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\S 0. Introduction

The purpose of this paper is to give a criterion for the existence of a
non-trivial partition of a finite group $G$ in terms of the existence of a certain
permutation representation of $G$ which we have considered in our previous
papers [6] and [7]. We shall also give several applications of this criterion.

We refer to Baer [1], [2], [3] ; Kegel [8], [9] ; Kegel-Wall [10] ; Suzuki
[11], [13] as for basic concepts and theorems about the partitions of a group.

A group $G$ was called of positive type in [6] if there exist a positive
integer $k$ and a G-space $M$ (this means that $G$ acts on $M$ as a transformation
group) with the following two properties:

(i) every element $\sigma$ in $G-\{1\}$ has exactly le fixed points in $M$, and
(ii) no point in $M$ is fixed by all elements in G. (We have called in [6]

such a G-space $M$ to be of type le. We shall also say that $G$ is of type $k$ on
the G-space $M.$)

Now our criterion is stated as follows:
THEOREM 1. $A$ finite group $G$ has a non-trivial partition if and only if $G$

is of positive type.
Although the proof of this theorem is quite elementary, it is divided into

several steps and will be given in \S 1.
In [6, Theorems IV and V], we have tried to distinguish the groups of

positive type among Chevalley groups over a finite field. However our result
there was not complete. Now by a profound result of Suzuki [13] and by
the criterion above, this question is settled immediately. Let us state here
Suzuki’s theorem in a modified form for the convenience of the reader:

THEOREM 2. Let $G$ be a finite semi-simple group. (Recall that a finite
group is called semi-simple if it has no nilpotent normal subgroups other than
the unit group. Thus the semi-simplicity is equivalent to the non-existence of
non-trivial abelian normal subgroups.) Then $G$ is of positive type if and only

if $G$ is isomorphic with one of the following groups:
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$PGL(2, q),$ $PSL(2, q),$ $Sz(q)$ ,

where $Sz(q)$ means the Suzuki group (denoted by $G(q)$ in [12]) over the finite
field $F_{q}$ ( $q$ being a power of 2 with odd exponent, $q\geqq 8$).

In \S 2, we shall determine finite reflection groups on a Euclidean space
which have non-trivial partitions using our criterion and a result in [6, Theo-
rem VI] characterizing among the Weyl groups of complex simple Lie alge-
bras those which are of positive type. We shall finally determine in \S 3 by
an elementary method among the alternating groups $\mathfrak{A}_{n}$ those which have
non-trivial partitions, though this is immediate if one utilizes Suzuki’s theorem
cited above.

We wish to express our thanks to Professor N. Ito for the helpful discus-
sions and suggestions for the content of \S 1.

\S 1. The proof of Theorem 1.

Let us recall that a partition of a group $G$ is a collection $\pi=\{H_{i}\}$ of
subgroups $H_{i}(\neq 1)$ of $G$ such that $G-\{1\}$ is a disjoint union of the subsets
$H_{i}-\{1\}$ . Each subgroup $H_{i}$ in the partition $\pi$ is called a component of $\pi$ . A
partition $\pi=\{H_{i}\}$ of $G$ is called non-trivial if any subgroup $H_{i}$ in $\pi$ is $\neq G$ .
Let $\pi=\{H_{i}\}$ be a partition of a group $G$ . Then any automorphism $\theta$ of $G$

induces a partition $\theta(\pi)=\{\theta(H_{i})\}$ of $G$ . A partition of $G$ is called normal if
$\theta(\pi)=\pi$ for every inner automorphism $\theta$ of $G$ .

We shall divide the proof of our theorem into several steps. We shall
denote by $|A|$ the cardinality of a set $A$ .

LEMMA 1. Let $G$ be a finite group of positive type. Then $G$ has a non-
trivial normal partition.

PROOF. Let $M$ be a G-space of type $k(k>0)$ (cf. \S 0). We shall call a
non-empty subset $D$ of $M$ degenerate if there exists an element $\sigma$ in $G-\{1\}$

such that $D\subset M_{\sigma}$ , where $M_{\sigma}$ means the set of fixed points of $\sigma$ in $M$. Let $\Omega$

be the set of all degenerate subsets of $M$. Obviously $ D\in\Omega$ and $\tau\in G$ imply
$\tau D\in\Omega$ . Thus $G$ acts on $\Omega$ in a natural way. Let $\Omega_{i}(i=1, 2, )$ be the
subset of $\Omega$ defined by

$\Omega_{i}=\{D\in\Omega;|D|=i\}$ .

Obviously each $\Omega_{i}$ is stable under the action of $G$ . Now $\Omega$ is a finite set. In
fact, the subset $P$ of $M$ defined by

$P=\bigcup_{\sigma\in G-\{1\}}M_{\sigma}$

(we called $P$ the pure part of $Min[6]$ ) is a finite subset of $M:|P|\leqq k(|G|-1)$ .
Now if $ D\in\Omega$ , then $D\subset P$ by definition. Thus we get $|\Omega|\leqq 2$ ” $|<\infty$ .
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Let $D$ be a non-empty subset of $M$. We denote by $G_{D}$ the subgroup of
$G$ defined by

$G_{D}=\{\sigma\in G ; D\subset M_{\sigma}\}$ .
Now we claim that $\pi=\{G_{D} ; D\in\Omega_{k}\}$ is a non-trivial normal partition of $G$ .

To begin with, if $D_{1}$ and $D_{2}$ are two distinct degenerate subsets in $\Omega_{k}$ ,

then $G_{D_{1}}\cap G_{D_{2}}=\{1\}$ . In fact, $G_{D_{1}}\cap G_{D_{2}}=G_{D_{1}\cup D_{2}}$ and $|D_{1}UD_{2}|>|D_{1}|=k$ im-
plies that $G_{D_{1}}\cap G_{D_{2}}=\{1\}$ since $|M_{\sigma}|=k$ for every $\sigma\in G-\{1\}$ by our assump-
tion. Let us show next that $G$ is the union of the subgroups $G_{D},$ $D\in\Omega_{k}$ . In
fact if $\tau\in G-\{1\}$ , then M. is a degenerate subset consisting of $k$ points.
Hence $M_{\tau}\in\Omega_{k}$ . Then we have $\tau\in G_{D}$ for $D=M_{\tau}$ .

Thus $\pi=\{G_{D} ; D\in\Omega_{k}\}$ is a partition of $G$ . This partition $\pi$ is non-trivial,
$i$ . $e$ . $|\Omega_{k}|>1$ . In fact, if $\Omega_{k}$ consists of a single degenerate subset $D$ of $M$,

then we must have $M_{\sigma}=D$ for any element $\sigma$ in $G-\{1\}$ . Thus each point in
$D$ is fixed by all elements of $G$ . However this is impossible by definition of
$M$.

Finally $\pi$ is a normal partition. In fact, it is easy to check $\sigma G_{D}\sigma^{-}=G_{\sigma D}$ .
Since $\Omega_{k}$ is G-stable, the partition $\pi$ is normal and the proof is now complete.

To show the converse of Lemma 1, we begin with the following
LEMMA 2. Let $G$ be a finite group and $Ha$ subgroup of G. Let $1_{H}$ be the

unit character of $H$ and $1_{H}^{*}$ the character of $G$ induced by $1_{H}$ . Suppose that

$\sigma H\sigma^{-1}\cap H=H$ or 1

for any $\sigma\in G,$ $i$ . $e$ . $\sigma H\sigma^{-1}\cap H=1$ for any $\sigma\not\in N_{G}(H)(=the$ normalizer of $H$ in
$G)$ . Let $\tau$ be any element in $G-\{1\}$ . Then we have

$1_{H}^{*}(\tau)=\left\{\begin{array}{l}[N_{G}(H)\cdot.H] if \theta_{r}\cap H\neq\emptyset,\\0 if \theta_{\tau}\cap H=\phi,\end{array}\right.$

where $\theta_{\tau}$ is the conjugate class in $G$ containing $\tau$ .
PROOF. As is well-known, $1_{H}^{*}(\tau)$ is nothing but the number of fixed ele-

ments of $\tau$ under the action of $G$ on the coset space $G/H=\{\sigma H;\sigma\in G\}$ .
Hence $1_{H}^{*}(\tau)=0$ if $\Omega_{\tau}\cap H=\phi$ . Suppose that $ 8_{\tau}\cap H\neq\phi$ . Since 1 $H*$ is a class
function on $G$ , we may assume that $\tau\in H-\{1\}$ . Then $\tau\sigma H=\sigma H\Leftrightarrow\sigma H\sigma^{-1}\cap H\ni\tau$ .
Therefore, by our assumption on $H$, we have $\tau\sigma H=\sigma H\Leftrightarrow\sigma\in N_{G}(H)$ . Thus
we get $l_{H}^{*}(\tau)=[N_{G}(H):H]$ , Q. E. D.

LEMMA 3. Let $G$ be a finite group with a non-trivial partition. Then $G$

is of positive type.
PROOF. We may assume that $G$ has a non-trivial normal partition $\pi=\{U_{i}\}$

(see the proof of [1, Satz 4.7] or [13, Lemma 1]). Then $\sigma U_{i}\sigma^{-1}\cap U_{i}=U_{i}$ or
1 for any $\sigma\in G$ . Let $\pi^{*}=\{U_{1}$ , $\cdot$ .. , $U_{n}\}$ be a subset of $\pi$ such that every sub-
group $U_{i}$ in $\pi$ is conjugate to one and only one subgroup in $\pi^{*}$ . Put $m_{i}$
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$=[N_{G}(U_{i}):U_{i}](i=1, \cdots n)$ and let $k$ be the least common multiple of
$m_{1},$ $m_{n}$ .

We claim that $G$ admits a G-space of type $k$ . In fact, put $\frac{k}{m_{i}}=\alpha_{i}(i=1$ ,

, $n$). Then we have

(2.1) $\alpha_{1}1_{U_{1}}^{*}+\cdots+\alpha_{n}1_{Un}^{*}=k\cdot 1_{G}^{*}+l\cdot 1_{\{1\}}^{*}$

where $k+l=\sum_{i}\alpha_{i}$ . (Note that $1_{G}^{*}=1_{G}$ is the unit character of $G$ and $1_{\{1\}}^{*}$ the

character of the regular representation of $G.$) In fact, we have for any
$\tau\in G-\{1\}$ ,

$1_{U_{i}}^{*}(\tau)=\{0m_{i}$

if $\Omega_{\tau}\cap U_{i}\neq\phi$ ,

if $ff_{\tau\cap}U_{i}=\phi$ ,

by Lemma 2. Thus $\sum_{i}\alpha_{i}1_{U_{i}}^{*}(\tau)=k$ for any $\tau\in G-\{1\}$ . Now for $\tau=1$ , we
have $\sum\alpha_{i}1_{U_{i}}^{*}(1)=\sum\alpha_{i}[G:U_{i}]=k+l|G|$ , since

$|G|-1=\sum_{U\in\pi}(|U|-1)=\sum_{i=1}^{n}[G : N_{G}(U_{i})](|U_{i}|-1)$

$=\sum_{i=1}^{n}(\frac{|G|}{m_{i}}[G:N_{G}(U_{i})])$

$=\frac{|G|}{k}\sum_{i=1}^{n}\alpha_{i}-\sum_{i=1}^{n}\frac{G:U_{i}]}{m_{i}}$

$=|G|_{k}^{1}\frac{k+1}{k}--\sum_{i=1}^{n}\alpha_{i}[G : U_{i}]$ .

Thus (2.1) was proved. However (2.1) implies the existence of a G-space of
type $k$ (cf. [6, Theorem II]).

Now the proof of Theorem 1 is complete by Lemmas 1 and 3. Theorem
2 is then nothing but a re-formulation of Suzuki’s theorem in [13].

\S 2. Finite reflection groups having non-trivial partitions.

Let $E$ be a finite dimensional Euclidean space and $G$ a finite group gen-
erated by reflections on $E$ . Such a group $G$ is called a finite reflection group.
We refer to Coxeter [4], [5] and Witt [14] as for the basic properties of
finite reflection groups and in particular $th\circ\vee$ classification of irreducible finite
reflection groups. (Recall that $G$ is called irreducible if the $ G- modul\circ$. $E$ is
irreducible.)

Now let $G$ be a finite reflection group on a Euclidean space $E$ . To begin
with let us consider the case where $G$ is irreducible. When $G$ is the Weyl
group of a complex simple Lie algebra $\mathfrak{g}$ , the question about the existence of
a non-trivial partition of $G$ is settled immediately by Theorem 1 and [6,
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Theorem VI]. Namely, among these Weyl groups, only the following 5 groups
are of positive type: symmetric groups $\mathfrak{S}_{3},$ $\mathfrak{S}_{4},$ $\mathfrak{S}_{\text{\’{o}}}$, ; dihedral groups $\mathfrak{D}_{4},$ $\mathfrak{D}_{6}$

(of orders 8, 12 respectively).

Thus we have only to examine the remaining irreducible groups in the
Coxeter’s classification; they are as follows (we use the Coxeter’s graph to
represent these groups):

(a) $o-Or$
$G$ is then the dihedral group $\mathfrak{D}_{r}$ of order $2r$ . In this case $G$

is of positive type. In fact $G$ admits a G-space of type 2 by [6, Theorem III].
(b) 0–$O-C$

3 $b$

In this case $G$ is of order 120 and is isomorphic with the

direct product $\mathfrak{A}_{5}\times Z_{2}$ , where $\mathfrak{A}_{5}$ is the alternating group on 5 letters and $Z_{2}$

is the cyclic group of order 2. Since $\mathfrak{A}_{6}$ is generated by elements $\sigma_{1},$ $\sigma_{2},$
$\cdots$

of order 3, it is easy to see that $G$ is generated by elements $\sigma_{1}\tau,$ $\sigma_{2}\tau,$
$\cdots$ of

of order 6, where $\tau$ is the generator of $Z_{2}$ . Let $C_{i}$ be the cyclic subgroup of
$G$ generated by $\sigma_{i}\tau(i=1,2, )$ . Then $C_{i}\cap C_{j}\ni\tau\neq 1$ for each pair $i,$ $j$ .
Therefore $G$ is of type zero by [6, Lemma 1.2], $i$ . $e$ . $G$ has no non-trival parti-
tion.

(c) 0–$O-O-O$
3 $36$

In this case $G$ is of order 14400. $G$ is generated by

4 elements $a,$ $b,$ $c,$
$d$ together with the following defining relations:

$\left\{\begin{array}{l}a^{2}=b^{2}=c^{2}=d^{2}=1,\\(ab)^{3}=(bc)^{3}=1,\\(cd)^{5}=1,\\ac=ca,ad=da,bd=db.\end{array}\right.$

Let $G_{1}$ be the subgroup of $G$ generated by $ab$ and $d$ . Then $G_{1}$ is a cyclic
group of order 6. Next let $G_{2}$ be the subgroup of $G$ generated by $b,$ $c$ and $d$ .
Then $G_{2}$ is isomorphic with the group $\mathfrak{A}_{5}\times Z_{2}$ considered above in the case
(b). Hence $G_{2}$ is of type zero. Finally let $G_{3}$ be the subgroup of $G$ generated
by $a$ and $cd$ . Then $G_{s}$ is a cyclic group of order 10. Now it is easy to see
that

$G_{1}\cap G_{2}\ni d$ , $G_{2}\cap G_{3}\ni cd$ .

Moreover, $G_{1},$ $G_{2}$ and $G_{3}$ obviously generate the whole group $G$ . Therefore
$G$ is of type zero again by [6, Lemma 1.2]. Thus $G$ has no non-trivial parti-
tion.

We have thus proved the following generalization of [6, Theorem VI].

THEOREM 3. Let $G$ be an irreducible, finite reflection group on $a$ Euclidean
space. Then $G$ has a non-trivial partition if and only if $G$ is isomorphic with
one of the following groups.

(i) $\mathfrak{S}_{4}$ , (ii) $\mathfrak{S}_{5}$ , (iii) $\mathfrak{D}_{r}$ (the dihedral group of order 2 $r$).
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Let us consider now the case where $G$ is a reducible, finite reflection
group on a Euclidean space $E$ .

Then one can decompose $E$ into a direct sum of G-stable subspaces
$E_{1},$ $\cdots$ , $E_{r}$ which are mutually orthogonal. $G$ is then decomposed into a direct
product of subgroups $G_{1},$ $\cdots$ , $G_{r}$ defined by

$G_{i}=\{\sigma\in G;\sigma|E_{j}=identity$ for all
$1\leqq j\leqq r$ with $j\neq i$ }.

It is well-known that each $G_{i}$ is an irreducible finite reflection group on $E_{i}$ .
Now when we consider the question of the existence of a non-trivial partition
of $G$ , we may assume that $G_{i}\neq 1$ for all $i$ .

Suppose now that $G$ has a non-trivial partition. Then there exists a G-
space $M$ of type $k$ for some $k>0$ (Theorem 1).

If every element in $G_{1}-\{1\}$ is of order 2, then $G_{1}$ is abelian and, as is
seen easily, $E_{1}$ must be one-dimensional and $G_{1}$ is of order 2.

Let us assume now that $G_{1}$ contains an element $\sigma$ of order $>2$ . Put
$\overline{G}_{2}=G_{2}\times\cdots\times G_{r}$ . Then $\overline{G}_{2}$ is a finite reflection group on $E_{2}+\cdots+E_{r}$ .

Then for any reflection $\tau$ in $\overline{G}_{2}$ we have $M_{\sigma}=M_{\tau}$ by [6, Lemma 1.3].

Therefore any point in $M_{\sigma}$ is fixed by all elements in $\overline{G}_{2}$ , since $\overline{G}_{2}$ is generated
by reflections. Hence $M_{\sigma}$ must coincide with the set $M_{\overline{G}_{2}}=\{x\in M;\rho x=x$ for
all $\rho\in\overline{G}_{2}$ }, because $k=|M_{\sigma}|\leqq|M_{\overline{G}_{2}}|\leqq k$ . Let $\Gamma$ be the subgroup of $G_{1}$ gen-
erated by elements of order $>2$ in $G_{1}$ . Then $\Gamma$ is a normal subgroup of $G_{1}$

and we have seen above that $M_{\sigma}=M_{\overline{c}_{2}}$ for every $\sigma$ in $\Gamma$ . Now if $ G_{1}=\Gamma$ ,

then any point in $M_{\overline{G}_{2}}$ is fixed by all elements of $G$ , which is however im-
possible. Thus we must have $ G_{1}\neq\Gamma$ .

Now we claim that $G_{1}$ is of positive type. To show this, it is enough to
prove that the set $M_{c_{1}}$ of $G_{1}- fixed$ points has less than $k$ points (see [7, Lem-
ma 1.1]). Suppose for a moment that $|M_{c_{1}}|=k$ . Then, since $M_{a_{1}}\subset M_{\Gamma}=M_{\overline{G}_{2}}$ ,

$|M_{\Gamma}|=k$ , we have $M_{G_{1}}=M_{\overline{G}_{2}}$ . Thus $M_{G}=M_{G_{1}}=M_{\overline{G}_{2}}$ is not empty, which is
impossible. Thus $|M_{G_{1}}|<k$ and $G_{1}$ is of positive type.

Thus we can apply Theorem 3 to our group $G_{1}$ . Since the symmetric
group $\mathfrak{S}_{4}$ or $\mathfrak{S}_{5}$ is generated by elements of order $>2,$ $ G_{1}\neq\Gamma$ implies that $G_{1}$

is isomorphic with a dihedral group $\mathfrak{D}_{s}$ of order $2s$ , where $s>2$ .
We have proved thus the following
LEMMA 4. Let $G$ be a reducible, finite reflection group on $a$ Euclidean

space $E$ and $G=G_{1}\times\cdots\times G_{r}$ be the decomposition of $G$ into irreducible com-
ponents $G_{1},$ $\cdots$ , $G_{r}$ . Assume that $G$ has a non-trivial partition. Then each $G_{i}$

is isomorphic with $Z_{2}$ or $\mathfrak{D}_{s}$ for some $s>2$ .
Let us consider to begin with the case where

$G_{1}\cong G_{2}\cong\ldots\cong G_{r}\cong Z_{2}$
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Then $G$ is an elementary abelian group; hence $G$ is of positive type by [6,

Theorem I].

To settle the case where some $G_{i}$ is of dihedral type, we prove now the
following

LEMMA 5. Let $G$ be a finite group isomorphic with $\mathfrak{D}_{s}\times Z_{2}\times\cdots\times Z_{2}$ .
Then $G$ is of positive type.

PROOF. Since $\mathfrak{D}_{s}$ contains a normal cyclic subgroup $C$ of order $s$ and an
involution $\sigma$ such that $\mathfrak{D}_{s}=C\cup C\sigma,$ $\sigma\xi\sigma^{-1}=\xi^{-1}$ (for all $\xi\in C$ ), it is easy to
see that there exists an abelian normal subgroup $\Gamma$ of $G$ such that

$[G:\Gamma]=2,$ $G=\Gamma U\Gamma\sigma,$ $\sigma\xi\sigma^{-1}=\xi^{-1}$ (for all $\xi\in\Gamma$).

Then every element of $ G-\Gamma$ is of order 2. Let $\pi$ be the family of subgroups
of $G$ consisting of $\Gamma$ and of all cyclic subgroups $C_{i}$ of order 2 with $C_{\dot{t}}\cap\Gamma=1$ .
Then obviously $\pi$ is a normal non-trivial partition of $G$ , Q. E. D.

LEMMA 6. Let $G=\mathfrak{D}_{s}\times \mathfrak{D}_{t}$ with $s>2$ and $t>2$ . Then $G$ is of type zero.
PROOF. $G$ is generated by $a,$ $b,$ $c,$

$d$ together with the following defining
relations:

$\left\{\begin{array}{l}a^{2}=b^{2}=c^{2}=d^{2}=1,\\(ab)^{s}=1,(cd)^{t}=1,\\ac=ca,ad=da,bc=cb,bd=db.\end{array}\right.$

Since $ab$ is of order $s>2$, the abelian subgroup $G_{1}$ of $G$ generated by $ab$ and
$c$ is of type zero ([6, Theorem 1]). Similarly the abelian subgroup $G_{2}$ of $G$

generated by $ab$ and $d$ is of type zero.
Moreover, since $G_{1}\cap G_{2}\ni ab\neq 1$ , the subgroup $G_{3}$ of $G$ generated by $G_{1}$

and $G_{2}$ is of type zero by [6, Lemma 1.2]. $G_{3}$ is generated by ab, $c$ and $d$ .
In the same manner, the subgroup $G_{4}$ of $G$ generated by $a,$

$b$ and $cd$ is also
of type zero. Moreover we have $G_{3}\cap G_{4}\ni ab\neq 1$ and $G$ is generated by $G_{a}$

and $G_{4}$ . Thus $G$ is of type zero, Q. E. D.
By a similar argument as in the proof of Lemma 6, we get the following
LEMMA 7. Let $A$ be any finite group. Then, if $s>2$ and $t>2,$ $G=\mathfrak{D}_{s}\times \mathfrak{D}_{t}\times A$

is of type zero.
PROOF. Taking the generators $a,$ $b,$ $c,$

$d$ of $\mathfrak{D}_{s}\times \mathfrak{D}_{t}$ as in the proof of
Lemma 6, we have now only to consider the abelian subgroups generated by,
say, ab, $c$ and an element $\sigma$ in $A$ , Q. E. D.

Combining Lemmas 4, 5, 6 and 7, we have proved the following
THEOREM 4. Let $G$ be a reducible, finite reflection group on $a$ Euclidean

space $E$ such that no non-zero vector in $E$ is fixed by all elements in G. Then
$G$ has a non-trivial partition if and only if $G$ is isomorphic with one of the
following groups:



214 N. IWAHORI and T. KONDO

$Z_{2}\times\cdots\times Z_{2}$ or $\mathfrak{D}_{s}\times Z_{2}\times\cdots\times Z_{2}(s>2)$ .

\S 3. Alternating groups having non-trivial partitions.

Our purpose here is to determine the alternating group $\mathfrak{A}_{n}$ having non-
trivial partitions.

LEMMA 8. $\mathfrak{A}_{7}$ is of type zero.
PROOF. Put $a=(12)(34)$ . Then the centralizer $C(a)$ of $a$ in $\mathfrak{A}_{7}$ is of type

zero. In fact, it is easy to see that $C(a)$ is generated by $\sigma=(13)(24)(567)$ and
$\tau=(12)(56)$ . Moreover $|C(a)|=24$ . Let us denote by $\langle\xi\rangle$ the cyclic subgroup
generated by $\xi$ . Then we have $\langle\sigma\rangle\cap\langle\sigma^{2}a\rangle\ni\sigma^{4}\neq 1$ and $\langle\sigma\tau\rangle\cap\langle\sigma^{2}a\rangle\ni a\neq 1$

since $(\sigma\tau)^{2}=a$ . Therefore the subgroup $C(a)$ generated by $\langle\sigma\rangle,$ $\langle\sigma^{2}a\rangle,$ $\langle\sigma\tau\rangle$

is of type zero by [6, Lemma 1.2]. Similarly we see that the centralizers
$C(\tau),$ $C(b)$ and $C(c)$ , where $b=(12)(67),$ $c=(45)(67)$ are all of type zero. Further-
more, we have $C(a)\cap C(\tau)\ni\tau\neq 1,$ $C(a)\cap C(b)\ni b\neq 1,$ $C(b)\cap C(c)\ni b\neq 1$ . Hence
the subgroup $\Gamma$ of $\mathfrak{A}_{7}$ generated by $C(\tau),$ $C(a),$ $C(b)$ and $C(c)$ is of type zero.
Now $\Gamma$ coincides with $\mathfrak{A}_{7}$ , because $\Gamma$ contains (12)(23), (12)(34), (12)(45), (12)(56),
(12)(67), Q. E. D.

LEMMA 9. $\mathfrak{A}_{n}(n\geqq 7)$ are all of type zero.
PROOF. It is easy to see that $\mathfrak{A}_{8}$ is generated by two subgroups $X$ and

$Y$ such that $X\cong Y\cong \mathfrak{A}_{7},$ $X\cap Y\neq 1$ . Hence $\mathfrak{A}_{8}$ is of typo zero. Similarly we
see that $\mathfrak{A}_{n}(n\geqq 7)$ are all of type zero by induction, Q. E. D.

Now $\mathfrak{A}_{4},$ $\mathfrak{A}_{5}$ are of positive type ([6, Theorem III]). $\mathfrak{A}_{6}\cong PSL(2,3^{2})$ is also
of positive type ([6, Theorem IV]). $\mathfrak{A}_{2}=1,$ $\mathfrak{A}_{3}\cong Z_{3}$ are both of type zero.
Thus we have proved the following

THEOREM 5. The alternating $\mathfrak{A}_{n}$ has a non-trivial partition if and only if
$n=4$ or 5 or 6.
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