Correction to "Some aspects of real-analytic manifolds and differentiable manifolds"

(This Journal, Vol. 16 (1964), 128-142)

By Kôji Shiga

In [2; Appendix, p. 139] we stated an extension theorem of C^s -mappings which was necessary to the proof of Classification Theorem of C^s -fibre bundles $(1 \le s \le \omega)$. However, the proof given there was incorrect and our reference to [3] was not pertinent to this theorem. Now we give a proof of the following extension theorem which corrects the theorem stated in [2, p. 139].

THEOREM. Let M and N be C^{ω} -manifolds, and let L be a closed C^{ω} -submanifold of M. Suppose that we have a C^{ω} -mapping φ of L into N such that φ can be extended to a C° -mapping f of M into N. Then, for any positive family \mathcal{E} , there exists a C^{ω} -mapping ψ from M into N having the following properties:

(i) ψ gives an \mathcal{E} -approximation to f in order 0.

(ii) $\psi(p) \mid L = \varphi(p)$.

Here we formulate only real-analytic case, because differentiable case is trivial [cf. 2, p. 140]. If this theorem is established, then Theorem C [2, p. 138] remains valid.

In order to prove this theorem, we need two results due to H. Cartan [1]. PROPOSITION 1. Any C^{ω} -function on L can be extended to a C^{ω} -function on M.

PROPOSITION 2. L can be defined as the zero points of a non-negative C^{ω} -function $\mu(p)$ on $M: L = \mu^{-1}(0)$.

Proposition 2 is usually stated that L is defined as the common zero points of a finite number of C^{ω} -functions μ_i on M. Then we note that $\mu = \sum \mu_i^2$ satisfies the requirements of Proposition 2.

PROOF OF THEOREM. Imbed N in a Euclidean space E^k as a closed C^{ω} submanifold. Then the given map φ of L into N can be written in coordinate components of $E^k: \varphi(p) = (\varphi^1(p), \dots, \varphi^k(p))$. Applying Proposition 1 to each $\varphi^i(p)$, we get a C^{ω} -mapping Φ of M into E^k such that $\Phi(p) = (\Phi^1(p), \dots, \Phi^k(p))$, and that $\Phi(p) \mid L = \varphi(p)$. We approximate f closely by a C^{ω} -mapping $\Psi(p)$ of M into N. Observe that $\Phi(p)$ and $\Psi(p)$ lie near each other in E^k when p is near L. Take a small neighborhood V of L and consider a C^{ω} -function $1/\mu(p)$ on V^c where $\mu(p)$ is a C^{ω} -function stated in Proposition 2. We extend this function to a C^{0} -function g(x) on M. Thus we have $g(p) = 1/\mu(p), p \in V$; also we may assume $0 \leq g(p)\mu(p) \leq 1$. Let $\nu(p)$ be a C^{ω} -function on M which approximates g(p). Set

$$\lambda(p) = \mu(p)\nu(p)$$
.

Then $\lambda(p)$ is a C^{ω} -function on M which vanishes on L. Moreover $\lambda(p)$ tends to 1 whenever p becomes distant from L.

Now set

$$\widetilde{\psi}(p) = (1 - \lambda(p)) \Phi(p) + \lambda(p) \Psi(p)$$
.

Then $\tilde{\psi}(p)$ gives a C^{ω} -mapping of M into E^k and $\tilde{\psi}(p) \mid L = \Phi(p) \mid L = \varphi(p)$. It is easily seen that if we choose V small and take each approximation Ψ to f and ν to g well, $\tilde{\psi}$ approximates f arbitrarily closely in order 0. Hence $\tilde{\psi}$ can be regarded as a C^{ω} -mapping of M into a tubular neighborhood T(N) of $N(T(N) \subset E^k)$. Denote the canonical projection of T(N) onto N by π , and set

$$\psi(p) = \pi \circ \tilde{\psi}(p)$$
.

As is easily verified, ψ is a desired C^{ω} -mapping of M into N which completes the proof.

Finally the following misprint in [2] should be corrected:

p. 128, line 28; Replace "injective" by "surjective".

Department of Mathematics Tokyo Institute of Technology

Bibliography

- [1] H. Cartan, Variétés analytiques reélles et variétés analytiques complexes, Bull. Soc. Math. France, 85 (1957), 77-99.
- [2] K. Shiga, Some aspects of real-analytic manifolds and differentiable manifolds, J. Math. Soc. Japan, 16 (1964), 128-142.
- [3] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math, Soc., **36** (1934), 63-89.