon=\pi-\arg z).
$$

PROOF. We suppose $z=-|z|=-r<0$. Otherwise we may consider $z^{\prime}=ze^{i\epsilon}$ ($\varepsilon=\pi-\arg z$). Similarly as in the proof of Theorem 7, we consider the following Löwner mapping

$$
\frac{z}{(1-z)^2} = q \frac{\zeta}{(1-\zeta)^2}, \quad q = \frac{4r}{(1+r)^2},
$$

where $z=z_{\infty}$ is mapped to $\zeta=\zeta_{\infty}$.

 $g(\zeta)=f(z(\zeta))/q=\zeta+\cdots$ satisfies the same conditions as in Theorem 7 and has only one simple pole at $\zeta\!=\!\zeta_{\infty}$. Therefore the image-domain under $w = g(\zeta)$ contains the circle $|w| < |\zeta_{\infty}|/(1+|\zeta_{\infty}|)^{2}$. Hence $f(-r) = qg(-1)$ is not covered by $w=f(z)$, that is,

$$
f(-r) \geqq q \frac{|\zeta_{\infty}|}{(1+|\zeta_{\infty}|)^2}.
$$

This completes the proof.

Now from Theorem 8 we can directly derive the following.

COROLLARY 4. Let $f(z)\in \mathfrak{F}_{p}$ and let its pole be denoted by $z=z_{\infty}$. Then

$$
|f(z)| \geq \frac{(4r)^p}{(1+r)^{2p}} \frac{|\zeta_{\infty}|^p}{(1+|\zeta_{\infty}|)^{2p}} \quad (|z| = r < 1),
$$

where ζ_{∞} satisfies the same conditions as in Theorem 8.

REMARK. Under the condition of p-valence some distortion theorems on \mathfrak{F}_{p} were derived from another point of view by Kobori [10] and the author L L .

Ehime University

References

- [1] H. Abe, On p-valent functions, J. Gakugei Tokushima Univ., 8 (1957), 33-40.
- [2] L. Bieberbach, \"Uber schlichte Abbildungen des Einheitkreises durch meromorphe Funktionen, Sitzungsber. preusz. Akad. Berlin, 1929, 620-624.
- [3] L. Bieberbach, \"Uber schlichte Abbildungen des Einheitkreises durch meromorphe Funktionen, II, Sitzungsber. preusz. Akad. Berlin, 1937, 3-9.
- [4] M. Biernacki, Sur les fonctions en moyenne multivalentes, Bull. Sci. Math., ⁷⁰ (1946), 51-76.
- [5] P. R. Garabedian and H. L. Royden, The one-quarter theorem for mean univalent functions, Ann. of Math., 59 (1954), 316-324.
- [6] W.K. Hayman, Symmetrization in the theory of functions, Tech. Rep., No. 11, Stanford Univ., 1950.
- [7] W. K. Hayman, Multivalent functions, Cambridge Tracts, No. 48, 1958.
- [8] W. K. Hayman, Some applications of transfinite diameter to the theory of functions, J. Analyse Math., I (1951), 155-179.
- [9] J.A. Jenkins, On values omitted by univalent functions, Amer. J. Math., 55 (1953), 406-408.
- [10] A. Kobori, Une remarque sur les fonctions multivalentes, Mem. Coll. Sci. Kyoto Ser. A, 27 (1953), 1-5.
- [11] Y. Komatu, Note on the theory of conformal representation by meromorphic functions, I, Proc. Imp. Acad. Tokyo, ²¹ (1945), 269-277.
- [12] Y. Komatu, Note on the theory of conformal representation by meromorphic functions, II, Proc. Imp. Acad. Tokyo, ²¹ (1945), 278-284.
- [13] Y. Komatu, Conformal mapping I, (Japanese) Tokyo, 1944.
- [14] P. Montel, Sur les domaines formés par les points représentant les valeurs d'une fonction analytique, Ann. Sci. École Norm. Sup., 46 (1929) , 1-23.
- [15] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Studies, No. 27, 1951.
- [16] D.C. Spencer, On mean one-valent functions, Ann. of Math., 42 (1941), 614-633.
- [17] M. Tsuji, Potential theory in modern function theory, Tokyo, 1959.