On the limit of a monotonous sequence of Cousin's domains

By Joji KAJIWARA

(Received March 27, 1964)

§ 0. Introduction.

In the previous paper [8] it is remarked that the limit of a monotonously decreasing sequence of Cousin-I domains in C^n is not necessarily a Cousin-I domain for $n \ge 3$. In the present paper we shall prove that the limit of a monotonously increasing sequence of Cousin-I domains over a Stein manifold is a Cousin-I domain. Concerning the Cousin-II problem, however, we can prove that the limit of the monotonously increasing sequence of Cousin-II domains over a Stein manifold is a Cousin-II domain, only in case that it is simply connected. The proof is based on the theory of domains of holomorphy due to Docquier-Grauert [5] and the approximation theory due to Behnke [1].

§ 1. Increasing sequence of domains.

Let $\mathfrak M$ be a complex manifold. We say that (D,Φ) is a domain over $\mathfrak M$ if Φ is a holomorphic mapping of a complex manifold D into $\mathfrak M$ such that Φ is locally biholomorphic. A domain (D,Φ) over $\mathfrak M$ is called a covering manifold over $\mathfrak M$ if there exists a neighbourhood U of any point x of $\mathfrak M$ such that Φ maps each connected component of $\Phi^{-1}(U)$ biholomorphically onto U. Let (D_1,Φ_1) and (D_2,Φ_2) be domains over $\mathfrak M$. We say that (D_1,Φ_1) is a domain over (D_2,Φ_2) and write $(D_1,\Phi_1)<(D_2,\Phi_2)$ if there exists a holomorphic mapping τ of D_1 in D_2 such that $\Phi_1=\Phi_2\circ\tau$. By this relation < the set of all domains over $\mathfrak M$ forms a partially ordered set. We consider a sequence $\{(D_n,\Phi_n); n=1,2,3,\cdots\}$ of domains over $\mathfrak M$ such that $(D_n,\Phi_n)<(D_{n+1},\Phi_{n+1})$ for $n\geq 1$ and call it a monotonously increasing sequence of domains over $\mathfrak M$. Then there exists a holomorphic mapping τ_m^n of D_n in D_m such that $\Phi_n=\Phi_m\circ\tau_m^n$ for any $m\geq n$.

Let E be the subset of the product set $\prod_{n=1}^{\infty} D_n$ consisting of all (x_n) which satisfies $x_n = \tau_n^N(x_N)$ $(n \ge N)$ for some N. We say that (x_n) and $(y_n) \in E$ are equivalent modulo R if $x_n = y_n$ $(n \ge N)$ for some N. The factor set E/R is denoted by D. Let x_n be a point of D_n . We put $x_m = \tau_m^n(x_n)$ for $m \ge n$ and

take x_m arbitrarily for m < n. If we define that $\tau_n(x_n)$ is the class which has (x_n) as a representative, then we have a mapping τ_n of D_n in D. Let x be an element of D, which is represented by $(x_n) \in E$ such that $x_n = \tau_n^N(x_N)$ $(n \ge N)$. If we put $\Phi(x) = \Phi_N(x_N)$, we have a mapping Φ of D in \mathfrak{M} such that $\Phi_n = \Phi \circ \tau_n$ for $n \ge 1$. Let U_N be an open neighbourhood of x_N such that the restriction $\Phi_N | U_N$ of Φ_N to U_N is a biholomorphic mapping of U_N onto a local coordinate neighbourhood of $\Phi_N(x_N)$ in \mathfrak{M} . If we put $U_n = \tau_n^N(U_N)$ for $n \ge N$, τ_n^N maps U_N biholomorphically onto U_n . Hence $\tau_N | U_N$ is an injective mapping of U_N onto the subset V(x) of D consisting of all elements of D which have a representative $(x_n) \in E$ such that $x_n = \tau_n^N(x_N)$ $(n \ge N)$ for $x_N \in U_N$. A subset of D containing such V(x) is called a neighbourhood of x. If we define neighbourhoods of D in this way, D is a Hausdorff space. Let μ be a biholomorphic mapping of $\Phi_N(U_N)$ onto an open set Z of a complex Euclidean space. Then $\mu \circ (\Phi \mid V) = \mu \circ \Phi_N \circ (\tau_N \mid U_N)^{-1}$ is a homeomorphism of V(x) onto Z. Let x' be another point of D. Then there exist, respectively, neighbourhoods V'(x') and $U'_{N'}$ of x' and $x'_{N'} \in D_{N'}$ such that $\Phi_{N'}$ maps $U'_{N'}$ biholomorphically onto a local coordinate neighbourhood of $\Phi_{N'}(x'_{N'})$ in $\mathfrak M$ and that $\Phi_{N'}$ maps $U'_{N'}$ homeomorphically onto V(x'). Let μ' be a biholomorphic mapping of $\Phi_{N'}(U'_{N'})$ onto an open set Z' of a complex Euclidean space. Suppose that $V(x) \cap V'(x') \neq \phi$. Then

 $(\mu \circ (\Phi \mid V)) \circ (\mu' \circ (\Phi \mid V'))^{-1} = \mu \circ (\Phi_N \mid U_N) \circ (\tau_{N''}^N \mid U_N)^{-1} \circ (\tau_{N''}^{N''} \mid U_N') \circ (\Phi_{N'} \mid U_{N'}')^{-1} \circ \mu'^{-1}$ is a biholomorphic mapping of $\mu'(\Phi'(V \cap V'))$ onto $\mu(\Phi(V \cap V'))$ where $N'' = \max(N, N')$. Hence we can induce a complex structure in D such that τ_n is a holomorphic mapping of D_n in D ($n \ge 1$) and that Φ is a holomorphic mapping of D in \mathfrak{M} which is locally biholomorphic. Therefore (D, Φ) is a domain over \mathfrak{M} .

Let (D', Φ') be a domain over \mathfrak{M} such that $(D_n, \Phi_n) < (D', \Phi')$ $(n \ge 1)$ with a holomorphic mapping τ'_n of D_n in D' satisfying $\tau'_n = \tau'_m \circ \tau^n_m$ for $m \ge n$. In this case $\{(D_n, \Phi_n); n = 1, 2, 3, \cdots\}$ is called a monotonously increasing sequence over (D', Φ') . Let $(x_n) \in E$ be a representative of $x \in D$ such that $x_n = \tau^N_n(x_n)$ $n \ge N$ for $x_N \in D_N$. If we put $\tau'(x) = \tau'_N(x_N)$, τ' is well-defined and a holomorphic mapping of D in D' such that $\Phi = \Phi' \circ \tau'$. Hence (D, Φ) is a domain over \mathfrak{M} such that $\{(D_n, \Phi_n); n = 1, 2, 3, \cdots\}$ is a monotonously increasing sequence over (D, Φ) and that $(D, \Phi) < (D', \Phi')$ for all (D', Φ') over which $\{(D_n, \Phi_n); n = 1, 2, 3, \cdots\}$ is a monotonously increasing sequence. We call this domain (D, Φ) over \mathfrak{M} the limit of a monotonously increasing sequence $\{(D_n, \Phi_n); n = 1, 2, 3, \cdots\}$ of domains over \mathfrak{M} and denote it by $\lim (D_n, \Phi_n)$. If D_n is a domain in \mathfrak{M} for each n, then D coincides with the usual $\lim D_n = \bigcup_{n=1}^\infty D_n$.

LEMMA 1. Let G be a relatively compact subdomain of the limit (D, Φ) of a monotonously increasing sequence $\{(D_n, \Phi_n); n=1, 2, 3, \cdots\}$ of domains over

a complex manifold \mathfrak{M} . Then there exist an integer m and a relatively compact subdomain G_m of D_m such that τ_m maps G_m biholomorphically onto G.

PROOF. Let $E_n \subset D_n$ be a relatively compact subdomain of D_n such that $\tau_m^n(E_n) \subset E_m$ and $\overline{G} \subset \bigcup_{n=1}^{\infty} \tau_n(E_n)$ for $m \ge n \ge 1$. Since $\{\tau_n(E_n); n = 1, 2, 3, \cdots\}$ is an open covering of a compact set \overline{G} , there exists an integer n such that $\overline{G} \subset \tau_n(\overline{E}_n)$. We shall prove that τ_m maps $K_m = \tau_m^n(\overline{E}_n)$ injectively into D for sufficiently large m. If this is not true, there exist sequences $\{y_{\nu}; \nu = n, n+1,$ $n+2, \dots$, $\{x'_{\nu}; \nu=n, n+1, n+2, \dots\}$ and $\{x''_{\nu}; \nu=n, n+1, n+2, \dots\}$ of points y_{ν} in D and x'_{ν} , x''_{ν} in \bar{E}_n such that $\tau^n_{\nu}(x'_{\nu}) \neq \tau^n_{\nu}(x''_{\nu})$ and $y_{\nu} = \tau_n(x'_{\nu}) = \tau_n(x''_{\nu})$. Since \bar{E}_n and $\tau_n(\bar{E}_n)$ are compact, there exists a subsequence $\{p_\nu\}$ of $\{n, n+1, n+2, \cdots\}$ such that $x'_{p\nu} \to x' \in \bar{E}_n$, $x''_{p\nu} \to x'' \in \bar{E}_n$ and $y_{p\nu} \to y \in \tau_n(\bar{E}_n)$ as $\nu \to \infty$. Since $y_{\nu} = \tau_n(x_{\nu}') = \tau_n(x_{\nu}'')$, we have $y = \tau_n(x'') = \tau_n(x'')$. Hence there exists an integer l such that $\tau_l^n(x') = \tau_l^n(x'')$. Therefore there exist neighbourhoods U' and U''of x' and x'' such that τ_l^n maps U' and U'' biholomorphically onto $U_l = \tau_l^n(U')$ $= \tau_i^n(U'')$ and that τ_i maps U_i biholomorphically onto $\tau_i(U)$. Since $x'_{p_p} \to x'$ and $x''_{p_{\nu}} \rightarrow x''$ as $\nu \rightarrow \infty$, there exists an integer μ such that $x'_{\mu} \in U'$, $x''_{\mu} \in U''$ and $\mu > l$. Therefore we have $\tau_l^n(x'_\mu) = \tau_l^n(x'_\mu)$. Hence we have $\tau_\mu^n(x'_\mu) = \tau_\mu^n(x'_\mu)$. But this is a contradiction. If we put $G_m = \tau_m^{-1}(G) \cap K_m$, we have our lemma.

§ 2. Domain of holomorphy.

Let $\{(D_i, \Phi_i); i \in I\}$ be a set of domains over \mathfrak{M} . We denote by D the set of all (x_i) such that a neighbourhood U of a point x in \mathfrak{M} and a neighbourhood U_i of x_i in D_i for each i satisfy $x = \Phi_i(x_i)$ and $U = \Phi_i(U_i)$. We can naturally induce a complex structure in D such that the canonical mapping λ_i of D in D_i is holomorphic for each i and the mapping Φ defined by $\Phi = \Phi_i \circ \lambda_i$ is a mapping of D in \mathfrak{M} which is locally biholomorphic. Hence (D, Φ) is a domain over \mathfrak{M} . (D, Φ) is called the *intersection of domains* (D_i, Φ_i) $(i \in I)$ and denoted by $\bigcap_{i \in I} (D_i, \Phi_i)$. If each D_i is a subdomain of \mathfrak{M} , then D coincides with the open kernel of the usual intersection $\bigcap_{i \in I} D_i$.

Let (X, Φ) be a domain over \mathfrak{M} and f be a holomorphic function in X. A domain (X', Φ') over \mathfrak{M} is called a *domain of holomorphic prolongation of* f if there exist a holomorphic function f' in X' and a holomorphic mapping τ of X in X' such that $\Phi = \Phi' \circ \tau$ and $f = f' \circ \tau$. In this case it holds that $(X, \Phi) < (X', \Phi')$. f' is called a holomorphic prolongation of f over (X', Φ') . Consider a fixed domain (X, Φ) over \mathfrak{M} and a holomorphic function f in X. A domain $(\tilde{X}_f, \tilde{\Phi}_f)$ is called the domain of maximal holomorphic prolongation of f if the following conditions are satisfied:

(i) There exists a holomorphic function \widetilde{f} in \widetilde{X}_f which is a holomorphic

prolongation of f over $(\widetilde{X}_f, \widetilde{\Phi}_f)$.

(ii) If f' is a holomorphic prolongation of f over a domain (X', Φ') over \mathfrak{M} , then \tilde{f} is a holomorphic prolongation of f' over $(\tilde{X}_f, \tilde{\Phi}_f)$.

A domain over \mathfrak{M} is called a *domain of holomorphy* if it is the domain of maximal holomorphic prolongation of a holomorphic function in a domain over \mathfrak{M} . Due to Cartan [3] (exposé 7) there exists such domain $(\widetilde{X}_f, \widetilde{\Phi}_f)$ for any holomorphic function f in a domain (X, Φ) over \mathfrak{M} . If \mathfrak{M} is a Stein manifold, a domain of holomorphy over \mathfrak{M} is holomorphically convex from Docquier-Grauert [5].

Conversely, suppose that (X, Φ) is a holomorphically convex domain over a Stein manifold \mathfrak{M} . We can construct a holomorphic function f in X by using Bochner-Martin's method [2] such that f is unbounded at each boundary point of (X, Φ) . Since the holomorphically convex domain (X, Φ) over \mathfrak{M} is a Stein manifold (see Grauert [7]), X is holomorphically separable, that is, there exists a holomorphic function in X which takes different values at two given different points in X. Let $A = \{x_i : i = 1, 2, 3, \cdots\}$ be a dense subset of X such that $\Phi^{-1}\{x_i\} \subset A$ for any i. There exists a holomorphic function $f_{ij} = f_{ji}$ in X such that $f_{ij}(x_i) \neq f_{ij}(x_j)$ for $i \neq j$. If we take a suitable double sequence $\{a_{ij} : i, j = 1, 2, 3, \cdots\}$ of complex numbers, $g = \sum_{i \neq j} a_{ij} f_{ij}$ converges absolutely and uniformly in any compact subset of X and $g(x_i) \neq g(x_j)$ for any $i \neq j$. Then, for suitable complex numbers a and b, h = af + bg is a holomorphic function in X which is unbounded at each boundary point of (X, Φ) and satisfies $h(x_i) \neq h(x_j)$ for any $i \neq j$. (X, Φ) is the domain of maximal holomorphic prolongation of h and is a domain of holomorphy.

Hence we obtained

LEMMA 2. A domain (X, Φ) over a Stein manifold \mathfrak{M} is holomorphically convex, if and only if (X, Φ) is a domain of holomorphy.

Hereafter we shall denote a Stein manifold by \mathfrak{M} . Let (X, Φ) be a domain over \mathfrak{M} and O_X be the set of all holomorphic functions in X. For any $f \in O_X$ we denote by $(\widetilde{X}_f, \widetilde{\Phi}_f)$ the domain of maximal holomorphic prolongation of f. We denote by $(\widetilde{X}, \widetilde{\Phi})$ the intersection of $(\widetilde{X}_f, \widetilde{\Phi}_f)$ for all $f \in O_X$. $(\widetilde{X}, \widetilde{\Phi})$ can be characterized by the following properties:

- (i) For any $f \in O_X$, there exists a holomorphic prolongation of f over $(\tilde{X}, \tilde{\Phi})$.
 - (ii) If a domain (X', Φ') has the above property, then $(X', \Phi') < (\widetilde{X}, \widetilde{\Phi})$.
 - $(\widetilde{X}, \widetilde{\Phi})$ is called the envelope of holomorphy of a domain (X, Φ) .

LEMMA 3. The envelope of holomorphy $(\widetilde{X}, \widetilde{\Phi})$ of a domain (X, Φ) over a Stein manifold \mathfrak{M} is a domain of holomorphy.

PROOF. Let O_X be the set of all holomorphic functions in X and $(\widetilde{X}_f, \widetilde{\Phi}_f)$ be the domain of maximal holomorphic prolongation of $f \in O_X$. We consider

an open covering $\{V_i; i \in I\}$ of \mathfrak{M} with the following properties:

There exists a holomorphic mapping μ_i of V_i onto a domain of holomorphy W_i of a complex Euclidean space. We put $U_i = \widetilde{\Phi}^{-1}(V_i)$ for any $i \in I$. Then $(U_i, \, \mu_i \circ (\widetilde{\Phi} \mid U_i))$ is the intersection of holomorphically convex open sets $(\widetilde{\Phi}_f^{-1}(V_i), \, \mu_i \circ \widetilde{\Phi}_f \mid \widetilde{\Phi}_f^{-1}(V_i))$ over the complex Euclidean space for all $f \in O_X$. Therefore $(U_i, \, \mu_i \circ (\widetilde{\Phi} \mid U_i))$ is holomorphically convex by Cartan-Thullen's results [4]. Hence $(\widetilde{X}, \, \widetilde{\Phi})$ is p_4 -convex in the sense of Docquier-Grauert [5]. Therefore $(\widetilde{X}, \, \widetilde{\Phi})$ is holomorphically convex and is a domain of holomorphy from Lemma 2.

LEMMA 4. Let $(D_1, \Phi_1) < (D_2, \Phi_2)$ be domains over a Stein manifold \mathfrak{M} and τ be a holomorphic mapping of D_1 in D_2 with $\Phi_1 = \Phi_2 \circ \tau$. Let $(\widetilde{D}_1, \widetilde{\Phi}_1)$ and $(\widetilde{D}_2, \widetilde{\Phi}_2)$ be, respectively, the envelopes of holomorphy of (D_1, Φ_1) and (D_2, Φ_2) . Let λ_1 and λ_2 be, respectively, the canonical mapping of D_1 in \widetilde{D}_1 and that of D_2 in \widetilde{D}_2 . Then there exists a holomorphic mapping $\widetilde{\tau}$ of \widetilde{D}_1 in \widetilde{D}_2 such that $\lambda_2 \circ \tau = \widetilde{\tau} \circ \lambda_1$.

PROOF. By Remmert's result [9] there exists a biholomorphic mapping μ of \widetilde{D}_2 onto a regular analytic set A in C^{α} as \widetilde{D}_2 is a Stein manifold. Then $\mu \circ \lambda_2 \circ \tau$ is a holomorphic mapping of D_1 in C^{α} . Since $(\widetilde{D}_1, \widetilde{\Phi}_1)$ is the envelope of holomorphy of (D_1, Φ_1) , there exists a holomorphic mapping ϕ of \tilde{D}_1 in C^{α} such that $\mu \circ \lambda_2 \circ \tau = \phi \circ \lambda_1$. We shall prove that $\phi(\widetilde{D}_1) \subset A$. Suppose that $\phi(x_1)$ $\notin A$ for $x_1 \in \widetilde{D}_1$. x_1 can be joined by a smooth Jordan curve $C = \{x(t); 0 \le t \le 1\}$ in \widetilde{D}_1 with a point $x_0 \in \lambda_1(D_1) \subset \widetilde{D}_1$ such that $x_0 = x(0)$ and $x_1 = x(1)$. Let t_0 be the supremum of t' such that $\{x(t); 0 \le t \le t'\} \subset A$. Since A is closed, we have $0 < t_0 < 1$. Since $z_0 = \phi(x(t_0)) \in A$, there exist a neighbourhood V of z_0 and holomorphic functions f_1, f_2, \cdots and f_s in C^{α} such that $V \cap A = \{z ; f_1(z) = f_2(z)\}$ $=\cdots=f_s(z)=0$, $z\in V$. From the theorem of identity $f_i\circ\mu\circ\lambda_2\circ\tau$ is identically zero in D_1 for any i. There exists t_1 such that $t_0 < t_1 < 1$ and $\phi(x(t_1)) \in V - A$. Then f_i satisfies $a = f_i(\phi(x(t_1))) \neq 0$ for some $1 \leq i \leq s$. $1/(f_i \circ \phi - a)$ is a meromorphic function in \widetilde{D}_1 which is identically -1/a in the open subset $\lambda_1(D_1)$ of \widetilde{D}_1 and has a pole at a point $x(t_1)$ of the envelope of holomorphy $(\widetilde{D}_1,\widetilde{\varPhi}_1)$ of (D_1, Φ_1) . But this is a contradiction. Hence we have $\phi(\widetilde{D}_1) \subset A$. Therefore the mapping $\tilde{\tau}=\mu^{-1}\circ\phi$ is a holomorphic mapping of \widetilde{D}_1 in \widetilde{D}_2 such that $\lambda_2\circ au$ $=\tilde{\tau}\circ\lambda_1$. Since $\tilde{\Phi}_1\circ\lambda_1=\tilde{\Phi}_2\circ\tilde{\tau}\circ\lambda_1$, we have $\tilde{\Phi}_1=\tilde{\Phi}_2\circ\tilde{\tau}$.

LEMMA 5. Let $\{(D_n, \Phi_n); n=1, 2, 3, \cdots\}$ be a monotonously increasing sequence of domains of holomorphy over a Stein manifold \mathfrak{M} . Then its limit (D, Φ) is also a domain of holomorphy.

PROOF. It suffices to prove that D is p_6 -convex in the sense of Docquier-Grauert [5]. We put $B(a) = \{z \; ; \; |z_1| \leq 1, \; |z_2| < a, \cdots, \; |z_\alpha| < a\}$ and $\delta B(a) = \{z \; ; \; |z_1| = 1, \; |z_2| < a, \cdots, \; |z_\alpha| < a\}$ where α is the dimension of \mathfrak{M} . Let φ be a biholomorphic mapping of B = B(1) in D such that $\varphi(\delta B) \subseteq D$. Let W be a relatively compact open neighbourhood of $\varphi(\delta B \cup \overline{B(1/2)})$. From Lemma 1

there exist an integer m_0 and a relatively compact open set W_0 in D_{m_0} such that σ_{m_0} maps W_0 biholomorphically onto W. For any 1/2 < a < 1 there exists $\varepsilon > 0$ such that $\varphi(\overline{G(a)}) \subset W_0$ for $G(a) = \{z \; ; \; 1 - \varepsilon < |z_1| < 1 + \varepsilon, \; |z_2| < a, \cdots, |z_\alpha| < a\} \cup \{z \; ; \; |z_1| < 1 + \varepsilon, \; |z_2| < 1/2, \cdots, |z_\alpha| < 1/2\}.$ $\eta = (\tau_{m_0}|W_0)^{-1} \circ \varphi$ maps G(a) biholomorphically in D_{m_0} . As in the proof of Lemma 4 there exists a holomorphic mapping $\widetilde{\eta}_a$ of $\widetilde{G(a)} = \{z \; ; \; |z_1| < 1 + \varepsilon, \; |z_2| < a, \cdots, |z_\alpha| < a\}$, which is the envelope of holomorphy of G(a) (see e.g. Bochner-Martin [2], Chap. IV), in D_{m_0} such that $\widetilde{\eta}_a = \eta_a$ in G(a). From the theorem of identity we have $\varphi = \tau_{m_0} \circ \widetilde{\eta}_a$ in $\widetilde{G(a)}$. Since φ is biholomorphic, $\widetilde{\eta}_a$ is also biholomorphic. Thus we have proved that there exists a biholomorphic mapping $\widetilde{\eta}$ of B in D_{m_0} such that $\varphi = \tau_{m_0} \circ \widetilde{\eta}$ and $\widetilde{\eta}(\delta B) \subset D_{m_0}$. Since D_{m_0} is D_{m_0} so that D_{m_0} and D_{m_0} such that D_{m_0} such that D_{m_0} and D_{m_0} such D_{m_0} . Since D_{m_0} is D_{m_0} so that D_{m_0} such that D_{m_0} and D_{m_0} such D_{m_0} . Since D_{m_0} is D_{m_0} so that D_{m_0} such that D_{m_0}

§ 3. Cohomology of an increasing sequence of domains.

Let $\{(D_n, \Phi_n); n=1, 2, 3, \cdots\}$ be a monotonously increasing sequence of domains over \mathfrak{M} , (D, Φ) be its limit and τ_n^n and τ_n be, respectively, the canonical mapping of D_n in D_m $(m \ge n)$ and that of D_n in D $(n \ge 1)$. Then there exists a canonical homomorphism π_n^m of $H^1(D_m, \mathbb{Q})$ in $H^1(D_n, \mathbb{Q})$ for $m \ge n$ such that $\pi_n^l = \pi_n^m \circ \pi_m^l$ for $l \ge m \ge n$ where \mathbb{Q} is the sheaf of all germs of holomorphic functions. Hence $\{H^1(D_n, \mathbb{Q}); \pi_n^m\}$ is an inverse system of C-module over a directed set $\{1, 2, 3, \cdots\}$. We consider its inverse limit and denote it by $\lim H^1(D_n, \mathbb{Q})$. The canonical homomorphisms of $H^1(D, \mathbb{Q})$ in $H^1(D_n, \mathbb{Q})$ induce the canonical homomorphism of $H^1(D, \mathbb{Q})$ in $\lim H^1(D_n, \mathbb{Q})$. Under these assumptions we have

LEMMA 6. The canonical homomorphism of $H^1(D, \mathbb{Q})$ in $\lim H^1(D_n, \mathbb{Q})$ is injective.

PROOF. Since the canonical homomorphism of $H^1(\mathfrak{U}, \mathfrak{F})$ in $H^1(X, \mathfrak{F})$ is injective for any sheaf \mathfrak{F} of abelian groups in a topological space X and for any open covering \mathfrak{U} of X, it suffices to prove the following statement:

If $\{f_{ij}\}$ is an element of $Z^1(\mathfrak{V}, \mathfrak{D})$ (cocycle) for any open covering $\mathfrak{V} = \{V_i; i \in I\}$ of D such that $\{f_{ij} \circ \tau_n\} \in B^1(\tau_n^{-1}(\mathfrak{V}); \mathfrak{D})$ (coboundary) for any $n \geq 1$ where $\tau_n^{-1}(\mathfrak{V}) = \{\tau_n^{-1}(V_i); i \in I\}$, then $\{f_{ij}\} \in B^1(\mathfrak{V}, \mathfrak{D})$.

Let $(\widetilde{D}_n, \widetilde{\Phi}_n)$ and $(\widetilde{D}, \widetilde{\Phi})$ be, respectively, the envelope of holomorphy of (D_n, Φ_n) $(n=1, 2, 3, \cdots)$ and (D, Φ) . From Lemma 4 $\{(\widetilde{D}_n, \widetilde{\Phi}_n); n=1, 2, 3, \cdots\}$ is a monotonously increasing sequence of domains over (D, Φ) . Hence from Lemma 5 $\lim (\widetilde{D}_n, \widetilde{\Phi}_n)$ is a domain of holomorphy satisfying $(D, \Phi) < \lim (\widetilde{D}_n, \widetilde{\Phi}_n) < (\widetilde{D}, \widetilde{\Phi})$. Since $(\widetilde{D}, \widetilde{\Phi})$ is the envelope of holomorphy of (D, Φ) , we have $(\widetilde{D}, \widetilde{\Phi}) = \lim (\widetilde{D}_n, \widetilde{\Phi}_n)$. We denote by $\tau_n, \tau_n^n, \widetilde{\tau}_n, \widetilde{\tau}_n^n, \lambda_n$ and λ the canonical mapping of D_n in D, that of D_n in D_m , that of \widetilde{D}_n in \widetilde{D}_n , that of \widetilde{D}_n in \widetilde{D}_m ,

42 J. Kajiwara

that of D_n in \widetilde{D}_n and that of D in \widetilde{D} , respectively. Then the commutativity holds in the following diagram:

Let $\{Q_n\,;\,n=1,\,2,\,3,\,\cdots\}$ be a sequence of relatively compact open subsets of D such that $Q_n \Subset Q_{n+1}$ $(n \geq 1)$ and $D = \bigcup_{n=1}^{\infty} Q_n$. From Lemmas 2 and 3 \tilde{D} is holomorphically convex. There exists a sequence of analytic polycylinders P_n defined by holomorphic functions in \tilde{D} such that $P_n \Subset P_{n+1}$, $\lambda(Q_n) \subset P_n$ for $n \geq 1$ and $\tilde{D} = \bigcup_{n=1}^{\infty} P_n$. Since $(D, \Phi) = \lim (D_n, \Phi_n)$ and $(\tilde{D}, \tilde{\Phi}) = \lim (\tilde{D}_n, \tilde{\Phi}_n)$, there exists a monotonously increasing sequence $\{\nu_n\,;\,n=1,\,2,\,3,\,\cdots\}$ of integers such that τ_{ν_n} and $\tilde{\tau}_{\nu_n}$ map, respectively, relatively compact open subsets Q_{ν_n} of D_{ν_n} and P_{ν_n} of D_{ν_n} biholomorphically onto Q_{ν_n} of D_{ν_n} and D_{ν_n} of D_{ν_n} biholomorphically onto Q_{ν_n} of D_{ν_n} and D_{ν_n} of D_{ν_n} biholomorphically onto Q_{ν_n} of D_{ν_n} and D_{ν_n} of D_{ν_n} biholomorphically onto Q_{ν_n} of D_{ν_n} and D_{ν_n} of D_{ν_n} biholomorphically onto Q_{ν_n} of D_{ν_n} and D_{ν_n} of D_{ν_n} biholomorphically onto Q_{ν_n} of D_{ν_n} of D_{ν_n} biholomorphically onto Q_{ν_n} of D_{ν_n} and D_{ν_n} biholomorphically onto D_{ν_n} of D_{ν_n} biholomorphically onto D_{ν_n} biholomorphically onto D_{ν_n} of D_{ν_n} biholomorphically onto $D_{\nu_$

$$\tau^{\nu_n}_{\nu_{n+1}}({}'Q_{\nu_n}) \subset {}'Q_{\nu_{n+1}} \text{,} \quad \tau^{\nu_n}_{\nu_{n+1}}({}'P_{\nu_n}) \subset {}'P_{\nu_{n+1}} \text{,} \quad \lambda_{\nu_n}({}'Q_{\nu_n}) \subset {}'P_{\nu_n} \qquad (n \geqq 1)$$

Without losing generality, we may suppose that $\nu_n = n$.

Since $\{f_{ij} \circ \tau_n\} \in B^1(\tau_n^{-1}(\mathfrak{V}), \mathfrak{D})$, there exists $\{f_i^n\} \in C^0(\tau_n^{-1}(\mathfrak{V}), \mathfrak{D})$ such that $f_{ij} \circ \tau_n = f_i^n - f_j^n$ in $\tau_n^{-1}(V_i) \cap \tau_n^{-1}(V_j) \neq \phi$. If we put $f^n = f_i^n - f_i^{n+1} \circ \tau_{n+1}^n$ in $\tau_n^{-1}(V_i)$, then, f^n is well-defined and holomorphic in D_n . Since $(\widetilde{D}_n, \widetilde{\Phi}_n)$ is the envelope of holomorphy of (D_n, Φ_n) , there exists a holomorphic prolongation \widetilde{f}^n of f^n over $(\widetilde{D}_n, \widetilde{\Phi}_n)$. There holds $f^n = \widetilde{f}^n \circ \lambda_n$ for $n \geq 1$. Since $\widetilde{f}^n \circ (\widetilde{\tau}_n | P_n)^{-1}$ is a holomorphic function in P_n , there exists a holomorphic function \widetilde{h}^n in \widetilde{D} $(n \geq 1)$ which satisfies $|\widetilde{f}^n \circ (\widetilde{\tau}_n | P_n)^{-1} - \widetilde{h}^n| < 2^{-n}$ in P_{n-1} for $n \geq 2$ from Behnke's approximation theory [1]. If we put $h^n = \widetilde{h}^n \circ \lambda$, the holomorphic function h^n in D satisfies $|f^n \circ (\tau_n | P_n)^{-1} - h^n| < 2^{-n}$ in P_n for $n \geq 2$. We consider holomorphic functions in P_n defined by $P_n \circ (P_n) \circ ($

$$(f_i^n \circ (\tau_n | Q_n)^{-1} + g^n) - (f_i^{n+1} \circ (\tau_{n+1} | Q_{n+1})^{-1} + g^{n+1}) = f^n \circ (\tau_n | Q_n)^{-1} - h^n$$

in any $V_i \cap Q_n$. Hence $f_i^n \circ (\tau_n|'Q_n)^{-1} + g^n$ converges uniformly in any compact subset of V_i to a holomorphic function f_i in V_i . Since

$$f_{i,i} = (f_i^n \circ (\tau_n | Q_n)^{-1} + g^n) - (f_i^n \circ (\tau_n | Q_n)^{-1} + g^n)$$

in $V_i \cap V_j \cap Q_n$, the coboundary of $\{f_i\} \in C^0(\mathfrak{B}, \mathfrak{D})$ is just the original cocycle $\{f_{ij}\}$.

§ 4. Cousin domains.

A collection $\mathfrak{C} = \{(m_i, V_i); i \in I\}$ of pairs of an open subset V_i of a complex manifold X and a meromorphic function m_i in V_i is called a Cousin-I (or Cousin-II) distribution in X if $m_i - m_j \in H^0(V_i \cap V_j, \mathfrak{D})$ (or $m_i/m_j \in H^0(V_i \cap V_j, \mathfrak{D}^*)$) for any $V_i \cap V_j \neq \phi$ and $\{V_i; i \in I\}$ is an open covering of X where \mathfrak{D}^* is the sheaf of all germs of holomorphic mapping in $\dot{C} = GL(1, C)$. A meromorphic function m in X is called a solution of the Cousin-I (or Cousin-II) distribution \mathfrak{C} if $m - m_i \in H^0(V_i, \mathfrak{D})$ (or $m/m_i \in H^0(V_i, \mathfrak{D}^*)$) for any $i \in I$. A meromorphic function M in the universal covering manifold (X^*, λ^*) of X is called a multiform solution of \mathfrak{C} if M is the solution of the Cousin distribution $\{(m_i \circ \lambda^*, \lambda^{*-1}(V_i)); i \in I\}$. If any Cousin-I (or Cousin-II) manifold. If any Cousin-I (or Cousin-II) distribution in X has a solution, X is called a Cousin-I (or Cousin-I) manifold. If any Cousin-I (or Cousin-I) manifold. A complex manifold X with the vanishing fundamental group $\pi_1(X)$ is called simply connected.

PROPOSITION 1. The limit (D, Φ) of a monotonously increasing sequence $\{(D_n, \Phi_n); n=1, 2, 3, \cdots\}$ of Cousin-I domains over a Stein manifold \mathfrak{M} is a Cousin-I domain. However, for any $\alpha \geq 3$ there exists an example of the limit of a monotonously decreasing sequence of Cousin-I domains in C^{α} which is not even a multiform Cousin-I domain.

PROOF. Let $\mathfrak{C} = \{(m_i, V_i); i \in I\}$ be a Cousin-I distribution in D. Then $\{(m_i \circ \tau_n, \tau_n^{-1}(V_i)); i \in I\}$ is a Cousin-I distribution in D_n . If we put $f_{ij} = m_i - m_j \in H^0(V_i \cap V_j)$, \mathfrak{D}) and $f_{ij}^n = m_i \circ \tau_n - m_j \circ \tau_n \in H^0(\tau_n^{-1}(V_i \cap V_j))$, \mathfrak{D} , then $\{f_{ij}^n\} \in Z^1(\tau_n^{-1}(\mathfrak{B}), \mathfrak{D})$ is the canonical image of $\{f_{ij}\} \in Z^1(\mathfrak{B}, \mathfrak{D})$ where $\mathfrak{B} = \{V_i; i \in I\}$ and $\tau_n^{-1}(\mathfrak{B}) = \{\tau_n^{-1}(V_i); i \in I\}$. Since D_n is a Cousin-I domain for any n, $\{f_{ij}^n\} \in B^1(\tau_n^{-1}(\mathfrak{B}), \mathfrak{D})$ for any n. Hence there exists a holomorphic function f_i in V_i for any $i \in I$ such that $f_{ij} = f_i - f_j$ in $V_i \cap V_j$ from Lemma 6. If we put $m = m_i - f_i$ in V_i , m is well-defined and a solution of \mathfrak{C} .

As for the latter half, we put

$$D = \{z; |z_1| < 1, |z_2| < 1, \dots, |z_{\alpha}| < 1\} - \{z; z_1 = z_2 = 0\}$$

and

$$\begin{split} D_p &= \{z \; ; \; |z_1| < (p+1)/p, \; |z_2| < (p+1)/p, \; \cdots, \; |z_\alpha| < (p+1)/p\} \\ &- \overline{D} \cap \{z \; ; \; z_1 = z_2 = 0\} \end{split}$$

for $p=1, 2, 3, \cdots$. As shown in the previous paper [8], D is the limit (precisely the open kernel of $\bigcap_{p=1}^{\infty} D_p$) of the monotonously decreasing sequence of Cousin-I

domains D_p in C^{α} but is not a Cousin-I domain. Since D is simply connected, D is not even a multiform Cousin-I domain.

Let (D, Φ) be a domain over a Stein manifold \mathfrak{M} and (D^*, λ^*) be the universal covering manifold of D. If we put $\Phi^* = \Phi \circ \lambda^*$, (D^*, Φ^*) is a domain over \mathfrak{M} . If (D, Φ) is a domain of holomorphy, it is p_7 -convex in the sense of Docquier-Grauert [5]. Hence (D^*, Φ^*) is p_7 -convex and is a domain of holomorphy. This follows also from the result of Stein [11] that a covering manifold over a Stein manifold is a Stein manifold.

Let $\{(D_n, \Phi_n); n=1, 2, 3, \cdots\}$ be a monotonously increasing sequence of domains over $\mathfrak{M}, (D, \Phi)$ be its limit, $(\widetilde{D}_n, \widetilde{\Phi}_n)$ and $(\widetilde{D}, \widetilde{\Phi})$ be, respectively, the envelope of holomorphy of (D_n, Φ_n) and (D, Φ) . Let $(D_n^*, \lambda_n^*), (D^*, \lambda_n^*), (\widetilde{D}_n^*, \widetilde{\lambda}_n^*)$ and $(\widetilde{D}^*, \widetilde{\lambda}^*)$ be, respectively, the universal covering manifolds of D_n, D, \widetilde{D}_n and \widetilde{D} for any n. If we put

$$\Phi_n^{\sharp} = \Phi_n \circ \lambda_n^{\sharp}$$
, $\Phi^{\sharp} = \Phi \circ \lambda^{\sharp}$, $\widetilde{\Phi}_n^{\sharp} = \widetilde{\Phi}_n \circ \lambda_n^{\sharp}$, $\widetilde{\Phi}^{\sharp} = \widetilde{\Phi} \circ \lambda^{\sharp}$,

then the commutativity holds in the three-dimensional diagram obtained by adding holomorphic mappings

$$D_n^{\sharp} \xrightarrow{\tau_m^{\sharp n}} D_m^{\sharp} \xrightarrow{\tau_m^{\sharp}} D^{\sharp}$$

to the following diagram and identifying the same symbols in it where each holomorphic mapping is the canonical one $(m \ge n)$:

From Lemma 1 (D^* , Φ^*) and (\tilde{D}^* , $\tilde{\Phi}^*$) are, respectively, the limits of monotonously increasing sequences $\{(D_n^*, \Phi_n^*); n=1, 2, 3, \cdots\}$ and $\{(\tilde{D}_n^*, \tilde{\Phi}_n^*); n=1, 2, 3, \cdots\}$. Let $\{P_n; n=1, 2, 3, \cdots\}$, $\{Q_n; n=1, 2, 3, \cdots\}$, $\{R_n; n=1, 2, 3, \cdots\}$ and $\{S_n; n=1, 2, 3, \cdots\}$ be, respectively, sequences of relatively compact subdomains of \tilde{D} , D, \tilde{D}^* and D^* with the following properties:

$$P_n \subset P_{n+1}$$
, $Q_n \subset Q_{n+1}$, $R_n \subset R_{n+1}$, $S_n \subset S_{n+1}$, $\overset{\circ}{\bigcup}_{n=1} P_n = \widetilde{D}$, $\overset{\circ}{\bigcup}_{n=1} Q_n = D$, $\overset{\circ}{\bigcup}_{n=1} R_n = \widetilde{D}^{\sharp}$, $\overset{\circ}{\bigcup}_{n=1} S_n = D^{\sharp}$, $\lambda(Q_n) \subset P_n$, $\lambda^{\sharp}(R_n) \subset P_n$, $\lambda^{\sharp}(S_n) \subset Q_n$, $j(S_n) \subset R_n$.

 P_n and Q_n are, respectively, analytic polycylinders defined by holomorphic functions in \widetilde{D} and \widetilde{D}^* .

There exists a subsequence $\{\nu_n; n=1, 2, 3, \cdots\}$ of $\{1, 2, 3, \cdots\}$ with the following properties:

There exist, respectively, subdomains P'_n , Q'_n , R'_n and S'_n of \widetilde{D}_{ν_n} , D_{ν_n} , $\widetilde{D}^*_{\nu_n}$ and $D^*_{\nu_n}$ such that $\widetilde{\tau}_{\nu_n}$, τ_{ν_n} , $\widetilde{\tau}^*_{\nu_n}$ and $\tau^*_{\nu_n}$ map biholomorphically P'_n , Q'_n , R'_n and S'_n onto P_{ν_n} , Q_{ν_n} , R_{ν_n} and S_{ν_n} and that

$$\lambda_{\nu_n}(Q'_n) \subset P'_n$$
, $\tilde{\lambda}^{\sharp}_{\nu_n}(R'_n) \subset P'_n$, $\lambda^{\sharp}_{\nu_n}(S'_n) \subset Q'_n$, $j_{\nu_n}(S'_n) \subset R'_n$,

$$\widetilde{\tau}^{\nu_n}_{\nu_{n+1}}(P'_n) \subset P'_{n+1} \text{,} \quad \tau^{\nu_n}_{\nu_{n+1}}(Q'_n) \subset Q'_{n+1} \text{,} \quad \widetilde{\tau}^{\sharp\nu_n}_{\nu_{n+1}}(R'_n) \subset R'_{n+1} \text{,} \quad \tau^{\sharp\nu_n}_{\nu_{n+1}}(S'_n) \subset S'_{n+1} \text{.}$$

We may suppose that $\nu_n=n$. Let $\mathfrak{C}=\{(m_i,\,V_i)\,;\,i\in I\}$ be a Cousin-II distribution in $(D,\pmb{\Phi})$. We shall suppose that the Cousin-II distribution $\{(m_i\circ\tau_n,\tau_n^{-1}(V_i))\,;\,i\in I\}$ has a solution in D_n for any n. There exists a meromorphic function m^n in D_n such that $m^n/m_i\circ\tau_n\in H^0(\tau_n^{-1}(V_i),\mathbb{O}^*)$ for any $i\in I$. If we put $f^n=m^n/m^{n+1}\circ\tau_{n+1}^n$, then $f^n\in H^0(D_n,\mathbb{O}^*)$. Since $(\tilde{D}_n,\tilde{\Phi}_n)$ is the envelope of holomorphy of $(D_n,\pmb{\Phi}_n)$, there exists a holomorphic prolongation \tilde{f}^n of f^n which satisfies $\tilde{f}^n\in H^0(\tilde{D}_n,\mathbb{O}^*)$ and $f^n=\tilde{f}^n\circ\lambda_n$ for any n. Then $\log{(\tilde{f}^n\circ\tilde{\lambda}_n^*)}\in H^0(\tilde{D}_n^*,\mathbb{O})$ for $n\geq 1$. There holds $\log{(\tilde{f}^n\circ\tilde{\lambda}_n^*)}(\tilde{\tau}_n^*|'R_n)^{-1}\in H^0(R_n,\mathbb{O})$ for $n\geq 1$. Since R_n is an analytic polycylinder defined by holomorphic functions in \tilde{D}^* , from Behnke's approximation theory [1] there exists a holomorphic function \tilde{h}^n in \tilde{D}^* such that

$$|\log(\tilde{f}^n \circ \tilde{\lambda}_n^{\sharp} \circ (\tilde{\tau}_n^{\sharp})' R_n)^{-1}) - \tilde{h}^n| < 2^{-n-2} \text{ in } R_{n-1} \text{ for } n \ge 2.$$

We put $H^n = \exp{(\widetilde{h}_n \circ j)} \in H^0(D^{\sharp}, \mathbb{Q}^{\sharp})$. There holds $|f^n \circ (\tau_n|'Q_n)^{-1} \circ \lambda^{\sharp}/H^n - 1| < 2^{-n}$ in S_{n-1} for $n \geq 2$. We put $G^1 = 1$, $G^n = H^1H^2 \cdots H^{n-1} \in H^0(D^{\sharp}, \mathbb{Q}^{\sharp})$ $(n \geq 2)$. Then $M^n = (m^n \circ (\tau_n|Q'_n)^{-1} \circ \lambda^{\sharp})G^n$ is a meromorphic function in S_n . There holds $|M^n/M^{n+1} - 1| < 2^{-n}$ in S_{n-1} . Therefore $\{M^n; n = 1, 2, 3, \cdots\}$ converges uniformly to a meromorphic function M in any compact subset of D^{\sharp} . There holds $M/m_i \circ \lambda^{\sharp} \in H^0(\lambda^{\sharp -1}(V_i), \mathbb{Q}^{\sharp})$ for any $i \in I$. Hence M is the solution of the Cousin-II distribution $\{m_i \circ \lambda^{\sharp}, \lambda^{\sharp -1}(V_i); i \in I\}$ in D^{\sharp} and is a multiform solution of \mathfrak{C} . Therefore we have

PROPOSITION 2. The limit of a monotonously increasing sequence of Cousin-II domains over a Stein manifold is a multiform Cousin-II domain.

COROLLARY. If the limit of a monotonously increasing sequence of Cousin-II domains over a Stein manifold is simply connected, it is a Cousin-II domain.

Department of Mathematics Nagoya University

References

- [1] H. Behnke, Généralisation du théorème de Runge pour les fonctions multiformes des variables complexes, Coll. fonc. plus. var. Bruxelles, 1953.
- [2] S. Bochner and W.T. Martin, Several complex variables, Princeton Univ. Press, 1948.
- [3] H. Cartan et al., Théorie des fonctions de plusieurs variables: Séminaire de H. Cartan, Ecole Norm. Sup., 1951-1952.
- [4] H. Cartan und P. Thullen, Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen: Regularitäts- und Konvergenzbereiche, Math. Ann., 106 (1932), 617-647.
- [5] F. Docquier und H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeit, Math. Ann., 140 (1960), 94-123.
- [6] S. Eilengerg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, 1952.
- [7] H. Grauert, Charakterisierung der holomorph-vollständigen komplexen Räumen, Math. Ann., 129 (1955), 233-259.
- [8] J. Kajiwara, Note on the Levi problem, Sci. Rep. Kanazawa Univ., 8 (1963), 250-270.
- [9] R. Remmert, Habilitationsschrift, Münster, 1957.
- [10] J.P. Serre, Quelque problèmes globaux relatifs aux variété de Stein, Coll. fonc. plus. var. Bruxelles, 1953.
- [11] K. Stein, Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math. 7 (1956), 354-361.