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Gentzen proved cut-elimination theorem in his formal system LK of
the first order predicate calculus, saying that any provable sequent in LK is
provable without cut rule in LK. Takeuti extended Gentzen’s LK to his
GLC by generalization of inference rules from first to higher order predicate
calculus. The cut-elimination theorem in GLC has not yet been proved; it
was proved in that it implies the consistency of classical analysis.

In this paper, we shall consider a formal system & of simple type theory,
as used by Schiitte [4], but not containing the cut rule. It is easily seen that
this system & is equivalent to Takeuti’s GLC or Schiitte’s system, from which
cut rule is omitted. We shall represent this system © as a ‘ quasi-Boolean
algebra’ and give an algebraic formulation of the cut-elimination theorem in &.

In §1, we shall define ‘quasi-Boolean algebra’ B and prove four certain
conditions in such algebra to be equivalent (Theorem 4). It will be noticed
that the validity of (one of) these conditions in B, means that certain equiv-
alence classes in B form a Boolean algebra in a natural way. In §2, we
shall give our system &, which will be represented as a quasi-Boolean algebra
in §3. Then it will be shown that any of the four conditions of
is equivalent to the cut-elimination theorem.

The author is grateful to Professor S. Iyanaga and Professor S. Maehara
for their kind advice and guidance.

§1. Quasi-Boolean algebra.

We shall define an algebra called quasi-Boolean algebra and we shall
introduce several concepts and prove some theorems in such algebras.

DEeFINITION 1. We call a system X quasi-ordered system, when a relation
< is defined in X and satisfies (P.1) and (P.2):

(P.1) For all x in X, x=<=x.

(P2) If x<yand y=z, then x=<z.

We shall also sometimes write x=y to mean y<x, x=y to mean that
x<yand x=y, and x <y to mean that x <y but x=xy.

DEFINITION 2. We call a quasi-ordered system B quasi-Boolean algebra,
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when binary operations \/ and ~ and unary operation ’/ are defined in B and
satisfy (B.1)-(B.12):

(Bl) If a=B and BB, then «a\UB=B and anfeB.

B2) azZaUBand f=alJp.

B3) If a=y and =y, then a\UB=7.

B4) anp=aand anp=4.

BS5) If y=aand y<4, then y=anp.

B.6) an@YUp=@@np)Yl@ny.

(B.7) If @< B, then there is an element 7 of B such that a\Uy =1 and

BUr=1

(B.8) If a= B, then a’ = B.

B9 (@aUpy=a np.

(B10) (anp)y=a’\JUp.

B.1l) «a’"=a.

B.12) aUa’=1, where 1 is a special element of B.

DEFINITION 3. When a subset I of a quasi-Boolean algebra B satisfies the
following conditions (I.1) and (1.2), we call I ideal of B.

1) If ael and Bel, then aUBel.

(12) If ael and B=a, then <= L.

DEeFINITION 4. We say that an ideal I is prime, when if an\f< [ then
aclor el

DEFINITION 5. We say that an ideal I is regular, when a na’ I for any
element a of B.

THEOREM 1. Let S be a subset of B which has the following property (F):

(F) For any finite number of elements ay, -, a, of S,

a\J - Ja,=1.

Then there is a maximal subset of B which contains S and has the property
(F), and it is a maximal ideal of B.

Proor. Let 3 be the class of all subsets which have the property (F)
and contain S. Then ¥ is partially ordered by the relation of set inclusion,
and it is an inductively ordered set. Hence there is a maximal element of T,
by Zorn’s lemma. Let M be the maximal element, and we shall prove that
M is an ideal of B. (I.1) Suppose that « = M and 8= M. Then for any finite
number of elements yy, -, 7, of M, we have aUBUpr U ... Uy, =1 by
hypothesis. That is to say, {a«\J38}\J M has also the property (F). By max-
imality of M, we have a\U B8 M. (1.2) Suppose that a =€ M and < a. Then
a\Jy %1 for any element y of M. Hence B\Uy =1 for any element y of M,
by BUr=aUy. That is to say, {8}V M has the property (F). By max-
imality of M, we have e M.

Since ideal of B which differs from B has the property (F), M is a max-
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imal ideal. q.ed.
THEOREM 2. Any maximal ideal of B is a maximal subset which has the
property (F). '
PrROOF. A maximal ideal M of B has the property (F). By Theorem 1,
there is a maximal subset M’ of B which has the property (F) and contains
M, and M’ is a maximal ideal. Hence M’ is M itself. g.e.d.
THEOREM 3. Every maximal ideal of B is a prime ideal.
PrROOF. Let M be a maximal ideal and suppose that a¢ M and fe& M.
By Theorem 2, there are two elements y and d of M such that a\Uy=1 and
BUo=1. Hence

(aUnNn@Yoy=anp)JlandVienpYGno=1.

Since (@ NV (G NBRVY (G NI e M, we have a N\ S& M. q.e.d.

Now we shall prove:

THEOREM 4. In a quasi-Boolean algebra B, the following four condilions
are equivalent to each other.

I If a=p, then o/ =f'.
aD) Any non-empty maximal ideal of B is a regular ideal.
(II) If Sis a subset of B such that a,\J --- \Ja, %=1 for any finite number
of elements ay, -+, a, of S (i.e. if S has the property (F)), then there
is a regular maximal ideal which contains S.

(IV) If y =1, then there is a regular maximal ideal which contains y.

LEMMA 1. If a=f implies a’ = f/, then maximal ideal of B 1s regular.

PROOF. Suppose that & = implies a’=’. Then (a\J &’y =(B\ p’) for
arbitrary two elements a and 8 of B. Hence ana’<f for arbitrary two
elements @ and 8 by ana’=8Np <p. So any non-empty maximal ideal
is regular. q.e.d.

LEMMA 2. If all maximal ideals of B are regular, then for any subset S
of B which has the property (F), there is a regular maximal ideal which
contains S.

ProoF. By Theorem 1, there is a maximal ideal which contains S. Since
a maximal ideal of B is regular by hypothesis, there is a regular maximal ideal
which contains S. g.e.d.

LEMMA 3. If for any subset S of B which has the property (F), there is
a regular maximal ideal containing S, then for any element y of B such that
v =1, there is a regular maximal ideal containing 7.

ProoF. This is clear if we take {y} instead of S.

LEMMA 4. If for any y such that y =1, there is a regular maximal ideal
containing y, then a=p implies o/ = f’.

PROOF. Suppose that a’==f’. Then either a/\UB’ >a’ or a’'\JB' >
holds. We shall treat only the case a’\U B’ > a’. By (B.7), there is an element



Algebraic formulation of cut-elimination theorvem 75

v of Bsuch that /U B’ Uy=1 and a’Uy=1. So there is a regular maximal
ideal M which contains a’\Uy by the hypothesis. Then M contains a’ and
does not contain ' by a’Uy\U B’=1. Since M is regular and a maximal ideal
is prime by M contains either 8 or /. Hence a& M by a’ e M

and S M by B’ M. That is to say, a = 8. q.e.d.
By Lemmas 1-4, Theorem 4 is proved.
Now let B be the set of equivalence classes by the relation =, and let &

be the class containing a. Then the operations U and n in B can be defined
by the following ;

2

&UE:O{U‘B,
~ ~ ——~—~——
anf=anp.

Indeed, if a;=a, and B,=f,, then o,V B, =a, and a;J B, =B, by (B.2). So
a,\J B = a,\JB, by (B.3). Similarly, a,\J 8, =,V B,. Hence a;\JB;=a,J B,
a,N\Bi=a,N\ B, is also proved similarly. If.the condition (I) of Theorem 4
holds, operation / in B can be defined by (&) =a’. Then it is obvious by
(B.1)—(B.6) and (B.8)—(B.12), that B, with the above defined operations \J, N
and /, is a Boolean algebra.

The conditions (I)-(IV) of Theorem 4 do not always hold in quasi-Boolean
algebra. In the following we shall give an example of quasi-Boolean algebra
in which the conditions (I)-(IV) do not hold.

ExaMpLE. Let N be the set of all natural numbers. Let I be a set of
all mappings from N to {0, 1/2,1}. For each element a« of . let |a| be a
subset {ilie N and a@t)=1/2} of N. For elements a and 8 of M, let a = f
mean that |a| is contained in |3|. Then MM is a quasi-ordered system. We
define operations \, n and / in M by the following expressions.

(a\V B)@) = max {a@), fO)},
(@ N P)@) = min {a@), fO)},
(@) =1—a(i), where 1 is a mapping which maps all 7 in N to 1.

Then M is a quasi-Boolean algebra.
PrOOF. We shall show |a\U B|=|a| V| S| and |a N B|=|a|N|B]| previously.

la\J Bl ={il(a\V B)(1) = 1/2}
= {i|max {a(), ()} = 1/2}
={ila@®=1/2 or pG)=1/2}
=la|VI[B],

lan Bl={il(a P =1/2}
= {i{min {a@®), B0} =1/2}
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={ila@)=1/2 and BGE)=1/2}
=lalNI|B].

(B.1) is obvious by the definition of M. (B.2) Since |a|C|a|U|B]=]a\JB]
and |BlClalV|B|=laUB|, wehaveasaUB and f=a\JB. (B3) Assume
a=<rand 8=7y. Then |a|C]|yr| and |B|C|y|. Since |a\VB|=]|a|V|B|C]|7],
we have a U B=<7. (B4) Sincelanf|=lalNn|B|Cla|and jan\B|=]alN]|B]
C|Bl,wehaveanf=aandanS=p. (B5) Assumey=<aandy=p. Then
lrlClal and |y|C|B| by the definition. Since |y|Cla|n|Bl=lanB|, we
have y=anp. B6) an(BYUp)=(@nB)J(a@ny) holds by the following:

lan@YUnl=lalnUBIVIrh=UalnIBhYalnlrD
=[anPY@nnl.
(B.7) Assume a <. Let y be a mapping defined in the following:
1, if BG@=0,
0, if B =1/2.
Then a\Uy=*1 and fUy=1. Hence there is an element y of B such that
aUyr=xland Ur=1(B.8) is obvious by the definition. (B.9) (a\JU gy
=a’ N B holds by the following:
(e BY|={i|1—(a\J B)®) = 1/2}
= {i|1—max {a(@), f@)} = 1/2}
= {i|min {1—a(@), 1-pG)} = 1/2}
=la'Nnpl.
(B.10) (anpB) =a’J B holds similarly to (B.9). (B.11) a” =a is obvious by
the definition. (B.12) «\J a’=1 holds by the following:
la\Ja’'|={i|max {a@), l—a(d)} =1/2} = N.

=]

By the above, M is a quasi-Boolean algebra. q.e.d.
Now we take an element a of M such that a(t)=1/2 for any element i
of N. Then a=1 and «’ =1/, because
la’|={i]1—a(®)=1/2} =N and |1l'|=¢.
So (I) of does not hold.

§2. A formal system of simple type theory.

We shall introduce a formal system & of simple type theory which is
obtained from LK by generalization of inference rules from first to higher
order predicate calculus, and addition of rules for 2-symbol, but by omitting
the cut rule.
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1. Inductive definition of types.
1.1. 0 and 1 are types.
12. 1f =, -, 7, are types, then (zy, ---, 7,) is a type.
2. Primitive symbols.
2.1. Free and bound variables of each type:
aj, a3, --- for free variables of type 7,
xf, x5, -~ for bound variables of type z.
Sometimes we omit the upper index.
2.2. An arbitrary number of constants of certain types.
2.3. An arbitrary number of function symbols with certain argument
place.
24. Logical symbols: 77, V, A, 3, V, 4, .
2.5. Parentheses and comma.
3. Inductive definition of expressions.
3.1. Every free variable of type = and every constant of type z are
expressions of type 7.
3.2. If ¢ is a function symbol with n argument places and ey, ---, ¢, are

expressions of type 0, then ¢(e,, ---, ¢,) is an expression of type 0.
33. If e, -, e, are expressions of type 7z, ---, 7, and e is an expression
of type (zy, -+, 7,), then (e, -+, e, €¢) is an expression of type 1.

3.4. If A is an expression of type 1, then /A is an expression of type 1.

3.5. If A and B are expressions of type 1, then (AV B) and (A A B) are
expressions of type 1. (Instead of (AV B) and (A A B), we write also AV B
and A A B when there can be no misunderstanding.)

3.6. If x7 is a bound variable which does not occur in an expression A(a")
of type 1, then Jx"A(x") and Vx"A(x") are expressions of type 1.

3.7. If xf, ---, xf» are different bound variables which do not occur in an
expression A(a?, .-+, af®) of type 1, then Axf, .-, xT A, -+, x™) is an
expression of type (¢, -+, Tp)-

REMARK. A(a®) denotes an expression containing a° in certain distin-
guished places. The notation may be related to one place, no place, or several
places in the expression. A(x") denotes the result of substituting x* for a¥ in
the distinguished places of A(¢"). In the same way A(a,, ---, a,) denotes an
expression containing distinct variables a,, ---, @, in certain distinguished
places, and A(x,, ---, x,) or Ale, ---, e, denotes the result of substituting
X1, o+, X, OF ey, +-- , e, respectively for q,, ---, a, in the distinguished places of
Aay, -+, ag).

Specially we call an expression of type 1 formula.

4. Sequent.

A sequent is a formal expression of the form
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Al) Tty Am_)Bly Tt Bnt

where m, n=0 and A4,, -+, An, By, -, B, are arbitrary formulas.
5. Rules of inference.
5.1. Logical rules of inference.

Introduction of in succeedent. in antecedent.
v I'-e, A I'—-6,B A l'—-6 B, I'—6
) I'-0e,AvB, I'—-6,6AVB. AV B, I'—6.
A I'—-6,A I'-6,B A T—6 B,I'—6
) I'—0,ANB. ANB,I'—0, ANB,I'—6.
A A T'-06 I'—6,A
) I'—0,7A. 7AT'—06.
5. I -0, A@) Ala”), ' -6
) I'—6,3x"AxY). JxTAED), ['— 6.
v I'— 0, Ala) A, I' -6
) I'— 0, Vx"A(xY). Vi A, I’ — 6.

[""’)@; A(ely ) en)
F—%@; €y, , 8, & /2.751, R an(xl: Sty xn) .

A(eh ..., en)' P—)@
€1, en62x11 9an(xlr ot :x'ﬂ)! I'—6 M

5.2. Structural rules of inference.

in succeedent. in antecedent.
.. I'—e I'—6
Thinning r-e,c. c¢r-o.
. r—-e,cc c,c,I'—6@
Contraction r=6.c. CI-6.
Interchange I'—6,CD, 4 I,C.D,4-6
I'—-6,D,C, A. I''D,C,4—0.
Stipulation: A, B, C, D are arbitrary formulas; I, 4, @, A are finite se-
quences of zero or more formulas; a is a free variable; ¢, ey, ---, e, are
expressions; x', x, ---, X, are bound variables; A(a"), A(e"), Aley, -+, e,), IxTAKT),

and Vx"A(x") are formulas of such form.

Restrictions on variables: The free variable denoted by a’ in the above
shemata of the logical rules will never occur in the conclusion of the con-
cerned rules.

6. Proof.

As formal proofs we use only ones in tree form, each of which has one
lowermost sequent—the endsequent—and some uppermost sequents of the form
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D—D,

where D is an arbitrary formula.
A proof of a sequent is a formal proof which has the sequent as the

endsequent. A sequent is said to be provable, if there exists a proof of the
sequent.
For sequents P, -+, Py, Qy, =+, @n, let

Loy, P
Ql; Tty Qn
mean that if P,, ---, P,, are provable, then Q,, --+, @, are also provable. Using

this notation, the cut-elimination theorem is expressed as follows:

I'-6,D D, 4-41
I' 4-6,4,

for arbitrary finite sequences [, 4,0, 4 of zero or more formulas and an
arbitrary formula D.
7. THEOREM 5.

71, L—6.AVE
A F——)@, A’B
7y AVBIL—-6  AVBL—6
oL A,F—>@’ B’-['__)@.
73 I'-0,ANB I'—>6,AAB
- F--’@,A, F—*@,B

AANB,I'—>6
74. B0,

I'—6,74

7.5. AT750.

JAT -0
7.6, = e A

We shall define ‘ provable with order n’, inductively.

1) Every sequent of the form D-— D is provable with order 0.

2) 1If the premises of an inference — A or vV — are provable with order
n, and n,, then the conclusion is provable with order max (n,, n,)-+1.

3) If the premise of the other inference is provable with order n, then
the conclusion is provable with order n-1. '

" When a sequent is provable with order n and is not provable with order

< n, we say that order of the sequent is n.

ProOOF OF 7.1. Supposing that a sequent

1) See Kleene [3], p. 443.
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I'—6, AVB,0,--,0, AVB,0O,, (P)

is provable, where AV B does not occur in 6,, ---, ©,,,, we shall prove that
the sequent

I'-6,--,0,A, B,0,, (@

is provable by mathematical induction on the order of the sequent (P).
Case 1. Let the sequent (P) be provable with order 0. Then (P) is AV B

— AV B, and then (Q) is AV B— A, B. Hence (Q) is provable by the following
figure.

A—A B—B
A—A, B B—A, B
AV B—A, B.

Case 2. Let the last inference of the proof of the sequent (P) be —V
with respect to AV B, i.e.

I'—0,AVB,-,0, A (or B)
I'—-6, AVvB, - ,0, AVEB.

If n=1, (Q) is provable by thinning (or, thinning and interchange). If n>1,
the following figure shows that (Q) is provable.

I'-6,AVB, --,0,A
F’_)@h ) @n-—ly Ay B; @n; A
Fﬁ@l; Tty @n—lr @m A: B.

by hypothesis of induction

Case 3. Let the last inference in the proof of the sequent (P) be not
—V with respect to AV B. If the last inference has one premise, it is of
the form ‘

F/é@iy A\/B; "’,@;-,-,,,A\/B,@(m+1 (
I =0, AVB, —,0,, ANV B, 0,.,. *)

Then the following figure shows that (Q) is provable.

Fl_é@;y A\/B, ) @'/m! A\/B, @;n-kl

F/‘—‘)@i, ) @;n! A, B) @;VH—I .
T =0, ,0. A B, 6,.. by the same inference rule as

by the hypothesis of induction

() or by several structural rules
of inference.

When the last inference in the proof of the sequent (P) has two premises.

(i.e. when the last inference is VvV — or — A), (Q) can be proved in the same
way as the above.

Hence, the proof of

I'-0,AVB,-,0, AVB, 0O,
F"‘)@h ] @m A: B’ @n+1
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is completed. Specially, in the case ©,,, is empty, we have
I'-6e,AvB,--,0, AVB
r-e,..,0, A B
FH@I, A\/B, A ,@n, A,B.

Hence, for any finite sequences /' and @ of formulas,

I'—6,AVvB
I'-6, A B,

7.2.—7.6. are proved in the same way as 7.1,

§3. An algebraic representation of cut-elimination theorem.

We shall show first that formulas of our formal system form a quasi-
Boolean algebra.

THEOREM 6. Let © be a set of all formulas of the formal system of simple
type theory defined in §2. When A and B are formulas, let A< B mean that
r—e,A
T-6,B
for any finite sequences I' and @ of formulas. Then & is a quasi-Boolean
algebra on operations V', A\ and 7, where 1 is an arbitrarily fixed provable

formula.
PROOF.
B.D: If Ac® and Be®, then AvBe® and AANBe®. It is trivial
by the definition of formula.
(B2): AL AV B and B AV B. C(Clear by the inference rule — \/.
(B3): If ALKCand B=C, then AV B=C. Proved by the following figure.

L=6,AVE 71 in g2
r—6,45 .~ -7
Ir-6.4c_ VU=
-6,C A

i -4 B - <
T—e,cc WAEC
=e,c.

B4d): AANBZA and ANBZB. C(Clear by 7.3. in §2.
(BbH: IfC<Aand C<B,then C< AA B. Proved by the following figure.

I'—6,C
F——)@,A PH@,B
I'—0,AANB.
B6: AANBVCY=(AABYVAANOC). ANBVCOYZAANBYNVAANC)
holds by (B.2)—(B.4), and AANBVC)Z=UAUABVAAC) is shown by the

by C=£A and CZB
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following figure.
I'-60, ANBVOC)

by 7.3. in §2
T-6, A [—6,BvC by” 12 22
-0, A -0 B A I—-0BC y ot
I'—6,A ANC I'-6,B, ANC

I'-0,ANB, ANC
I'-60,(ANB)V(ANC).

B.7): If A< B, then there is a formula C in & such that AV C=1 and
BvC=1. Suppose that A< B. Then there are sequences I', @ of formulas
such that I'—®, B is provable and I'— 60, A is not provable. Let I" be
{D,, -+, Dy} and let ® be {E,, ---, E,}. Then —-7/D,V -\ 7D,V E, \ -
VvV E,V B is provable and —/D,V -V /D,VE V - VE,V A is not prov-
:able. So if we denote the formula 7D,V -V /D,V E,V --- V E, by C, we
have AvC=1and BVVC=1. Hence there is a formula C in & such that
AvVvC=land BvVC=1.

(B8): If A=@©, then 7A=®&. Clear by the definition of formula.

(B9): 7(AVB)=7ANA7B. Clear by the following two figures.

I'— 06, 7(AV B)

by 75. in §2

AVE 6 by 7.2. in §2
AT -0 B.I—0
'>0,74 I—6,7B

F—)@’ 7A/\7B.

- 5*9’71‘1]{\73 by 7.3. in §2

—06, 74 —0. 7B 1y 75, in §2
WY B.I—0

AV B, ['—6

I'—06,7(AV B).

B.10): 7(AABY=/7AvV 7B. Proved similarly to (B.9).

B1): 77A=A. AZ7//A is clear by inference rules. 7/7A=<A is
clear by 7.5. and 7.6. in § 2.

B.12): Av 7A=1. Clear by the fact that - AV /A is provable.

THEOREM 7. For any formula C and sequences I', 4,0, A of formulas,

I'-6,Cc C, 4-4
I'd4—-06,4

holds if and only if A= B implies 7A="/B for any formulas A and B.
PROOF. Suppose that
I'-6,C C,d—4
I',4—-0,41

(cut-elimination theorem)
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holds for any formula C and sequences I, J, @, A of formulas. Then A<ZB
implies /B <7/7A as shown by the following figure.

e by ASB ——=222_ by 75. in §2
A—B - B, I'-® .
d by hypothesis
A T-6 v
I'—0,7A

Similarly, B< A implies 7JA<7/7B. Hence A=DB implies JA=7/8B.
Inversely, suppose that A=B implies 7A="/B for any formulas A and
B. Then CA 7C<ZF for any formulas C and F, because

CAT7C=7CVv7C)y=7FV /F)=FAN/FLF.

Now let I'— @, C and C, 4— A be provable, where it does not happen that
all of sequences /', 4, ©, A are empty, since our formal system is consistent?®,
Let F be a formula contained in @ or /4, or a negation of a formula contained
in I" or 4. Then the following figure shows that I”, 4—®, A is provable.
C,4— 41
I'—@6,cC 4—4,7C
I',d—-6,4,CN77C
T 4A-0 4 F by CA/CEF
I',4-6,41, g.e.d.
The condition that A= B implies 7 A= 7B is the condition (I) of
4. Hence shows that conditions (I)—(IV) are algebraic represen-
tations of the cut-elimination theorem.
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