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\S 1. Introduction.

Let $G$ be a Lie subgroup of $GL(n;R)$ . A G-structure on an n-dimensional
manifold $M$ is by definition a subbundle of the bundle $L(M)$ of linear frames
with structure group $G,$ $[4]$ . Consider a connection in a G-structure $P$ on $M_{i}$

it is an affine connection of $M$. Its torsion tensor field defines at each point
$x$ of $M$ a skew-symmetric bilinear mapping $T_{x}(M)\times T_{x}(M)\rightarrow T_{x}(M)$ , i. e., an
element of $T_{x}(M)\otimes\Lambda^{2}T_{x^{*}}(M)$ , where $T_{x^{*}}(M)$ is the dual space of the tangent
space $T_{x}(M)$ . We shall say in general that a tensor field $T$ on a manifold $M$

is of torsion type if it defines a skew-symmetric bilinear mapping $ T_{x}(M\rangle$

X $T_{x}(M)\rightarrow T_{x}(M)$ at each point $x$ of $M$. In other words, a tensor field $T$ is of
torsion type if and only if it is of type $(1, 2)$ and is skew-symmetric in the
lower indices. Before we state the theorem, we introduce notations for Lie
algebras. We denote by $V$ the vector space $R^{n}$ (and, more generally, a vector
space of dimension $n$ over a field of characteristic $0$ in later sections).

$\mathfrak{g}I(V)=the$ Lie algebra of linear transformations of $V$ ;
$i\wedge iY(V)=the$ Lie algebra of linear transformations of $V$ with trace $0$ ;
$o(V)=the$ Lie algebra of the orthogonal group of $V$ defined by a non-

degenerate symmetric bilinear form $B$ ;
co(V) $=the$ Lie algebra of the similarity group (or the conformal group)

of $V$ defined by $B$ ;
$\partial-\mathfrak{p}(V)=the$ Lie algebra of the symplectic group leaving a non-degenerate

skew-symmetric bilinear form $J$ invariant;
cep(V) $=the$ Lie algebra of the group of linear transformations of $V$

leaving $J$ invariant up to a constant factor.
For a subspace $W$ of $V$ ,

$\mathfrak{g}Y(V, W)=the$ Lie algebra of linear transformations of $V$ leaving $W$

invariant.
The case $\dim W=1$ is of particular interest to us. Then, with respect to

a basis $e_{1}$ , $\cdot$
., , $e_{n}$ of $V$ such that $e_{1}\in W,$ $\mathfrak{g}I(V, W)$ consists of matrices of the
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form
$\left(\begin{array}{ll}X & \xi\\ 0 & X\end{array}\right)$ $x\in R$ , $X\in \mathfrak{g}1(n-1 ; R)$ .

For a l-dimensional subspace $W$ of $V$ and a real number $c$ , we set g1(V. $W,$ $c$)
$=the$ subalgebra of $\mathfrak{g}1(V, W)$ consisting of matrices of the form

$\left(\begin{array}{ll}cTr.X & \xi\\ 0 & X\end{array}\right)$ $X\in \mathfrak{g}\mathfrak{l}(n-1;R)$ ,

where $Tr$ . $X$ denotes the trace of $X$ .
We remark that $\dim \mathfrak{g}t(V, W, c)=\dim \mathfrak{g}t(V, W)-1=n^{2}-n$ and that

g1(V, $W,$ $-1$) $=\mathfrak{g}I(V, W)\cap SI(V)$ .
The purpose of this paper is to prove the following
THEOREM 1. Let $G$ be a Lie subgroup of $GL(n;R)$ and we fix a G-structure

$P$ on an n-dimensional manifold M. Assume that, for an arbitrary tensor $fie[d$

$T$ of torsion type on $M$, there is a connection in the bundle $P$ with torsion $T$.
Then, for $n\geqq 3$ , the Lie algebra $\mathfrak{g}$ of $G$ must be one of the following:

g1(V) , $BI(V)$ , co(V) , $o(V)$ , gt(V, $W$ ) , g1(V, $W,$ $c$)

with $\dim W=1$ .
Conversely, let $P$ be an arbitrary G-structure on $M$, where $\mathfrak{g}$ is one of the

Lie algebras listed above. Then for any tensor field $T$ of torsion type on $M$,
there is a connection is $P$ with torsion $T$.

$CoROLLARY$ . Let $G$ be a Lie subgroup of $GL(n;R)$ and we fix a G-struc-
ture $P$ on an n-dimensional manifold M. Assume that, for an arbitrary tensor
field $T$ of torsion type on $M$, there is a unique connection in $P$ with torsion $T$.
Then, for $n\geqq 3$ , the Lie algebra $\mathfrak{g}$ must be $o(V)$ .

Conversely, for an arbitrary G-structure $P$ on $M$ with $g=o(V)$ and for an
arbitrary tensor field $T$ of torsion type on $M$, there is a unique connection in
$P$ with torsion $T$.

The corollary above was obtained by Weyl, (see [13], [12; \S 18]). By a
completely different method, E. Cartan generalized the result of Weyl to obtain
the result similar to the theorem above. More explicitly, Cartan proved that,
under the additional assumption that $G\subset SL(n;R),$ $\mathfrak{g}$ must be @I(V), $0(V)$ ,

@p(V) or $\mathfrak{g}I(V, W)\cap eJ\{(V)$ with $\dim W=1$ . But our result shows that $ep(V)$

must be deleted. In $[12, 13]$ Weyl shows that if $G$ is a group satisfying the

assumption in Theorem 1, then $\dim \mathfrak{g}\geqq\frac{1}{2}n(n-1)$ . To classify $\mathfrak{g}$ , Cartan used

only this limitation on the dimension of $\mathfrak{g}$ , which is a necessary but not suf-
ficient condition. That is precisely the reason Cartan included erroneously
$\epsilon\wedge \mathfrak{p}(V)$ in his list.

We also prove the following
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THEOREM 2. We fix a Lie subgroup $G$ of $GL(n;R),$ $n\geqq 3$ , and an n-dimen-
sional manifold $M$ which admits G-structure $s$ . Then every G-structure $P$ on $M$

admits a torsionfree connection if and only if the Lie algebra $\mathfrak{g}$ of $G$ is one of
the following:

g1(V) , @1(V) , co(V) , $o(V)$ , g1(V, $W$ ) , $\mathfrak{g}1(V, W, c)$

with $\dim W=1$ .
COROLLARY. Let $G$ and $M$ be as above. Then every G-structure $P$ on $M$

admits a unique torsionfree connection if and only if the Lie algebra $\mathfrak{g}$ of $G$

is $o(V)$ .
The corollary above is Klingenberg’s version of the theorem of Weyl-Cartan,

see [7]. In both [7] and [9, Note 1], $G$ is assumed to be closed. But, as we
shall see, it is sufficient to assume that $G$ is a Lie subgroup of $GL(n;R)$ .

The proofs of both Theorems 1 and 2 reduce to the same algebraic problem.
For Theorem 2, this reduction is due to Klingenberg, [7]. The algebraic
problem is to determine all Lie algebras $\mathfrak{g}$ of linear transformations of an
n-dimensional vector space $V$ such that a certain linear mapping $\alpha:\mathfrak{g}\otimes V^{*}$

$\rightarrow V\otimes\wedge^{2}V^{*}$ is surjective. The condition that $\alpha$ is surjective is equivalent to
the vanishing of a certain cohomology group $H^{0,2}(\mathfrak{g})$ . Since such a trivial re-
formulation does not simplify our problem, we shall not talk about the co-
homology in this paper.

The proofs of the two corollaries reduce to the classification of $\mathfrak{g}$ such that
$\alpha$ is bijective.

In [7] Klingenberg considers a complex analogue of Corollary to Theorem
2. His result may be stated as follows.

We fix a real Lie subgroup $G$ of $GL(n;C)$ and a $2n$ -dimensional almost
complex manifold $M$ admitting G-structure $s$ . Then every G-structure $P$ on $M$

admits a unique connection with torsion $T$ of pure type if and only if $\mathfrak{g}$ is a
real form of $\mathfrak{g}\mathfrak{l}(n;C)$ .

We say that $T$ is of pure type if $T_{\beta\gamma}^{\alpha}$ and $T_{\overline{\gamma}}\frac{a^{\overline}}{\beta}$ are the only nonvanishing
components.

It should not be difficult to obtain complex analogues of Theorems 1 and 2.
In the complex analogue of Theorem 1, the assumption should be the existence
of a connection in $P$ such that the $T_{\beta\overline{\gamma}}^{\alpha}$ -components of the torsion $T$ are pre-
scribed. By a reasoning similar to the one in the proof of Theorem 1 and
the one in Klingenberg’s paper [7], it should follow that $\mathfrak{g}$ is irreducible and
$\dim g\geqq n^{2}$ . This necessary condition on $\mathfrak{g}$ should be strong enough to classify $\mathfrak{g}$ .
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\S 2. Reduction to an algebraic problem (Theorem 1).

Let $G$ be a Lie subgroup of $GL(n;R)$ and $P$ a G-structure on an n-dimen-
sional manifold $M$. Let $\theta=$ $(\theta^{1}, \cdots , \theta^{n})$ be the restriction to $P$ of the canonical
form of the bundle $L(M)$ of linear frames; it is an $R^{n}$-valued l-form, (see, for
instance, [9, p. 118]). Let $\omega=(\omega_{j}^{i})$ be a connection form on $P$ ; it is a l-form
with values in the Lie algebra $\mathfrak{g}$ of $G$ . The structure equations of the con-
nection are given by (see, for instance, [9, p. 120])

1. $d\theta^{i}=-\sum_{j}\omega_{J^{t}}\wedge\theta^{j}+\Theta^{i}$ ,

where $\Theta=(\Theta^{i})$ is the torsion form, and by
2. $d\omega_{j}^{i}=-\sum_{k}\omega_{k}^{i}\wedge\omega_{j}^{k}+\Omega_{j}^{i}$ ,

where $\Omega=(\Omega_{j^{i}})$ is the curvature form. In this paper, we are only interested
in the first structure equation.

Assuming that there is a connection without torsion, we fix such a connec-
tion form $\overline{\omega}=(\overline{\omega}_{j}^{i})$ . Then

$d\theta^{i}=-\sum_{j}\overline{\omega}_{j}^{i}\wedge\theta^{j}$ .
We may write

$\overline{\omega}_{J^{i}}-\omega_{j}^{i}=\sum_{k}S_{\dot{j}}^{i_{k}}\theta^{k}$ .

From the first structure equations of tu and $\overline{\omega}$ , we obtain

$\Theta^{i}=\sum_{j,k}\frac{1}{2}T_{jk}^{\iota}\theta^{j}\wedge\theta^{k}$ ,

where
$T_{J^{\gamma_{i}}}^{i}=S_{jk}^{j}-S_{k^{i}j}$ .

If we set $V=R^{n}$ and denote by $V^{*}$ the dual space of $V$ , then the Lie
algebra $\mathfrak{g}$ may be considered as a subspace of $V\otimes V^{*}$ and, at a fixed point
of $M,$ $(S_{j^{i}k})$ can be considered as the components of a tensor belonging to
$\mathfrak{g}\otimes V^{*}\subset V\otimes V^{*}\otimes V^{*}$ . Since $(T_{j^{i}k})$ is skew-symmetric in $j$ and $k$ , it can be
considered as an element of $V\otimes\wedge^{2}V^{*}$ . We define a linear mapping

$\alpha:\mathfrak{g}\otimes V^{*}\rightarrow V\otimes\wedge^{2}V^{*}$

by
ru

$(S_{j^{i}k})\rightarrow(S_{j^{i}k}-S_{kj}^{i})$ .
Now, the following lemma of Weyl is evident.
LEMMA 2.1. If $G$ is a Lie subgroup of $GL(n;R)$ satisfying the assumption

of Theorem 1, then the mapping $\alpha;\mathfrak{g}\otimes V^{*}\rightarrow V\otimes\wedge^{2}V^{*}$ is surjective and, $in$

particular, dimg $\geqq\frac{1}{2}n(n-1)$ .

LEMMA 2.2. If $G$ is a Lie subgroup of $GL(n;R)$ satisfying the assumption
of Corollary to Theorem 1, then the mapping $\alpha$ is bijective and, in particular,
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$\dim \mathfrak{g}=\frac{1}{2}n(n-1)$ .

Conversely, we have
LEMMA 2.3. Let $P$ be a G-structure on $M$ which admits a torsionfree con-

nection. If $\alpha$ is surjective (resp. bijective), then for an arbitrary tensor field
$T$ of torsion type on $M$ there exists a (resp. a unique) connection in $P$ with
torsion $T$ .

PROOF. We first prove the lemma locally. In other words, we assume
that $P$ admits a cross section $\sigma;M\rightarrow P$ . We fix a linear mapping $\beta:V\otimes\Lambda^{2}V^{*}$

$\rightarrow \mathfrak{g}\otimes V^{*}$ such that $\alpha\circ\beta$ is the identity transformation of $V\otimes\Lambda^{2}V^{*}$ . Let
$\overline{\omega}=(\overline{\omega}_{j}^{i})$ be a connection form without torsion. Given a tensor field of torsion

type $T$ on $M$, we take a corresponding 2-form $(\sum_{j,k}\overline{2}T_{j^{k}k}\theta^{j}\wedge\theta^{k})$ on $P$ . We1

define $(S_{j^{i}k})$ by $(S_{j^{i}k})=\beta(T_{j^{i}k})$ along the cross section $\sigma(M)$ and then extend it to
$P$ in such a way that $\omega_{j}^{i}=\overline{\omega}_{j}^{i}-\sum_{k}S_{j^{i}k}\theta^{k}$ define a connection in P. (We have to

extend $(S_{j^{?}k})$ to $P$ in such a way that it is compatible wIth the action of the
group $G.$) Clearly, $(\omega_{j}^{i})$ is a desired connection form. To prove the lemma
globally, we cover $M$ with a locally finite open cover and construct a connec-
tion over each open set. Using a partition of unity subordinate to the open
cover, we patch up the locally defined connections to obtain a globally defined
connection with the required property. Q. E. D.

Now we look at the mapping $\alpha$ more closely. The kernel of $\alpha$ consists
of tensors $(S_{jk}^{i})\in \mathfrak{g}\otimes V^{*}$ which are symmetric in $j$ and $k$ . We shall denote the
space of such tensors, $i$ . $e.$ , the kernel of $\alpha$ , by $\mathfrak{g}_{1}$ . Then

LEMMA 2.4. The mapping $\alpha$ : $\mathfrak{g}\otimes V^{*}\rightarrow V\otimes\wedge^{2}V^{*}$ is surjective if and only

if $\dim \mathfrak{g}_{1}=n\cdot\dim \mathfrak{g}-\frac{1}{2}n^{2}(n-1)$ .

Thou $gh$ trivial, Lemma 2.4 is useful for the following reason. The space
$\mathfrak{g}_{1}$ , called “ le groupe d\’eduit “ by E. Cartan [2], appears in the study of linear
Lie algebras. For every irreducible linear Lie algebra $\mathfrak{g}$ , we know the space
$\mathfrak{g}_{1}$ , (see [8]).

\S 3. Reducible case.

In this section we shall determine the reducible Lie algebras $\mathfrak{g}$ of linear
transformations of $V$ such that $\alpha:\mathfrak{g}\otimes V^{*}\rightarrow V\otimes\Lambda^{2}V^{*}$ is surjective. Since we
need the result in both the real and the complex cases, we might as well
assume that the coefficient field is an arbitrary field $F$ of characteristic $0$ .

LEMMA 3.1. Let $a$ be a reducible Lie algebra of linear transformations of
$V$ such that $\alpha$ is surjective. If $W$ is a proper subspace of $V$ invariant by $\mathfrak{g}$ ,

then $\dim W=1$ .



Fundamental theorem of Weyl-Cartan 89

PROOF. Let $S\in \mathfrak{g}\otimes V^{*}$ and $T\in V\otimes\Lambda^{2}V^{*}$ . Then $S$ can be considered as
a bilinear mapping $V\times V\rightarrow V$ such that $S(*, x)\in \mathfrak{g}$ for each $x\in V$ . Similarly,
$T$ can be considered as a skew-symmetric bilinear mapping $V\times V\rightarrow V$ . Then
the mapping $\alpha$ may be expressed as follows:

$(\alpha S)(x, y)=S(x, y)-S(y, x)$ for $x,$ $y\in V$ .
For an arbitrarily given $T\in V\otimes\Lambda^{2}V^{*}$ , choose $S\in \mathfrak{g}\otimes V^{\dot{\kappa}}$ such that $T=\alpha S$ .

Since $S(*, x)\in \mathfrak{g}$ for each $x\in V$ and $tI$ leaves $W$ invariant, we have $T(W, W)$

$=(\alpha S)(W, W)\subset S(W, W)\subset W$. In order that $T(W, W)\subset W$ holds for all skew-
symmetric bilinear mapping $T,$ $W$ must be of dimension at most 1. Q. E. D.

LEMMA 3.2. Under the same assumption as in Lemma 3.1, we have either
{$;=\mathfrak{g}1(V, W)$ or $\mathfrak{g}=\mathfrak{g}I(V, W, c)$ , provided $\dim V\geqq 3$ .

PROOF. Since every element of $\mathfrak{g}$ leaves $W$ invariant, it induces a linear
transformation of $V/W$. We first show that the homomorphism $\mathfrak{g}\rightarrow \mathfrak{g}I(V/W)$

is surjective, where $\mathfrak{g}l(V/W)$ denotes the Lie algebra of linear transformations
of $V/W$. Let $W^{\prime}$ be a subspace of $V$ complementary to $W$. We identify $V/W$

with $W^{\prime}$ and $\mathfrak{g}1(V/W)$ with $\mathfrak{g}I(W^{\prime})$ in a natural manner. We fix a basis $w$ of
$W$. Given an arbitrary linear transformation $A$ of $W^{\prime}$ or $V/W$, let $T$ be an
element of $V\otimes\Lambda^{2}V^{*}$ such that

$T(x, w)=Ax$ $x\in W^{\prime}$

Choose $S\in \mathfrak{g}\otimes V^{*}$ such that $T=\alpha S$ . Then

$Ax=T(x, w)=S(x, w)-S(w, x)$ for $x\in W^{\prime}$ .

Since $S(*, x)\in \mathfrak{g}$ and $\mathfrak{g}$ leaves $W$ invariant, we have $S(w, x)\in W$. Hence,

$Ax\equiv S(x, w)$ for $x\in W^{\prime}$ $(m0dW)$ .
In other words, the element $S(*, w)\in \mathfrak{g}$ induces the linear transformation $A$ of
$V/W$. Since $A$ is arbitrary, $\mathfrak{g}\rightarrow \mathfrak{g}1(V/W)$ is surjective.

Let $\mathfrak{h}$ be the kernel of $\mathfrak{g}\rightarrow \mathfrak{g}I(V/W)$ . Every element of $\mathfrak{h}$ maps $V$ into $W$ .
We may inject $\mathfrak{h}$ into the dual space $V^{*}$ of $V$ by sending $X\in \mathfrak{h}$ into $\xi\in V^{*}$

given by
$X(x)=\langle\xi, x\rangle w$ for $x\in V$ .

We set
$U=$ { $x\in V;X(x)=0$ for all $X\in \mathfrak{h}$ }.

Since $\mathfrak{h}$ is an ideal of $\mathfrak{g},$
$U$ is invariant by $\mathfrak{g}$ . By Lemma 3.1, there are only

three cases to consider: (1) $U=0,$ (2) $\dim U=1$ and (3) $U=V$ .
If $U=0$ . then the injection $\mathfrak{h}\rightarrow V^{*}$ is surjective so that $\dim \mathfrak{h}=n$ . Hence,

$\{;=\mathfrak{g}1(V, W)$ .
Assume $\dim U=1$ and $n\geqq 3$ . Since the space spanned by $U$ and $W$

is invariant by $\mathfrak{g}$ , Lemma 3.1 implies $U=W$. Hence, $\dim \mathfrak{h}=n-1$ and
{$;=\mathfrak{g}I(V, W, c)$ for some $c\in F$.
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Assume $U=V$ and $n\geqq 3$ . Then $\mathfrak{h}=0$ and $\mathfrak{g}\approx \mathfrak{g}1(V/W)$ . Let $\mathfrak{g}^{\prime}$ and $c$ be
the semi-simple part and the center of $\mathfrak{g}$ respectively so that

$\mathfrak{g}=\mathfrak{g}^{\prime}+c$ , $\mathfrak{g}^{\prime}\approx 3I(V/W)$ .
Since $\mathfrak{g}^{\prime}$ is semi-simple, there exists a $\mathfrak{g}^{\prime}$ -invariant subspace $W^{\prime}$ of $V$ comple-
mentary to $W$. With respect to a basis $e_{1}$ , $\cdot$ .. , $e_{n}$ for $V$ such that $e_{1}\in W$ and
$e_{2}$ , $\cdot$ .. , $e_{n}\in W^{\prime}$ , every element of $\mathfrak{g}^{\prime}$ is given by a matrix of the form

$\left(\begin{array}{ll}a & 0\\0 & A\end{array}\right)$ .

Let
$\left(\begin{array}{ll}c & \zeta\\ 0 & I_{n-1}\end{array}\right)$

be the matrix representing an element of $c$ . Since these two matrices must
commute and $A$ is arbitrary, we obtain $\zeta=0$ provided $n\geqq 3$ . Hence, $W^{\prime}$ is
invariant by $\mathfrak{g}$ , in contradiction to Lemma 3.1. Q. E. D.

\S 4. Irreducible case (algebraically closed field).

Let $\alpha$ : $\mathfrak{g}\otimes V^{*}\rightarrow V\otimes\wedge^{2}V^{*}$ be as before. Throughout this section we shall
assume:

(1) $\alpha$ is surjective;
(2) $\mathfrak{g}$ is irreducible;
(3) The coefficient field is algebraically closed of characteristic $0$ . Then

$\mathfrak{g}$ is a direct sum of a semi-simple ideal $\mathfrak{g}^{\prime}$ and the center $c$ of at most 1-
dimension which consists of scalar multiples of the identity transformation of
$V$ , (see, for instance, [1, p. 79]). Let

$\mathfrak{g}^{\prime}=\mathfrak{g}_{1}+\cdots+\mathfrak{g}_{h\prime}$

where $\mathfrak{g}_{1},$ $\mathfrak{g}_{h}$ are the simple ideals of $\mathfrak{g}^{\prime}$ .
LEMMA 4.1. Either $\mathfrak{g}^{\prime}$ is simple or $\mathfrak{g}^{\prime}=o(V)$ with $\dim V=4$ , where $o(V)$

denotes the Lie algebra of the orthogonal group with respect to a non-degen-
erate symmetric bilinear form.

PROOF. We have (see, for instance, [11, p. 66])

$V=V_{1}\otimes\cdots\otimes V_{h}$

and each $\mathfrak{g}_{j},$ $j=1$ , $\cdot$ .. , $h$ , acts irreducibly on $V_{j}$ . Set

$n_{j}=\dim V_{j}\geqq 2$ , $r_{j}=\dim \mathfrak{g}_{j}\geqq 3$ .
Then

$\dim \mathfrak{g}\leqq 1+\dim \mathfrak{g}^{\prime}=1+r_{1}+\cdots+r_{h}$ .
By Lemma 2.1, we have

$\frac{1}{2}n_{1}\ldots n_{h}(n_{1}\ldots n_{h}-1)\leqq 1+r_{1}+\cdots r_{h}$ .
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On the other hand, $\mathfrak{g}_{j}\subset\wedge e|(V_{j})$ and hence

$r_{j}\leqq n_{j}^{2}-1$ .
Hence we have

$\frac{1}{2}n_{1}\ldots n_{h}(n_{1}\ldots n_{h}-1)\leqq 1+(n_{1}^{2}-1)+$ – $+(n_{h}^{2}-1)$ .

We may assume that $n_{1}\geqq n_{j}\geqq 2$ . Then

$2^{h-2}n_{1}(2^{h-1}n_{1}-1)\leqq hn_{1}^{2}-h+1\leqq hn_{1}^{2}$ .
It follows that if $h\geqq 3$ , then

$n_{1}<2^{h-2}/(2^{2h-3}-h)<1$ ,

which is a contradiction.
Consider the case $h=2$ . Then

$\frac{1}{2}n_{1}n_{2}(n_{1}n_{2}-1)<n_{1}^{2}+n_{2}^{2}$ .
If $n_{1}\geqq n_{2}\geqq 3$ , then

$\frac{1}{2}3n_{1}(3n_{1}-1)<2n_{1}^{2}$ .

If follows that
$5n_{1}^{2}-3n_{1}<0$ ,

which is a contradiction. If $n_{1}\geqq n_{2}=2$ , then

$n_{1}(2n_{1}-1)\leqq n_{1}^{2}+4$ .

This implies $n_{1}=2$ . We have shown that either $h=1$ or $h=n_{1}=n_{2}=2$ . In
the latter case, we have $r_{1}\leqq 2^{2}-1$ and $r_{2}\leqq 2^{2}-1$ . On the other hand, $r_{1}\geqq 3$

and $r_{2}\geqq 3$ for $\mathfrak{g}_{1}$ and $\mathfrak{g}_{2}$ are simple. Hence, $r_{1}=r_{2}=3$ . This shows that either
$\mathfrak{g}^{\prime}$ is simple or $\mathfrak{g}^{\prime}=@l(V_{1})\otimes@I(V_{2})$ , where $\dim V_{1}=\dim V_{2}=2$ . Since @1 $(V_{1})$

$\otimes\S\downarrow(V_{2})=0(V_{1}\otimes V_{2})$ when $\dim V_{1}=\dim V_{2}=2$ , the proof of the lemma is now
completed. Q. E. D.

\S 5. The case $\mathfrak{g}^{\prime}$ is simple.

Throughout this section we shall assume:
(1) $\alpha$ is surjective;
(2) $\mathfrak{g}$ is irreducible and its semi-simple part $\mathfrak{g}^{\prime}$ is simple;
(3) The coefficient field is algebraically closed of characteristic $0$ .
In the first half of this section, we shall use instead of (1) the following

weaker assumption:

(1) dim g $\geqq\frac{1}{2}n(n-1)-1$ .

We recall the formula of Weyl which expresses the degree of an irreducible
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representation of a Lie algebra in terms of its highest weight, (see, for
instance, $[6, 10]$). If $\mathfrak{g}^{\prime}$ is an irreducible simple Lie algebra of linear trans-
formations of $V$ with highest weight $\lambda$ , then

$\dim V=\prod_{\alpha>0}((\lambda+\delta, \alpha)/(\delta, \alpha))$ ,

where
$\delta=\frac{1}{2}\sum_{\alpha>0}\alpha$ .

(
$\prod_{\alpha>0}$ and $\sum_{\alpha>0}$ denote the product and the sum over all positive roots $\alpha.$ ) We set

$d(\lambda)=\prod_{\alpha>0}((\lambda+\delta, \alpha)/(\delta, \alpha))$

so that $\dim V=d(\lambda)$ . The following lemma is evident.
LEMMA 5.1. If $\lambda^{\prime}$ and $\lambda^{\prime\prime}$ are dominant integral forms, then

$d(\lambda^{\prime}+\lambda^{\prime\prime})>d(\lambda^{\prime}),$ $d(\lambda^{\prime/})$ .
Using this lemma we can eliminate most of irreducible representations

quite efficientlyl).
(i) $\mathfrak{g}^{\prime}=A_{\iota},$ $l\geqq 1$ .
With respect to the following numbering of the simple roots

$112\mapsto---\rightarrow^{l-11}$

the degrees of the fundamental representations $\lambda_{1},$ $\cdots$ , $\lambda_{\iota}$ are given by

$d(\lambda_{j})=\left(\begin{array}{l}l+1\\j\end{array}\right)$ $j=1,$ $\cdots$
$l$ .

LEMMA 5.2. If $\lambda$ is a dominant integral form of $A_{\iota}$ such that

$\dim A_{\iota}+1>\frac{1}{2}d(\lambda)(d(\lambda)-1)$ ,

then $\lambda$ must be one of the following:
(1) For $1\geqq 4,$ $\lambda_{1}$ or $\lambda_{\iota}$ ;
(2) For $l=3,$ $\lambda_{1},$ $\lambda_{2}$ or $\lambda_{3}$ ;
(3) For $l=2,$ $\lambda_{1}$ or $\lambda_{2}$ ;
(4) For $l=1,$ $\lambda_{1}$ or $2\lambda_{1}$ .
PROOF. (1). Assume $l\geqq 4$ . First we prove

$\dim A_{\iota}+1<\frac{1}{2}d(\lambda_{j})(d(\lambda_{j})-1)$ for $j=2,$ $\cdots$ , 1–1.

Since $d(\lambda_{1})<d(\lambda_{2})<\ldots>d(\lambda_{\iota-1})>d(\lambda_{\iota})$ and $d(\lambda_{1})=d(\lambda_{\iota}),$ $d(\lambda_{2})=d(\lambda_{\iota-1})$ , it suf-

1) In the following, we denote an irreducible representation by its highest weight.
For the degrees of the fundamental representations of the simple Lie algebras, see for
instance, [5, p. 398].
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fices to prove the inequality for $j=2$ . For $j=2,$ $d(\lambda_{2})=\frac{1}{2}l(l+1)$ . Hence,

$\frac{1}{2}d(\lambda_{2})(d(\lambda_{2})-1)=(\frac{1}{2})^{3}l(l+1)(l(l+1)-2)$

$\geqq(\frac{1}{2})^{3}l(l+1)(4(4+1)-2)$

$>l^{2}+2l+1=\dim A_{\iota}+1$ .
In view of Lemma5.1, we have now on1ytoconsider the1inear combinations

of $\lambda_{1}$ and $\lambda_{l}$ . Again, by Lemma 5.1, it suffices to eliminate $2\lambda_{1},2\text{\‘{A}}_{l}$ and $\lambda_{1}+\lambda_{\iota}$ .
Since $\lambda_{1}$ is the natural representation of $A_{\iota}$ on the $(l+1)$ -dimensional vector
space $V$ and $2\lambda_{1}$ is the representation of $A_{\iota}$ on the space $S^{2}(V)$ of symmetric
tensors of type $(2, 0)$ , we have

$d(2\lambda_{1})=\dim S^{2}(V)=\frac{1}{2}(l+1)(l+2)$ .

A simple calculation shows that the inequality in our lemma is not satisfied.
Since $\lambda_{\iota}$ is the dual representation of $\lambda_{1}$ and $2\lambda_{\iota}$ is the representation of $A_{t}$

on $S^{2}(V^{*}),$ $2\lambda_{\iota}$ may be eliminated in the same way as $2\lambda_{1}$ . Finally, since
$\lambda_{1}+\text{\‘{A}}_{l}$ is the adjoint representation of $A_{\iota}$ , we have $d(\lambda_{1}+\lambda_{\iota})=l^{2}+2l$ . Hence,
$\lambda_{1}+\lambda_{\iota}$ does not satisfy the inequality of our lemma.

(2) Assume $l=3$ . As above, we have
$d(2\lambda j)=d(2\lambda_{3})=10$ , $d(\lambda_{1}+\lambda_{3})=15$ .

Using the formula of Weyl, we have also

$d(\lambda_{2})=6$ , $d(\lambda_{1}+\text{\‘{A}}_{2})=20$ , $d(\lambda_{2}+\lambda_{3})=20$ , $d(2\lambda_{2})=20$ .
By Lemma 5.1, we see that $\lambda$ must be $\lambda_{1},$ $\lambda_{2}$ or $\lambda_{3}$ .

(3) Assume $l=2$ . As in the proof of (1), we have

$d(2\lambda_{1})=d(2\lambda_{2})=6$ , $d(\text{\‘{A}}_{1}+\lambda_{2})=8$ .
Hence, 2 must be either $\lambda_{1}$ or $\lambda_{2}$ .

(4) Assume $l=1$ . By the formula of Weyl, we have $d(2\lambda_{1})=3$ and $d(3\lambda_{1})$

$=4$ . Hence, $\lambda$ must be either $\lambda_{1}$ or $2\lambda_{1}$ . Q. E. D.
(ii) $\mathfrak{c}_{i^{\prime}}=B_{\iota},$ $l\geqq 2$ .
With respect to the following numbering of the simple roots

1 2 $---\rightarrow^{l-1l}$

the degrees of the fundamental representations $\lambda_{1},$ $\cdots$ , $\lambda_{\iota}$ are given by

$d(\lambda_{j})=\left(\begin{array}{l}2l+1\\j\end{array}\right)$ for $j=1,$ $\cdots$ , $l-1$ ,

$d(\lambda_{\iota})=2^{\iota}$ .
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LEMMA 5.3. If $\lambda$ is a dominant integral form of $B_{\iota}$ such that

$\dim B_{\iota}+1\geqq\frac{1}{2}d(\lambda)(d(\lambda)-1)$ ,

then $\lambda$ must be one of the following:
(1) For $l\geqq 3,$ $\lambda_{1}$ ;
(2) For $l=2,$ $\lambda_{1}$ or $\lambda_{2}$ .
PROOF. (1) Assume $l\geqq 3$ . Since $d(\lambda_{2})=2l^{2}+l$ , we have

$\frac{1}{2}d(\lambda_{2})(d(\lambda_{2})-1)=\frac{1}{2}(2l^{2}+l)(2l^{2}+l-1)$

$>\frac{1}{2}(2l^{2}+l)(2^{3}+2-1)$

$>2l^{2}+l+1=\dim B_{\iota}+1$ .
Since $d(\lambda_{2})<d(\lambda_{3})<\ldots<d(\lambda_{\iota-1})$ , we have

$\frac{1}{2}d(\lambda_{j})(d(\lambda_{j})-1)>\dim B_{\iota}+1$ for $j=2,$ $\cdots$ , 1–1.

We have
$\frac{1}{2}d(\lambda_{\iota})(d(\lambda_{\iota})-1)=2^{\iota-1}(2^{\iota}-1)>2l^{2}+l+1=\dim B_{\iota}+1$ .

We shall show that $2\lambda_{1}$ does not satisfy the inequality of our lemma. We first
observe that

$(\lambda_{1}+\delta, \alpha_{1})/(\delta, \alpha_{1})=1+(2_{1}, \alpha_{1})/(\delta, \alpha_{1})=2$ ,

$(2\lambda_{1}+\delta, \alpha_{1})/(\delta, \alpha_{1})=1+2(\lambda_{1}, \alpha_{1})/(\delta, \alpha_{1})=3$ .
From the formula of Weyl, it follows that

$d(2\lambda_{1})\geqq\frac{3}{2}d(\lambda_{1})$ . (In fact, $d(2\lambda_{1})=2l^{2}+3l.$)

Since $d(\lambda_{1})=2l+1$ , we see easily that $2\lambda_{1}$ does not satisfy the inequality of
our lemma.

(2) Assume $l=2$ . As in the proof of (1), we can eliminate $2\lambda_{1}$ easily.
Since $2\lambda_{2}$ is the adjoint representation of $B_{\iota}$ we have $d(2\lambda_{2})=10$ , thus elim-
inating $2\lambda_{2}$ . Using the formula of Weyl, we obtain also $d(\lambda_{1}+\lambda_{2})=16$ , thus
eliminating $\lambda_{1}+\lambda_{2}$ . Q. E. D.

(iii) $\mathfrak{g}^{\prime}=C_{\iota}\geqq 3$ .
With respect to the following numbering of the simple roots

$\underline{12}---\infty l-1l$

the degrees of the fundamental representations $\lambda_{1},$ $\cdots$ , $\lambda_{\iota}$ are given by

$d(\lambda_{j})=(^{2_{j}l})-\left(\begin{array}{l}2l\\j-2\end{array}\right)=\frac{l+1-j}{l+1}\left(\begin{array}{l}2l+2\\j\end{array}\right)$ for $j=1,$ $\cdots$ , 1.
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LEMMA 5.4. If $\lambda$ is a dominant integral form of $C_{\iota},$ $1>3$ , such that

$\dim C_{\iota}+1\geqq\frac{1}{2}d(\lambda)(d(\lambda)-1)$ ,

then $\lambda=\lambda_{1}$ .
PROOF. Since $d(\lambda_{2})=(l-1)(21+1)$ and $\dim C_{\iota}=2l^{2}+l$ , we see that $\lambda_{2}$ does not

satisfy the inequality of our lemma. It is also easy to verify that $d(\lambda_{2})<d(\lambda_{j})$

for $j=3,$ $\cdots$ , $l$ . Consequently, $\lambda_{3},$ $\cdots$ , $\lambda_{\iota}$ do not satisfy the inequality of our
lemma. Since $2\lambda_{1}$ is the adjoint representation of $C_{\iota}$ , we have $d(2\lambda_{1})=2l^{2}+l$ ,

thus eliminating $2\lambda_{1}$ . Q. E. D.
(iv) $\mathfrak{g}^{\prime}=D_{\iota},$ $l\geqq 4$ .
With respect to the following numbering of the simple roots

the degrees of the fundamental representations $\lambda_{1},$ $\cdots$ , $\lambda_{\iota}$ are given by

$d(\lambda_{j})=\left(\begin{array}{l}2l\\j\end{array}\right)$ for $j=1,$ $\cdots$ , $l-2$ ,

$d(2_{l-1})=d(\lambda_{\iota})=2^{\iota-1}$ .
LEMMA 5.5. If $\lambda$ is a dominant integral form of $D_{l},$ $1\geqq 4$ , such that

$\dim D_{\iota}+1\geqq\frac{1}{2}d(\lambda)(d(\lambda)-1)$ ,

then $\lambda$ is one of the following:
(1) For $1\geqq 5,$ $\lambda_{1}$ ;
(2) For $l=4,2_{1},2_{3}$ or $\lambda_{4}$ .
PROOF. (1) Assume $1\geqq 5$ . Since $d(\lambda_{2})=l(2l-1)$ and $\dim D_{\iota}=2l^{2}-1$, we

see that $\lambda_{2}$ does not satisfy the inequality of our lemma. Since $d(\lambda_{2})<d(\lambda_{j})$

for $j=3,$ $\cdots$ , $l-2$ , it follows that $\lambda_{3},$ $\cdots$ , $\lambda_{\iota-2}$ do not satisfy the inequality of
our lemma. Since $d(\lambda_{\iota-1})=d(\lambda_{\iota})=2^{\iota-}$ , it follows that, for $1\geqq 5,$ $\lambda_{\iota-1}$ and $\lambda_{\iota}$

do not satisfy the inequality of our lemma. The argument used in the proof
of (2) of Lemma 5.3 eliminates also $2\lambda_{1}$ . (In fact, $d(2\lambda_{1})=(\ell+1)(2l-1).$)

(2) Assume $l=4$ . Then $d(\lambda_{1})=d(\lambda_{3})=d(\lambda_{4})=8$ and $d(\lambda_{2})=28$ . Again, the
argument used in the proof of (2) of Lemma 5.3 eliminates $2\lambda_{1},2\lambda_{3}$ and $2\lambda_{4}$ .
Using the formula of Weyl, we obtain $d(\lambda_{1}+\lambda_{3})=d(\lambda_{3}+\lambda_{4})=d(\lambda_{4}+\lambda_{1})=56$, thus
eliminating $\lambda_{1}+\lambda_{8},$ $\lambda_{3}+\lambda_{4}$ and $\lambda_{4}+\lambda_{1}$ . Q. E. D.

(v) $\mathfrak{g}^{\prime}=E_{6},$ $E_{7},$ $E_{8},$ $F_{4},$ $G_{2}$ .
If we denote by $r$ the dimension of $\mathfrak{g}^{\prime}$ and by $d$ the minimum degree of

the fundamental representations of $\mathfrak{g}^{\prime}$ , then
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$E_{6}$ : $r=78$ , $d=27$ ;
$E_{7}$ : $r=133$ , $d=56$ ;
$E_{8}$ : $r=248$, $d=248$ ;
$F_{4}$ : $r=52$ , $d=26$ ;
$G_{2}$ : $r=14$ , $d=7$ .

We obtain immediately the following
LEMMA 5.6. If $\mathfrak{g}^{\prime}$ is an exceptional simple Lie algebra, there is no dominant

integral form $\lambda$ such that

$\dim \mathfrak{g}^{\prime}+1\geqq\frac{1}{2}d(\lambda)(d(\lambda)-1)$ .
Finally, we shall prove
LEMMA 5.7. Under the assumptions (1), (2) and (3) stated in the beginning

of this section, $\mathfrak{g}$ must be one of the following:

g1(V) , @Y(V) , co(V) or $o(V)$ .

PROOF. We first examine the case $\mathfrak{g}^{\prime}=A_{\iota}$ using Lemma 5.2. If the repre-
sentation is $\lambda_{1}$ or $\lambda_{\iota}$ , then $\mathfrak{g}=\mathfrak{g}1(V)$ or g=@1(V) according as $\mathfrak{g}$ has a center or
not. If $\mathfrak{g}^{\prime}=A_{3}$ with representation $\lambda_{2}$ , then $\mathfrak{g}$ is co(V) or $o(V)$ with $\dim V=6$

according as $\mathfrak{g}$ has a center or not. If $\mathfrak{g}^{\prime}=A_{1}$ with representation $2\lambda_{1}$ , then $\mathfrak{g}$

is $c\mathfrak{o}(V)$ or $o(V)$ with $\dim V=3$ according as $\mathfrak{g}$ has a center or not.
We shall examine the case $\mathfrak{g}^{\prime}=B_{\mathfrak{l}}$ using Lemma 5.3. If the representation

is $\lambda_{1}$ , then $\zeta\int$ is co(V) or $o(V)$ according as $\mathfrak{g}$ has a center or not. If $\mathfrak{g}^{\prime}=B_{2}$

with representation $\lambda_{2}$ , then $\mathfrak{g}^{\prime}=C_{2}$ with representation $\lambda_{1}$ . This case is in-
cluded in the next case.

We shall examine the case $\mathfrak{g}^{\prime}=C_{l}$ using Lemma 5.4. If the representation
is $\lambda_{1}$ , then $\mathfrak{g}$ is $c_{\sim}^{e}\mathfrak{p}(V)$ or $a\wedge \mathfrak{p}(V)$ according as $\mathfrak{g}$ has a center or not. Using

Lemma 2.4, we shall completely eliminate this case. Whether $\mathfrak{g}=c_{\sim}^{a}\mathfrak{p}(V)$ or
$\mathfrak{g}=\hat{\sigma-}\mathfrak{p}(V)$ , the kernel of $\alpha,$ $\mathfrak{g}_{1}$ , is known to be isomorphic with the space of
symmetric trilinear mappings $V\times V\times V\rightarrow F$. Hence, $\dim \mathfrak{g}_{1}=n(n+1)(n+2)/6$ ,

where $n=\dim V$ . Since $\dim c_{\sim}^{e}\mathfrak{p}(V)=\frac{1}{2}n(n+1)+1$ and $\dim\wedge e\mathfrak{p}(V)=\frac{1}{2}n(n+1)$ ,

the equality in Lemma 2.4 does not hold.
We shall finally examine the case $\mathfrak{g}^{\prime}=D_{l}$ using Lemma 5.5. If the repre-

sentation is $\lambda_{1}$ , then $\mathfrak{g}$ is co(V) or $\mathfrak{o}(V)$ according as $\mathfrak{g}$ has a center or not. For
$D_{4}$ , the three representations $\lambda_{1},$ $\lambda_{3}$ and $\lambda_{4}$ give the same Lie algebra $o(V)$

with $\dim V=8$ . Hence, $\mathfrak{g}$ is co(V) or $o(V)$ according as $\mathfrak{g}$ has a center or not.
Q. E. D.

\S 6. Irreducible case (arbitrary field).

Throughout this section we shall assume:
(1) $\alpha$ : $\mathfrak{g}\otimes V^{*}\rightarrow V\otimes\wedge^{2}V$ is surjective;
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(2) $\mathfrak{g}$ is irreducible;
(3) The coefficient field $F$ is of characteristic $0$ .
We shall prove
LEMMA 6.1. If $\dim V\geqq 3$ , then $\mathfrak{g}$ is one of the following:

$\mathfrak{g}Y(V)$ , @l(V) , co(V) or $o(V)$ .
PROOF. Let $\overline{F}$ be the algebraic closure of $F$ and we set $\overline{V}=V\otimes F$ and

$\overline{\mathfrak{g}}=\mathfrak{g}\otimes F$. Then the mapping $\alpha$ : $\overline{\mathfrak{g}}\otimes\overline{V}\rightarrow\overline{V}\otimes\wedge^{2}\overline{V}^{*}$ is surjective. We shall
show that $\overline{\mathfrak{g}}$ is irreducible. If $\overline{V}=W_{1}+\cdots+W_{k}$ is the decomposition into the
g-irreducible subspaces, then $\dim W_{1}=\ldots=\dim W_{k}$ . Since $\dim\overline{V}\geqq 3$ , this
contradicts Lemma 3.1. By Lemmas 4.1 and 5.7, $\overline{\mathfrak{g}}$ must be one of the following:

$\mathfrak{g}\mathfrak{l}(\overline{V})$ , $\S\sim|(\overline{V})$ , co(V) or $\mathfrak{o}(\overline{V})$ .
Considering the dimensions of $\mathfrak{g}$ and $\overline{\mathfrak{g}}$ , we see that if $\overline{\mathfrak{g}}=\mathfrak{g}1(\overline{V})$ (resp. $\overline{\mathfrak{g}}=S1(\overline{V})$),

then $\mathfrak{g}=\mathfrak{g}1(V)$ (resp. g=@I(V)).

We shall show that if $\overline{\mathfrak{g}}=\mathfrak{o}(\overline{V})$ , then $\mathfrak{g}=\mathfrak{o}(V)$ . Let $B$ be a non-degenerate
symmetric bilinear form on $\overline{V}$ which defines $o(\overline{V})$ . Taking a basis for $V$ , we
express $B$ as a non-degenerate symmetric matrix with entries from $\overline{F}$.
Multiplying by a non-zero element of $\overline{F}$ if necessary, we may assume that at
least one of the entries in the matrix $B$ is 1. Let $F^{\prime}$ be a finite Galois ex-
tension of $F$ containing all entries of the matrix $B$ . Let $\Gamma$ be the Galois
group of $F^{\prime}$ and set

$B^{\prime}=\sum_{\gamma\in\Gamma}\gamma(B)$ .

Then $B^{\prime}$ is a symmetric bilinear form defined on $V$ and is invariant by $\mathfrak{g}$ .
Since $B$ has 1 as an entry, $B^{\prime}$ has $m$ as an entry, where $m$ is the order of
the group $\Gamma$ . In particular, $B^{\prime}$ is nonzero. Since $\mathfrak{g}$ is irreducible and leaves
$B^{\prime}$ invariant, $B^{\prime}$ is non-degenerate. Let $o(V)$ be the Lie algebra of the orthogonal
group defined by $B^{\prime}$ . Then $\mathfrak{g}\subset o(V)$ . On the other hand, $\dim \mathfrak{g}=\dim\overline{\mathfrak{g}}$

$=\dim o(\overline{V})=\dim o(V)$ . Hence, $\mathfrak{g}=o(V)$ .
It follows now trivially that if $\overline{\mathfrak{g}}=co(\overline{V})$ , then $g=co(V)$ . Q. E. D.

\S 7. The final step of the proof.

By Lemmas 3.2 and 6.1 we know that if $G$ is a group satisfying the as-
sumption in Theorem 1, that is, if $\alpha;\mathfrak{g}\otimes V^{*}\rightarrow V\otimes\wedge^{2}V^{*}$ is surjective, then
$\mathfrak{g}$ must be one of the following:

$\mathfrak{g}I(V)$ , @I(V), $co(V)$ , $o(V)$ , $\mathfrak{g}1(V, W)$ or $\mathfrak{g}1(V, W, c)$

where $\dim W=1$ . We shall show that, conversely, if $\mathfrak{g}$ is one of the Lie
algebras listed above, then $\alpha$ is surjective. In view of Lemma 2.4, it suffices
to prove the following lemma.
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LEMMA 7.1. Let $\mathfrak{g}_{1}$ be the kernel of $\alpha$ as in \S 2. Then we have

(1) If $\mathfrak{g}=\mathfrak{g}1(V)$ , then $\dim \mathfrak{g}_{1}=\frac{1}{2}n^{2}(n+1)$ ;

(2) If $\mathfrak{g}=i_{2}I(V)$ , then $\dim \mathfrak{g}_{1}=\frac{1}{2}n^{2}(n+1)-n$ ;

(3) If $\mathfrak{g}=co(V)$ , then $\dim \mathfrak{g}_{1}=n$ ;
(4) If $\mathfrak{g}=o(V)$ , then $\dim \mathfrak{g}_{1}=0$ ;
(5) If $\mathfrak{g}=\mathfrak{g}1(V, W)$ with $\dim W=1$ , then $\dim \mathfrak{g}_{1}=\frac{1}{2}n(n^{2}-n+2)$ ;

(6) If $\mathfrak{g}=\mathfrak{g}Y(V, W, c)$ with $\dim W=1$ , then $\dim \mathfrak{g}_{1}=\frac{1}{2}n^{2}(n-1)$ .
PROOF. As we have already stated in \S 2, (1), (2), (3) and (4) are known,

(see, for instance, [8]). We shall prove (5). We denote by $\mathfrak{g}l(V)_{1}$ (resp.
$\mathfrak{g}I(V, W)_{1})\mathfrak{g}_{1}$ for $\mathfrak{g}=\mathfrak{g}1(V)$ (resp. $\mathfrak{g}=\mathfrak{g}1(V,$ $W)$). Let $S=(S_{j^{i}k})$ be an element of
$\mathfrak{g}1(V)_{1}$ with respect to a basis $e_{1}$ , $\cdot$ .. , $e_{n}$ such that $e_{1}\in W$. Then $S$ belongs to
g1 $(V, W)_{1}$ if and only if

$S_{1k}^{i}=0$ for $i=2,$ $\cdots$ , $n$ and $k=1,$ $\cdots$ , $n$ .
These $n(n-1)$ conditions are independent. Hence, $\dim \mathfrak{g}1(V, W)_{1}=\dim \mathfrak{g}I(V)_{1}$

$-n(n-1)=\frac{1}{2}n(n^{2}-n+2)$ . Similarly, g1$(V, W, c)_{1}$ is defined by

$S_{1^{i}k}=0$ and $S_{1^{1}k}=c\sum_{i-2}^{n}S_{i^{i}k}$

for $i=2,$ $\cdots$ $n$ and $k=1,$ $\cdots$ , $n$ .

Hence, $\dim \mathfrak{g}1(V, W, c)=\dim \mathfrak{g}I(V, W)_{1}-n^{2}=\frac{1}{2}n^{2}(n-1)$ . Q. E. D.

This completes the proof of the first half of Theorem. We shall now
prove the second half of Theorem. In view of Lemma 2.3, it is sufficient to
prove the following lemma.

LEMMA 7.2. Every G-structure admits a torsionfree connection if $\mathfrak{g}$ is one
of the following:

g1(V) , \S 1(V), $co(V)$ , $o(V)$ , $\mathfrak{g}\mathfrak{l}(V, W)$ or $\mathfrak{g}I(V, W, c)$

where $\dim W=1$ .
PROOF. If $\mathfrak{g}=o(V)$ , then there is a unique torsionfree connection ( $i$ . $e.$ , the

so-called Levi-Civita connection) in every G-structure. Hence, if $\mathfrak{g}=o(V)$ , then
every G-structure admits a torsionfree connection. This takes care of $\mathfrak{g}1(V)$ ,

\S \wedge ((V), and co(V). Our lemma for $\mathfrak{g}=\mathfrak{g}1(V, W)$ or $\mathfrak{g}=\mathfrak{g}I(V, W, c)$ follows from
the following two lemmas.

LEMMA 7.3. If $\mathfrak{g}=\mathfrak{g}1(V, W)$ or $\mathfrak{g}=\mathfrak{g}1(V, W, c)$ with $\dim W=1$ , then every
G-structure is integrable.

LEMMA 7.4. Every integrable G-structure admits a torsionfree connection.
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We recall that a G-structure $P$ on $M$ is said to be integrable if every
point of $M$ has a coordinate neighborhood $U$ with local coordinate system
$x^{1}$ , $\cdot$ .. $x^{n}$ such that the cross section $(\partial/\partial x^{1}, , \partial/\partial x^{n})$ of $L(M)$ over $U$ is
really a cross section of $P$ over $U^{2)}$ .

We first prove Lemma 7.4. We cover $M$ with a locally finite family of
coordinate neighborhoods $U$ with local coordinate system $x^{1},$ $\cdots$ , $\chi^{n}$ such that
$(\partial/\partial x^{1}, \cdots , \partial/\partial x^{n})$ is a cross section of the given G-structure $P$ . Over each $U$,

we take a flat connection in $P$ . Using a partition of unity subordinate to $\{U\}$

we patch up these locally defined flat connections to obtain a globally defined
torsionfree connection.

We shall now prove Lemma $7.3^{2)}$ . Assume $\mathfrak{g}=\mathfrak{g}l(V, W)$ with $\dim W=1$ .
Then a G-structure on $M$ is a l-dimensional distribution (which is always
involutive) and hence integrable. Assume $\mathfrak{g}=\mathfrak{g}1(V, W, c)$ with $\dim W=1$ . Let
$P$ be a G-structure on $M$. From what we have just proved for $\mathfrak{g}l(V, W)$ , it
follows that every point of $M$ has a coordinate neighborhood $U$ with local
coordinate system $x^{1}$ , , $\chi^{n}$ such that $(f(\partial/\partial x^{1}), \partial/\partial x^{2}, , \partial/\partial x^{n})$ is a cross
section of $P$ , where $f$ is a function on $U$ which is different from zero every-
where. If we set

$y=\int\frac{dx^{1}}{f}$ ,

then $y,$ $x^{2},$ $\cdots$ , $x^{n}$ is a desired local coordinate system. Q. E. D.

\S 8. Proof of Theorem 2.

Let $G$ be a Lie subgroup of $GL(n;R)$ and $M$ an n-dimensional manifold
admitting G-structures. Assuming that every G-structure on $M$ admits a
torsionfree connection, we shall show that the linear mapping $\alpha:\mathfrak{g}\otimes V^{*}$

$\rightarrow V\otimes\wedge^{2}V^{*}$ defined in \S 2 is surjective.
As in \S 2, let $\theta=$ $(\theta^{1}$ , $\cdot$ .. , $\theta^{n})$ be the canonical form on the bundle $L(M)$

of linear frames over $M$. Let $U$ be a neighborhood of a point $0$ of $M$ and
$\sigma:U\rightarrow L(M)$ a local cross section. We set

$\varphi^{i}=\sigma^{*}(\theta^{i})$ $i=1,$ $\cdots$ $n$ .
Then $\varphi^{1},$ $\cdots$ , $\varphi^{n}$ are linearly independent l-forms on $U$ . We define $(L_{jk}^{i})$ by

$d\varphi^{i}=\sum_{j,k}-2-L_{jk}^{i}\varphi^{j}\wedge\varphi^{k}1$ $i=1,$ $\cdots$ $n$ ,

where
$L_{jk}^{i}=-L_{kj}^{i}$ .

2) Let $G$ and $G^{\gamma},$ $G^{\prime}\subset G$ , be two Lie subgroups of $GL(n;R)$ with the same Lie
algebra $\mathfrak{g}$ . Let $P^{\prime}$ be a G’-structure and $P$ the G-structure containing $P^{\prime}$ . Then $F$ is
integrable if and only if $P^{\prime}$ is integrable.
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LEMMA 8.1. Given a set of numbers $(T_{jk}^{t})$ with $T_{jk}^{t}=-T_{kj}^{i}$ , there exist a
G-structure $P$ on $M$ and a local cross section $\sigma;U\rightarrow P$ such that

$T_{j^{i}k}=L_{jk}^{i}(0)$ .
PROOF. Let $\overline{P}$ be an arbitrary G-structure on $M$ and $\overline{\sigma};U\rightarrow\overline{P}$ a local

cross section. We set
$\overline{\varphi}^{i}=\overline{\sigma}^{*}(\theta^{i})$

$d\overline{\varphi}^{i}=\sum_{j,k}\frac{1}{2}L_{jk}^{\overline{i}}\overline{\varphi}^{j}\wedge\overline{\varphi}^{k}$ , $L_{jk}^{\overline{i}}=-\overline{L}^{\int_{k}}j$ .

Let $a=(a_{j}^{i})$ be a mapping of $M$ into $GL(n ; R)$ such that
$a_{j}^{i}(0)=\delta_{j^{i}}$ ,

$a_{j}^{i}(x)=\delta_{j}^{i}$ for $\chi\in M-U$ ,

and otherwise arbitrary for the moment. We define a local cross, section $\sigma:U$

$\rightarrow L(M)$ by
$\sigma(x)=\overline{\sigma}(x)a(x)^{-1}$ for $x\in U$

so that
$\varphi^{i}=\sum_{J}a_{j}^{i}\overline{\varphi}^{j}$

Since $a_{j}^{i}(0)=\delta_{j^{i}}$ , we obtain the equality $T_{jk}^{i}=L_{jk}^{i}(0)$ by choosing $a_{j}^{\iota}$ in such a
way that

1
$\sum_{j,k}\overline{2}(T_{j^{i}k}-\overline{L}_{jk}^{i})\overline{\varphi}^{j}\wedge\overline{\varphi}^{k}=\sum_{j}da_{j}^{i}\Lambda\overline{\varphi}^{j}$ at $0$ ,

which is clearly possible. To complete the proof, we define $P$ by

$P|M-U=\overline{P}|M-U$ ,

$P|U=\{\sigma(x)s ; x\in U, s\in G\}$ . Q. E. D.

Let $P$ and $\sigma$ be as in Lemma 8.1. Let $\omega=(\omega_{j^{j}})$ be a torsionfree connection
in $P$ and we define $(\gamma_{jk}^{i})$ by

$\sigma^{*}(\omega_{J^{i}})=\sum_{k}\gamma^{1}j_{k}\varphi^{k}$

Then the first structure equation yields
$L_{jk}^{i}=\gamma_{jk}^{i}-\gamma_{k_{J}}^{i}$ .

Since $(L_{Jk}(0))$ is an arbitrary element of $V\otimes\wedge^{2}V^{*}$ by Lemma 8.1 and since
$(\gamma_{jk}^{i}(0))$ is an element of $\mathfrak{g}\otimes V^{*}$ , it follows that the mapping $\alpha;\mathfrak{g}\otimes V^{*}\rightarrow V\otimes\wedge^{2}V^{*}$

is surjective.
Now, Theorem 2 follows from Lemmas 3.2, 6.1 and 7.2.
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