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Introduction. A tangent bundle of the differentiable manifold $M$ endowed
with a linear connection has the almost complex structure $J$ associated with
the linear connection which was defined and studied by T. Nagano [8], C. J.
Hsu [3], S. Tachibana and M. Okumura [17] and P. Dombrowski [1], etc..
It was shown that $J$ is integrable if and only if the torsion and curvature
tensor of the connection vanish. If we take as a metric $L$ for the tangent
bundle the one defined by S. Sasaki [13] using a metric of the base manifold
$M$, then $(J, L)$ is an almost hermitian structure, and in the case where $J$ is
associated with the Levi-Civita connection, $(J, L)$ is an almost K\"ahlerian struc-
ture which is not K\"ahlerian unless $M$ is locally flat ([1], [17]).

However, if $M$ itself has an almost complex structure or almost contact
structure, the tangent bundle has a naturally related almost complex structure,
associating with an arbitrary connection, whose integrability condition does
not necessarily involve the local flatness of the connection. In \S 2, we assume
that $M$ has an almost contact structure and treat the almost complex struc-
ture associated with that. Its integrability conditions will be given in Pro-
position 2.1. Especially if we adopt as the connection the Levi-Civita connec-
tion for the associated metric of the almost contact structure, the integrability
conditions are the normality of the structure and a certain relation of the
curvature tensor.

On the other hand, A. Morimoto [6] made a study of the almost complex
structure in the product space of almost contact manifolds, and Y. Ogawa [11]

studied the almost complex structure in the principal fiber bundle whose
structural group is a l-dimensional abelian group. In \S 3, we consider an
almost complex structure in the principal fiber bundle with an odd dimensional
Lie group. Some of the results in [11] will be generalized slightly. A con-
verse of his theorem is proved. In \S 4, we show that, if the principal fiber
bundle with a l-dimensional Lie group $G$ has a G-invariant almost complex
structure, then its base space has an almost contact structure.

In the last section, returning to the tangent bundle of an almost contact



168 S. TANNO

manifold, a coordinate expression of $J$ is given. From this it is shown that
the tangent bundle of an almost contact manifold has an almost complex
structure which depends only on the almost contact structure of the base
space and its integrability condition is equivalent to the normality of the
almost contact structure.

Here I express my hearty thanks to Professor S. Sasaki for his kind
advices.

1. Preliminaries.

For a differentiable $(C^{\infty})$ manifold $M,$ $FM,$ $XM$, and $TM$ denote the ring
of all differentiable functions on $M$, FM-module of differentiable vector fields
on $M$, and the total space of the tangent bundle of $M$ respectively. $Z_{p}$ for
$Z\in \mathfrak{X}M,$ $p\in M$, is the value of $Z$ at $p$ . If $\mu:M\rightarrow M^{\prime}$ is a differentiable map,
we denote the differential of $\mu$ by the same letter and its dual by $\mu^{*}$ .

$i$ . An almost complex structure. A tensor field $J:kM\rightarrow \mathfrak{X}M$ is an almost
complex structure if $J^{2}X=-X$ for $X\in \mathfrak{X}M$. The Nijenhuis tensor $N$ is by
definition

$N(X, Y)=[X, Y]+J[JX, Y]+J[X, JY]-[JX, JY]$

for $X,$ $Y\in \mathfrak{X}M$. $J$ is said to be integrable if $N=0$ .
ii. An almost contact structure. A $(1,1)$ -tensor $\phi$ , a vector field $\xi$ and a

l-form $\eta$ define an almost contact structure in $M(\dim M\neq 1)$ if

$\phi^{2}u=-u+\eta(u)\xi$ ,

$\eta(\xi)=1$ ,

for $u\in \mathfrak{X}M$. Several tensors which we put below were defined and studied in
[16], $\mathfrak{L}$ denoting the operation of Lie derivative,

$ S(u, t/)=[u, v]+\phi[\phi u, v]+\phi[u. \phi v]-[\phi u, \phi v]+\{v\cdot\eta(u)-u\cdot\eta(v)\}\xi$ ,

$S_{1}(u, v)=\mathfrak{L}(\phi u)\eta\cdot v-\mathfrak{L}(\phi v)\eta\cdot u$ ,

$S_{2}(u)=\mathfrak{L}(\xi)\phi\cdot u$ ,

$S_{3}(u)=\mathfrak{L}(\xi)\eta\cdot u$ ,

for $u,$ $v\in\chi M$. It is known that $S=0$ implies $S_{1}=S_{2}=S_{3}=0$ and such an
almost contact structure is called to be normal. An associated metric $g$ is
one such that $\eta(u)=g(\xi, u)$ and

$g(u, v)=g(\phi u_{j}\phi v)+\eta(u)\cdot\eta(v)$

for $u,$ $v\in \mathfrak{X}M$.
iii. The tangent bundle. For the linear connection $\nabla$ and $u,$ $v\in \mathfrak{X}M$, let

$\nabla_{v}u$ be the covariant derivative of $u$ with respect to $v$ . If we consider $u$ as a
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map $u$ : $M\rightarrow TM$, we get the image $u(v)$ of $v$ by its differential $u$ : $TM\rightarrow TTM$.
And it is verified that any point of $TTM$ is expressed in the form $u(v)$ for
some $u$ and $tJ$ . Then the connection map $K:TTM\rightarrow TM$ is determined by

$\nabla_{v}u=K\cdot u(v)$ .
The expression of $K$ by local coordinates is used in \S 5, for the details see
[1] and [4]. The almost complex structure $J$ of $TM$ defined in [1] and [17]

is as follows
$\pi_{z}(JX)=-K_{z}X$ , $K_{z}(JX)=\pi_{z}X$

for $X\in \mathfrak{X}TM,$ $z\in TM$, where $\pi$ is a projection $TM\rightarrow M$. The integrability
condition of $J$ is the local flatness of the connection. If $g$ is a Riemannian
metric for $M$, the metric $L$ defined by

$L(X, Y)=g(\pi X, \pi Y)+g(KX, KY)$

for $X,$ $Y\in \mathfrak{X}TM$, together with $J$, defines an almost hermitian structure on $TM$.
And if $K$ comes from the Levi-Civita connection for $g$ , the pair $(J, L)$ is
almost K\"ahlerian, which is not K\"ahlerian unless $M$ is locally flat with respect
to $g$ . On the other hand, if $M$ has an almost complex structure $h,$ $TM$ has a
natural almost complex structure $J^{\prime}$ such that

$\pi_{z}(J^{\prime}X)=h_{\pi z}\pi_{z}X$, $K_{z}(J^{\prime}X)=h_{\pi z}K_{z}X$

for $X\in \mathfrak{X}TM,$ $z\in TM$, where $K$ is a connection map with respect to the linear
connection $\nabla$. $J^{\prime}$ is integrable if and only if

(1.1) $h$ : integrable ,

(1.2) $R(u, v)-R(hu, hv)+h\cdot\{R(u, hv)+R(hu, v)\}=0$ ,

(1.3) $\nabla_{hu}h-h\cdot\nabla_{u}h=0$

for $u,$ $v\in \mathfrak{X}M,$ $R$ denoting the curvature tensor of $\nabla$.
If $(h, g)$ is a hermitian structure and $\nabla$ is the Levi-Civita connection for

$g$, then (1.1) and (1.3) hold. Moreover if $(h, g)$ is a Kahlerian structure, then
(1.2) is automatically satisfied too. That is to say, the tangent bundle of a
K\"ahlerian manifold has a complex structure as above.

In \S 2, we treat the case where $M$ has an almost contact structure, and
we utilize the followings (see P. Dombrowski [1]): By $u^{*}$ and $v^{O}$ we denote
the horizontal and vertical lift of $u$ and $v$ of $kM$ respectively, which are
characterised by K$(u^{*})=0,$ $\pi(u^{*})=u,$ $K(v^{o})=vand\pi(v^{o})=0$ . Then the relations

$[u^{o}, v^{o}]=0$ ,

$[u^{*}, v^{o}]=(\nabla_{u}v)^{o}$

$\pi_{z}([u^{*}, v^{*}])=[u, v]_{\pi z}$ ,

$K_{z}([u^{*}, v^{*}])=R_{\pi z}(u, v)z$ ,
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for $z\in TM$, hold good, where $K$ is a connection map with respect to the linear
connection $\nabla$ and $R$ is the curvature tensor of $\nabla^{\prime}$.

2. Almost complex structures of the tangent bundle of an almost
contact manifold.

Let $\phi,$ $\xi$ and $\eta$ be the structure tenscrs of $M$. The definition of an almost
complex structure $J$ of $TM$ is

$\pi_{z}(JX)=\phi_{\pi z}\pi_{z}X+\eta_{\pi z}(K_{z}X)\xi_{\pi z}$ ,

$K_{z}(JX)=\phi_{\pi_{Z}}K_{z}X-\eta_{\pi z}(\pi_{z}X)\xi_{\pi z}$ ,

for $X\in \mathfrak{X}TM$. As for the horizontal lift $u^{*}$ and vertical lift $v^{o}$ of $u$ and $v$ of
$\mathfrak{X}M$, the operation of $J$ is characterized by

$Ju^{*}=(\phi u)^{*}-(\eta(u)\xi)^{o}$

$Jv^{o}=(\phi v)^{o}+(\eta(v)\xi)^{*}$ .
A. Integrability. Now, turning to account the identities in \S 1, we cal-

culate the value of $N_{z}(X, Y)$ for $X,$ $Y\in \mathfrak{X}TM$. It suMces to perform in the
following cases for $u,$ $v\in \mathfrak{X}M$ such that $\eta(u)$ and $\eta(v)$ are constant, because
we are able to replace $u$ by $\overline{u}=\eta_{\pi_{z}}(u)\xi-\phi^{2}u$ for fixed $\pi z\in M$. Abbreviating
$\pi z$ in the right hand side, we get

(2.1) $\pi_{z}N_{z}(u^{*}, v^{*})=S(u, v)+\eta\{R(\phi u, v)z+R(u, \phi v)z\}\xi$

$+\eta(u)\cdot\eta(\nabla_{v}\xi)\xi-\eta(v)\cdot\eta(\nabla_{u}\xi)\xi$ ,

(2.2) $K_{z}N_{z}(u^{*}, v^{*})=R(u, v)z-R(\phi u, v)z$

$+\phi\{R(\phi u, v)z+R(u, \phi v)z\}$

$+S_{1}(u, v)\xi+\eta(u)\{\phi\cdot\nabla_{v}\xi-\nabla_{\phi_{v}}\xi\}$

$-\eta(v)\{\phi\cdot\nabla_{u}\xi-\nabla_{\phi_{u}}\xi\}$ ,

where we have utilized that $S_{1}(u, v)=-\eta\{[u, \phi v]+[\phi u, v]\}$ .

(2.3) $\pi_{z}K_{\rho}\sim(u^{*}, v^{o})=-(\nabla_{\phi_{u}}\eta)(v)\cdot\xi-(\nabla_{u}\eta)(\phi v)\cdot\xi$

$+\eta(v)\{S_{2}(u)+(\eta\cdot R(u, \xi)z)\xi\}$ ,

(2.4) $K_{z}N_{z}(u^{*}, v^{o})=\eta(v)\{\phi\cdot R(u, \xi)z-R(\phi u, \xi)z\}$

$-\eta(u)\cdot\eta(v)\nabla_{\xi}\xi+\phi\cdot\nabla_{u}\phi\cdot v-\nabla_{\phi_{u}}\phi\cdot\nu$

$-\eta(v)S_{3}(u)\xi-(\nabla_{u}\eta)(v)\cdot\xi$ ,

(2.5) $\pi_{z}N_{z}(u^{O}, v^{o})=\eta(v)(\nabla_{\xi}\eta\cdot u)\xi-\eta(u)(\nabla_{\xi}\eta\cdot u)\xi$ ,

(2.6) $K_{z}N_{z}(u^{o}, v^{o})=\eta(v)\cdot\nabla_{\xi}\phi\cdot u-\eta(u)\nabla_{\xi}\phi\cdot v$ .
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Therefore we have
PROPOSITION 2.1. An almost complex structure of $TM$ associated with the

almost contact structure of $M$ and an arbitrary linear connection $\nabla$ is integrable
if and only if the followings are satisfied
(2.7) $S(u, v)+\eta(u)\cdot\eta(\nabla_{v}\xi)\xi-\eta(v)\cdot\eta(\nabla_{u}\xi)\xi=0$ ,

(2.8) $S_{1}(u, v)+\eta(u)(\phi\cdot\nabla_{v}\xi-\nabla_{\phi_{v}}\xi)-\eta(v)(\phi\cdot\nabla_{u}\xi-\nabla_{\phi_{u}}\xi)=0$ ,

(2.9) $(\nabla_{\phi_{u}}\eta)(v)\cdot\xi+(\nabla_{u}\eta)(\phi v)\cdot\xi-\eta(u)S_{2}(u)=0$ ,

(2.10) $\phi\cdot\nabla_{u}\phi\cdot v-\nabla_{\phi_{u}}\phi\cdot v-(\nabla_{u}\eta)(v)\cdot\xi-\eta(v)S_{3}(u)\cdot\xi-\eta(u)\cdot\eta(v)\nabla_{\xi}\xi=0$ ,

(2.11) $\eta(v)(\nabla_{\hat{\sigma}}\eta)u-\eta(u)(\nabla_{\xi}\eta)v=0$ ,

(2.12) $\eta(v)\cdot\nabla_{\hat{\sigma}}\phi\cdot u-\eta(u)\cdot\nabla_{\xi}\phi\cdot\nu=0$ ,

(2.13) $R(u, v)-R(\phi u, \phi\iota))+\phi\cdot\{R(\phi u, v)+R(u, \phi v)\}=0$

for $u,$ $v\in \mathfrak{X}M$.
PROOF. Necessity: We separate each term into two parts according as

it contains $z$ or not, then $(2.7)\sim(2.13)$ follow.
Sufficiency: It is enough to show the next relations

(2.14) $\eta\{R(\phi u, v)+R(u, \phi v)\}=0$ ,

(2.15) $\phi\cdot R(u, \xi)-R(\phi u, \xi)=0$ .
Replace $v$ by $\xi$ in (2.13) and operate $\eta$ , then we have $\eta\cdot R(u, \xi)=0$ . Similarly
replace $u$ in (2.13) by $\phi u$ and operate $\eta$ , then $\eta\{R(\phi u, v)-R(\phi^{2}u, \phi v)\}=0$ fol-
lows and we have (2.14). Next we put $ v=\xi$ in (2.13), getting

$R(u, \xi)+\phi\cdot R(\phi u, \xi)=0$ .
If we operate $\phi$ to the last equation, it turns to (2.15). Q. E. D.

The conditions in Proposition 2.1 are too much complicated, and so let $g$

be an associated Riemannian metric to the almost contact structure and con-
sider the Levi-Civita connection $D$ for $g$ . Here we prepare lemmas.

LEMMA. The neccessary and sufficient condition that an almost contact
metric structure is normal is that

(2.16) $\phi\cdot D_{u}\phi\cdot v-D_{\phi_{u}}\phi\cdot v-(D_{u}\eta)(v)\cdot\xi=0$

is valid for any $u$ and $v$ of $XM$.
This is stated in [9] in somewhat different form. In order to see the

necessity (only which we need later), it is enough to verify

$g(S(u, v),$ $r$) $-g(S(v, r),$ $u$) $+g(S(r, u),$ $v$)

$=2g(r, \phi\cdot D_{u}\phi\cdot v-D_{\phi_{u}}\phi\cdot v-(D_{u}\eta)v\cdot\xi)$
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for $u,$ $v,$ $r\in \mathfrak{X}M$.
Now, by this lemma if $S=0$ , the relation (2.16) replaced $u$ by $\xi$ implies

$\phi\cdot D_{\xi}\phi=0$ and, as $\eta\cdot D_{\xi}\phi=-D_{\xi^{7)}}\cdot\phi=0$ , we have $D_{\xi}\phi=0$ .
LEMMA. For the Levi-Civita connection $D$ , the normality of the structure

yields (2.8) and (2.9).

PROOF. The relation $S_{2}(u)=0$ is written in the following from

(2.17) $D_{\xi}\phi\cdot u-D_{\phi_{u}}\xi+\phi\cdot D_{u}\xi=0$ .
Using $D_{\xi}\phi=0$ we obtain (2.8). To verify (2.9), we consider inner product of
$D_{\phi_{u}}\xi-\phi\cdot D_{u}\xi(=0)$ and $v$ of $\# M$

$g(D_{\phi_{u}}\xi, v)+g(D_{u}\xi, \phi\iota))=0$ ,

where we have utilized $g(u, \phi v)=-g(\phi u, v)$ . If we notice $g(\xi, v)=\eta(v)$ , we
see that $(D_{\phi_{u}}\eta)v+(D_{u}\eta)\cdot\phi v=0$ .

PROPOSITION 2.2. An almost complex structure of $TM$ associated with the
almost contact metric structure and the Levi-Civita connection $D$ is integrable

if and only if the structure is normal and the curvature tensor satisfies the
following

(2.18) $R(u, v)-R(\phi u, \phi v)+\phi\cdot\{R(u, \phi v)+R(\phi u, v)\}=0$

for any $u,$ $v\in XM$.
PROOF. Necessity: For the Levi-Civita connection $\eta(D_{l},\xi)=0$ for any $v$

of $\mathfrak{X}M$ is valid and so $S=0$ follows from (2.7). (2.18) is the same as (2.13).
Sufficiency: By virtue of the preceding lemmas, all $(2.7)\sim(2.12)$

follow from $S=0$ .
COROLLARY. If the almost contact metric structure of $M$ is derived from

a contact structure, then the almost complex structure $J$ defined as above is not
integrable.

PROOF. Suppose that $J$ is integrable, by Proposition 2.2 this contact metric
structure is normal and we have ([12])

(2.19) $4\eta\cdot R(u, v)r=\eta(v)g(u, r)-\eta(u)g(v, r)$ .
However, (2.18) implies $\eta\cdot R(\xi, v)=0$ . And (2.19) leads the relation $g(v, r)$

$=\eta(v)\cdot\eta(r)$ which is impossible in the case of $\dim M\geqq 3$ .
B. Almost hermitian metrics. As a metric $L$ in $TM$, following [13] we

define

(2.20) $L_{z}(X, Y)=g_{\pi z}(\pi_{z}X, \pi_{z}Y)+g_{\pi z}(K_{z}X, K_{z}Y)$

for $X,$ $Y\in \mathfrak{X}TM,$ $z\in TM$, where $g$ is the associated metric. The pair $(J, L)$

defines the almost hermitian structure of $TM$ and the fundamental 2-form $--$ is

$\Xi(X, Y)=g(\pi X, \phi\pi Y+\eta(KY)\xi)+g(KX, \phi KY-\eta(\pi Y)\xi)$ .
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PROPOSITION 2.3. This almost hermitian structure is an almost Kahlerian
structure if and only if the almost contact metric structure and the linear con-
nection $\nabla$ satisfy the followings,

(2.21) $\phi\cdot R(u, \iota))=0$ ,

(2.22) $\eta(r)\eta\cdot R(u, v)z+\eta(u)\eta\cdot R(v, r)z+\eta(v)\eta\cdot R(r, u)z=0$ ,

(2.23) $\eta(r)d\eta(u, v)-\eta(u)\nabla_{v}\eta\cdot r+\eta(v)\nabla_{u}\eta\cdot r=0$ ,

(2.24) $d\zeta=0$ , $\nabla\zeta=0$ ,

for any $u,$ $v,$ $r,$
$z\in \mathfrak{X}M$, where $\zeta(u, v)=g(u, \phi v)$ .

For the proof, the standard formula is

$(d_{-}^{-})(X, Y, Z)=X\cdot\Xi(Y, Z)+Y\cdot\Xi(Z. X)+Z\cdot-\cdot-(X, Y)$

$---([X, Y], Z)_{--}^{-}([Y, Z], X)-\Xi([Z, X], Y)$ ,

for $X,$ $Y,$ $Z\in \mathfrak{X}TM$. We carry out the following computation assuming that
$\eta(u),$ $\eta(v)$ and $\eta(r)$ are constant and abbreviating $\pi z$ in the right hand side of
the equations

(2.25) $(d\Xi)_{z}(u^{*}, v^{*}, r^{*})=(d\zeta)(u, v, r)+\eta(r)\eta\cdot R(u, v)z$

$+\eta(u)\eta\cdot R(v, r)z+\eta(v)\eta\cdot R(r, u)z$ ,

where we have used the lemma below.

(2.26) $(d_{-}^{-})_{z}(u^{*}, v^{*}, r^{o})=\eta(r)(d\eta)(u, v)-g(R(u, v)z,$ $\phi r$)

$-\eta(u)\nabla_{v}\eta\cdot r+\eta(v)\nabla_{u}\eta\cdot r$ ,

(2.27) $(d_{-}^{-})_{z}(u^{*}, v^{o}, r^{o})=g(v, \nabla_{u}\phi\cdot r)+(\nabla_{u}g)(v, \phi r)$ ,

(2.28) $(d_{-}^{-})_{z}(u^{o}, v^{o}, r^{o})=0$ .

Necessity: As the right hand side of (2.27) is equal to $(\nabla_{u}\zeta)(v, r)$ , we
have $(2.21)\sim(2.24)$ . The converse is clear.

LEMMA. In the notations above

(2.29) $u_{z}^{*.-}-(v^{*}, r^{*})=u_{\pi z}\cdot g(v, \phi r)$ ,

(2.30) $u_{z}^{*}\cdot-\cdot-(v^{*}, r^{o})=0$ ,

(2.31) $u_{z}^{*}\cdot\Xi(v^{o}, r^{o})=u_{\pi_{z}}\cdot g(v, \phi r)$ ,

(2.32) $u_{z}^{o}\cdot\Xi(v^{*}, r^{*})=u_{z}^{o}\cdot\Xi(v^{*}, r^{o})=u_{z}^{o}\cdot\Xi(v^{o}, r^{o})=0$

hold for any $u,$ $v,$
$r\in \mathfrak{X}M$ such that $\eta(v)$ and $\eta(r)$ are constant.

PROOF. Denote by $\overline{\varphi}_{t}$ and $\varphi_{t}$ the local l-parameter groups generated by
$u^{*}$ and $u$ about $z\in TM$ and $\pi z\in M$ respectively, then $\varphi_{t}\pi z=\pi\overline{\varphi}_{t}z$ . As $\Xi_{\hat{\beta}}(v^{*}, r^{*})$

$=g_{\pi z}(v, \phi r)$ , we obtain (2.29). Demonstrations for others shall be omited.
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From Proposition 2.3 we get
PROPOSITION 2.4. If $K$ is defined by the Levi-Civita connection for $g$, then

the almost hermitian structure is almost kahlerian if and only if the almost
contact metric structure satisfies $D\phi=0$ and has zero curvature tensor.

In fact, from (2.27) $D\phi=0$ follows. And so $D\xi=0$ and $D\eta=0$ . By Ricci
identity for $\eta$ we have $\eta\cdot R(u, v)z=0$ . Combining this with (2.21) we get
$R=0$ .

COROLLARY. If the almost hermitian structure (in Proposition 2.4) is almost
kahlerian, then it is necessarily kahlerian.

C. Transformations. We shall show first the following
PROPOSITION 2.5. Let a diffeomorphism $\mu$ of $M$ be an automorphism of

the almost contact metric structure and assume that the connection map is of
the Levi-Civita connection for $g$. Then the extended diffeomorphism $\overline{\mu}$ of $\mu$ to
$TM$ is an automorphism of the almost hermitian structure $(J, L)$ .

PROOF. First we know that, if $\mu$ is an isometry, $\mu K=K\overline{\mu}$ ([4]). Then
by definition (2.20) $\overline{\mu}$ is an isometry for $L$ ([13]). And by $\mu\phi=\phi\mu,$ $\eta^{*}\mu=\eta$

and $\mu\xi=\xi$ we have
$\pi_{\overline{\mu}z}\overline{\mu}_{z}J_{z}X=\mu_{p}\phi_{p}\pi_{z}X+\eta_{p}(K_{z}X)\cdot\mu_{p}\xi$

$=\phi_{\mu p}\mu_{p}\pi_{z}X+(\mu^{*}\eta)_{p}(K_{z}X)\xi_{\mu p}$

$=\phi_{\mu p}\pi_{\overline{\alpha}z}\overline{\mu}_{z}X+\eta_{\mu p}(K_{\overline{u}z}’\overline{\mu}_{z}X)\xi_{\mu p}$

$=\pi_{\overline{\mu}z}J_{\overline{\mu}z}\overline{\mu}_{z}X$

for $X\in \mathfrak{X}TM,$ $z\in TM,$ $p=\pi z$ . Similar calculation yeilds

$K_{\overline{\mu}z}\overline{\mu}_{z}J_{z}X=K_{\overline{\mu}z}J_{\overline{\mu}z}\overline{\mu}_{z}X$ .
Therefore $\overline{\mu}J=J\overline{\mu}$ .

REMARK: The same thing holds for an isomorphism $\mu:M\rightarrow N$ of two
almost contact Riemannian manifolds.

Next, about the action of $u^{*}$ or $v^{o}$ to $J$ or $L$ as an infinitesimal transfor-
mation, we have

PROPOSITION 2.6. Let $J$ be associated with an almost contact structure and
a linear connection $\nabla$. Then $u^{*}$ is almost analytic if and only if
\langle 2.33) $\nabla_{u}\phi=0$, $\mathfrak{L}(u)\phi=0$ ,

(2.34) $\eta(r)[u, \xi]+(\nabla_{u}\eta)(r)\cdot\xi=0$ ,

(2.35) $(\mathfrak{L}(u)\eta\cdot r)\xi+\eta(r)\cdot\nabla_{u}\xi=0$ ,

(2.36) $R(u, r)+\phi\cdot R(u, \phi r)=0$ ,

for any $r\in \mathfrak{X}M$. $v^{O}$ is almost analytic if and only if
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(2.37) $\nabla_{r}v+\phi\cdot\nabla_{\phi_{r}}v=0$

for any $r\in kM$.
PROOF. Assuming that $\eta(r)$ is constant, one computes straightforwardly,

getting
$\pi_{z}(\mathfrak{L}(u^{*}\uparrow J_{z}\cdot r^{o})=\eta(r)[u, \xi]+(\nabla_{u}\eta)(r)\cdot\xi$ ,

$K_{z}(\mathfrak{L}(u^{*})J_{z}\cdot r^{o})=\nabla_{u}\phi\cdot r+\eta(r)\cdot R(u, \xi)z$ ,

$\pi_{z}(\mathfrak{L}(u^{*})J_{z}\cdot r^{*})=\mathfrak{L}(u)\phi\cdot r-\eta(R(u, r)z)\xi$ ,

$ K_{z}(\mathfrak{L}(u^{*})J_{z}\cdot r^{*})=R(u, \phi r)z-\eta(r)\cdot\nabla_{u}\xi$

$-\phi\cdot R(u, r)z-(\mathfrak{L}(u)\eta\cdot r)\xi$ .
Likewise one has

$\mathfrak{L}(v^{o})J_{z}\cdot r^{o}=-\eta(r)(\nabla_{\xi}v)^{o}$ ,

$\mathfrak{L}(v^{O})J_{z}\cdot r^{*}=(\phi\cdot\nabla_{\gamma}v)^{o}-(\nabla_{\phi_{r}}v)^{o}+(\eta(\nabla_{r}v)\cdot\xi)^{*}$ .
COROLLARY. If $J$ is associated with an almost contact metric structure

satisfying $D_{\xi}\phi=0$ with respect to the Levi-Civita connection $D$ , then $\xi^{o}$ is
almost analytic if and only if $S_{2}=0$ .

In fact, suppose that $S_{2}=0$, or (2.17) holds. Then by $D_{\xi}\phi=0$, we have
$\phi\cdot D_{\gamma}\xi-D_{\emptyset r}\xi=0$ and therefore

$D_{r}\xi-\eta(D_{7}.\xi)\xi+\phi\cdot D_{\phi_{\gamma}}\xi=0$ .

As $\eta(D_{\gamma}\xi)=0,$ $(2.37)$ follows. The converse is similar.
REMARK 1. If the almost contact metric structure is normal, we have

$D_{\xi}\phi=0$ , and $S_{2}=0$ .
REMARK 2. If the almost contact metric structure is a contact metric

structure such that $\xi$ is a Killing vector field, we have also $D_{\xi}\phi=0$ and $S_{2}=0$ .
$CoROLLARY$ . If an almost complex structure $J$ associated with an almost

contact metric structure and the Levi-Civita connection $D$ is integrable, then $\xi^{*}$

is analytic.
Because, from Proposition 2.2, we see that the almost contact metric struc-

ture is normal, then by the preceding Corollary, $\xi^{O}$ is (almost) analytic. As
$\Gamma$ is integrable, $J\xi^{O}=\xi^{*}$ is analytic too.

PROPOSITION 2.7. With respect to the metric $L(2.20),$ $u^{*}$ is a Killing vector
field if and only if $u$ is a Killing vector field with respect to the metric $g$ and
satisfies $\nabla_{u}g=0$ and $R(u, r)=0$ ($R$ is of $\nabla$) for any $r\in \mathfrak{X}M$. The necessary and
sufficient condition that $v^{o}$ is a Killing vector field for $L$ is that $v$ is a parallel

field with respect to $\nabla$.
PROOF. For $r,$ $s\in aeM,$ $z\in TM$, we have

$\mathfrak{L}(u^{*})L_{z}(r^{*}, s^{*})=\mathfrak{L}(u)g_{\pi z}(r, s)$ ,
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$\mathfrak{L}(u^{*})L_{z}(r^{*}, s^{o})=-g_{\pi z}(R(u, r)z,$ $s$),

$\mathfrak{L}(u^{*})L_{z}(r^{o}, s^{o})=(\nabla_{u}g)_{\pi z}(r, s)$ .
And similarly

$\mathfrak{L}(v^{o})L_{z}(r^{*}, s^{*})=\mathfrak{L}(v^{o})L_{z}(r^{o}, s^{o})=0$ ,

$\mathfrak{L}(v^{o})L_{z}(r^{*}, s^{o})=g_{\pi z}(\nabla_{\gamma}v, s)$ . Q. E. D.

From this, we know that the horizontal lift $u^{*}$ or vertical lift $v^{o}$ of $u,$ $v$

$\in \mathfrak{X}M$, or their linear combination with real coefficients, cannot be an infin-
itesimal (non-isometric) conformal transformation.

REMARK 3. Let $K$ and $\overline{K}$ be two connection maps, then there exists a
$(1,2)$ tensor $U$ on $M$ such that

$\overline{K}_{z}X=K_{z}X+U_{\pi z}(\pi X, z)$

for $X\in \mathfrak{X}TM,$ $z\in TM$. Hence if we fix one connection map $K$ and correspond-

ing almost complex structure $J$, then $\overline{J}$ is related as follows

$\pi_{z}(\overline{\sim\Gamma}X)=\pi_{z}(JX)+\eta_{\pi z}(U(\pi X, z))\xi_{\pi z}$ ,

$\overline{K}_{z}(\overline{J}X)=K_{z}(JX)+\phi_{\pi z}\cdot U(\pi X, z)$ .

REMARK 4. Though we have handled 1 in the most simplified form, one
may deal with the following somewhat intricated $J’ s$

$\pi JX=\epsilon_{1}\phi\pi X+\{a\eta KX+b\eta\pi X\}\xi$ ,
$(*)$

$ KJX=\epsilon_{2}\phi KX-\{b\eta KX+a^{-1}(1+b^{2})\eta\pi X\}\xi$ ,

$\epsilon_{1},$ $\epsilon_{2}$ being 1 or $-1,$ $a$ non-vanishing scalar and $b$ arbitary scalar. Or

$\pi JX=\epsilon_{1}\phi KX+\{a\eta KX+b\eta\pi X\}\xi$ ,

$ KJX=\epsilon_{2}\phi\pi X-\{b\eta KX+a^{-1}(1+b^{2})\eta\pi X\}\xi$ ,

where $\epsilon_{1}\cdot\epsilon_{2}=1$ , and $a\neq 0$ everywhere on $TM$.
In the next section on principal fiber bundle, we shall adopt the style $(^{*})$ .

(Cf. Proposition 4.2.)

3. Almost complex structures in principal fiber bundles over an
almost contact manifold.

We consider an arbitrary connection $w$ in $P,$ $P=P(M, G, \pi)$ denoting the
principal fiber bundle with group $G$ and projection $\pi$ . Analogously we use
the notation $u^{*},$ $A^{0}$ for the horizontal lift of $u\in \mathfrak{X}M$ and fundamental vector
field with respect to $A\in \mathfrak{G},$ $\mathfrak{G}$ being the Lie algebra of $G$ . Then we have
(see K. Nomizu [10])
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[A, $u^{*}$] $=0$ ,

[A, $B^{o}$ ] $=([A, B])^{o}$

$w([u^{*}, v^{*}])=-\Omega(u^{*}, v^{*})$

for $A,$ $B\in \mathfrak{G}$ and $u,$ $v\in \mathfrak{X}M$, where $\Omega$ stands for the curvature form of the
connection. An odd dimensional (connected) Lie group $G$ has many left in-
variant almost contact structures, from which we choose one $(\overline{\phi},\overline{\xi},\overline{\eta})$ . If
$\dim G=1$ , we understand that $\overline{\phi}$ is a trivial operator. By making use of a
connection form $w$ on $P$ and the structure tensors $(\phi, \xi, \eta)$ of $M$, one may see
intuitively that $P$ has a number of almost complex structures. Namely
$J(w, a, b)$ is defined as follows

(3.1) $\pi_{p}(JX)=\phi_{\pi p}\pi_{p}X+\{a(p)\cdot\overline{\eta}_{e}(w_{p}X)+b(p)\cdot\eta_{\pi p}(\pi_{p}X)\}\xi_{\pi p}$ ,

(3.2) $w_{p}(JX)=\overline{\phi}_{e}(w_{p}X)-\{b(p)\cdot\overline{\eta}_{e}(w_{p}X)+a^{-1}(p)(1+b^{2}(p))\eta_{\pi p}(\pi_{p}X)\}\overline{\xi}_{e}$ ,

for any $X\in XP$ and $p\in P$ , where $a$ and $b$ are arbitrary scalar fields such that
$a$ does not vanish on whole $P$ . The most standard is, of course, $J(w, 1,0)$ .
We investigate the integrability conditions of $J(w, a, b)$ for constant $a,$

$b$ . For
a fundamental vector field $A^{0}$ and a horizontal lift $u^{*}$ we have by definition

(3.3) $JA^{o}=(\overline{\phi}A)^{o}+a\alpha\xi^{*}-b\alpha\overline{\xi}^{o}$

(3.4) $Ju^{*}=(\phi u)^{Y^{\prime}\backslash }+b\lambda\xi^{*}-a^{\rightarrow 1}(1+b^{2})\lambda\overline{\xi}^{o}$

where we have put $\overline{\eta}(A)=\alpha,$ $\eta_{\pi_{p}}(u)=\lambda_{p}$ .
A. Integrability. Similarly we put $\overline{\eta}(B)=\beta$ and $\eta_{\pi_{p}}(v)=\mu_{p}$ , and we can

assume that $\lambda,$

$\mu$ are constant so far as the computations below are concerned.

(3.5) $\pi\Lambda^{T}(A^{o}, B^{o})=a\overline{\eta}([\overline{\phi}A, B)+[A,\overline{\phi}B])\xi$

$-ab\overline{\eta}(\alpha[\overline{\xi}, B]+\beta[A,\overline{\xi}])\xi$

$=a\overline{S}_{1}(A, B)\xi+ab\{\alpha\overline{S}_{3}(B)-\beta\overline{S}_{3}(A)\}\xi$ ,

(3.6) $wN(A^{o}, B^{o})=\overline{S}(A, B)+b\overline{S}_{1}(A, B)\overline{\xi}+b\{\alpha\overline{S}_{2}(B)-\beta\overline{S}_{2}(A)\}$

$-b^{2}\{\alpha\overline{S}_{3}(B)-\beta\overline{S}_{3}(A)\}\overline{\xi}$ ,

(3.7) $\pi i\backslash r(A^{o}, u^{*})=-a\alpha S_{2}(u)-(1+b^{2})\lambda\overline{S}_{3}(A)\xi-ab\alpha S_{3}(u)\xi$

$-a^{2}\alpha\overline{\eta}\Omega(\xi^{*}, u^{*})\cdot\xi$ ,

(3.8) $wN(A^{o}, u^{*})=-a^{-1}(1+b^{2})\lambda\overline{S}_{2}(A)+a^{-1}(1+b^{2})b\lambda\overline{S}_{3}(A)\overline{\xi}$

$+\alpha(1+b^{2})S_{8}(u)\overline{\xi}+a\alpha\Omega(\xi^{*}, (\phi u)^{*})$

$-a\alpha\overline{\phi}\Omega(\xi^{*}, u^{*})+ab\alpha\overline{\eta}\Omega(\xi^{*}, u^{*})\cdot\overline{\xi}$ ,
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(3.9) $\pi N(u^{*}, v^{*})=S(u, v)-bS_{1}(u, v)\xi+b\{\mu S_{2}(u)-\lambda S_{2}(v)\}$

$-b^{2}\{\lambda S_{3}(v)-\mu S_{a}(u)\}\xi$

$-a\overline{\eta}\{\Omega((\phi u)^{*}, v^{*})+\Omega(u^{*}, (\phi v)^{*})\}\xi$

$-ab\overline{\eta}\{\Omega(\lambda\xi^{*}, v^{*})+\Omega(u^{*}, \mu\xi^{*})\}\xi$ ,

(3.10) $wN(u^{*}, v^{*})=-\Omega(u^{*}, v^{*})+\Omega((\phi u)^{*}, (\phi v)^{*})$

$+b\{\Omega(\lambda\xi^{*}, (\phi v)^{*})+\Omega((\phi u)^{*}, \mu\xi^{*})\}$

$-\overline{\phi}\{\Omega((\phi u)^{*}, v^{*})+\Omega(u^{*}, (\phi v)^{*})\}$

$-b\overline{\phi}\{\Omega(\lambda\xi^{*}, v^{*})+\Omega(u^{*}, \mu\xi^{*})\}$

$+b\overline{\eta}\{\Omega((\phi u)^{*}, v^{*})+\Omega(u^{*}, (\phi v)^{*})+b\Omega(\lambda\xi^{*}, v^{*})$

$+b\Omega(u^{*}, \mu\xi^{*})\}\overline{\xi}+a^{-1}(1+b^{2})S_{1}(u, v)\overline{\xi}$

$+a^{-1}(1+b^{2})b\{\lambda S_{3}(v)-\mu S_{3}(u)\}\overline{\xi}$ .
We suppose that $S$ and $\overline{S}$ vanish, and $J$ is integrable, then we have from

(3.7)

(3.7) $\overline{\eta}\Omega(\xi^{*}, v^{*})=0$ .
From (3.8), (3.9) and (3.7), we get

(3.8) $\Omega(\xi^{*}, (\phi v)^{*})-\overline{\phi}\Omega(\xi^{*}, v^{*})=0$ ,

(3.9)i $\overline{\eta}\{\Omega((\phi u)^{*}, v^{*})+\Omega(u^{*}, (\phi v)^{*})\}=0$ .

By (3.7), (3.8), $(3.9)^{\prime}$ and (3.10), we obtain

(3.11) $\Omega(u^{*}, v^{*})-\Omega((\phi u)^{*}, (\phi v)^{*})+\overline{\phi}\{\Omega((\phi u)^{*}, v^{*})+\Omega(u^{*}, (\phi v)^{*})\}=0$ .
Conversely if $S=\overline{S}=0$ and (3.11) hold, then $J$ is integrable.

PROPOSITION 3.1. The principal fiber bundle $P(M, G, \pi)$ over an almost
contact manifold $M$, on whose structure group $G$ of odd dimension we fix a
left invariant almost contact structure, admits an almost complex structure
$J(w, a, b)$ depending upon a connection form $w$ and scalar fields a $(\neq 0)$ and $b$

on P. When $a$ and $b$ are constant and both almost contact structures are nor-
mal, $J(w, a, b)$ is integrable if and only if $\Omega$ satisfies (3.11). In particular, if
$\Omega$ is of type $(1,1)$ , then $J$ is integrable.

To prove the last statement, we note that the condition

(3.12) $\Omega(JX, Y)+\Omega(X,JY)=0$

for $X,$ $Y\in \mathfrak{X}P$ is equivalent to

(3.13) $\Omega((\phi u)^{*}, v^{*})+\Omega(u^{*}, (\phi v)^{*})=0$ .
Because, if we set $X=u^{*},$ $Y=A^{o}$ in (3.12) we have $\Omega(u^{*}, \xi^{*})=0$ . Next we



Almost complex structures in bundle spaces 179

put $X=u^{*},$ $Y=v^{*}$ , then (3.13) follows. Converse may be verified also.
REMARK 1. If $\dim G=1$ and the almost contact structure of $M$ is normal,

then $J$ for constant $a\neq 0,$ $b$ is integrable if and only if $\Omega$ is of type $(1,1)$

([11]).

REMARK 2. Any reductive, for example compact, odd dimensional Lie
group has a left invariant normal almost contact structure ([6]).

PROPOSITION 3.2. Suppose that the almost contact structure of $M$ satisfies
$S_{1}=0$ . Then $J(w, a, 0)$ , $a$ being non-zero constant, is integrable if and only if
$S=\overline{S}=0$ and (3.11) are satisfied.

PROOF. Sufficiency is contained in Proposition 3.1. Necessity: As $b=0$ ,
$\overline{S}=0$ follows from (3.6). Hence by (3.7) and $\eta\cdot S_{2}(u)=S_{1}(u, \xi)=0$ we get
$\overline{\eta}\Omega(\xi, u^{*})=0$ . Furthermore from (3.10) we get (3.11). If we replace $u$ of (3.11)

by $\phi u$ and operate $\overline{\eta}$ , we have (3.9). Finally from (3.9) we have $S=0$ .
REMARK 3. If the almost contact structure is derived from a contact

structure, $S_{1}=0$ holds always ([16]).
B. The actions of A and $u^{*}$ to $J$.
PROPOSITION 3.3. Let A, $A\in \mathfrak{G}$, be a fundamental vector field and con-

sider $J(w, a, b)$ for constants $a\neq 0$ and $b$ . A is almost analytic with respect to
$J$ if and only if A leaves $\overline{\xi}$ and $\overline{\phi}$ invariant.

PROOF. All we have to check is the value of $\mathfrak{L}(A^{o})J\cdot B^{o}$ and $\mathfrak{L}(A^{o})J\cdot u^{*}$

at a point $p\in P$,

(3.14) $\pi_{p}(\mathfrak{L}(A^{O})J\cdot B^{\circ})=a\{\mathfrak{L}(A)\overline{\eta}\cdot B\}\xi_{\pi p}$ ,

(3.15) $w\mathfrak{L}(A^{o})J\cdot B^{o}=\mathfrak{L}(A)\overline{\phi}\cdot B-b\{\mathfrak{L}(A)\overline{\eta}\cdot B\}\overline{\xi}-b\overline{\eta}(B)\cdot \mathfrak{L}(A)\overline{\xi}$ ,

(3.16) $\pi \mathfrak{L}(A^{o})J\cdot u^{*}=0$ ,

(3.17) $w_{p}(\mathfrak{L}(A^{o})J\cdot u^{*})=-a^{-1}(1+b^{2})\eta_{\pi p}(u)\cdot \mathfrak{L}(A)\overline{\xi}$ .

REMARK 4. If $\dim G=1$ , any fundamental vector field is of the form $\alpha\overline{\xi}^{o}$

for constant $\alpha$ and is almost analytic with respect to $J$ in Proposition 3.3.
PROPOSITION 3.4. In $P$ we suppose that the curvature form satisfies

(3.18) $\Omega u^{*},$ $t^{*}$) $+\overline{\phi}\Omega(u^{*}, (\phi v)^{*})=0$

for $u,$
$v\in \mathfrak{X}$ M. Then the necessary and sufficient condition that the lift $x^{*},$ $x$

$\in \mathfrak{X}M$, is almost analytic with respect to $J(w, a, b)$ for constants $a\neq 0$ and $b$ , is
that $x$ leaves $\xi$ and $\phi$ invariant.

PROOF. This is a consequence of the following computations

(3.19) $\pi \mathfrak{L}(x^{*})y.$ A $=a\overline{\eta}(A)[x, \xi]$ ,

(3.20) $ w\mathfrak{L}(x^{*})J\cdot$ A $=-a\overline{\eta}(A)\Omega(x^{*}, \xi^{*})$ ,
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(3.21) $\pi L^{?}(x^{*})J\cdot u^{*}=\mathfrak{L}(x)\phi\cdot u+b\eta(u)[x, \xi]+a\overline{\eta}\Omega(x^{*}, u^{*})\cdot\xi$

$+b(\mathfrak{L}(x)\eta\cdot u)\xi$ ,

(3.22) $w_{p}(\mathfrak{L}(x^{*})J\cdot n^{*})=a^{-1}(1+b^{2})(\mathfrak{L}(x)\eta_{\pi p}\cdot u)\overline{\xi}-\Omega(x^{*}, (\phi u)^{*})$

$+\overline{\phi}\Omega(x^{*}, u^{*})-b\eta_{\pi p}(u)\Omega(x^{*}, \xi^{*})$

$-b\overline{\eta}\Omega(x^{*}, u^{*})\cdot\overline{\xi}$ .

REMARK 5. The condition (3.11) is weaker than (3.18). Hence, if the
almost contact structures of $M$ and $G$ are normal and the curvature form of
the connection satisfies (3.18), then the lift $x^{*}$ of a vector field $x$ on $M$ which
leaves $\xi$ and $\phi$ invariant, is an analytic vector field. Consequently $Jx^{*}=(\phi x)^{*}$

$+b\eta(x)\xi^{*}-a^{-1}(1+b^{2})\eta(x)\overline{\xi}^{o}$ is also analytic. As for the analytic fundamental
vector field A, similarly $(\overline{\phi}A)^{o}+a\overline{\eta}(A)\xi^{*}-b\overline{\eta}(A)\overline{\xi}^{o}$ is analytic, but in this case
each component is itself analytic.

REMARK 6. If the holonomy algebra is odd dimensional, then (3.18) means
that the curvature form $\Omega$ vanishes.

C. Almost hermitian metrics. These almost complex structures have
almost hermitian metrics, however, for brevity we restrict ourselves to
$J(w, a, 0)$ for non-zero scalar $a$ . Then natural metric $L=L(w, a, g,\overline{g}, k)$ may be

$L_{p}(X, Y)=k(p)g_{\pi_{p}}(\pi_{p}X, \pi_{p}Y)+a^{2}(p)k(p)\overline{g}_{e}(w_{p}X, w_{p}Y)$ ,

$g$ and $\overline{g}$ denoting the associated metrics of $(\phi, \xi, \eta)$ and $(\overline{\phi},\overline{\xi},\overline{\eta})$ respectively
and $k$ a positive scalar on $P$. Now we have the fundamental 2-form

$\Xi(X, Y)=L(X.JY)=-L(JX, Y)$ .

In the case of $\dim G=1$ , Y. Ogawa proved in [11] that, the almost her-
mitian structure $\{J(w, 1,0), L(w, 1, g, 1, k)\}$ of $P$ defined by an integrable con-
nection $w$ and an almost contact structure associated with a contact structure
$\eta$ , is almost k\"ahlerian if and only if $d\log k=-wi$ . $e$ . $dk=-kw$ . From the
last condition one sees that, if $P$ is almost k\"ahlerian, l-dimensional Lie group
$G$ is not a toroidal group but a group of real numbers, since $\mathfrak{L}(\sigma^{o}\overline{\prime})\log k=-1$ .
Furthe $r$ , each fiber over $x\in M$ has a unique point $\tilde{\chi}$ satisfying $k(\tilde{x})=1$ . Then
$\theta$ : $x\rightarrow\tilde{x}$ is a horizontal cross section and $\theta(M)$ can be considered as a contact
Riemannian manifold by $\theta^{-1*}\eta$ and $\theta^{-1*}g$ . Thus, $P\approx M\times R$ and $\theta(M)\approx(M, 0)$ ,
$k(x, t)=e^{-t}$ . Consequently, we have $dt=w$ and by Y. Tashiro’s result [18]
$\theta(M)$ is a totally umbilical hypersurface of $P$ .

Now, we clarify the Y. Ogawa’s result.
PROPOSITION 3.5. If the almost hermitian structure $(J(w, 1,0), L(w, 1, g, 1, k))$

of $P(\dim G=1)$ is defined by the integrable connection $w$ . Then from the two
of the next conditions, the remaining one follows
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(i) $\eta$ : contact form ,

(ii) $(J, L)$ : almost kahlerian ,

(iii) $dk=-kw$ .
We have only to prove (ii), $(iii)\rightarrow(i)$ . For $u,$ $v$ such that $\eta(u)$ and $\eta(v)$

are constant, we have
$(d_{-}^{-})(u^{*}, v^{*},\overline{\xi}^{o})=u^{*}k\cdot\eta(v)-v^{*}k\cdot\eta(u)$

$+\overline{\tilde{\zeta}}^{o}k\cdot g(u, \phi v)-kg([u, v], \xi)$ .

By $u^{*}k=i(u^{*})dk=0,\overline{\xi}^{o}k=-k$ and $\eta([u, v])=-d\eta(u, v)$ , we get

$g(u, \phi v)=d\eta(u, v)$ .

This means that $\eta$ is a contact form on $M$.

4. Almost contact structures of $M$ induced from an almost complex
structure of $P(M,G)$ , ($\dim G=1$).

In the principal fiber bundle $P$ with a l-dimensional Lie group $G$ , let $A^{o}$

and $w$ stand for the fundamental vector field and connection form such that
$w(A^{o})=1$ , considering $w$ as scalar valued. We assume that $P$ has an almost
complex structure $J$ which is invariant under the operation of $G$ . Define
$\xi=\pi JA^{O}$ , then $\xi$ is a vector field on $M$ which does not vanish everywhere on
$M$. Therefore it is possible to find a l-form $\eta$ such that $\eta(\xi)=1$ . Finally
we define $\phi$ as follows

(4.1) $\phi u=\pi J(u^{*}-\eta(u)\xi^{*})-\eta\pi J(u^{*}-\eta(u)\xi^{*})\cdot\xi$

for $u\in \mathfrak{X}M$, where $u^{*}$ and $\xi^{*}$ are the lifts with respect to $w$ and $\xi^{*}=JA^{O}$

$-w(JA^{o})A^{o}$ . Then $\phi$ satisfies $\phi\xi=0,$ $\eta\phi=0$ and

(4.2) $(\phi u)^{*}=J(u^{*}-\eta(u)\xi^{*})-wJ(u^{*}-\eta(u)\xi^{*})A^{o}$

$-\eta\pi J(u^{*}-\eta(u)\xi^{*})\cdot\xi^{*}$ .
Replacing $u$ of (4.1) by $\phi u$ and using (4.2) we have

$\phi^{2}u=-u+\eta(u)\xi$ .
This proves

PROPOSITION 4.1. Let $G$ be a l-dimensional Lie group. $IfJ$ is a G-invariant
almost complex structure in $P$, then $M$ has an almost contact structure $\phi,$ $\xi,$

$\eta$

defined above.
From (4.2) it follows that

(4.3) $Ju^{*}=(\phi u)^{*}+\eta\pi Ju^{*}\cdot\xi^{*}+wJu^{*}\cdot A^{o}$

And as JA $=\xi^{*}+w(JA^{o})\cdot$ A, if $\eta\pi Ju^{*}$ and $wJu^{*}$ are proportional to $\eta(u)$ , we
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have
$\eta\pi Ju^{*}=-w(JA^{o})\eta(u)$ ,

$wJu^{*}=-(1+w^{2}(JA^{O}))\eta(u)$ .
Therefore

PROPOSITION 4.2. Notations being as above, if $\eta\pi Ju^{*}and$ $wJu^{*}$ are propor-
tional to $\eta(u)$ . The relation between $J$ and $\phi,$ $\xi,$

$\eta$ is $J(w, 1, -w(JA^{o}))$ . More-
over if $wJA^{O}$ is constant, then we can refer the integrability condition to Pro-
position 3.1, 3.2.

5. An almost complex structure of $TM$ depending only on an almost
contact structure of $M$.

For a coordinate neighborhood $U$ of $M$ with coordinates ( $s^{i}$ : $i=1,2,$ $\cdots$ ,
$2n+1)$ , we may take $\pi^{-1}(U)\approx U\times E$ as a coordinate neighborhood of $TM,$ $E$

denoting $(2n+1)$-dimensional Euclidean space, with coordinates $(s^{i}, z^{j})$ , where
$z^{j}$ are components of a tangent vector with respect to the natural frame. If
$U(s^{i})\cap U^{\prime}(s^{\prime i})$ is non-empty, the coordinate transformation of $(\pi^{-1}U)\cap\pi^{-1}(U^{\prime})$

is
$s^{\prime i}=s^{\gamma i}(s^{1}, s^{2}, \cdot.. s^{2n+1})$ ,

$z^{\prime j}=\frac{\partial s^{\gamma j}}{\partial s^{i}}z^{i}$

And we have the matrix

(5.1) $T_{U}^{U^{l}}=\left(\begin{array}{ll}\frac{\partial s}{\partial s^{j}} & 0\\\frac{\partial^{2}s^{i}}{\partial s^{j}\partial s^{k}}z^{k} & \frac{\partial s^{\prime t}}{\partial s^{j}}\end{array}\right)$ .

Let $X=(X^{i}, X^{m+i}),$ $m=2n+1$ , be a vector field on $TM$, then we have

$(\pi_{z}X)^{i}=X^{i}$ ,

$(K_{z}X)^{j}=X^{m+J}+z^{r}\Gamma_{rt}^{j}X^{t}$ ,

where $\Gamma_{r}^{J_{\iota}}$ is the connection coefficients. By the definition of $J$ in \S 2

$[\pi_{z}(JX)]^{i}=\phi_{j}^{i}X^{j}+\eta_{j}(X^{m+j}+z^{r}\Gamma_{rt}^{j}X^{t})\xi^{i}$ ,

$[K_{z}(JX)]^{i}=\phi_{j}^{i}(X^{m-\vdash J}+z^{r}\Gamma_{rl}^{i}X^{t})-\eta_{j}X^{j}\xi^{i}$ .
From this we have the local expression of $J$

$J_{j}^{i}=\phi_{j}^{t}+z^{r}\eta_{l}\Gamma_{rj}^{l}\xi^{i}$ ,

(5.2) $J_{m+j}^{i}=\xi^{i}\eta_{j}$ ,

$J_{j}^{m+i}=\phi_{\iota}^{i}\Gamma_{rj}^{l}z^{r}-z^{p}z^{q}\xi^{t}\eta_{r}\Gamma_{pJ}^{r}\Gamma_{gt}^{\dot{v}}-\phi_{j}^{t}\Gamma_{rt}^{t}z^{r}-\xi^{i}\eta_{j}$ ,
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$J_{m}^{m}\ddagger_{j}^{i}=\phi_{i}^{t}-z^{r}\Gamma_{rt}^{i}\xi^{t}\eta_{j}$ .

We want to get an almost complex structure which is independent of the
linear connection. For this purpose, suppose tentatively that the linear con-
nection $\Gamma$ is symmetric $(\phi, \xi, \eta)$ -connection (such a connection does not always
exist, cf. [16]), then (5.2) turns

$f_{j}^{t}=\phi_{j}^{i}+z^{r}\xi^{i}\underline{\partial}\partial^{\frac{\eta_{j}}{s^{\gamma}}}$ ,

$f_{m+j}^{l}=\xi^{i}\eta_{j}$ ,

$J_{j}^{m+i}=z^{r}\frac{\partial\phi_{j}^{i}}{\partial s^{r}}+z^{t}z^{r}\frac{\partial\xi^{i}}{\partial s^{t}}\frac{\partial\eta_{j}}{\partial s^{r}}-\xi^{i}\eta_{j}$ ,

$I_{m}^{m}\ddagger_{j}^{t}=\phi_{j}^{i}+z^{r}\frac{\partial\xi^{i}}{\partial s^{r}}\eta_{j}$ ,

because, for example, $\xi^{t}\Gamma_{qt}^{i}=\Gamma_{tq}^{i}\xi^{t}=-\frac{\partial\xi^{i}}{\partial s^{q}}$ . These suggest us the possibility

of definition of $\Phi_{U}$ in $\pi^{\rightarrow 1}(U)$ by

(5.3) $\Phi_{U}=\left(\begin{array}{lllll}+\phi_{j}^{i}z^{r}\xi^{i}\frac{\partial\eta_{j}}{\partial s^{r}} & & & & \xi^{i}\eta_{j}\\z^{T}\frac{\partial\phi_{j}^{i}}{\partial s^{r}}+z^{t}z^{r}\frac{\partial\xi^{i}}{\partial s^{t}} & \frac{\partial\eta_{j}}{\partial r} & -\xi^{i}\eta_{j} & \phi_{j}^{i} & +z^{r}\frac{\partial\xi^{i}}{\partial s^{r}}\eta_{j}\end{array}\right)$ .

And as the following relation is demonstrated directly

(5.4) $T_{U}^{U^{\prime}}\Phi_{U}T_{U}^{U},$ $=\Phi_{U^{\prime}}$

in $(\pi^{-1}U)\cap(\pi^{-1}U^{\prime})$ , we see that $\Phi$ is a tensor field on $TM$. Further, $\Phi\Phi X$

$=-X$ for any $X\in \mathfrak{X}TM$ is also verified. Thus we obtain
PROPOSITION 5.1. The tangent bundle of an almost contact manifold $\Lambda T$

has an almost complex structure $\Phi$ depending on the almost contact structure
of M. The necessary and sufficient condition that $\Phi$ is integrable is normality

of the almost contact structure.
Proof of the last statement follows from th $e$ next lemma. Namely if

$S=0$ , we see that $\Phi$ is integrable. Conversely if $\Phi$ is integrable, by (5.5) and
(5.8) we get $S=0$ .

LEMMA. Let $\Psi$ be the Nijenhuis tensor for $\Phi$ , and $N_{jk}^{i},$ $N_{jk},$ $N_{j}^{i}$ and $N_{j}$.

be the components of $S,$ $S_{1},$ $S_{2}$ and $S_{3}$ respectively (see [16]). Then the follow-
ings are valid.

(5.5) $\Psi_{jk}^{i}=N_{Jk}^{t}+2\xi^{i}\eta_{Ij}N_{k\supset}+z^{t}(2\partial_{t}\eta_{\mathfrak{c}k}N_{j^{i}J}-\xi^{i}\partial_{t}N_{jk}+2z^{s}\xi^{i}N_{\mathfrak{c}j}\partial_{|S|\eta_{k3})}$ ,

(5.6) $\Psi_{jm+k}^{i}=\eta_{k}N_{j^{i}}+\xi^{i}N_{kj}+z^{t}\xi^{i}(\partial_{t}N_{j}\eta_{k}-N_{k}\partial_{t}\eta_{j})$ ,
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(5.7) $\Psi_{jk}^{m+i}=\xi^{i}N_{jk}+2\eta_{rj}N_{k3}^{i}+z^{t}(\partial_{t}N_{jk}^{i}-2N_{\subset j}\eta_{kl}\partial_{t}\xi^{i}$

$+2\xi^{i}\partial^{t}\eta_{\subset j}N_{k\supset}-z^{p}\partial_{p}\xi^{i}\partial_{t}N_{jk}$

$+2z^{p}z^{q}\partial_{p}\xi^{i}\partial_{q}\eta_{rk}\partial_{|tI}N_{j1}-2z^{p}\partial_{p}\eta_{\subset j}\partial_{|p|}N_{kJ}^{t})$ ,

(5.8) $\Psi_{m+jm+k}^{i}=2\xi^{i}\eta_{Ik}N_{j3}$ ,

(5.9) $\Psi_{m}^{m}\ddagger_{jk}^{t}=N_{j^{i}k}+\xi^{i}\eta_{j}N_{k}+z^{t}(\partial_{t}\eta_{k}N_{j^{i}}-\eta_{j}\partial_{t}N_{k}^{i}-\partial_{t}\xi^{i}N_{jk}$

$-z^{p}\partial_{n}\xi^{i}\eta_{j}\partial_{t}N_{k}+z^{p}\partial_{p}\xi^{i}\partial_{t}\eta_{k}N_{j})$ ,

(5.10) $\Psi_{m}^{m}\ddagger_{jm+k}^{\iota}=2N_{rj}^{i}\eta_{kJ}+2z^{t}\partial_{t}\xi^{i}\eta_{\subset k}N_{jj}$ ,

where $2\eta_{Ij}N_{kJ}=\eta_{j}N_{k}-\eta_{k}N_{j}$ , etc., and $\partial_{r}=\partial/\partial s^{r}$ .
PROOF. Because of complexity and lengthiness of the calculations, we

give here only for (5.5). We use the notations $\partial_{m+r}=\partial/\partial z^{\gamma}$ . Then

$\partial_{Ir}\Phi_{jj}^{i}=\partial_{\zeta r}\phi_{jj}^{t}+z^{t}\partial_{t}\eta_{rj}\partial_{rJ}\xi^{i}+\xi^{i}z^{t}\partial_{t}(\partial_{\zeta r}\eta_{j\ddagger})$ .
And so

\langle 5.11) $2\Phi_{k}^{r}\partial_{rr}\Phi_{j\supset}^{i}=A_{J}^{\iota_{k}}+B_{jk}^{i}$ ,

where
$A_{jk}^{i}=2\phi_{k}^{r}\partial_{Lr}\phi_{jl}^{i}+\phi_{k}^{r}z^{t}\partial_{t}\eta_{j}\partial_{r}\xi^{i}$

$-\phi_{k}^{r}z^{t}\partial_{t}\eta_{r}\partial_{j}\xi^{i}+2\phi_{k}^{r}\xi^{i}z^{t}\partial_{t}(\partial_{\mathfrak{c}r}\eta_{jJ})$ ,

$B_{jk}^{t}=2\xi^{r}\partial_{(r}\phi_{j\supset}^{i}z^{p}\partial_{p}\eta_{k}+\xi^{r}\partial_{r}\xi^{i}\partial_{r}z^{t}\partial_{t}\eta_{j}z^{p}\partial_{p}\eta_{k}$

$-z^{t}z^{p}\xi^{r}\partial_{t}\eta_{r}\partial_{p}\eta_{k}\partial_{j}\xi^{i}+2z^{p}z^{t}\xi^{t}\partial_{p}\eta_{k}\xi^{r}\partial_{t}(\partial_{\zeta r}\eta_{jJ})$ .
On the other hand,

$2\partial_{\mathfrak{c}m+r}\Phi_{jJ}^{i}=2\xi^{i}\partial_{\zeta r}\eta_{jJ}-\partial_{j}\xi^{i}\eta_{r}$ ,
and hence

(5.12) $2\Phi_{k}^{m+r}\partial_{Im+r}\Phi_{jJ}^{\ell}=C_{jk}^{t}+D_{fk}^{i}+E_{jk}^{i}$ ,

where
$C_{J}^{\iota_{k}}=2\xi^{i}z^{t}\partial_{t}\phi_{k}^{r}\partial_{\zeta r}\eta_{j\ddagger}-\partial_{j}\xi^{i}\eta_{r}z^{t}\partial_{t}\phi_{k}^{r}$ ,

$D_{jk}^{t}=2\xi^{i}z^{t}z^{p}\partial_{t}\xi^{r}\partial_{p}\eta_{k}\partial_{\mathfrak{c}r}\eta_{jJ}-z^{t}z^{p}\partial_{t}\eta_{k}\partial_{j}\xi^{t}\partial_{I^{y}}\xi^{r}\eta_{r}$ ,

$E_{jk}^{i}=-2\xi^{i}\eta_{k}\xi^{r}\partial_{\zeta r}\eta_{j\ddagger}+\eta_{k}\partial_{j}\xi^{i}$ .
As $\Psi_{jk}^{t}$ is given by

$\Psi_{jk}^{i}=2A_{I_{J^{kj}}^{i}}+2B_{[jk]}^{i}+2C_{[jk]}^{i}+2D_{rjk1}^{t}+2E_{[jk]}^{i}$ ,

we simplify the right hand side. Writing, for example, the first term of $A_{jk}^{t}$

by $A_{jk}^{i}(1)$ , we have

(5.13) $2A_{[jk]}^{i}(1)+2E_{\subset jk1}^{i}(2)=N_{jk}^{i}$ .
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Following relations may be verified also.

(5.14) $B_{[jk]}^{i}(2)=0$ ,

(5.15) $B_{jk}^{l}(3)+D_{jk}^{i}(2)=0$ ,

(5.16) $A_{jk}^{i}(3)+C_{jk}^{i}(2)=0$ ,

(5.17) $E_{[jk]}^{i}(1)=\xi^{i}\eta_{rj}N_{k1}$ ,

(5.18) $A_{[jk]}^{i}(2)+B_{[jk]}^{i}(1)=z^{t}\partial_{t}\eta_{Ik}N_{jl}^{i}$ ,

(5.19) $B_{[jk]}^{i}(4)+D_{[jk]}^{t}(1)=\xi^{i}z^{t}z^{p}\partial_{t}\eta_{\mathfrak{c}k}\partial_{|p|}N_{jI}$ ,

(5.20) $2A_{[jk]}^{i}(4)+2C_{[jk]}^{i}(1)=2\xi^{i}z^{t}\partial_{t}[\phi_{Ik}^{r}(\partial_{|\gamma|}\eta_{jj}-\partial_{j}\eta_{r})]=-\xi^{i}z^{t}\partial_{t}N_{jk}$ .

Summing up $(5.13)\sim(5.20)$ , we have proved (5.5).

It has shown that an almost contact manifold has a symmetric $(\phi, \xi, \eta)-$

connection $\nabla$ if and only if $\eta$ is closed and the structure is normal ([16]).
Therefore if we notice that, when $J$ is defined by this connection $\nabla,$ $J$ coincides
with $\Phi$ , we get from Proposition 2.1 and 5.1 the following

$CoROLLARY$ . Let $M$ be a normal almost contact manifold such that $\eta$ is
closed, then any symmetic $(\phi, \xi, \eta)$ -connection satisfies the following

$R(u, v)-R(\phi u, \phi v)+\phi\cdot[R(\phi u, v)+R(u, \phi v)]=0$

for any $u,$
$v\in \mathfrak{X}M$.
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