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In this paper, we shall prove
THEOREM. Let $K_{0}$ be a field, $v_{0}$ a valuation on $K_{0}$ with the value group

$\Gamma_{0}$ and the residue field $\Delta_{0}$ . Let $\Gamma_{1}$ be a linearly ordered abelian group
containing $\Gamma_{0},$ $\Delta_{1}$ a field containing $\Delta_{0}$ . Then $v_{0}$ can be extended to a valuation
$v_{1}$ on some field $K_{1}$ containing $K_{0}$ with the value group $\Gamma_{1}$ and the residue
field $\Delta_{1}$ .

All fields considered are commutative. By a valuation $v$ on a field $K$ with
the value group $\Gamma$ (which is an additively written linearly ordered abelian
group), we mean as usual a map of $K$ onto $\Gamma U\{\infty\}$ with the properties:
$v(xy)=v(x)+v(y),$ $v(x+y)\geqq\min(v(x), v(y))$ , for any $x,$ $y\in K$, (cf. $e$ . $g$ . Schilling
[1], Zariski [2], Bourbaki [3]).

It suffices to prove the theorem in two cases:
(1) $\Gamma_{1}\supset\Gamma_{0}$ , $\Delta_{1}=\Delta_{0}$

and
(2) $\Gamma_{1}=\Gamma_{0}$ , $\Delta_{1}\supset\Delta_{0}$ .

We denote the valuation ring of $v_{0}$ by $R_{0}$ , and the maximal ideal of $R_{0}$ by
$\mathfrak{m}_{0}$ . The same notations will be used for other valuations.

The author is grateful to Professor S. Iyanaga and Professor S. Koizumi
for their kind encouragement and advices, and also to Professor M. Nagata
for indicating to me the problem of proving this theorem.

PROOF. Case (1). (i) Assume first that $\Gamma_{1}$ is generated by $\Gamma_{0}$ and one
element $\theta$ , where $\theta$ is free modulo $\Gamma_{0}$ . Let $K_{1}=K_{0}(t)$ , where $t$ is transcendental
over $K_{0}$ . We shall note that for any two monomials $at^{m},$ $bt^{n}\in K_{0}[t]$ , we have
$ v_{0}(a)+m\theta=v_{0}(b)+n\theta$ only if $m=n$ and $v_{0}(a)=v_{0}(b)$ , for if $m\neq n$ , we would
have $(m-n)\theta\in\Gamma_{0}$ , contradicting the hypothesis that $\theta$ is free modulo $\Gamma_{0}$ .

For any polynomial $F(t)=\sum_{i=0}^{n}a_{i}t^{i}$ in $K_{0}[t]$ , define

$v_{1}(F(t))=\min_{\Leftarrow i\leqq n}0<(v_{0}(a_{i})+i\theta)$ .

In view of the above remark, we can easily verify the following relations for
any $F(t),$ $G(t)\in K_{0}[t]$ :
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$v_{1}(F(t)+G(t))\geqq\min(v_{1}(F(t)), v_{1}(G(t)))$ ,

$v_{1}(F(t)G(t))=v_{1}(F(t))+v_{1}(G(t))$ .
Thus $v_{1}$ defines a valuation on $K_{1}$ , which has the value group $\Gamma_{1}$ .

Let $x=_{i=0}^{m}\sum a_{i}t^{i}/\sum_{j=0}^{n}b_{j}t^{j}$ be any element of $K_{1}$ with $v_{1}(x)=0$ . Then there

exists an index $\nu$ such that

$v_{1}(a_{\nu}t^{\nu})=v_{1}(b_{\nu}t^{\nu})$ ,

$v_{1}(a_{i}t^{i})>v_{1}(a_{\nu}t^{\nu})$ for $ i\neq\nu$ ,

$v_{1}(b_{j}t^{j})>v_{1}(b_{\nu}t^{\nu})$ for $ j\neq\nu$ .
Thus

$x=\sum_{i=0}^{m}\frac{a_{i}}{b_{\nu}}t^{i-\nu}/\sum_{j-0}^{n}\frac{b_{j}}{b_{\nu}}t^{f-\nu}\equiv\frac{a_{\nu}}{b_{\nu}}\in R_{0}$ $(mod \mathfrak{m}_{1})$ ,

so the residue field of $v_{1}$ is $\Delta_{0}$ .
(ii) Next assume that $\Gamma_{1}$ is generated by $\Gamma_{0}$ and one element $\theta$ , where $\theta$

is a torsion $mod \Gamma_{0}$ . Let $n$ be the minimum positive integer such that
$n\theta\in\Gamma_{0}$ holds. Let $\tilde{\Gamma}_{0}$ be the rational completion of $\Gamma_{0}$ : $\Gamma_{0}\bigotimes_{Z}Q$ considered as

an ordered group in the canonical way. Then $\Gamma_{1}$ can be imbedded in $\tilde{\Gamma}_{0}$ in
the unique way. Take $a\in K_{0}$ with $ v_{0}(a)=n\theta$ . Take a root $t$ of $X^{n}-a$ , and
extend $v_{0}$ in any way to a valuation $v_{1}$ on $K_{1}=K_{0}(t)$ . This is a finite algebraic
extension, and so the value group $\Gamma_{1}^{\prime}$ can be imbedded in $\tilde{\Gamma}_{0}$ .

If $X^{n}-a$ were reducible in $K_{0}[X]$ , we would have the relation of the type

$t^{m}+\sum_{i=0}^{m-1}a_{i}t^{i}=0$ , $a_{i}\in K_{0}$ , $1\leqq m<n$ .

Then $v_{1}(a_{i}t^{i})=v_{1}(a_{j}t^{j})$ for some $i>j$ , which leads to $(i-j)\theta\in\Gamma_{0}$ , where $1\leqq i$

$-j\leqq m<n$ , contradicting the hypothesis.
Thus $[K_{1} : K_{0}]=n$ . On the other hand, $ v_{1}(t^{n})=v_{1}(a)=n\theta$ shows $ v_{1}(t)=\theta$ ,

so $\Gamma_{1}^{\prime}\supset\Gamma_{1}$ . Therefore $n\geqq[\Gamma_{1}^{\prime} : \Gamma_{0}]\geqq[\Gamma_{1} : \Gamma_{0}]=n$ , and so $\Gamma_{1}^{\prime}=\Gamma_{1}$ , and the

well-known inequality “
$\sum_{i=1}^{g}e_{i}f_{i}\leqq n$

‘’ of the ramification theory shows that the

residue field of $v_{1}$ is $\Delta_{0}$ .
REMARK 1. The same inequality also shows that $v_{1}$ is actually the only

extension of $v_{0}$ to $K_{1}=K_{0}(t)$ .
REMARK 2. The direct construction of $v_{1}$ is described as follows:

$v_{1}(\sum_{i=0}^{n-1}a_{i}t^{i})=\min_{0\leqq i\leqq n-1}(v_{0}(a_{i})+i\theta)$ for $a_{i}\in K_{0}$ .

We can also verify directly that this $v_{1}$ has the required properties without
using the above inequality.

(iii) The above discussion proves our theorem in case $\Gamma_{1}$ is finitely
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generated over $\Gamma_{0}$ , and $\Delta_{1}=\Delta_{0}$ . We shall proceed to the proof of the general
case (still assuming $\Delta_{1}=\Delta_{0}$) by help of Zorn’s lemma.

Let $\{\Gamma_{\lambda}|\lambda\in\Lambda\}$ be the set of all subgroups of $\Gamma_{1}$ containing $\Gamma_{0}$ , and define
the order in the indexing set $\Lambda$ by $\lambda\geqq\mu 0\Gamma_{\lambda}\supset\Gamma_{\alpha}$ . Then the index $0$ is just
the minimum element of $\Lambda$ .

We consider the index $0$ as an element of $K_{0}$ , and other $\lambda’ s$ as independent
variables over $K_{0}$ . Let $\Omega$ be the algebraic closure of the field obtained by
adjoining all $\lambda’ s$ to $K_{0}$ .

Let ee be the set of all pairs $(K, v)$ , satisfying the following conditions.
1. $K$ is an intermediate field between $K_{0}$ and $\Omega$ .
2’. $v$ is a valuation on $K$, extending $v_{0}$ .
3. The value group of $v$ is some $\Gamma_{\lambda}$ .
$4^{o}$ . The residue field of $v$ is $\Delta_{0}$ .
5. $K$ is contained in the algebraic closure of the field obtained by ad-

joining to $K_{0}$ all $\mu’ s$ in $\Lambda$ such that $\mu\leqq\lambda$ hold.
ee contains $(K_{0}, v_{0})$ , so ee is not empty. The order in ec defined by

$(K, v)\leqq(K^{\prime}, v^{\prime})\Leftrightarrow K^{\prime}\supset K$ , $v^{\prime}|K=v$

makes ec an inductive set. Any maximal element $(K_{1}, v_{1})$ in $X$ , which exists
by Zorn’s lemma, has the value group $\Gamma_{1}$ , since otherwise we could find some
$(K_{2}, v_{2})$ in Ee strictly greater than $(K_{1}, v_{1})$ by virtue of (i) and (ii).

Case (2).
(i) Assume $\Delta_{1}=\Delta_{0}(\xi)$ , where $\xi$ is transcendental over $\Delta_{0}$ . Let $K_{1}=K_{0}(t)$ ,

where $t$ is transcendental over $K_{0}$ .
The canonical homomorphism $\pi_{0}$ ; $R_{0}\rightarrow R_{0}/\mathfrak{m}_{0}$ can be extended to the sur-

jective homomorphism $R_{0}[t]\rightarrow\Delta_{0}[\xi]$ by $\pi_{0}(t)=\xi$ , the kernel $\mathfrak{p}$ being $\mathfrak{m}_{0}[t]$ .
Since any element of $K_{1}$ can be denoted by $F(t)/G(t)$ , where $F(t),$ $G(t)\in R_{0}[t]$

and either $F(t)\not\in \mathfrak{m}_{0}[t]$ or $G(t)\not\in \mathfrak{m}_{0}[t],$ $R_{1}=R_{0}[t]\mathfrak{p}$ is a valuation ring of $K_{1}$ ,

and the residue field is $\Delta_{0}(\xi)=\Delta_{1}$ .
Let $v_{1}$ be the valuation associated to $R_{1}$ . It is an extension of $v_{0}$ by the

construction. Any element $F(t)$ in $K_{0}[t]$ can be denoted as $F(t)=a\sum b_{i}t^{i}$ , with
$a,$ $b_{i}\in K_{0},$ $v_{0}(b_{i})\geqq 0$, with some $b_{\nu}=1$ . Since $\sum b_{i}t^{i}mod \mathfrak{m}_{1}$ is not $0,$ $\sum b_{i}t^{i}$ is a
unit in $R_{1}$ , and so we have $v_{1}(F(t))=v_{1}(a)\in\Gamma_{0}$ , which proves that the value
group of $v_{1}$ is $\Gamma_{0}$ .

(ii) Next assume $\Delta_{1}=\Delta_{0}(\xi)$ , where $\xi$ is algebraic over $\Delta_{0}$ . Let $\overline{F}(X)$ be
the monic irreducible polynomial in $\Delta_{0}[X]$ satisfied by $\xi$ , and let $F(X)$ be a
monic polynomial in $R_{0}[X]$ such that $\pi_{0}(F(X))=\overline{F}(X)$ .

It is well-known that
$v(\Sigma a_{i}X^{i})=\min_{i}v_{0}(a_{i})$

defines a valuation on $K_{0}(X)$ . If we have a decomposition
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$F(X)=F_{1}(X)F_{2}(X)$

into monic factors in $K_{0}[X]$ , we have, applying the above valuation $v$ ,

$0=v(F(X))=v(F_{1}(X))+v(F_{2}(X))$ , $v(F_{i}(X))\leqq 0$ ,

which leads to $v(F_{i}(X))=0$ , and so

$F_{i}(X)\in R_{0}[X]$ , $\overline{F}(X)=\overline{F}_{1}(X)\overline{F}_{2}(X)$ , degree $\overline{F}_{i}(X)=degreeF_{i}(X)$ .
Since $\overline{F}(X)$ is irreducible in $\Delta_{0}[X]$ , one of $F_{i}(X)$ must be of degree $0$ , which
shows that $F(X)$ is irreducible in $K_{0}[X]$ .

Let $t$ be a root of $F(X)$ , and set $K_{1}=K_{0}(t)$ . $v_{0}$ can be extended to a
valuation $v_{1}$ on $K_{1}$ . Then the residue field of $v_{1}$ is obviously isomorphic to $\Delta_{1}$

$=\Delta_{0}(\xi)$ . Since $[\Delta_{1} : \Delta_{0}]=[K_{1} : K_{0}]$ , the inequality of the ramification theory
shows that $v_{1}$ has the value group $\Gamma_{0}$ .

REMARK 3. $v_{1}$ is the unique extension of $v_{0}$ on $K_{1}$ .
REMARK 4. The valuation ring of $v_{1}$ is $R_{0}[t]_{P}$ , where $\mathfrak{p}=\mathfrak{m}_{0}+\mathfrak{m}_{0}t+\cdots$

$+\mathfrak{m}_{0}t^{n-1}$ ($n=[K_{1}$ : $K_{0}]=degree$ of $F(X)$). We could proceed as in (i) without
using the ramification theory.

(iii) The same idea as in case 1 (iii) proves our theorem in case $\Delta_{1}$ is
any extension of $\Delta_{0}$ and $\Gamma_{1}=\Gamma_{0}$ . Thus the proof of our theorem is completed.

We have
COROLLARY. Let $\Gamma$ be an arbitrary non-trivial linearly ordered abelian

group, and $\Delta$ be an arbitrary field. Then there exists a field $K$ and a valu-
ation $v$ on $K$, which has $\Gamma$ as the value group and $\Delta$ as the residue field.

Moreover, if the characteristic of $\Delta$ is $p\neq 0$ , we can preassign the charac-
teristic of $K$ as $0$ or as $p$ .

PROOF. It is enough to extend the trivial valuation on the prime field of
$\Delta$ , or the $p$ -adic valuation on the field of rational numbers.

NOTE. We have another proof of the corollary in equicharacteristic case
as follows: Let $K$ be the set of all the maps $x$ of $\Gamma$ to $\Delta$ whose supports
are well-ordered, where the support of $\chi$ means the set $\{\gamma\in\Gamma|x(\gamma)\neq 0\}$ . We
define $x+y$ and $xy$ by

$(x+y)(\gamma)=x(r)+y(r)$

$(xy)(\gamma)=\sum_{\alpha+\beta=\gamma}x(\alpha)y(\beta)$ ,

which are shown to be well-defined, and makeKafield. Then v$(x)=\min supp(x)$

defines a valuation on $K$ satisfying the required conditions. For the details,
cf. Neumann [4]. This field has obviously the same characteristic as $\Delta$ , and
has complete uniform structure.
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