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Introduction

W. Browder proved in his $pap\circ.r[2]$ that a simply connected finite CW-
complex of dimension $4k(k\neq 1)$ has the same homotopy type as a closed
differentiable manifold1) under the following conditions:

(1) Poincar\’e duality holds,
(2) there exists an oriented vector bundle $\xi$ such that $T(\xi)$ , the Thom

space, has a spherical fundamental class,
(3) the Hirzebruch formula in the dual Pontrjagin classes of $\xi$ gives the

index.
In this paper we shall apply the above theorem to obtain the homotopy

type classification of closed differentiable manifolds $M$ which are simply con-
nected and have homology groups $H^{0}(M)=H^{4}(M)=H^{8}(M)=Z,$ $H^{i}(M)=0$

$i\neq 0,4,8$ . This result is previously obtained by J. Eells and N. Kuiper in [3].

Their method makes use of the existence of certain non-degenerate functions
so that it is quite different from our method. They also obtained some infor-
mations on Pontrjagin classes, for instance a counter example of homotopy
type invariance of Pontrjagin numbers, and examples of closed differentiable
manifolds which have the same homotopy type but are not diffeomorphic.
These results can be proved more intuitively by our method. Moreover, we
shall give a counter example to the problem (2) about combinatorial and dif-
ferentiable structures on manifolds proposed by C. T. C. Wall in A. M. S. Sum-
mer Topology Institute, Seattle, 1963, [4].

Let $X_{f}$ be a CW-complex $S^{4}\bigcup_{f}e^{8}$ . If $h:S^{7}\rightarrow S^{4}$ is the Hopf fibering $X_{h}$ is

the quaternion projective plane. Now we fix the orientation of $S^{4}$ and deter-
mine the orientation of $(E^{8}, S^{7})$ such that the generator of $H^{8}(E^{8}, S^{7})$ repre-
sented by $(E^{8}, S^{7})$ is equal to $\overline{h}^{*}j^{-1}(e_{h}^{4}Ue_{h}^{4})$ where $\overline{h}:(E^{8}, S^{7})\rightarrow(X_{h}, S^{4})$ is the
characteristic map of the cell $e^{8},$ $j$ is the inclusion homomorphism $H^{8}(X_{h}, S^{4})$

$\rightarrow H^{8}(X_{h})$ and $e_{h}^{4}$ is the generator of $H^{4}(X_{h})$ represented by the oriented $S^{4}$ .
Let $(f)$ denote the homotopy class of a map $f:S^{7}\rightarrow S^{4}$ .

Since $\pi_{7}(S^{4})$ is the direct sum $Z(h)+Z_{12}(\tau)$ where $2(h)+(\tau)=[i_{4}, i_{4}]$ we have

1) “ closed “ means compact and unbounded.
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$(f)=a(h)+b(\tau)$ by some integers $a$ and $b(mod 12)$ . Let us determine the
orientation of $X_{f}$ such that the generator of $H^{8}(X_{f})$ represented by $e_{f}^{8}$ is equal
to $j\cdot f^{*-1}(E^{8}, S^{7})$ where $(E^{8}, S^{7})$ is the oriented generator of $H^{8}(E^{8}, S^{7})$ as
above. In this case we say that the oriented complex $X_{f}$ has type $(a, b)$ .
Now our purpose is to obtain necessary and sufficient conditions for $a$ and $b$

under which $X_{f}$ satisfies (1), (2), and (3) and to obtain relations among $a,$
$b$ ,

$a^{\prime},$
$b^{\prime}$ such that $X_{f}$ has the same homotopy type as $X_{f},$ . If $X_{f}$ has type

$(a, b)$ it is clear that the cup product $e_{f}^{4}Ue_{J}^{4}$ is $ae_{f}^{8}$ where $e_{f}^{\iota}$ denotes the
oriented generator of $H^{l}(X_{f})$ determined as above.

Hence it is easy to see that Poincar\’e duality holds in $X_{f}$ if and only if
$a=\pm 1$ .

In section 1 we consider the homotopy type of $X_{f}$ . For our purpose it is
sufficient to consider $X_{f}$ of types $(-1, b)$ or (1, b) and we obtain the well
known result that the number of the different homotopy types of these com-
plexes is six.

In section 2 we concern with the problem: which pair of classes of $H^{4}(X_{f})$

and $H^{8}(X_{f})$ are realizable as the pair of Pontrjagin classes of a vector bundle
over $X_{f}$ . It is known that a class of $H^{4}(X_{f})$ is realizable as the first Pontr-
jagin class of a certain vector bundle over $X_{f}$ if and only if it is divisible by
2. Therefore we are interested only in the second Pontrjagin class. In section
3 we shall obtain vector bundles over $X_{f}$ of type (1, b) which satisfy the con-
dition (2) and it shall be shown that there exists a vector bundle over $X$

which satisfies the conditions (2) and (3) if and only if $b$ is congruent to $0$ or
1 $mod 4$ .

REMARK. The same argument holds in the case of a CW-complex which
is like the Caley projective plane.

1. Homotopy type

Let $X_{f}$ and $X_{g}$ be complexes of type $(a, b)$ and $(c, d)$ respectively. Then
we have

LEMMA 1.1. There exists a map $F:X_{f}\rightarrow X_{g}$ such that $F^{*}(e_{g}^{4})=me_{f}^{4}$ and

$F^{*}(e_{g}^{8})=se_{f}^{8}$ if and only if $am=sc$ and $\frac{am(m-1)}{2}+mb=sdmod 12$ .

PROOF. Let $F_{m}:S^{4}\rightarrow S^{4}$ be a map with degree $m$ and let $F_{m*};\pi_{7}(S^{4})$

$\rightarrow\pi_{7}(S^{4})$ be the induced homomorphism by $F_{m}$ . Since we have

$F_{m*}((f))=F_{m*}(a(h)+b(\tau))=aF_{m*}(h)+bF_{m*}(\tau)$

$=\frac{am(m-1)}{2}[i_{4}, i_{4}]+m(h)+bm(\tau)$
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$=a(m(m-1)(h)-\frac{m(m-1)}{2}(\tau))+am(h)+bm(\tau)$

$=(am(m-1)+am)(h)+(\frac{am(m-1)}{2}+bm)(\tau)$

$=am^{2}(h)+(\underline{am(}m2\underline{-1)}+bm)(\tau)$

$=sc(h)+sd(\tau)=s(c(h)+d(\tau))=s(g)$

it is easy to see that $F_{m}$ has an extention $F:X_{f}\rightarrow X_{g}$ such that $F^{*}(e_{g}^{4})=me_{f}^{4}$

and $F^{*}(e_{g}^{8})=se_{f}^{8}$ .
Suppose that $X_{f}$ has the same homotopy type as $X_{g}$ . Then there exists

a map $F:X_{f}\rightarrow X_{g}$ such that $F^{*}(e_{g}^{4})=\pm e_{f}^{4}$ and $F^{*}(e_{g}^{8})=\pm e_{f}^{8}$ . Hence from lem-
ma 1.1 we have

LEMMA 1.2. $X_{f}$ has the same homotopy type with $X_{g}$ if and only if
(1) $a=c,$ $b=d$ (2) $a=c,$ $b=c+d$

(3) $a=-c,$ $b=-d$ (4) $a=-c,$ $b=-c-d$ .

Especially all complexes with type $(1, b)$ , $(1,1+b),$ $(-1, -b),$ ( $-1,$ $-b-1\rangle$

have the same homotopy type, and therefore the number of different homo-
topy types of complexes for which Poincar\’e duality hold is six.

2. Pontrjagin classes

Let $f$ be a map of $S^{7}$ to $S^{4}$ and let $Z_{6}$ denote the module of integers $mod 6$ .
Consider a correspondence $P:f\rightarrow Z_{6}$ defined as follows:

Choose a stable vector bundle $\xi$ over $X_{f}$ such that $p_{1}(\xi)$ is $2e_{f}^{4}$ where $ p_{i}(\xi\rangle$

denotes the i-th Pontrjagin class of $\xi$ . Since $p_{2}(\xi)mod 6$ is uniquely deter-
mined we put $P(f)=\langle p_{2}(\xi), e_{8}^{f}\rangle mod 6^{2)}$ .

LEMMA 2.1. $P$ depends only on the homotopy class of $f$ and induces a
homomorphism of $\pi_{7}(S^{4})$ to $Z_{6}$ .

PROOF. It is clear that $P$ is determined by the homotopy class of $f$. Let
$X_{f,g}$ be a complex which is obtained from $X_{f}$ and $X_{g}$ by identifying $S^{4}$ .

It is easy to prove that there exists a map $G:X_{f+g}\rightarrow X_{f,g}$ which satisfies
the conditions

(1) $G^{*}(e_{f,g}^{4})=e_{f+g}^{4}$ (2) $G^{*}(e_{1}^{8})=e_{f+g}^{8}=G^{*}(e_{2}^{8})$ .

where $(e_{1}^{8}$ , ” $)$ denote the oriented generators of $H^{8}(X_{f,g})=Z+Z$.
Let $\xi_{f},$ $\xi_{g}$ be stable vector bundles over $X_{f}$ and $X_{g}$ respectively such that

2) $\langle, \rangle$ denotes the Kronecker index and $e_{8^{f}}$ denotes the dual homology class of
the oriented generator of $H^{8}(X_{f})$ .
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$p_{1}(\xi_{f})=2e_{4}^{4}$ and $p_{1}(\xi_{g})=2e_{g}^{4}$ and let $\xi_{f}|S^{4},$ $\xi_{g}|S^{4}$ denote the restrictions of $\xi_{f}$,
$\xi_{g}$ on $S^{4}$ . By identifying $\xi_{f}|S^{4}$ with $\xi_{g}|S^{4}$ we obtain a stable vector bundle
$\xi$ over $X_{f,g}$ whose $p_{1}(\xi)$ is 2 $e_{f,g}^{4}$ . Let $\eta$ be the induced bundle of $\xi$ by $G$ .
Then from (1), (2) we have that $p_{1}(\eta)=2e_{f+g}^{4}$ and $\langle p_{2}(\eta), e_{8}^{f+g}\rangle=\langle p_{2}(\xi), e_{1}^{f,g}+e_{2}^{f,g}\rangle$

$=\langle p_{2}(\xi_{f}), e_{8}^{f}\rangle+\langle p_{2}(\xi_{g}), e_{8}^{g}\rangle$ . These show that $P$ is a homomorphism.
LEMMA 2.2. $P(h)=1$ and $P(\tau)=2$ .
PROOF. First, since $X_{h}$ is the quaternion projective plane there exists a

stable vector bundle $\xi_{h}$ over $X_{h}$ such that $p_{1}(\xi_{h})=2e_{h}^{4}$ and $p_{2}(\xi_{h})=7e_{h}^{8}$ . Hence
we obtain $P(h)=1$ . Secondly, by Lemma 2.1 $P(h+\tau)=P(h)+P(\tau)=1+P(\tau)$ .
On the other hand, if we put $a=c=b=1,$ $d=0$ and $m=-1$ in Lemma 1.1
we have a map $F:X_{h+r}\rightarrow X_{h}$ such that $F^{*}(e_{h}^{4})=-e_{h+\tau}^{4}$ and $F^{*}(e_{h}^{8})=e_{h+\tau}^{8}$ . Let
$\eta$ be the induced bundle of $\xi_{h}$ by $F$. Then it is obvious that $p_{1}(\eta)=-2e_{h+r}^{4}$

and $p_{2}(\eta)=7e_{h+r}^{8}$ . If we denote by $\eta\sim$ the inverse bundle of $\eta$ we have that
$p_{1}(\sim\eta)=2e_{h+f}^{4}$ and $p_{2}(\sim\eta)=-3e_{h+f}^{8}$ . Hence we obtain $P(h+\tau)=3$ and therefore
$P(\tau)=2$ .

By combining Lemma 2.1 and Lemma 2.2 we have
LEMMA $2.3^{3)}$ . Let $X_{f}$ be a complex of type $(a, b)$ and let $\xi$ be a stable vector

bundle over $X_{f}$ . Then $p_{1}(\xi)=2me_{f}^{4},$ $p_{2}(\xi)=(am(2m-1)+2bm+6n)e_{f}^{8}$ for some
integers $m$ and $n$ . Conversely, a pair of cohomology classes $(2me_{f}^{4}, (am(2m-1)$

$+2bm+6n)e_{f}^{8})$ is realizable as $(p_{1}(\xi), p_{2}(\xi))$ of a certain vector bundle $\xi$ over $X_{f}$ .

3. Reducibility of Thom complexes

Since it is sufficient for our purpose to consider only $X_{f}$ of type (1, b) we
shall use the notation $X_{b}$ instead of $X_{f}$ in this section. Now the condition (2)
in the introduction is equivalent to that $T(\xi)$ is reducible. It is known that
the Thom complex of the stable normal bundle of a differentiable manifold
is reducible. Then we have

LEMMA 3.1. There exists a stable vector bundle $\xi_{0}$ over $X_{0}$ such that

(1) $p_{1}(\xi_{0})=-2e_{0}^{4}$ and $p_{2}(\xi_{0})=-3e_{0}^{8}$

(2) $T(\xi_{0})$ is reducible.

PROOF. $X_{0}$ may be concidered as the quaternion projective plane and it
is sufficient to take $\xi_{0}^{0}$ as the stable normal bundle of the equaternion projec-
tive plane. Suppose $m(m+2b-1)=0mod 24$ . From Lemma 1.1 there exists a
map $F:X_{b}\rightarrow X_{0}$ such that $F^{*}(e_{0}^{4})=me_{b}^{4}$ and $F^{*}(e_{0}^{8})=me_{b}^{8}$ . Let $\xi_{m}^{b}$ denote the
induced bundle of $\xi_{0}^{0}$ by $F$. It is clear that $p_{1}(\xi_{m}^{b})=-2me_{b}^{4}$ and $p_{2}(\xi_{m}^{b})=-3m^{2}e_{b}^{8}$ .

Let $\tilde{F}:T(\xi_{m}^{b})\rightarrow T(\xi_{0}^{0})$ be the map induced by $F$ and let $l$ be the dimension
of $\xi_{0}^{0}$ . By Thom isomorphism we know that $T(\xi_{m}^{b})$ has a cell decomposition

3) A. Hattori has also obtained this result by another method.
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$S^{\iota}Ue^{l+4}Ue^{l+8}$ , and $F^{*}(e^{\iota})=e^{\iota},$ $F^{*}(e^{l+4})=me^{\iota+4}$, and $F^{*}(e^{l+8})=m^{2}e^{\iota+8}$ hold. The
subcomplex $S^{\iota}Ue^{l+4}$ of $T(\xi_{m}^{b})$ is $T(\xi_{m}^{b}|S^{4})$ so that $T(\xi_{m}^{b})$ is

$T(\xi_{m}^{b}|S^{4})\bigcup_{\alpha_{m}^{b}}e^{l+8}$
and

reducibility of $T(\xi_{m}^{b})$ is equivalent to $\alpha_{m}^{b}=0$ in $\pi_{l+7}(T(\xi_{m}^{b}|S^{4}))$ . Since $F$ is an
extension of $F|T(\xi_{m}^{b}|S^{4})$ and $\alpha_{0}^{0}=0$ we obtain $(F|T(\xi_{m}^{b}|S^{4}))_{*}(\alpha_{m}^{b})=0$ . Now
consider the following commutative diagram of two exact sequences of the
pairs $(T(\xi_{0}^{0}|S^{4}), S^{4})$ and $(T(\xi_{m}^{b}|S^{4}), S^{4})^{4)}$ :

$ 0\rightarrow\pi_{\iota+7}(S^{\iota})\rightarrow\pi_{\iota+7}(T(\xi_{0}^{0}|S^{4}))\rightarrow\pi_{\iota+7}(S^{\iota+4})\rightarrow$

$\uparrow id$ $\uparrow F|T(\xi_{m}^{b}|S^{4})_{*}$ $\uparrow(mi)_{*}$

$ 0\rightarrow\pi_{\iota+7}(S^{\iota})\rightarrow\pi_{l+7}(T(\xi_{m}^{b}|S^{4}))\rightarrow\pi_{l+7}(S^{l+4})\rightarrow$

By $\pi_{l+7}(S^{l+4})=Z_{24}$ and $(mi)_{*}(x)=mx$, we have
LEMMA 3.2. If $m$ is prime to 6, $F|T(\xi_{m}^{b}|S^{4})_{*}$ is an isomorphism and we

have $\alpha_{m}^{b}=0$ . If $m$ is odd, $\alpha_{m}^{b}=0$ holds only when $\mathscr{L}_{3}^{1}(e^{l+4})=0$ holds in $H^{*}(T(\xi_{m}^{b}))^{5)}$ .
PROOF. The first part is clear from that $(mi)_{*}$ is an isomorphism. In the

second part it suffices to show $j(\alpha_{m}^{b})=0$ by the above diagram. If $m$ is odd
the kernel of $(mi)_{*}$ is contained in the 3-component. Hence $j(\alpha_{m}^{b})$ is in the
3-component. On the other hand, it is known that the 3-component of $\pi_{l+7}(S^{l+4})$

is determined by $9_{3}^{1}$ . Therefore $j(\alpha_{m}^{b})=0$ is equivalent to $\mathscr{L}_{3}^{1}(e^{l+4})=0$ .
LEMMA 3.3. If $m=1-2bmod 24T(\xi_{m}^{b})$ is reducible.
PROOF. If $b\not\equiv 2mod 3m$ is prime to 6 so that Lemma follows from Lem-

ma 3.2. If $b\equiv 2mod 3m$ is odd. Then we must consider $\mathscr{L}_{3}^{1}(e^{l+4})$ in $H^{*}(T(\xi_{m}^{b}))$ .
First we compute $9_{3}^{1}(e_{b}^{4})$ in $H^{*}(X_{6})$ . We set $9_{3}^{1}(e_{b}^{4})=l_{b}e_{b}^{8}$ . By the formula
$\mathscr{L}_{3}^{I}(p_{1}(\xi))=-p_{1}(\xi)^{2}-p_{2}(\xi)$ for any vector bundle $\xi$ over $X_{b}$ we have $2l_{b}$

$=-4-1-2b,$ $i$ . $e$ . $q_{3}^{1}(e_{b}^{4})=(-1-b)e_{b}^{8}$ , by considering as $\xi$ the vector bundle
over $X$ such as $p_{1}(\xi)=2e_{b}^{4}$ and $p_{2}(\xi)=(1+2b)e_{b}^{8}$ . Secondly, let $E,$ $p$ be the total
space and the projection map of $\xi_{m}^{b}$ and we denote by $E_{0}$ the set of non-zero
elements of $E$ . Since we may identify $H^{*}(E, E_{0})$ with $H^{*}(T(\xi_{m}^{b}))$ we use the
same notations for generators of $H^{*}(E, E_{0})$ and $H^{*}(T(\xi_{m}^{b}))$ . Then we have

$9_{3}^{1}(e^{\iota+4})=9_{3}^{1}(e^{\iota}Up^{*}(e_{b}^{4}))=\mathscr{L}_{a}^{1}(e^{l})Up^{*}(e_{b}^{4})+e^{\iota}Up^{*}(\mathscr{L}_{3}^{1}(e_{b}^{4}))$

$=e^{\iota}Up^{*}(p_{1}(\xi_{m}^{b}))Up^{*}(e_{b}^{4})+e^{\iota}U(-1-b)p^{*}(e_{b}^{8})$

$=e^{\iota}Up^{*}(p_{1}(\xi_{m}^{b})Ue_{b}^{4})+e^{\iota}U(-1-b)p^{*}(e_{b}^{8})$

$=(-1-2m-b)(e^{l}Up^{*}(e_{b}^{8}))=(-1-2m-b)e^{l+8}$ .
Hence $9_{3}^{1}(e^{l+4})=0$ is equivalent to $m\equiv 1+b\equiv 1-2bmod 3$ .

Let $\lambda_{k}^{b}$ be the stable vector bundle over $X_{b}$ with $p_{1}(\lambda_{k}^{b})=-2(1-2b+24k)e_{b}^{4}$ ,
$p_{2}(\lambda_{k}^{b})=-3(1-2b+24k)^{2}e_{b}^{8}$ and let $\eta$ be the stable vector bundle obtained by

4) $\pi_{l+8}(S^{l+4})=0$ holds for sufficient large 1.
5) $\mathscr{L}^{1_{3}}$ is the Steenrod operation.



192 S. SASAO

Whitney sum of $\lambda_{k}^{b}$ with $\gamma_{s}$ which satisfies $p_{1}(\gamma_{S})=0$ and $p_{2}(\gamma_{S})=6se$ . If $s=0$

$mod 240$ we have $J(\eta)=J(\lambda_{k}^{b})+I(\gamma_{s})=J(\lambda_{k}^{b})$ where $J$ denotes the stable fibre homo-
topy equivalence class of a fibre bundle. Therefore $T(\eta)$ is reducible. Let $\tilde{\eta}$

be the inverse stable vector bundle of $\eta$ . From $p_{1}(\sim\eta)=2(1-2b+24k)e_{b}^{4}$ and
$p_{2}(\sim\eta)=(7(1-2b+24k)^{2}-6s)e_{b}^{8}$ the Hirzebruch formula of the index of $X$ for $\tilde{\eta}$

gives the following equality;

$45=7\cdot 7(1-2b+24)^{2}-42s-4(1-2b+24k)^{2}=45(1-2b+24k)^{2}-42s$ .

LEMMA 3.4. The Hirzebruch formula $for\sim 7$] holds if and only if $k\equiv 3b$ or
$3b-3mod 7$ and also $(12k-b)(1-2b+12k)=0mod 8$ .

PROOF. By the above equality we have

$45(24k-2b)(2-2b+24k)=0mod 42\cdot 240$

4. 9. $5(12k-b)(1-b+12k)=0mod 2^{5}\cdot 3^{2}\cdot 7\cdot 5$

$(12k-b)(1-b+12k)=0mod 2^{3}\cdot 7$ .
Suppose that there exists a stable vector bundle $\mu$ over $X_{b}$ which satisfies the
conditions (2) and (3) in the introduction.

Since $X_{b}$ has the same homotopy type as a closed differentiable mani-
fold with the normal stable bundle $\mu$ we have $J(\mu)=J(\lambda_{0}^{b})$ by the proposition
3.4 of [1].

Thus we obtain $p_{1}(\mu)=-2(1-2b+24k)e_{b}^{4}$ for some integer $k$ by $J(\mu|S^{4})$

$=J(\lambda_{0}^{b}|S^{4})$ so that there exists a stable vector bundle $\nu_{s}$ over $X_{b}$ with $p_{1}(\nu_{S})=0$ ,
$p_{2}(\nu_{S})=6se$ and $\mu=\lambda_{k}^{b}+\nu_{s}$ . From $J(\mu)=J(\lambda_{k}^{b})+J(\nu_{s})$ and $J(\mu)=J(\lambda_{k}^{b})$ we obtain
$J(\nu_{s})=0$ so that $s\equiv 0mod 240$ . Hence $\mu$ must be a stable vector bundle such
as $\eta$ in the above argument. It is easily obtained that the equation in Lemma
3.4 have solutions for $b\equiv 0$ or 1 mod4 and no solutions for $b\equiv 2$ or $3mod 4$ .
Tnus we have the following

THEOREM. $X_{b}$ of type $(a, b)$ has the same homotopy type as a closed
differentiable manifold if and only if

$a=1$ and $b=0,1,4,5,8,9$

$or$

$a=-1$ and $b=0,11,8,7,4,3$ .

Moreover, we can choose $(1, 0)$ , $(1,4),$ $(1,8)$ as representatives of the homo-
topy types.

COROLLARY (counter examples to Wall’s problem). If $b\equiv 2,3mod 4$ there
exist stable vector bundles over $X_{b}$ whose Thom complexes are reducible but $X_{b}$

has not the same homotopy type as a closed differentiable manifold.
$CoROLLARY$ . Let $M$ be a closed differentiable manifold with $H^{0}(M)=H^{4}(M)$

$=H^{8}(M)=Z,$ $H^{i}(M)=0(i\neq 0,4,8)$ and let $\tau_{M}$ be the tangent vector bundle of



Example for the theorem of W. Browder 193

M. If $M$ is simply connected there exist integers $b,$ $s,$
$k$ which satisfy

(1) $p_{1}(\tau_{M})=2(1-2b+24k)e^{4}$ , $p_{2}(\tau_{M})=(7(1-2b+24k)^{2}-6s)e^{8}$

(2) if $b\equiv 0mod 4k=7_{4}^{b}---4b$ or $7_{4}^{b}---4b+4mod 14$

(3) if $b\equiv 1mod 4k=7\frac{b-1}{4}4b$ or $7\frac{b-1}{4}4b+4mod 14$

(4) $s=\frac{45}{42}((1-2b+24k)^{2}-1)$ .

Conversely, a stable vector bundle over $X_{b}$ which satisfies the above condi-
tions is the stable tangent vector bundle of a closed differentiable manifold of
the same homotopy type as $X_{b}$ .
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