An extension theorem on valuations

By Masami Fukawa

(Received July 31, 1964)

In this paper, we shall prove
Theorem. Let K_{0} be a field, v_{0} a valuation on K_{0} with the value group Γ_{0} and the residue field Δ_{0}. Let Γ_{1} be a linearly ordered abelian group containing Γ_{0}, Δ_{1} a field containing Δ_{0}. Then v_{0} can be extended to a valuation v_{1} on some field K_{1} containing K_{0} with the value group Γ_{1} and the residue field Δ_{1}.

All fields considered are commutative. By a valuation v on a field K with the value group Γ (which is an additively written linearly ordered abelian group), we mean as usual a map of K onto $\Gamma \cup\{\infty\}$ with the properties: $v(x y)=v(x)+v(y), v(x+y) \geqq \min (v(x), v(y))$, for any $x, y \in K$, (cf. e. g. Schilling [1], Zariski [2], Bourbaki [3]).

It suffices to prove the theorem in two cases:

$$
\begin{equation*}
\Gamma_{1} \supset \Gamma_{0}, \quad \Delta_{1}=\Delta_{0} \tag{1}
\end{equation*}
$$

and
(2) $\Gamma_{1}=\Gamma_{0}, \quad \Delta_{1} \supset \Delta_{0}$.

We denote the valuation ring of v_{0} by R_{0}, and the maximal ideal of R_{0} by m_{0}. The same notations will be used for other valuations.

The author is grateful to Professor S. Iyanaga and Professor S. Koizumi for their kind encouragement and advices, and also to Professor M. Nagata for indicating to me the problem of proving this theorem.

Proof. Case (1). (i) Assume first that Γ_{1} is generated by Γ_{0} and one element θ, where θ is free modulo Γ_{0}. Let $K_{1}=K_{0}(t)$, where t is transcendental over K_{0}. We shall note that for any two monomials $a t^{m}, b t^{n} \in K_{0}[t]$, we have $v_{0}(a)+m \theta=v_{0}(b)+n \theta$ only if $m=n$ and $v_{0}(a)=v_{0}(b)$, for if $m \neq n$, we would have $(m-n) \theta \in \Gamma_{0}$, contradicting the hypothesis that θ is free modulo Γ_{0}.

For any polynomial $F(t)=\sum_{i=0}^{n} a_{i} t^{i}$ in $K_{0}[t]$, define

$$
v_{1}(F(t))=\min _{0 \leqq i \leq n}\left(v_{0}\left(a_{i}\right)+i \theta\right) .
$$

In view of the above remark, we can easily verify the following relations for any $F(t), G(t) \in K_{0}[t]$:

$$
\begin{aligned}
& v_{1}(F(t)+G(t)) \geqq \min \left(v_{1}(F(t)), v_{1}(G(t))\right), \\
& v_{1}(F(t) G(t))=v_{1}(F(t))+v_{1}(G(t))
\end{aligned}
$$

Thus v_{1} defines a valuation on K_{1}, which has the value group Γ_{1}.
Let $x=\sum_{i=0}^{m} a_{i} t^{i} / \sum_{j=0}^{n} b_{j} t^{j}$ be any element of K_{1} with $v_{1}(x)=0$. Then there exists an index ν such that

$$
\begin{aligned}
& v_{1}\left(a_{\nu} t^{\nu}\right)=v_{1}\left(b_{\nu} t^{\nu}\right), \\
& v_{1}\left(a_{i} t^{i}\right)>v_{1}\left(a_{\nu} t^{\nu}\right) \quad \text { for } \quad i \neq \nu \\
& v_{1}\left(b_{j} t^{j}\right)>v_{1}\left(b_{\nu} t^{\nu}\right) \quad \text { for } \quad j \neq \nu
\end{aligned}
$$

Thus

$$
x=\sum_{i=0}^{m} \frac{a_{i}}{b_{\nu}} t^{i-\nu} / \sum_{j=0}^{n} \frac{b_{j}}{b_{\nu}} t^{j-\nu} \equiv \frac{a_{\nu}}{b_{\nu}} \in R_{0} \quad\left(\bmod \mathfrak{m}_{1}\right)
$$

so the residue field of v_{1} is Δ_{0}.
(ii) Next assume that Γ_{1} is generated by Γ_{0} and one element θ, where θ is a torsion mod Γ_{0}. Let n be the minimum positive integer such that $n \theta \in \Gamma_{0}$ holds. Let $\tilde{\Gamma}_{0}$ be the rational completion of $\Gamma_{0}: \Gamma_{0} \otimes Q$ considered as an ordered group in the canonical way. Then Γ_{1} can be imbedded in $\tilde{\Gamma}_{0}$ in the unique way. Take $a \in K_{0}$ with $v_{0}(a)=n \theta$. Take a root t of $X^{n}-a$, and extend v_{0} in any way to a valuation v_{1} on $K_{1}=K_{0}(t)$. This is a finite algebraic extension, and so the value group Γ_{1}^{\prime} can be imbedded in $\tilde{\Gamma}_{0}$.

If $X^{n}-a$ were reducible in $K_{0}[X]$, we would have the relation of the type

$$
t^{m}+\sum_{i=0}^{m-1} a_{i} t^{i}=0, \quad a_{i} \in K_{0}, \quad 1 \leqq m<n
$$

Then $v_{1}\left(a_{i} t^{i}\right)=v_{1}\left(a_{j} t^{j}\right)$ for some $i>j$, which leads to $(i-j) \theta \in \Gamma_{0}$, where $1 \leqq i$ $-j \leqq m<n$, contradicting the hypothesis.

Thus $\left[K_{1}: K_{0}\right]=n$. On the other hand, $v_{1}\left(t^{n}\right)=v_{1}(a)=n \theta$ shows $v_{1}(t)=\theta$, so $\Gamma_{1}^{\prime} \supset \Gamma_{1}$. Therefore $n \geqq\left[\Gamma_{1}^{\prime}: \Gamma_{0}\right] \geqq\left[\Gamma_{1}: \Gamma_{0}\right]=n$, and so $\Gamma_{1}^{\prime}=\Gamma_{1}$, and the well-known inequality " $\sum_{i=1}^{g} e_{i} f_{i} \leqq n$ " of the ramification theory shows that the residue field of v_{1} is Δ_{0}.

REMARK 1. The same inequality also shows that v_{1} is actually the only extension of v_{0} to $K_{1}=K_{0}(t)$.

REMARK 2. The direct construction of v_{1} is described as follows:

$$
v_{1}\left(\sum_{i=0}^{n-1} a_{i} t^{i}\right)=\min _{0 \leqq i \leqq n-1}\left(v_{0}\left(a_{i}\right)+i \theta\right) \quad \text { for } \quad a_{i} \in K_{0}
$$

We can also verify directly that this v_{1} has the required properties without using the above inequality.
(iii) The above discussion proves our theorem in case Γ_{1} is finitely
generated over Γ_{0}, and $\Delta_{1}=\Delta_{0}$. We shall proceed to the proof of the general case (still assuming $\Delta_{1}=\Delta_{0}$) by help of Zorn's lemma.

Let $\left\{\Gamma_{\lambda} \mid \lambda \in \Lambda\right\}$ be the set of all subgroups of Γ_{1} containing Γ_{0}, and define the order in the indexing set Λ by $\lambda \geqq \mu \Leftrightarrow \Gamma_{\lambda} \supset \Gamma_{\mu}$. Then the index 0 is just the minimum element of Λ.

We consider the index 0 as an element of K_{0}, and other λ 's as independent variables over K_{0}. Let Ω be the algebraic closure of the field obtained by adjoining all λ 's to K_{0}.

Let \mathscr{X} be the set of all pairs (K, v), satisfying the following conditions.
$1^{\circ} . K$ is an intermediate field between K_{0} and Ω.
$2^{\circ} . v$ is a valuation on K, extending v_{0}.
3°. The value group of v is some Γ_{λ}.
4°. The residue field of v is Δ_{0}.
$5^{\circ} . K$ is contained in the algebraic closure of the field obtained by adjoining to K_{0} all μ 's in Λ such that $\mu \leqq \lambda$ hold.
\mathscr{X} contains (K_{0}, v_{0}), so \mathscr{X} is not empty. The order in \mathscr{X} defined by

$$
(K, v) \leqq\left(K^{\prime}, v^{\prime}\right) \Leftrightarrow K^{\prime} \supset K, \quad v^{\prime} \mid K=v
$$

makes \mathscr{X} an inductive set. Any maximal element $\left(K_{1}, v_{1}\right)$ in \mathscr{X}, which exists by Zorn's lemma, has the value group Γ_{1}, since otherwise we could find some (K_{2}, v_{2}) in \mathscr{X} strictly greater than (K_{1}, v_{1}) by virtue of (i) and (ii).

Case (2).
(i) Assume $\Delta_{1}=\Delta_{0}(\xi)$, where ξ is transcendental over Δ_{0}. Let $K_{1}=K_{0}(t)$, where t is transcendental over K_{0}.

The canonical homomorphism $\pi_{0}: R_{0} \rightarrow R_{0} / \mathfrak{m}_{0}$ can be extended to the surjective homomorphism $R_{0}[t] \rightarrow \Delta_{0}[\xi]$ by $\pi_{0}(t)=\xi$, the kernel \mathfrak{p} being $\mathfrak{m}_{0}[t]$. Since any element of K_{1} can be denoted by $F(t) / G(t)$, where $F(t), G(t) \in R_{0}[t]$ and either $F(t) \notin \mathfrak{m}_{0}[t]$ or $G(t) \notin \mathfrak{m}_{0}[t], R_{1}=R_{0}[t] \mathfrak{p}$ is a valuation ring of K_{1}, and the residue field is $\Delta_{0}(\xi)=\Delta_{1}$.

Let v_{1} be the valuation associated to R_{1}. It is an extension of v_{0} by the construction. Any element $F(t)$ in $K_{0}[t]$ can be denoted as $F(t)=a \Sigma b_{i} t^{i}$, with $a, b_{i} \in K_{0}, v_{0}\left(b_{i}\right) \geqq 0$, with some $b_{\nu}=1$. Since $\sum b_{i} t^{i} \bmod \mathfrak{m}_{1}$ is not $0, \Sigma b_{i} t^{i}$ is a unit in R_{1}, and so we have $v_{1}(F(t))=v_{1}(a) \in \Gamma_{0}$, which proves that the value group of v_{1} is Γ_{0}.
(ii) Next assume $\Delta_{1}=\Delta_{0}(\xi)$, where ξ is algebraic over Δ_{0}. Let $\bar{F}(X)$ be the monic irreducible polynomial in $\Delta_{0}[X]$ satisfied by ξ, and let $F(X)$ be a monic polynomial in $R_{0}[X]$ such that $\pi_{0}(F(X))=\bar{F}(X)$.

It is well-known that

$$
v\left(\Sigma a_{i} X^{i}\right)=\min _{i} v_{0}\left(a_{i}\right)
$$

defines a valuation on $K_{0}(X)$. If we have a decomposition

$$
F(X)=F_{1}(X) F_{2}(X)
$$

into monic factors in $K_{0}[X]$, we have, applying the above valuation v,

$$
0=v(F(X))=v\left(F_{1}(X)\right)+v\left(F_{2}(X)\right), \quad v\left(F_{i}(X)\right) \leqq 0
$$

which leads to $v\left(F_{i}(X)\right)=0$, and so

$$
F_{i}(X) \in R_{0}[X], \quad \bar{F}(X)=\bar{F}_{1}(X) \bar{F}_{2}(X), \quad \text { degree } \bar{F}_{i}(X)=\text { degree } F_{i}(X)
$$

Since $\bar{F}(X)$ is irreducible in $\Delta_{0}[X]$, one of $F_{i}(X)$ must be of degree 0 , which shows that $F(X)$ is irreducible in $K_{0}[X]$.

Let t be a root of $F(X)$, and set $K_{1}=K_{0}(t) . \quad v_{0}$ can be extended to a valuation v_{1} on K_{1}. Then the residue field of v_{1} is obviously isomorphic to Δ_{1} $=\Delta_{0}(\xi)$. Since $\left[\Delta_{1}: \Delta_{0}\right]=\left[K_{1}: K_{0}\right]$, the inequality of the ramification theory shows that v_{1} has the value group Γ_{0}.

REMARK 3. v_{1} is the unique extension of v_{0} on K_{1}.
REMARK 4. The valuation ring of v_{1} is $R_{0}[t] \mathfrak{p}$, where $\mathfrak{p}=\mathfrak{m}_{0}+\mathfrak{m}_{0} t+\cdots$ $+\mathfrak{m}_{0} t^{n-1}\left(n=\left[K_{1}: K_{0}\right]=\right.$ degree of $F(X)$). We could proceed as in (i) without using the ramification theory.
(iii) The same idea as in case 1 (iii) proves our theorem in case Δ_{1} is any extension of Δ_{0} and $\Gamma_{1}=\Gamma_{0}$. Thus the proof of our theorem is completed.

We have
Corollary. Let Γ be an arbitrary non-trivial linearly ordered abelian group, and Δ be an arbitrary field. Then there exists a field K and a valuation v on K, which has Γ as the value group and Δ as the residue field.

Moreover, if the characteristic of Δ is $p \neq 0$, we can preassign the characteristic of K as 0 or as p.

Proof. It is enough to extend the trivial valuation on the prime field of Δ, or the p-adic valuation on the field of rational numbers.

Note. We have another proof of the corollary in equicharacteristic case as follows: Let K be the set of all the maps x of Γ to Δ whose supports are well-ordered, where the support of x means the set $\{\gamma \in \Gamma \mid x(\gamma) \neq 0\}$. We define $x+y$ and $x y$ by

$$
\begin{aligned}
& (x+y)(\gamma)=x(\gamma)+y(\gamma) \\
& (x y)(\gamma)=\sum_{\alpha+\beta=\gamma} x(\alpha) y(\beta),
\end{aligned}
$$

which are shown to be well-defined, and make K a field. Then $v(x)=\min \operatorname{supp}(x)$ defines a valuation on K satisfying the required conditions. For the details, cf. Neumann [4]. This field has obviously the same characteristic as Δ, and has complete uniform structure.

Department of Mathematics
University of Tokyo

References

[1] O.F.G. Schilling, The theory of valuations, Amer. Math. Soc., 1950.
[2] O. Zariski and P. Samuel, Commutative algebra, vol. 2, Chap. VI, D. Van Nostrand, 1960.
[3] N. Bourbaki, Algèbre commutative, Chap. 6, Hermann, 1964.
[4] B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc., 66 (1949), 202-252.

