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Introduction

In the research about intuitionism from the standpoint of the formalism,
there are at least two fundamental subjects. The first is; how we should
define the concept of the intuitionistic truth for formulas.

Many concepts around this have been proposed; for example,
“ general recursive truth in the case of prenex formulas,”
“ recursive realizability” (Kleene [2]),
“ Godel’s interpretation ” (Godel [5]),
“ no-counter example-interpretation “ (Kreisel [17]),
” Godel’s interpretation by means of effective operations ” (Kreisel [6]).

The second is; by what means we can recognize various formulas to be
intuitionistically true, especially in what formal systems the formulas are
provable.

In this paper, restricting our attention to the number theory, we shall
answer partially to the second problem. This problem leads necessarily to
establishing the formal systems or series of systems which deduce intuition-
istically true formulas as many as possible.

The intuitionistic number theory $Z^{I}$, which will be explained in \S 1, deduce
only intuitionistically true formulas in any sense.

But G\"odel’s $\omega$ -incompleteness theorem asserts that in $Z^{I}$ as well as more
extended systems $S$ with some conditions there is a formula $\forall xA(x)$ , where
A(x) is a PR-formula 3), which is true in any sense, and therefore $-_{s}A(\overline{x})$ for
any numerals $\overline{x}$ , but not $-s\forall xA(x)$ . So, for example, $Z^{I}$ is incomplete for
intuitionistically true formulas.

The w-rule is considered by many people in order to obtain such formulas
as above $\forall xA(x)$ in formal systems. The $\omega$ -rule is defined as a rule of infer-
ence such that if $(x)\mapsto_{S}A(\overline{x})$ we can infer $\mapsto_{S}\forall xA(x)$ .

But in this case the proofs are infinitely long extensive and “
$a$ is a proof

of $b$ “ is no more recursive for $a,$
$b$ . However, when we know that $(x)-sA(X)$

holds, we can obtain that the formula expressing $(x)-sA(\overline{x})$ is provable in $S$

or in other systems. Therefore, in these cases, in order to obtain such for-
mulas the $\omega$ -rule is not always indispensable. It suffices to suppose the fol-
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lowing rule or axiom;

(1) formula
$expres\sin\underline{g(x)\mapsto_{s}A(\overline{x})}\forall xA(x)$

(2) {formula expressing $(x)\leftarrow_{S}A(\overline{x})$ } $\supset\forall xA(x)$ .
(1) is considered for the first time by Rosser in [8], and named K-rule. We
call Axiom $K$ for $S$ for (2).

The system $S$ added by (1) is equivalent to the system $S$ added by (2)
(Proposition 1.1).

The system $S^{(K)}$ which is the system $S$ added by Axiom $K$ is a proper
extension of $S$, because there exist formulas probable in $S^{(K)}$ but not in $S$ .

Adding successively K-rule starting from $S$ , we obtain a hierarchy $S,$ $S^{(K)}$,
$S^{(K)^{(K)}},$ $ S^{(K)}(K)\ldots$ The most perfect theory of such hierarchy is Feferman’s
theory of transfinite recursive progression [1].

There, Feferman constructs the progression $S_{d}$ adding Axiom $K$ succes-
sively up to arbitrary constructive ordinal $d$ starting from $S$ such that $S_{d}$ is
recursively enumerable if $S$ is so, and $S_{1}$ is $S,$ $S_{2}a$ is $S_{tl}$ added by Axiom $K$

for $S_{d}$, and $S_{8.5}e$ where 3.$5^{e}\in O$ is the union of $S_{\{e\}(n)}$ . In \S 1, we give the
definition of K-rule, Axiom $K$ and Axiom $K^{\prime}$ equivalent to $K$. Moreover trans-
finite recursive progressions of intuitionistic or classical number theories $Z_{a}^{I}$,
$Z_{a}^{c}$ , are given. In \S 2, we give an example which is obtained by using K-rule.
Firstly, the transfinite induction up to $\epsilon_{0}$ is provable in $Z^{(K)}$ . Secondly, a
normal truth definition can be obtained in a predicative extension of systems
considered by using K-rule. $Z_{a}^{I}$ keeps still intuitionistic character as $Z^{I}$. This
is formulated as follows in \S 3. The provable formulas in $Z_{a}^{I}$ are recursively
realizable (Theorem 1). In \S 4, we obtain a formal consistency proof of clas-
sical systems $Z_{a}^{c}$ in $Z_{2}^{I_{d}}$ which is intuitionistic as above mentioned. (Corollary

to Theorem 2.) By the way of this proof, we show that another formulation
of consistency, which is not as usual but expresses substantially the consis-
tency of $Z_{a}^{c}$ , can be proved in $Z_{a}^{c}$ itself, even in $Z^{I}$. It means that the 2nd
incompleteness theorem of G\"odel may not hold if we adopt the special method
of Godel’s numbering. And this fact was known by Feferman and Nishimura
by another way. In case $d=1$ , that the consistency of $Z^{c}$ is provable in $Z^{I(K)}$ ,

can be expected from the fact that the transfinite induction up to $\epsilon_{0}$ is pro-
vable in $Z^{1(K)}$ and from Gentzen’s famous result.

One of the most distinguished results of Feferman [1] is the completeness
property of $Z_{a}^{c}$ , that is, the number theoretic formula A is classically true if
and only if $|-z_{a}^{C}$ A for some $d\in O$ . Does analogous theorem hold for $Z_{a}^{I}$ and
for intuitionistically true formulas instead of $Z_{a}^{c}$ and of classically true
formulas?
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But unfortunately, in order to show that the general recursively true
formula is provable in $Z_{a}^{I}$ for some $d\in O$ , we need the following formulas

$(\hat{I})$ $7\forall xA(x)\supset\exists x7A(x)$ .

These formulas can not be provable in $Z^{I}$ in general, but are considered as
quasi-intuitionistic when A(x) are universal prenex formulas. And these for-
mulas are used in Godel’s interpretation. We define $\hat{Z}^{I}$ as $Z^{1}$ added by Axiom
$\hat{I}$ and $\hat{Z}_{d}^{I}$ as the recursive progression of $\hat{Z}^{I}$ .

The formula provable in $\hat{Z}_{a}^{I}$ may not recursively realizable in general.
However if the formula is of the prenex form and provable in $\hat{Z}_{a}^{I}$, then it is
general recursively true; for, the formula provable in $\hat{Z}_{a}^{I}$ is true under the
Godel’s interpretation by means of effective operations and the truth of it
coincides with the general recursive truth in case of prenex formula.

In \S 5 we show that the provable formula of $\hat{Z}_{(}^{I}x$ is true under G\"odel’s

interpretation by means of effective operations.
In \S 6, we shall show that the prenex formulas are general recursively

true if and only if these formulas are provable in $\hat{Z}_{a}^{I}$ for some $d$ (Theorem 3).

We do not know what is the recursive progression such that the formulas
\langle not necessary prenex) which are true under G\"odel’s interpretation by means
of effective operations are provable.

Of course, it is impossible to be $\hat{Z}_{a}^{I}$ ; in fact there is a true formula under
above interpretation which is not provable in $Z_{a}^{I}$ for any $d\in O$ . We notice
that the G\"odel’s interpretations by means of effective operations can be ex-
pressed by the formula of $Z$. In appendix we shall show that the formulas
provable in $Z_{a}^{c}$ are not only true under no-counterexample-interpretation, but
the functionals used there are provably effective in $Z_{a}^{I}$ ; $i$ . $e$ . it is provable in
$Z_{a}^{I}$ that these are effective operations.

It is a generalization of Kreisel’s result in [17]. This generalization would
answer better to Kreisel’s idea, if we can get the following theorem: if A is
provable in $Z_{a}^{c}$ , then not only no-counterexample-interpretation of A is true,

but also functionals used there can be defined by the transfinite induction on
some well ordering $<_{cl}$ depending on $d$ .

Thus, we are led to the following problem: is $Z_{a}^{c}$ (resp. $Z_{a}^{I}$) equivalent to
the system $Z^{c}$ (resp. $Z^{I}$) added by the transfinite induction on some well order-
ing $<_{(l}$ depending on $d$ ?

And for $d=2$ , i. e. for $Z^{(K)}$ , the well ordering $<_{a}$ ought to mean the order
in ordinals less than $\epsilon_{0}$ . In this paper, we often formalize in $Z$ or in other
systems metamathematical statements which can be proved in ordinary way,
by means of G\"odel numbering. To avoid the complication, we could not show
this process precisely enough, especially in appendix. But readers who are
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familiar with formal number theory will see in our informal proof that this
process is possible.

\S 1. Preliminaries, Notations

1.1. K-rule, Axiom $K$

1.1.1. Formal axiom systems $S,$ $Z^{c},$ $Z^{I},\hat{Z}^{I}$ and $Z_{0}$ .
a) In the following, let $S$ be an axiom system within the intuitionistic

or classical 1st order predicate calculus with equality. Sometimes we shall
write $S^{c}$ and $S^{I}$ to distinguish classical and intuitionistic logics.

b) $S$ is recursively enumerable.
c) $S$ is wide enough to include number-theory $Z$.
d) We shall also distinguish classical and intuitionistic number theory.

$Z^{c}$ will mean the number theory within the classical 1st order predicate cal-
culus, $i$ . $e$ . the system of Kleene [2], p. 81. $Z^{I}$ will mean the system obtained
by replacing the logical axiom 8 by $8^{I}$ in Kleene [2], p. 101. $Z_{0}$ will mean R.
Robinson’s system ($c$ . $f$ . $[2]$ , p. 244, Lemma $18b$).

e) $\hat{Z}^{I}$ will denote the number-theory obtained from $Z^{I}$ by adding the fol-
lowing axiom scheme.

Axiom $[\hat{I}]$ .
$7\forall xA(x)\supset\exists x7A(x)$

Here, A(x) is a universal prenex PR-formula, i. e. a formula of the form
$\forall y_{1}\forall y_{2}\cdots\forall y_{n}B(y_{1}, y_{2}\cdots y_{n}x),$ $B$ being a PR-formula3).

This axiom scheme is, as well as that of higher-types, used in G\"odel’s

interpretation ([5] [6], [3], [4]), and M. Yasugi ([3], [4]) considered it as
$\exists 7$ -inference.
1.1.2. a) Following to Kleene [2], we shall use Roman letters for formal
expressions, while italic letters for informal objects.

b) If $x$ is a natural number, $\overline{x}$ will denote the numeral corresponding to $x$ .
c) lf A is a formal expression (of formulas, terms, etc.), $\ulcorner A^{\urcorner}$ will denote

its Godel number.
d) $N(x)$ is the primitive recursive function which assigns the Godel num-

ber of the numeral $\overline{\chi}$ to a natural number $x$ .
e) $Sba(cb)$ or briefly $a(cb)$ is (the number of) the result by substitution of

$c$ for (the number of variable) $b$ at all free occurrences of $b$ in (the number
of expression) $a$ . $a(cb)$ is a primitive recursive function of $a,$ $b,$ $c$ .

f) If $M$ is a set of formal expressions, $\ulcorner M^{\urcorner}$ will denote the set of G\"odel

numbers of the elements of $M$.
1.1.3. a) As $S$ is recursively enumerable, there exists a recursively enumer-
able predicate $Pr[S](a)$ for which we have $Pr[S](\ulcorner A^{\urcorner})\Leftrightarrow I-sA$ for a formula A.
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b) By Craig’s theorem [7], $S$ is primitive recursively axiomatizable, $i$ . $e$ .
there exists aprimitive recursive subset $S^{+}$ of $S$ such that $Pr[S](a)\Leftrightarrow Pr[S^{+}](a)$ .
Every formula of $S^{+}$ is of the form A& $\cdots$ &A where A $\in$ S.

c) Moreover, the assertion b) can be formalized in $Z^{I},$ $i$ . $e$ . if $Pr[S](a)$

(resp. $Pr[S^{+}](a)$) is the formula of $Z$ expressing $Pr[S](a)$ (resp. $Pr[S^{+}](a)$), we
have

$-z^{I}Pr[S](a)\sim Pr[S^{+}](a)$ .
1.1.4. Axiom $K$ and K-rule (with respect to $S$ )

Consider a formula in $S$ of the form $\forall xA(x)$ where $x$ is a variable for
natural numbers and let $a(x)$ be

$Sb^{\ulcorner}A(x)^{\urcorner}\left(\begin{array}{l}\ulcorner x^{\urcorner}\\N(x)\end{array}\right)$ .

Ax. $K$ : Vx $Pr[S](a(x))\supset\forall xA(x)^{1)}$

Ax. $K^{\prime}$ : $\forall x[Pr[S](a(x))\supset A(x)]$

K-rule2) $\frac{\forall xPr[S](a(x))}{\forall xA(x)}$

Let $S^{(K)}$ (resp. $S^{(K^{\prime})}$ denote the system obtained from $S$ by adding $AxK$

(resp. Ax. $K^{\prime}$). If a formula $A$ is provable from $S$ with K-rule, we shall write
$-sA$ . $S^{(K)},$ $S^{(K^{\prime})}$ or $\mapsto_{S}^{(K)}$ corresponds to $S^{(II)},$ $S^{(II^{\prime})}$ or $S^{(III)}$ in Feferman [1]

respectively.
PROPOSITION 1.1 (Feferman [1] p. 28). Ax. $K$ , Ax. $K^{\prime}$ and K-rule are equiv-

alent. That is, for a formula A of $S$ ,

$-s^{(K^{\prime})}A\Leftrightarrow-s^{(K)}A\Leftrightarrow\mapsto_{S}^{(K)}A$ .
PROOF. It is clear that Ax. $K^{\prime}$ implies Ax. $K$ and that Ax. $K$ with modus

ponens implies K-rule. It suffices therefore to show that K-rule implies Ax. $K^{\prime}$ .
a) For any natural number $k$ and $m$ ,

$|-s$ Prf $[S^{+}]\overline{([A(\overline{k})\urcorner},\overline{m}$ ) $\supset A(\overline{k})$ ,

where Prf $[S^{+}](a, b)$ is the formula expressing “ $b$ is the proof of $a$ in $S^{+}‘‘$

1) We consider Axiom $K$ as a formula in $Z$. But, strictly speaking, the formal
expression a(x) of $a(x)$ , as well as $b(x, y)$ which will appear later, is not a term in
$Z$, but a usable term in a primitive recursive extension $z/$ of $Z$ with primitive recur-
sive function symbols and their defining equations. Nevertheless, for example the
expressing formula $a(x, y)$ which is equivalent to $a(x)=y$ can be constructed in $Z$.
In the following, if a formal primitive recursive function symbol appears in a formula
of $Z$, we shall consider it as a formula in $Z$ obtained by using its expressing formula.
For example, $A(a(x))$ is considered as $\exists y$ ($A(y)$ &a(x, $y)$ ). Strictly speaking we must
point out clearly that these formulas are obtained by the translation $(P^{\prime})$ or $(M)$ as
in Feferman [1] [10].

2) K-rule was named by Rosser [8], who studied this rule by Kleene’s suggestion.
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which is a primitive recursive predicate.
If $Prf[S^{+}]([A(\overline{k})\urcorner, m)$ holds, 1.1.3. a) and b) $implies\mapsto_{S}A(\overline{k})$ . Hence we have

a) in the case.
If $Prf[S^{+}](\Gamma A(\overline{k})\neg, m)$ does not hold, we have

$\leftarrow_{S}7Prf[S^{+}]\overline{(\Gamma A(\overline{k})^{\urcorner}},\overline{m})$

by virtue of the “ numeralwise representable ” property. Hence we also have
a) in the case.

b) The informal proof of a) can be formalized in $Z$, therefore in $S$ too.

Let $a(x)$ be $\Gamma$ A $(x)\neg\left(\begin{array}{l}\Gamma x\urcorner\\ N(x)\end{array}\right)$ and let $b(x, y)$ be [Prf $[S^{+}]$ (a (x), $y$) $\supset A(x)^{\urcorner}$

( $\Gamma x$

’
$N(y^{\neg})\Gamma y$ ). Then, by the formalization of the informal proof of a), we

have
$\mapsto_{Z}\forall x\forall yPr[S](b(x, y))$ ,

Therefore, we have
$-s\forall x\forall yPr[S](b(x, y))$ .

By K-rule,
$\forall x\forall y(Prf[S^{+}](a(x), y)\supset A(x))$ ,

so we have
$(^{*})$ $\forall x$( $\exists y$ Prf $[S^{+}](a(x),$ $y)\supset A(x)$).

By 1.1.3. c),

$\exists y$ Prf $[S^{+}](a(x), y)\sim Pr[S^{+}](a(x))\sim Pr[S](a(x))$ .

Hence the formula $(^{*})$ means Ax. $K^{\prime}$ .
PROPOSITION 1.2. For any formula A of $S$ ,

$|-s^{(K)}Pr[S](\overline{[A\neg})\supset A$

PROOF. Let $b(x)$ be [A &a $=a\neg\left(\begin{array}{l}\Gamma a\neg\\ N(x)\end{array}\right)$ . Then, we have $-sA\subset\succ\mapsto_{S}A$ &k
$=\overline{k}$ for all $k$ . So we have

${}_{z}Pr[S](\overline{\lceil A\neg})\supset\forall xPr[S](b(x))$ .
Ax. $K$ implies $\forall xPr[S](b(x))\supset\forall x$($A$ &x $=x$). Therefore, $-s\forall x(A$ &x $=x\rangle$

$\supset A$ yield Proposition 1.2.

1.2. Recursive progression

Let $O$ be the set of all constructive ordinals. We make an axiom system
$S_{a}$ correspond to every $d\in O$ . In general $S_{a}$ is the result of an infinite times
of extensions by adding Ax. $K^{\prime}$ corresponding to the construction of $d$ , start-
ing from $1\in O$ . The following proposition was given by Feferman [1].
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PROPOSITION 1.3. There exists a recursive progression $S_{a}(d\in O)$ of $S$ satis-
fying the following properties:

1. for each $d\in O,$ $S_{a}$ is a recursively enumerable set of axioms,
2. $S_{1}$ is $S$ ,

3. $d\in O\subset\prime S_{2}d$ is $S_{a}^{(K^{\prime})}$ ,
4. 3.

$5^{a}\in O\subset>S_{3.5^{d}}=\bigcup_{n\subset\omega}S_{(a\}(n_{0)}}=\bigcup_{d ,b^{\prime}\backslash O3\Leftrightarrow}.S_{b}$
.

Roughly speaking, $S_{l}$
( is defined as follows: there exists an RE-formula8)

$S(a, b)$ such that we have $n\in[S_{a^{\urcorner}}\Leftrightarrow-z_{0}S(\overline{d}, \overline{n})$ for each $d\in O$ .
$S(a, b)$ is constructed by the following idea:
$S(1, a)\sim S(a)$ (where $n\in\Gamma S\neg\Leftrightarrow|-Z_{0}S(n)$) ,
$S(2^{a}, a)\sim S(d, a)\vee a=\Gamma Ax$ . $K^{\prime}$ for $S_{a}1$ ,
$S(3.5^{d}, a)\sim\exists n$ { $formula$ expressing $’’-z_{0}S(\{\overline{d}\}(\overline{n}_{0}),\overline{a})$ “}.

\S 2. Applications of $K$-rule

2.1. Transfinite induction up to the first $\epsilon$ -number.
2.1.1. Hilbert and Bernays formalized in $Z$ the transfinite induction up to

$\epsilon_{0}$ in [9], p. 360. This is as follows.
a) Well-ordering $<n$

If $n=0,$ $a<_{7}b$ means $a<b$ in usual sense. There exists an isomorphism

between the set of all natural numbers with $<$ and the set of all ordinals
$n$

smaller than $\omega_{n+1}$ with $<$ (order of ordinals), where $\omega_{0}=\omega$ and $\omega_{n+1}=\omega^{\omega_{n}}$ .
$a<nb$ is primitive recursive with respect to $a,$

$b$ and $n$ .
b) Transfinite induction is formalized as follows: for any formula A(a),

$Ind_{x}(A(x), n)$ ; $\forall x(\forall y(y<nx\supset A(y))\supset A(x))\supset\forall xA(x)$ .

Here we used the same symbol $a<_{n}b$ for the formal expression of $a<_{n}b$ .
c) Consider the following predicate

$Cn(m, 1)$ ; $\forall x(x<m\&(m)_{x}\neq 0 \& x\neq 1\supset 1<x)n$ $\& m\neq 0$ .

Let $C_{n}(a, b)$ be the formal expression of the predicate of $Cn(a, b)$ . Then $B(1)$

is the abbreviation of the formula. $\forall x(Cn$( $x$ , l)&Vy(y $n+1<x\supset A(y)$) $\supset\forall y(y<x\cdot P_{\iota}n+1$

$\supset A(y)))$ . $Cn(m, l)$ is a primitive recursive predicate and means that $P_{\iota}$ is the
prime factor immediately before $m\cdot P_{\iota}$ with respect to $n+1<$ .

We shall write $B_{x}(c, A(x),$ $n$) for $B(c)$ , as it depends on $n$ and A(a).

3) After Feferman [1], we define PR-formula and RE-formula as follows : PR-
formula is a formula representing numeralwise a primitive recursive predicate in
usual manner. RE-formula is a PR-formula prefixed by existential quantifiers.
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d) Hilbert-Bernays showed that

$|-ZxInd_{x}(B_{y}(x, A(y),$ $\overline{n}$)
$,$

$\overline{n}$) $\supset Ind_{x}(A(x),\overline{n+1})$ .
e) Hilbert-Bernays proved $|-Z^{I}Ind_{X}(A(x), \overline{n})$ by induction on $n$ for any

formula A(a) and any natural number $n$ . In fact, $Ind_{x}(A(x), 0)$ is the usual
mathematical induction and belongs to the axiom scheme of $Z^{I}$ . Thus, if $e\rangle$

holds for some $n$ , then e) holds for $B(a)$ and therefore for $n+1$ by d).

f) The formula $\forall nInd_{x}(A(x), n)$ is equivalent to the transfinite induction
up to $\epsilon_{0}$ and cannot be proved in $Z$ as is well known [11]. Hilbert-Bernays
showed that it can be proved in an extension $Z^{\prime}$ of $Z$ with predicate variable.
In fact, introduce predicate variable with one argument $U(a)$ and replace the
usual mathematical induction by $\forall UInd_{x}(U(x), 0)$ . As in d), we have

$\leftarrow_{Z},$ $\forall U[Ind_{x}(B_{y}(x, U(y), n), n)\supset Ind_{x}(U(x), n+1)]$ ,

$-z/\forall UInd_{x}(U(x), n)\supset Ind_{x}(B(x), n)$ ,

hence
$-z’\forall n\forall UInd_{x}(U(x), n)$ .

2.1.2. The formula $\forall nInd_{x}(A(x), n)$ can be proved by adding K-rule to $Z^{I}$.
PROPOSITION 2.1. $-z^{I(K)\forall nInd_{x}(A(x),n)}$ .
PROOF. There exist primitive recursive functions $ind(a, n)$ and $b(a, n)$

such that
$\lceil\forall xA(x)\urcorner$ is $ a\subset>[Ind_{x}(A(x), \overline{n})\neg$ is $ind(0, n)$ ,

[ $B_{y}(x, A(y),$ $n$) $\neg$ is $b(a, n)$ .
There exists a primitive recursive predicate $Fm^{\prime}(a)$ expressing “

$a$ is the G\"odel

number of the formula of the form $\forall xA(x)$ .
By virtue of $\leftarrow_{Z^{I}}A\supset B\subset\succ$ ( $\leftarrow z^{I}$ A $\subset\Rightarrow\leftarrow_{Z^{I}}B$), $d$) means

$Fm^{\prime}(a)\subset\succ\{Pr[Z^{I}](ind(b(a, n), n))\subset>Pr[Z^{I}](ind(a. n^{\prime}))\}$ ,

and
$Fm^{\prime}(a)\subset\succ Pr[Z^{I}](ind(a, 0))$ .

This fact can be formalized in $Z^{I}$ . The outline is as follows.
$\leftarrow_{z^{I}}Fm^{\prime}(a)\supset Pr[Z^{I}](ind(b(a, n),$ $n$)) $\supset Pr[Z^{I}](ind(a, n^{\prime}))$ ,

$\leftarrow_{Z^{I}}Fm^{\prime}(a)\supset Pr[Z^{I}](ind(a, 0))$ .
$As\leftarrow_{z^{I}}Fm^{\prime}(a\backslash \supset Fm^{\prime}(b(a,\overline{n}))$ , it is provable in $Z^{I}$ that $\forall z\{Fm^{\prime}(z)\supset Pr[Z^{I}](ind(z,\overline{n}))\}$ .

Put $\alpha=[\forall xA(x)^{\urcorner}$ for any $\forall xA(x)$ . As $\leftarrow_{z^{I}}Fm^{\prime}(\overline{\alpha})$ is clear, we have
$\mapsto_{z^{r}}\forall nPr[Z^{I}](ind(\overline{\alpha}, n))$ . $ind(\overline{\alpha}, \overline{n})$ being nothing but the formal expression of

$Sb[Ind_{x}(A(x), a)\neg\left(\begin{array}{l}\Gamma a\neg\\ N(n)\end{array}\right)$ , we get by K-rule, $\leftarrow_{Z}I(K)\forall nInd_{x}(A(x), n)$ .
2.2. Normal truth definition.
2.2.1. A. Mostowski and Hao Wang gave Tarski’s truth definition for



148 R. KURATA

sentences of Zermelo-Fraenkel set theory in the following form: we can con-
struct a formula Tr(a) (a is a free variable of natural numbers) of a theory

$S^{\prime}$ with class (large) variable, such that, for any closed formula A of Zermelo-
Fraenkel set theory, we have

a) $-s\prime A\sim Tr(\overline{\Gamma A\neg})$

(cf. [15] Theorem 1, [16] Theorem 2).

Mostowski proved a) by taking G\"odel’s set theory as $S^{\prime}$ and Wang proved
a) by taking a weaker predicative theory $S_{2}$ as $S^{\prime}$ .

Tr(a) is called normal truth definition with respect to $S$ , if it satisfies the
following condition:

b) $-s’’\forall x$($CF(x)$ &Pr[S](x)\supset Tr(x)) ,

where CF(x) expresses “
$x$ is a closed formula “ and $s//$ is a some extension

of $S$ .
Wang showed that b) holds if one takes $S_{8}$ (cf. [16]) as $S$ and an impredi-

cative extension $S_{1}$ of $S$ as $S^{\prime\prime}$ . Mostowski showed that b) holds if one takes
Zermelo-Fraenkel theory as $S$ and an impredicative extension of $S$ as $s/’$ .
Mostowski showed also that b) does not hold if $S$ is consistent and if one
takes as $S^{\prime\prime}$ a predicative extension of $S$ , for example, G\"odel’s set theory.
This is because b) implies $-s\prime\prime$ Con $[S]$ , and so implies $-s!$ ’ Con $[S^{\prime\prime}]$ .

c) We assert the following proposition.
PROPOSITION 2.2. Let $S$ be a set theory without class variable ($e$ . $g$ . Zer-

melo-Fraenkel theory), $S^{\prime}$ be a predicative extension of $S(e$ . $g$ . Bernays-G\"odel

set theory) and $S^{\prime(K)}$ be the system $S^{\prime}$ added by Ax. K. Then, the normal truth
defdition of $S$ is possible in $S^{\prime(K)},$ $i$ . $e$ .

$\leftarrow_{S}(K)\forall x$($CF(x)$ &Pr[S](x)\supset Tr(x)).

PROOF. If $m$ is the G\"odel number of a closed formula, then for any $n$

and $k$ , we have

d) $\leftarrow s$’ Prf $[S](\overline{m}, \overline{n})$ &\lambda (n)\leqq k)\supset Tr(m)

where $\lambda(n)$ is the number of lines in the proof $n$ (cf. Wang [16], 4.6 p. 262).

A similar assertion can be found in $\Sigma_{11}$ of Mostowski [15].

We can obtain Proposition 2.2. by formalizing d) and by using K-rule, but
this is very complicated. Here we give the following essential remark on the
proof. In [15] and [16], it is pointed out that the following comprehension
axiom e) is indispensable for the normal truth definition:

e) For a formula $\exists XC(X, x_{1})$ such that $C(X, x_{1})$ does not contain bound
class variables, we have

$\exists Y\forall x_{1}[x_{1}\in Y\sim\exists XC(X, x_{1})]$ .
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But, what is indispensable for the normal truth definition is not the compre-
hension axiom e) itself, but is the fact that the mathematical induction holds
for a formula of the form $\exists XC(X, x_{1})$ . That is to say, if $A(x_{1})$ is $\exists XC(X, x_{1})$ ,
we have

f) $-s$” $A(0)$ &\forall n(A(n)\supset A(n+l))\supset VnA(n),

where $n$ is a variable of natural numbers.
In the proofs of 2.33, 2.37, 4.7 and 4.12 in [16], f) does not hold. However,

$-s^{A(0)}$ and $|-s’\forall n(A(n)\supset A(n+1))$ hold there. And we need only $\forall nA(n)$ . Let

$a(x)$ be $\Gamma A(n)\urcorner\left(\begin{array}{l}\Gamma n\neg\\ N(x)\end{array}\right)$ . Then, it is not so difficult to see that the formulas
$\leftarrow {}_{Z}Pr\llcorner S^{\prime}](a(0))$ and $|-Z\forall n\{Pr[S^{\prime}](a(n)\supset Pr[S^{\prime}](a(n+1)))\}$ hold in each case of
2.33, 2.37, 4.7 and 4.12. Therefore, we have $|-Z\forall nPr[S^{\prime}](a(n))$ and so
$\mapsto_{S^{\prime}}\forall nPr[S^{\prime}](a(n))$ . Therefore, we can obtain $\forall nA(n)$ in $S^{\prime(K)}$ in every case.

\S 3. Intuitionistic character of $Z_{d}^{I}$ .
a) If provable formulas in $S$ are intutionistically true in some sense, then

provable formulas in $S^{(K)}$ are intuitionistically true in the same sense on ac-
count of the form of Ax. $K$ or K-rule. Therefore, if $Z^{1}$ deduces only intuition-
istically true sentences, then it will be expected that $Z_{(}^{I}l$ does too.

It is very problematic how we should interpret the concept of the intuition-
istic truth. As all considered formulas are in $Z$, we shall consider here
Kleene’s recursive realizability [2] \S 82.

b) Kleene showed the following proposition in [2] \S 82 Theorem $62^{N}$ : if
$1-z^{1}A$ , and if $\tilde{A}$ is the closure of $A$ , then A is recursively realizable. More-
over, observing his proof in details, we see that the number which realizes
A is determined effectively from the proof of A in $Z^{I}$ .

c) Kleene showed, moreover, that if A is a prenex formula, A is realiz-
able if and only if it is general recursively true ([2], p. 465, p. 516), and that
recursive functions which make A recursively true are determined effectively
from the numbers realizing A.

This fact holds also when A is of the form $Q_{1}x_{1}Q_{2}x_{2}$ $Q_{j}x_{j}B(x_{1}\cdots x_{j})$

where $Q_{i}x_{i}$ is $\exists x_{i}$ or $\forall x_{i}$ and $B$ is PR- formula.
For, in this case A is equivalent to a prenex formula in a primitive recur-

sive extension $Z^{\prime I}$ of $Z^{1}$ , and the above assertion holds for formulas in $Z^{\prime 1}$ .
d) THEOREM 1. If $-z_{a}^{I}$ A and if A is the closure of $A$ , then A is recur-

sively realizable. Moreover the number realizing A is effectively determined
from the proof of A in $Z_{a}^{I}$ .

PROOF. We prove this by the transfinite induction on $d$ according to the
well-ordering $<_{o}$ . In case $d=1$ , Theorem 1 is obvious from b). Take $d\in O$ ,
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and assume that Theorem 1 holds for every $d^{\prime}(d^{\prime}<_{o}d)$ . In case $d=3.5^{a_{1}}$ , if
$\}-z_{a}^{I}A$ , there exist $d^{\prime}(<0d)$ such that $|-z_{(}^{I}x^{A}$ ’ so Theorem 1 holds. In case
$d=2^{d_{0}}$ , Theorem 1 holds for $d_{0}$ by our assumption of the induction. Suppose
$-z_{(l}^{I}$ A which is equivalent to $\leftarrow^{(K)}AZ^{I}a$ by proposition 1.1.

If A is an axiom of $Z_{!J}^{I_{0}}$ , Theorem 1 holds from our assumption. It suffices
to show that when A is the immediate consequence of some inference, Theo-
rem 1 holds for A under the assumption that Theorem 1 holds for premise of
this inferende. Moreover, it suffices to show this in the case that A is the
conclusion of K-rule, because, the other cases are easy.

Suppose A is of the form $\forall xB(x)$ and premise is $\forall xPr[Z_{ct}^{I_{0}}](b(x))$ where
$b(x)$ is [ $B(x)^{\urcorner}\left(\begin{array}{l}\Gamma x^{\urcorner}\\N(x)\end{array}\right)\cdot$ Let $C$ denote $\forall xPr[Z_{a_{0}}^{I}](b(x))$ . Then there exists $e$

effectively determined from the proof of $C$ in $Z_{a_{0}}^{I}$ such that $e$ realizes C.
Seeing the form of $C,$ $C$ is general recursively true from the last part of

c). That is, there exists a general recursive function $\phi(x)$ effectively deter-
mined from $e$ such that $(x)Prf[Z_{a_{0}}^{I}](b(x), \phi(x))$ . Moreover from the assumption
of Theorem 1 for $Z_{tl}^{I_{0}}$ , there exists a partial recursive function $\psi_{d_{0}}(a)$ defined
on the numbers of proof in $Z_{a_{0}}^{I}$ , such that $\psi_{d_{0}}(\phi(x))$ realizes $B(\overline{x})$ .

As $\psi_{(\ddagger_{0}}(\phi(x))$ is a general recursive, there exists $e^{\prime}$ such that $\psi_{(t_{0}}(\phi(x))$

$=\{e^{\prime}\}(x)$ , for every $x$ . Hence for all $x\{e^{\prime}\}(x)$ realize $B(\overline{x})$ . From the defini-
tion of realizability, it means that $e^{\prime}$ realizes $\forall xB(x)$ .

As $e$ is effectively determined from the proof of $C$ , and as $\phi(x)$ is effec-
tively determined from $e$ , so $e^{\prime}$ is effectively determined from the proof of A.

e) Axiom $\hat{I},$
$i$ . $e$ . $7\forall xA(x)\supset\exists x7A(x)$ , where A(x) is a universal prenex

PR-formula which is also recursively realizable. But we notice that the num-
ber realizing Axiom $\hat{I}$ depends on $x$ satisfying $7A(\overline{x})$ . Therefore we cannot
say that numbers realizing provable formulas are determined effectively from
the number of its formal proof. So by the above method, we can not conclude
that provable formulas in $\hat{Z}_{a}^{I}$ are recursively realizable.

Intuitionistic character of $\hat{Z}_{a}^{I}$ will be assured in \S 5 by another method, $i$ . $e$ .
under G\"odel interpretation by means of effective operations.

\S 4. Proof of Con $[Z_{d}^{O}]$ in $Z_{2^{d}}^{I}$ .
4.1. Since the transfinite induction up to $\epsilon_{0}$ holds in $Z^{t(K)}$ , by formalizing

Gentzen’s famous proof, it is expected that Con $[Z^{c}]$ will be provable in $Z^{I(K)}$ ,
which is the formal expression of the statement “

$Z^{c}$ is consistent”.
4.2. The construction of a formal consistency proof of $S$ in $S^{(K)}$ can be

seen in Rosser [8].

Let $f$ be FO $=\overline{1}^{\urcorner}$ . Then
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Con $[S]\sim\forall x7Prf[S^{+}](\overline{f}, x)$ .

Let $r(x)$ be $\Gamma 7Prf[S^{+}](\overline{f}, a)\neg\left(\begin{array}{l}[a\neg\\ N(x)\end{array}\right)$ . Then we have

$\overline{Prf[S^{+}](f,x})\subset\succ-z7Prf[S^{+}](f,\overline{x})$ .
By formalizing the above assertion, we have

$\leftarrow z7Prf[S^{+}](\overline{f}, a)\supset Pr[Z](r(a))$ ,

so we have on one hand

a) $\leftarrow Z$ Con $[S]\supset\forall xPr[S](r(x))$ .
On the other hand,

$\overline{Con[S]}\subset>Pr[S](r(x))$ .
Formalizing this in $Z$, we also have

b) $\mapsto z7Con[S]\supset\forall xPr[S](r(x))$ .

From a) and b), we have
$-s\forall xPr[S](r(x))$ .

By K-rule, $-S(K)\forall x7Prf[S](f, x)$ holds, so we have $|-S(K)Con[S]$ .
However, in above proof, we use $-{}_{S}Con[S]\vee 7Con[S]$ which is law of

excluded middle. So, it is not a formal proof corresponding a finitary consistency
proof. As we have already known in \S 3 that $Z_{(}^{I_{l}}$ is an intuitionistic system
in some sense, it is desirable, for example, that Con $[Z^{c}]$ is provable in $Z^{I(K)}$ .

In the following we can show in general that consistency of $Z_{a}^{c}$ is prova-
ble in $Z_{2}^{I}a$ . That is, in some sense, a generalization of the assertion in 4.1.

4.3. Consistency proof of $Z_{a}^{c}$ in $Z_{2}^{I_{d}}$ .
4.3.1. Translation $‘‘\circ$ “.
For each formula A in $Z$, we make correspond A, $i$ . $e$ . $\circ$ -translation of

A ([12] or [2] \S 81) in which we replace for $\vee$ (resp. $\exists$) in A by &and 7
(resp. $\forall$ and 7). Then the following proposition holds.

PROPOSITION 4.1.
(i) $\mapsto z^{-AA^{o}}=>-z^{I}$

More strictly, $-z^{I}Fm(a)\supset(Pr[Z^{c}](a)\supset Pr[zq(a^{o}))$ , where Fm(a) represents
that $a$ is a formula of $Z$, and $a^{o}$ is the Godel number of o-translation of the
formula with the Godel number $a$ .

(ii) If A is a PR-formula, then $\leftarrow_{Z^{I}}A\sim A^{o}$ .
(i) can be seen in [2] \S 81.

(ii) can be shown as follows.
Consider some primitive recursive extension $Z^{I^{\prime}}$ of $Z^{I}$ in which we have a
term $\epsilon$ of $Z^{I^{\prime}}$ (primitive recursive function symbol) such that $A\sim\epsilon=0$ is pro-
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vable in $Z^{I^{l}}$ . Then we have $\leftarrow z^{I^{\prime A}}\sim\epsilon=0\sim(\epsilon=0)^{0}\sim A^{O}$ . Moreover there is
a translation *from formulas of $Z^{I^{\prime}}$ to those of $Z^{1}$ such that $\leftarrow z^{I^{\prime A}}\subset>-z^{I}A^{*}$

and $\leftarrow_{z^{I}}A^{*}\sim A$ for formulas A of $Z^{I}$. From this. $1-Z^{I}A\sim A^{O}$ is obvious.
THEOREM 2. $\leftarrow z_{a}^{cA}\subset\Rightarrow\leftarrow z_{a^{A^{o}}}^{I}$ .

More strictly,
$\leftarrow_{z^{I}}Fm(a)\supset(Pr[Z_{d}^{c}](a)\supset Pr[Z_{a}^{I}](a^{o})$ .

PROOF. We prove this by the transfinite induction on $d$ .
In case $d=1$ , Theorem 2 means prop. 4.1. Assume that Theorem 2 holds

for $ d^{\prime}(<0^{d)}\cdot$ In case $d=3.5^{e}\in O$ , Theorem 2 is obvious from our assumption.
We shall show, under the assumption that Theorem 2 holds for $d_{0}$ , that Theo-
rem 2 also holds for $d=2^{d_{0}}$ . It suffices to prove that the o-translation of
Ax. $K^{\prime}$ of $Z_{a}^{c}$ can be provable in $Z_{a}^{I}$.

Ax. $K^{\prime}$ of $Z_{a}^{c}$ is of the form $\forall x(Pr[Z_{a_{0}}^{c}](a(x))\supset A(x))$ which is equivalent
in $Z^{1}$, by 1.1.3 c), to

$\forall x\forall y(Prf[Z_{a_{0}}^{+C}](a(x), y)\supset A(x))$ .
The o-translation of the above formula is equivalent in $Z^{I}$ to

$\forall x\forall y(Prf[Z_{a_{0}}^{+C}](a(x), y)\supset A^{0}(x))$ .
It suffices to show that this formula can be provable in $Z_{2}^{I_{d_{0}}}(i. e. Z_{tl}^{I})$ .

Proof is analogous to that of prop. 1.1.
a) For all $k,$ $m$ ,

$-z_{a}^{c_{0}Prf}[Z_{a}^{c_{0}+}](a(\overline{k}),\overline{m})\supset A(\overline{k})$ ,

where $a(k)$ is $\Gamma A(\overline{k})\urcorner$ .
Let $\lceil Prf[Z_{a_{0}}^{c+}](a(\overline{k}),\overline{m})\supset A(\overline{k})\urcorner$ be $b(k, m)$ . The o-translation of this for-

mula is, by prop. 1.4. (ii),

Prf $[Z_{a_{0}}^{c+}](a(\overline{k}),\overline{m})\supset A^{o}(\overline{k})$ .
Let $b^{0}(m, k)$ be the Godel number of this formula. By formalizing a) in

$Z^{1}$ , we get
$\leftarrow_{z^{I}}\forall x\forall yPr[Z^{c_{l_{0}}}(](b(x, y))$ .

b) From the assumption of Theorem 2 for $d_{0}$ ,

$\forall x\forall yPr[Z_{a_{0}}^{c}](b(x, y))\supset\forall x\forall yPr[Z_{a}^{1},](b^{o}(x, y))$ .
So, we have

$-z_{a_{0}}^{I}\forall x\forall yPr[Z_{a}^{I},](b^{o}(x, y))$ .
Using K-rule for $Z_{a_{0}}^{I}$ , we have

$\leftarrow_{Z2a_{0}}^{I}\forall x\forall y(Prf[Z_{a_{0}}^{c+}](a(x), y)\supset A^{o}(x))$ .
Second part of Theorem 2 for $d$ can be obtained by formalizing the above
informal proof in $Z^{1}$ .
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$CoROLLARY$ .
$|-z_{\lrcorner}^{I}\gamma a$ Con $[Z_{a}^{c}]$ .

As Con $[Zd]$ is equivalent to $\forall y7Prf[zg+](\overline{f}, y)$ in $Z^{I}$ where $Prf[Z_{a}^{c+}](a, b)$

is PR-formula, we have

$-z^{I}$ Con $[Z_{a}^{c}]\sim(Con[Z_{a}^{c}])^{o}$

by prop. 4.1. (ii).

Since $\leftarrow Z_{Q,\wedge}^{C_{d}}$ Con $[Z_{a}^{c}]$ by Rosser’s proof in 4.2, we obtain

$-z_{2^{d}}^{I}$ Con $[Z_{a}^{c}]$ .
4.3.2. We point out the following fact related to Nishimura [13].

For all $n,$ $-z_{0}7Prf[Z_{a}^{c+}](\overline{f}, \overline{n})$ .
For, $-z_{\rightarrow a}^{I_{)}}\forall y7Prf[Z_{a}^{c+}](\overline{f}, y)$ and this formula is recursively realizable

from Theorem 1 in \S 3 and so, recursively true. Therefore, $(n)Prf[Z_{a}^{c+}](f, n)$ ,

so that $\leftarrow_{Z_{0}}7Prf[Z_{a}^{c+}](\overline{f}, \overline{n})$ by the property of numeralwise representability
of primitive recursive predicate in $Z_{0}$ .

4.3.3. Another formulation of Consistency.
PROPOSITION 4.2.
There exists a formula $[7 Prf]^{*}(a, b)$ which numerate the predicate

$\overline{Prf}[Z_{a}^{c+}](a, b)$

$(i. e. \overline{Prf}[Z_{a}^{c+}](x, y)\Leftrightarrow-z_{0}[7Prf]^{*}(\overline{x},\overline{y}))$ .

If we denote $\forall y[7Prf]^{*}(\overline{f}, y)$ by $Con^{*}[Z_{l}^{c}]$ , then $|-z_{a}^{cCon^{*}}[Z_{a}^{c}]$ moreover,
$\leftarrow_{z^{I}}Con^{*}[Z_{a}^{c}]$ .

Theorems of this type are known by Nishimura, and Feferman. Nishi-
mura showed the following result. Let $BG^{*}$ be the Bernays Godel set theory
considered within $G^{1}LC$ as logics. Fm(a) (a is formula), $Prf(a, b)(b$ is proof
of a) etc. are defined by another way as usual, by using class variable of type
1, by which we can define the formula $Con^{*}[BG^{*}]$ which expresses substan-
tially the consistency of $BG^{*}$ . Then we have

$-BG^{*Con^{*}[BG^{*}]}$ [14].

Feferman showed the following.
Let $S$ be the axiom system satisfying the following conditions,
1. $S$ has infinitely many axioms including $Z$

2. $S$ is consistent
3. the formula $\alpha(x)$ which expresses that $x$ is axiom of $S$ is PR-formula
4. $S$ is reflexive, $i$ . $e$ . consistency of any finite number of axioms of $S$ can

be provable in S.
Construct Con (a) from $\alpha$ as usual.

Let $\alpha^{*}(x)$ be a(x) &Vz(z $\leqq x\supset Con\alpha rz$) where $\alpha[z$ denote the axiom $x$

such that a(sc) & $x\leqq z$ . Then $\alpha^{*}(x)$ also numeralwise represent that $x$ is
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axiom of $S$ , and we have $-s^{Con}(\alpha^{*})[10]$ .
In other words, whether G\"odel’s 2nd incompleteness theorem may hold or

not, depend on how we express the primitive recursive predicate in formal
systems.

Suppose $P(x, y)$ is a primitive recursive predicate and $P(x. y)$ is a formula
expressing $P(x, y)$ in usual way.

As $Z_{a}^{c}$ include $Z_{0}$ , it holds that

$P(x, y)\subset>\leftarrow z_{a}^{cP(\overline{x},\overline{y})}$ .

Suppose that $Z_{a}^{c}$ is consistent, (this may be allowable because consistency of
$Z_{a}^{c}$ can be proved in $Z_{2}^{I}a$ which is recursively realizable system).

Then $P(x, y)\Leftrightarrow!-z_{a}cP(\overline{x},\overline{y})$ .

Let $p(x, y)$ be $\Gamma P(x, y)\neg(N(x^{\neg})[x,$ $N(y)\Gamma y^{\urcorner})$ . Then

$P(x, y)\Leftrightarrow Pr[Z_{a}^{c}](p(x, y))$ .
As $Pr[Zd](p(x, y))$ is recursively enumerable, we have

$Pr[Z_{a}^{c}](p(x, y))\Leftrightarrow\leftarrow_{z_{0}}Pr[Z_{a}^{c}](p(\overline{x},\overline{y}))$

from $\omega$ -consistency in weak form of $Z_{0}$ .
Therefore, if we put $p^{(a)}(a, b)$ for $Pr[Z_{a}^{C}](p(a, b))$ then

$P(x, y)\Leftrightarrow|-{}_{Z0}P^{\mathfrak{c}a)}(\overline{x},\overline{y})$ :

that is, $P^{(l)}\zeta$ numerates $P$ in $Z_{0}$ . Let $(7Prf[Z_{a}^{c+}])^{(a)}$ be the formula which
numerates $\overline{Prf}[Z_{a}^{c+}]$ (primitive recursive predicate) by the above mentioned
method.

Let $(Prf[Z_{a}^{C+}])*(a, b)$ be $(Prf[Z_{a}^{c+}])^{(d)}(a, b)$ and let $Con^{*}[Z_{a}^{C}]$ be
$\forall x(7Prf[Z_{a}^{c+}])*(\overline{f}, x)$ . Then,

$\leftarrow_{z^{I}}Con^{*}[Z_{a}^{c}]$ ,

because; for all $m$ ,

$\mapsto z_{a}^{C}$ Prf $[Z_{a}^{c+}](\overline{f},\overline{m})\supset 1=0$ ,

$i$ . $e$ . $\leftarrow z^{C_{d}}7Prf[Z_{a}^{c+}](\overline{f},\overline{m})$ .

By formalizing the above assertion in $Z^{I}$ ,

$\leftarrow_{Z^{I}}\forall x(7Prf[Z_{a}^{c+}])^{*}(\overline{f}, x)$ ,

Therefore
$-z^{\tau Con^{*}[Z_{a}^{C}]}$ .

\S 5. Intuitionistic character of $\hat{Z}_{d}^{I}$.
5.1. G\"odel interpretation by means of effective operations.
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To make sure an intuitionistic character of $\hat{Z}_{a}^{I}$ , we consider the G\"odel’s

interpretation by means of effective operations in stead of realizability.
5.1.1. $N^{\tau}$

a) As types we use only those given by the following i) ii):

i) (0) is a type,
ii) if $\tau_{0},$ $\tau_{1}\ldots\tau_{n}$ are types, then $(\tau_{0}, \tau_{1}\ldots\tau_{n})$ is a type.
b) we define a set of natural numbers $N^{\tau}$ recursively for every type $\tau$

by the following
(i) $N^{(0)}=N$ ($=the$ set of all natural numbers)

(ii) If $N^{\tau_{0}},$ $N^{\tau_{1}}\ldots N^{\tau_{n}}$ are already defined for types $\tau_{0},$ $\tau_{1}\ldots\tau_{n}$ , then
$N^{(\tau_{0},\tau_{1},\cdots,\tau_{n}})$ is defined by the following condition:

$a\in N^{(\tau_{0},\tau_{1},\cdots\tau_{n})}\Leftrightarrow\{a\}_{n}(x_{1}, x_{n})$ is defined for all $x_{1}\in N_{1}^{\tau_{1}},$ $\cdots$ , $\chi_{n}\in N^{\tau_{n}}$ and
belongs to $N^{\tau_{0}}$ .

(Here, $\{a\}_{n}$ in a partial recursive function with G\"odel number $a$ with $n$ argu-
ments. We shall occasionally write $\{a\}$ for $\{a\}_{n}.$)

c) E-term, E-formula and verifiability. First of all, we prepare, for each
type $\tau$ , symbols for free or bound variables

$a_{1}^{\tau},$ $a_{2}^{\tau},$ $ a_{3}^{\tau}\ldots$

or
$X_{1}^{\tau},$ $X_{2}^{\tau},$ $ X_{3}^{\Gamma}\cdots$

respectively.
E-terms are defined recursively as follows:

i) if $n\in N^{\tau},$ $\overline{n}$ is an E-term of type $\tau$ ;
ii) a free variable of type $\tau$ is an E-term of type $\tau$ ;

iii) if $t$ is an E-term of type $(\tau_{0}, \tau_{1}, \cdot., , \tau_{n})$ and $s_{1},$ $s_{2}$ , $\cdot$ .. , $s_{n}$ are E-terms of
$\tau_{1},$

$\cdots$ , $\tau_{n}$ respectively then $\{t\}_{n}(s_{1}, \cdots , s_{n})$ is E-terms of type $\tau_{0}$ (here,
$\{$ $\}_{n}$ is considered as a formal symbol);

iv) the only E-terms are those given by i)-iii).

Our prime E-formulas are of the form $s=t$ where $s$ and $t$ are arbitrary E-
terms of the same type. The E-formulas are constructed, as usual, by the
propositional connectives &, $\vee,$ $\supset,$ $7$ , and by quantifiers Vx‘, $\exists x^{\tau}$ for every
type, starting from the prime formulas.

A quantifier-free E-formula $A(a_{1}^{\tau_{1}}, \cdots , a_{n}^{\tau_{n}})$ is said verifiable if and only if
for all $x_{1}\in N_{1}^{\tau\perp}\ldots x_{n}\in N_{n}^{\tau_{n}}A(\overline{x}_{1}$ , $\cdot$ .. , $\overline{x}_{n})$ is defined and holds under the inter-
pretation of $\{$ $\}$ as symbol for partial recursive function as usual and of $=as$

weak sense [cf. [2], p. 328].

5.1.2. The numbers corresponding to G\"odel’s primitive recursive func-
tionals of finite types.

To each G\"odel’s primitive recursive functional of finite type, we make a
number correspond as follows.
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a) If $f$ is defined by the defining equation $f(X^{\tau}, X_{1}^{\sigma_{1}}, \cdot , X_{n}^{\sigma_{n}})=X^{\tau}$ then
we make $e$ correspond to $f$ which satisfies the following conditions:

$\{e\}(x, t_{1}, t_{n})\simeq x$ .

b) To $f$ satisfying the defining equation $f(X, T_{1}, , T_{n})=0$ , we make
$e$ correspond such that

$\{e\}(x, t_{1}, \cdots t_{n})\simeq 0$

c) To $f$ such that $f(a\mathfrak{T})=a+1$ where $\mathfrak{T}$ is an ordered set $(T_{1}, \cdot , T_{n})$ of
free functional variables, we make $e$ correspond such that

$\{e\}(a, t_{1}. \cdots , t_{n})\simeq a+1$ .
d) If $f$ is defined by $f(X\mathfrak{T})=g(h(X, \mathfrak{T})\mathfrak{T})$ and if $e_{1}$ corresponds to $h$ and $e_{2}$

corresponds to $g$ , then we make $e$ correspond to $f$ such that
$\{e\}(x, t_{1}, \cdots , t_{n})\simeq\{e_{2}\}(\{e_{1}\}(x, t_{1}, \cdots , t_{n}), t_{1}, \cdots , t_{n})$

e) If $f$ is defined by $f(\tau\sim)=g(\mathfrak{T}_{1})$ where $g$ is previously defined primitive
recursive functional and $\mathfrak{T}_{1}$ is a permutation of $\mathfrak{T}$ , let $(t_{1}^{\prime}, \cdots , t_{n}^{\prime})$ be the same
permutation of $(t_{1}$ , $\cdot$ .. , $t_{n})$ as above. If $e_{1}$ corresponds to $g$ , then we make $e$

correspond to $f$ such that
$\{e\}(t_{1}, \prime t_{n})\simeq\{e_{1}\}(t_{1}^{\prime}, t_{n}^{\prime})$

f) If $f_{0}$ is defined by the equation $f(X, X_{1}, \cdot , X_{m}\mathfrak{T})=X(X_{1}, , X_{n})$ , then
to $f_{0}$ we make $e$ correspond such that

$\{e\}(x, x_{1}, x_{m}, t_{1}, t_{n})\simeq\{x\}(x_{1}, x_{m})$

g) If $f$ is defined by $f(O, \mathfrak{T})=g(\mathfrak{T})$ and $f(a+1, \mathfrak{T})=h(a, f(a,\underline{\tau}),\underline{\Psi})$ where
$g,$

$h$ are previously defined functionals and $e_{1}$ corresponds to $g$ , and $e_{2}$ to $h$ ,

then to $f$ we make $e$ correspond such that
$\{e\}(0, t_{1}, \cdots , t_{n})\simeq\{e_{1}\}(t_{1}, \cdots , t_{n})$

$\{e\}(a+1, t_{1}, \cdots , t_{n})\simeq\{e_{2}\}(a, \{e\}(a, t, \cdots , t_{n}), t_{1}, \cdots , t_{n})$

The corresponding number $e$ by $a$) $-g$) exists; this is clear from the partial
recursive founction Theory ($c$ . $f$ . $[2]$ Chapter XII).

PROPOSITION 5.1.
If $e$ corresponds to $f^{\tau}$ by one of the above procedure, then $e\in N^{\tau}$ . This

will be proved in the proof of prop. 5.2.
5.1.3. E-formula corresponding to formulas of analysis of finite type. We

make an E-formula $A^{E}$ correspond to a formula A of $SJ$ in Yasugi [3], [4] as
follows, which we call the E-translation of A.

a) Previously, we make an E-free (resp. E-bound) variable of type $\tau$ cor-
respond in one-to-one way to each free (resp. bound) variable of type $\tau$ of $SJ$.

b) To a primitive recursive functional symbol of $SJ$, we make the nu-
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meral $\overline{e}$ in 5.1.2 correspond.
c) Let $T$ be a term of type $(\tau_{0}, \tau_{1}, \cdots , \tau_{n})$ of $SJ$ and $S_{1},$ $\cdots$ , $S_{n}$ be terms

of type $\tau_{1},$ $\cdots,$ $\tau_{n}$ respectively. If E-terms $t,$ $s_{1},$ $s_{n}$ correspond to $T,$ $S_{1}$ , $\cdot$ .., $S_{n}$ ,
we make $\{t\}(s_{1}$ , $\cdot$ . , $s_{n})$ correspond to $T(S_{1}$ , $\cdot$ .. , $S_{n})$ .

d) To a formula $S=T$ , we make $S^{E}=T^{E}$ correspond where $S^{E}$ and $T^{R}$

are E-terms corresponding respectively to $S$ and $T$ in a), b) and c).

e) $(A \&B)^{E}$ is $A^{E}\&B^{E}$ ,

$(A\vee B)^{E}$ is $A^{E}\vee B^{E}$ ,

$(A\supset B)^{E}$ is $A^{E}\supset B^{E}$ ,

(7A) is $7A^{E}$ .
f) If $A(f^{\tau})^{E}$ is $A^{E}(a^{\tau})$ , then $(\forall\psi^{\tau}A(\psi^{\tau}))^{E}$ is $\forall x^{\tau}A^{F_{\vee}}(x^{\tau})$ and $(\exists\psi^{\tau}A(\psi^{\tau}))^{F}$

, is
$Ex^{\tau}A^{E}(x^{\tau})$ , where $x^{\tau}$ is the bound variable corresponding to $\psi^{\tau}$ in a).

5.1.4. PROPOSITION 5.2. Let $A_{1}$ , $\cdot$ .. , $A_{n},$ $B_{1}$ , , $B_{m}$ be formulas in $QF$ (cf.
[3], [4]). If we have

$|-A,$ $A_{n}\rightarrow B_{1},$ $\cdots$ $B_{m}$ ,

then, $A_{1}^{E},$ $\cdots$ , $A_{n}^{E}\rightarrow B_{1}^{E},$ $\cdots$ , $B_{m}^{F}$ is verifiable.
PROOF. a) The proposition is obvious for the beginning sequence of $QF$

except for defining equations of primitive recursive functionals. It suffices
therefore, to prove the proposition for recursive schemes. Proposition 5.1 will
also be proved here.

Consider for instance, the case
$f(O, \mathfrak{T})=g(\mathfrak{T}),$ $f(a+1, \mathfrak{T})=h(a, f(a, \mathfrak{T})\pi\sim)$ .

Let $\mathfrak{T}$ be $(T_{1}^{\tau_{1}}, \cdots , T_{n}^{\tau_{n}})$ and $T_{i}^{\tau_{i}}$ be free variables. Let $g$ be of type
$(\sigma, \tau_{1}, \cdots, \tau_{n}),$ $h$ be of type $(\sigma, $(0)

$,$

$\sigma,$ $\tau_{1},$ $\tau_{n}$) and $f$ be of type $(\sigma, $(0)
$,$

$\tau_{1},$ $\tau_{n}$).
Let $e_{1},$ $e_{2}$ and $e$ be the numbers corresponding to $g,$ $h$ and $f$ respectively. The
E-formula corresponding to this formula is

i) $\{\overline{e}\}(0, t_{1}^{\tau_{1}}, t_{n}^{\tau_{n}})=\{\overline{e}_{1}\}(t_{1}^{\tau_{1}}, t_{n^{n}}^{\tau})$

ii) $\{\overline{e}\}(a+1, t_{1}^{\tau_{1}}, \cdots , t_{n^{n}}^{\tau})=\{\overline{e}_{2}\}(a, \{\overline{e}\}(a, t_{1}^{\tau_{1}}, \cdots , t_{n^{n}}^{\tau}), t_{1}^{\tau_{1}}, \cdots , t_{n^{n}}^{\tau})$

where $t_{1},$ $\cdots$ , $t_{n}$ are E-free variables corresponding to $T_{1},$ $T_{n}$ respectively.
Assume that Proposition 5.1 holds for $g$ and $h;i$ . $e.,$ $e_{1}\in N^{(0,\tau_{1},\cdots,\tau_{1})}$ and

$e_{2}\in N^{(\sigma,(0),\sigma,\tau_{1},\cdots,\tau_{n})}$ . $\{e_{1}\}(x_{1}, \cdots , x_{n})$ is defined and belongs to $N^{\sigma}$ for any
$x_{1}\in N^{\tau},$ $x_{n}\in N^{\tau_{n}}$ . By the definition of $e$ in 5.1.2. g), $\{e\}(0, x_{1}, \cdots , x_{n})$ is
defined and belongs to $N^{\sigma}$ . And if $\{e\}(a, x_{1}, \cdot. , x_{n})$ is defined and belongs to
$N^{\sigma}$ , then, by our assumption on $e_{2}$ ,

$\{e_{2}\}(a, \{e\}(a, x_{1}, x_{n}), x, x_{n})$

is defined and belongs to $N^{\sigma}$ . Therefore by the definition of $e$ in 5.1.2. g).
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$\{e\}(a+1, x_{1}, \cdots , x_{n})$ is defined and belongs to $N^{o}$ . Therefore, $\{e\}(a, x_{1}, \cdots , x_{n})$

is defined and belongs to $N^{\sigma}$ for any $a,$ $x_{1}\in N^{\tau_{1}},$ $\cdots$ , $x_{n}\in N^{\tau_{n}}$ . Hence we have
$e\in N^{(\sigma,(0),\tau_{1},\cdots,\tau_{n})}$ .

i) and ii) are clearly verifiable by the definition of $e$ and Prop. 5.1. If the
beginning sequence is

$f(X, X_{1}^{\sigma_{1}}, \cdots , X_{m}^{o_{m}}, T_{1}^{\tau_{1}}, \cdots , T_{n}^{\tau_{n}})=X(X_{1}^{\sigma_{1}}, \cdots , X_{m}^{\sigma_{m}})$

and if X is of type $(\tau, \sigma_{1}, \sigma_{m})$ , then $f$ is of type ( $\tau,$ $(\tau, \sigma_{1}, \sigma_{m}),$
$\sigma_{1},$

$\cdots$ , $\sigma_{m}$

$\tau_{1},$
$\cdots$ , $\tau_{n}$). If $e$ is the number corresponding to $f$ , the E-formula correspond-

ing to the above formula is

iii) $\{\overline{e}\}(a^{(\tau,\sigma_{1},\cdots,\sigma_{m})}, b_{1}^{\circ_{1}}, \cdot.. , b_{m}^{\sigma_{m}}, c_{1}^{\tau_{1}}, \cdot.. , c_{n}^{\tau_{n}})=\{a^{(\tau,\sigma_{1},\cdots,\sigma_{m})}\}(b_{1}^{\sigma_{1}}$ , $\cdot$ .. $b_{m}^{\sigma_{m}})$ ,

where a $,$

$b_{i}$ and $c_{j}$ are free E-variables corresponding to X, $X_{i}$ and $T_{j}$ respec-
tively.

Now, $\{x\}(x_{1}, \cdots , x_{m})$ is defined and belongs to $N^{\tau}$ for any
$x\in N^{(\tau,\sigma_{1},\cdots,\sigma_{m})},$ $x_{1}\in N^{\sigma_{1}},$ $x_{m}\in N^{\sigma_{m}},$ $y_{1}\in N^{\tau_{1}},$ $y_{n}\in N^{\tau_{n}}$ .

Since $e$ is defined by $\{e\}(x, x_{1}, \cdots , x_{m}, y_{1}, \cdots , y_{n})\simeq\{x\}(x_{1}, \cdots , x_{m})$ , so $\{e\}(x,$ $x_{1},$ $\cdots$ ,

$x_{m},$ $y_{1}$ , $\cdot$ .. , $y_{n}$) is defined and belongs to $N^{\tau}$ ; i. e., $e\in N^{(\tau,(\tau,\sigma_{1},\cdots,\sigma_{m}),\sigma_{1},\cdots\sigma_{m},\tau_{1},\cdot\cdot,\tau_{n})}$ and
(iii) is verifiable.

For the other defining equations, the proofs are analogous to the above
case.

b) We shall show, under the application of inference rule of $QF$, that if
the E-translation of upper-sequences is verifiable, then the E-translation of
lower-sequences is also verifiable.

We shall show this only for the weak-induction, since other cases are
trivial.

$WJ\frac{\Gamma\rightarrow\Delta,F(0,B^{\tau}).\Gamma,F(a,\alpha_{0}^{\sigma}}{\Gamma\rightarrow\Delta,F}\frac{a,B^{\tau}))\rightarrow\Delta,F(a+1,B^{\tau})}{(t,s)}($

where a and $B$ are free variables, $\alpha_{0}$ is a primitive recursive functional of
type $\sigma=$ $(\tau$ , $\cdot$ .. , (0), $\cdot$ .. , $\tau,$

$)$ and $t$ and $s$ are arbitrary terms of type (0) and
$\tau$ respectively. From the assumption,

$\Gamma^{E}\rightarrow\Delta^{E},$ $F^{E}(0, b^{\tau})$

$\Gamma^{E},$ $F^{E}(a, \{\overline{e}_{0}\}(a, b^{\tau}))\rightarrow\Delta^{E},$ $F^{E}(a+1, b^{\tau})$

are verifiable, where $e_{0}$ is the number corresponding to $\alpha_{0}$ .
We shall show that $\Gamma^{E}\rightarrow\Delta^{E},$ $F^{E}(\overline{n}, b^{\tau})$ is verifiable for each $n$ . This is

obvious for $n=0$ . If we assume this for some $n$ , then, from the type of $e_{0}$ ,
$\Gamma^{E}\rightarrow\Delta^{E},$ $F^{E}(\overline{n}, \{\overline{e}_{0}\}(\overline{n}, b^{\tau}))$ is also verifiable. By the assumption, $\Gamma^{E}\rightarrow\Delta^{E}$ ,
$F^{E}(\overline{n+1}, b^{\tau})$ is verifiable and so $\Gamma^{E}\rightarrow\Delta^{E},$ $F^{E}(a, b^{\tau})$ is also verifiable.

5.1.5. G\"odel’s interpretation by means of effective operations.
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For a formula A of $SJ$, let $A^{G}$ denote the formal G\"odel’s-interpretation of
A. $A^{G}$ is in general of the form

$\exists X_{1}^{\tau_{1}},$ $\exists X_{m^{m}}^{\tau}\forall Y_{1}^{o_{1}},$ $\cdots$ , $\forall Y_{n^{n}}^{\sigma}A^{\prime}$ ( $X_{1}^{r_{1}},$ $\cdots$ , X$\tau m^{mY_{1}^{\sigma_{1}}}’\ldots$ , $Y_{n^{n}}^{o}$) ,

and therefore $A^{GE}$ is in general of the form
$\exists x_{1}^{\tau_{1}},$ $x_{m}^{\tau_{m}},$ $y_{1}^{o_{1}},$ $y_{n}^{\sigma_{n}},$ $A^{\gamma E}(x_{1}^{\tau_{1}}, x_{m}^{\tau_{m}}, y_{1}^{\sigma_{1}}, y_{n}^{\sigma_{n}})$ .

PROPOSITION 5.3. Suppose $-A,$ $\cdots$ , $A_{n}\rightarrow\Delta,$ $B$ and let $1b^{G}$ be $\exists X_{i}^{r_{i}},$ $\forall Y^{o_{i}}$ ,
$A_{i}^{\prime}(X_{i}^{\tau_{i}}, Y_{i}^{o_{i}})$ and $B^{G}$ be $\exists X^{\tau\prime}\forall Y^{\sigma\prime}B^{\prime}(X^{\tau\prime}, Y^{\sigma\prime})$ . Then, there exist $n_{i}$ in
$N^{(\sigma_{i},\cdots,\tau_{1\prime}\cdots.\tau_{n\prime}\cdots,\sigma\prime\cdots)}$ and $m$ in $ N^{\mathfrak{c}^{r}\cdot 1,\ldots.n}r\tau’\cdots$) such that the formula

$\{A_{i^{E}}^{\prime}(a_{1}^{\tau_{1}}\{\overline{n}_{i}\}(a_{1}^{\tau_{1}}, a_{n}^{\tau_{n}}, b^{\sigma;}))\}_{i=1}^{n}\rightarrow\Delta^{E}B^{\prime E}(\{\overline{m}\}(a_{1}^{\tau_{1}}, a_{n}^{\tau_{n}}), b^{\sigma!})$

is verifiable. Here $n_{i}$ and $m$ are determined effectively from the proof in $SJ$

of $A_{1},$ $A_{n}\rightarrow\Delta$ , B.
PROOF. We get the proposition from [3], [4], and our Proposition 5.2.
COLLARY. Let A be a formula in $Z$.
Suppose $-\hat{z}^{I}$ A and let A be

$\exists x_{1}^{\tau_{1}}\ldots\exists x_{m}^{\tau_{m}}$ $\forall y_{1}^{\sigma_{1}}\ldots y_{n}^{o_{n}}$ $B(x_{1}^{\tau_{1}}, x_{m}^{\tau m}, y_{1}^{\sigma_{1}}, y_{n}^{\sigma_{n}})$ .
Then, there exist $z_{1}\in N^{\tau_{1}},$ $\cdots$ , $z_{m}\in N^{\tau_{m}}$, depending effectively on the proof of
A in $\hat{Z}^{I}$, such that

$B(\overline{z}_{1}, \overline{z}_{m}, b_{1}^{\sigma_{1}}, b_{n^{m}}^{\sigma})$

is verifiable.
PROOF. Since all primitive recursive functions of number theory are also

primitive recursive functionals of $SJ$, there exists, for each PR-formula A a
primitive recursive function $f_{0}$ such that $-f=0\sim A$ . Therefore Axiom $[1]\wedge$

is provable in $SJ$ by using $\exists 7$ of $SJ$. So, Corollary is obtained from Proposi-
tion 5.3.

5.2. Truth of GE-interpretation of provable formulas in $\hat{Z}_{a}^{I}$ .
5.2.1. A formula A in $Z$ is said to be true under GE-interpretation, if

there exists a number $z\in N^{\tau}$ such that $B(\overline{z}, b^{\sigma})$ is verifiable, where $A^{GE}$ is
$\exists x^{\tau}\forall y^{\sigma}B(x^{\tau}, y^{\sigma})$ .

In the case that A contains many variables, we define “ GE-interpretation
true” analogously.

5.2.2. PROPOSITION 5.4. If a prenex formula A in $Z$ is true under GE-
interpretation, then A is general recursively true.

PROOF. Suppose A is, for instance, of the form $\forall x_{1}\exists y_{1}\forall x_{2}\exists y_{2}B(x_{1}, x_{2}, y_{1}, y_{2})$ .
If A is true under GE-interpretation, then, by the definition of GE, there exist
numbers $z_{1}$ and $z_{2}$ such that

$B(a_{1}, a_{2}, \{\overline{z}_{1}\}(a_{1}), \{\{\overline{z}_{2}\}(a_{1})\}(a_{2}))$

is verifiable, where $z_{1}\in N^{((0)(0))},$ $z_{2}\in N^{(((0),(0)),(0))}$ . Define $z_{3}$ by $\{\{z_{2}\}(a_{1})\}(a_{2})$
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$\simeq\{z_{3}\}(a_{1}, a_{2})$ . Since $z_{2}$ belongs to $N^{(((0),(0)),(0))},$ $\{z_{3}\}(a_{1}, a_{2})$ is defined for all $a_{1}$

and $a_{2}$ , and so is a general recursive function. As $B(a_{1}, a_{2}, \{\overline{z}_{1}\{(a_{1}), \{\overline{z}_{3}\}(a_{1}, a_{2}))$

turns to be verifiable, A is general recursively ture.
The proof is similar for any prenex PR-formula, because for PR-formula

$B(a\cdots),$ $B(a\cdots)^{GE}$ is equivalent to $B(a\cdots)$ intuitionistically.
5.2.3. PROPOSITION 5.5. If $-\hat{z}^{I}A$ , then A is true under GE-interpretation.

More precisely, if $A^{GE}$ is $\exists x^{\tau}\forall y^{\sigma}A^{r}(x^{\tau}, y^{\sigma})$ , there exists a number $z\in N^{\tau}$ de-
pending effectively on the proof of A in $\hat{Z}_{a}^{I}$ such that $A^{\prime}(\overline{z}, b^{\sigma})$ is verifiable.

PROOF. The proof is analogous to that of Theorem 1 in \S 3.
The proposition is obvious for $d=1$ from Corollary to Proposition 5.3.

We shall prove the Proposition for $d$ , assuming that the Proposition holds for
$d^{\prime}<_{0}d$ . If $d=3.5^{e}\in 0$, it is obvious. Let $d=2^{a;}$ . We have $|-\hat{z}_{a^{A}}^{I}\Leftrightarrow\leftarrow\hat{z}_{a}^{(K)}A$

by Proposition 1.1. If A is axiom in $Z_{a}^{I},$ , Proposition holds. It suffies to prove
Proposition for an immediate cosequence A of inference rule, assuming the
Proposition for a premise. Moreover, it suffices to prove Proposition for a
conclusion A of K-rule of the form $\forall xB(x)$ , assuming Proposition for the

premise $\forall xPr[\hat{Z}_{a}^{I}](b(x))$ (where $[B(x)1\left(\begin{array}{l}\lceil x\neg\\ N(x)\end{array}\right)$ is $b(x)$), since other cases are
easy.

$\forall xPr[\hat{Z}_{a}^{I},](b(x))$ is $\forall x\exists y$ Prf $[\hat{Z}_{a}^{I},](b(x), y)$ .
Since Prf $[\hat{Z}_{a}^{I},](a, b)$ is an RE-formula, there exists, from the last part of 5.2.2.,
a number $e\in N^{((0),(0))}$ depending effectively on the proof of this formula such
that $(x)Prf[Z_{a}^{I},](b(x), \{e\}(x))$ .

Let $B(a)^{GE}$ be $\exists x^{\tau}\forall y^{\sigma}C(x^{\tau}, y^{\sigma}, a)$ . Then, by our assumption on $d^{\gamma}$ , there
exists a partial recursive function $\psi_{a},(y)$ defined for G\"odel numbers of proofs
in $\hat{Z}_{a}^{I}$ , such that $\psi_{a},(\{e\}(x))$ is determined, for any $x$ , effectively from the proof
$\{e\}(x)$ of $B(\overline{x})$ and that $C(\overline{\psi_{a\prime}(\{e\}(x)}),$ $b^{\sigma},$ $a$) is verifiable. Here, $\psi_{d^{J}}(\{e\}(x))\in N^{\tau}$ ,
and, if $\psi_{a},(\{e\}(x))\simeq\{e^{\prime}\}(x),$ $e^{\prime}$ is determined effectively from $\psi_{a}$ , and $\{e\}$ . Since
$\{e^{\prime}\}(x)$ is defined for all $x$ and since $\{e^{\prime}\}(x)\in N^{\tau}$ , we have $ e^{\prime}\in N^{(,(0))}\tau$ and
$C(\{\overline{e}^{\prime}\}(a), b^{o}, a)$ is verifiable. The GE-interpretation of $A,$ $i$ . $e$ . of $\forall xB(x)$ , is

$\exists z^{(,(0))}\tau\forall x\forall y^{\sigma}C(\{z^{(\tau_{(0))}}’\}(x), y^{d}, x)$ .
It is clear that $e^{\prime}$ depends effectively on the proof of A in $\hat{Z}_{d}^{I}$ . Proposition
5.5 has therefore, been proved.

\S 6. Completeness theorem of Feferman’s type related to
intuitionistic number theory.

Feferman showed the following completeness property of $Z_{a}^{c}$ .
PROPOSITION 6.1. ([1] 5.13 Theorem (II))

For every classically true formula A of $Z$, there exists $d\in O$ such that
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$|d|<\omega^{\omega^{0)}}$ and $|-z_{a}^{C}$ A.

Analogous theorem holds for the general recursively true formula instead
of classically true one. But to prove this theorem, we must mention about
the following two theorems which also appeared in [1].

PROPOSITION 6.2. ([1] 4.1 Theorem)

There is a binary primitive recursive function $E_{0}$ such that for any $b\in O$

and any PR-formula with one free variable a $B(a)$ , if $\forall xB(x)$ is true, then

(i) $E_{0}(b, [B\urcorner)\in O$

(ii) $b<0^{E_{0}(b,\Gamma}$ BI) and $|E_{0}(b, \lceil B\urcorner)|=|b|+\omega+1$

(iii) $\leftarrow_{Z_{E_{0}(b,\ulcorner B\rceil)}^{C}}\forall xB(x)$ .

PROPOSITION 6.3. ([1] 5.2 Theorem)

There exists a binary primitive recursive function $E_{1}$ , such that for $b\in O$

and any PR-formula with two free variables $a,$ $bB(a, b)$ , if $\forall x\exists yB(x, y)$ is
true, then

(i) $E_{1}(b[B\neg\in O$

(ii) $b<0^{E_{1}(b}$ , [Bl) and $|E_{1}(b, [B\neg)|=|b|+\omega^{2}+\omega+1$

(iii) $|-z_{E_{1}(b,\ulcorner B1)}^{C}\forall x\exists yB(x. y)$

THEOREM 3. Let A be a formula of $Z$ of the form $Q_{1}x_{1}Q_{2}x_{2}\ldots Q_{n}x_{n}B(x_{1}$ ,

$x_{2}$ , $\cdot$ .. , $x_{n}$) where $Q_{i}x_{i}$ is $\exists x_{\iota}$ or $\forall x_{i}$ and $B$ is a PR-formula. Then, A $is$

general recursively true if and only if there is $d\in O$ such that $|d|=\omega^{2}+\omega+1$

$and\leftarrow\hat{z}_{a^{A}}^{I}$ .

PROOF. If $-\hat{z}_{d}^{I}A$ , then A is true under GE-interpretation, and therefore

is general recursively true from Propositions 5.4 and 5.5.
So it suffices to show the inverse. Now, for instance, let A be of the

form $\forall x_{1}\exists y_{1}\forall x_{2}\exists y_{2}B(x_{1}, x_{2}, y_{1}, y_{2})$ . We can treat general case similarly. If A
is general recursively true, there exist $e_{1},$ $e_{2}$ such that $B(a_{1}, a_{2}, \{e_{1}\}(a_{1}), \{e_{2}\}(a_{1}a_{2}))$

is verifiable. That is
$T_{1}(e_{1}, a, y_{1})\& T_{2}(e_{2}, a_{1}, a_{2}, y_{2})I\Rightarrow B(a_{1}, a_{2}, U(y_{1}), U(y_{2}))$ .

If $U(y, z)$ is a formal expression of ” $U(y)=z$ ”,

a) $\forall x_{1}\forall x_{2}\forall y_{1}\forall y_{2}\forall z_{1}\forall z_{2}$

$\{T_{1}(\overline{e}_{1}, x_{1}, y_{1})\&T_{2}(\overline{e}_{2}. x_{1}, x_{2}, y_{2})\&U(y_{1}, z_{1})\&U(y_{2}, z_{2})\supset B(x_{1}, x_{2}, z_{1}, z_{2})\}$

is true, and since the formula in $\{$ $\}$ is a PR-formula, from Prop. 6.2, there is
a $d_{0}\in O$ such that $|d_{0}|=\omega+1$ (setting $b=0$) and $\mapsto z_{a_{0}}^{C}$ formula a).

$e_{1},$ $e_{2}$ are G\"odel numbers of general recursive functions, so that
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$\forall x_{1}\exists y_{1}\exists z_{1}(T_{1}(\overline{e}_{1}, x_{1}, y_{1},)\&U(y_{1}, z_{1}))$

$\&\forall x_{1}\forall x_{2}\exists y_{2}\exists z_{2}(T_{2}(\overline{e}_{2}, x_{1}, x_{2}, y_{2})\&U(y_{2}, z_{2}))$

are true. The conjunction of the above two formulas is of the form
$\forall x\exists yC(x, y)$ where $C(x, y)$ is a PR-formula. Therefore from Prop. 6.3, if we
set $d=E_{1}(d_{0}, \Gamma C\neg)$ , then $d_{0}<0^{d}’|d|=|d_{0}|+\omega^{2}+\omega+1=\omega^{2}+\omega+1$ and

$\mapsto z_{a}^{c\forall x\exists yC(x,y)}$ .

Since $d_{0}<0^{d}$
’ formula a) is also provbale in $Z_{a}^{c},$ $i$ . $e$ . $|-Z_{d}^{C}$ formula a).

Considering o-translation of the formula a), we have

$-z_{d}^{I}$ formula a), from Theorem 2.

On the other hand, $\circ$ -translation of $\forall x\exists yC(x, y)$ is $\forall x7\forall y7C(x, y)$ ; but from
Axiom $\hat{I}$,

$-\hat{z}^{I}\forall x7\forall y7C(x, y)\supset\forall x\exists y77C(x, y)$ .
Hence we have

$|-\hat{z}_{a}^{I\forall x\exists yC(x,y)}$ .

Formula a) is equivalent to the following formula in $\hat{Z}_{a}^{I}$ , and we have

$-\hat{z}_{a}^{I}\forall x_{1}\exists y_{1}\exists z_{1}T_{1}(\overline{e}_{1}, x_{1}, y_{1})\&U(y_{1}, z_{1})$

$\&\forall x_{1}\forall x_{2}\exists y_{2}\exists z_{2}T_{2}(\overline{e}_{2}, x_{1}, x_{2}, y_{2})\&U(y_{2}, z_{2})$

$\supset\forall x_{1}\exists y_{1}\forall x_{2}\exists y_{2}B(x_{1}, x_{2}, y_{1}, y_{2})$ .
Since the antecedent formula of $\supset$ is $\forall x\exists yC(x, y)$ , we have at last

$-\hat{z}_{a}^{I}\forall x_{1}\exists y_{1}\forall x_{2}\exists y_{2}B(x_{1}, x_{2}, y_{1}, y_{2})$ .

Appendix. No-counter example-interpretation.

A.l. Formal version of Proposition 5.5.
If $\exists x^{\tau}\forall y^{\sigma}A^{\prime}(x^{\tau}, y^{o})$ is the GE-interpretation of $A$ , and if $e_{a}$ is a G\"odel

number of the partial recursive function $\psi_{d}$ appeared in the proof of Proposi-
tion 5.5 and if A is provable by a proof in $\hat{Z}_{a}^{I}$ with G\"odel number $p$ then
$A^{\prime}(\{\overline{e}_{a}\}(\overline{p}), b^{\sigma})$ is verifiable. This is the assertion of Proposition 5.5.

In this section we try to obtain some formal version of the proposition
which will play a role in the so called no-counter example-interpretation.

A.l.1. Formula $N^{\tau}(a)$ .
$N^{(0)}(a)$ is $a=a$ .

If for types $\tau_{0},$ $\tau_{1}$ , $\cdot$ .. , $\tau_{n}$ , formulas $N^{\tau_{0}}(a),$ $N^{\tau_{1}}(a)$ , $\cdot$ .. , $N^{\tau_{n}}(a)$ are already
defined, then $N^{(\tau 0,\tau_{1},\cdots,\tau_{n})}(a)$ is the following formula:
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{ $\forall x_{1},$ $\forall x_{2},$ $\cdots$ , $\forall x_{n}(N^{\tau_{1}}(x_{1})$ & $\cdots$ $\&N^{-}n(X_{n})$

$\supset\exists yT_{n}(a, x_{1}, x_{n}y)\}$ &

$\forall x_{1}\forall x_{2},$ $\cdots$ , $\forall x_{n}\forall y\forall z\{N^{\rightarrow}1(x_{1})$ & $\cdot$ .. $\&N^{\tau_{n}}(x_{n})$ &

$T_{n}(a, x_{1}, x_{n}y)$ &U(y, $z$) $\supset N^{\tau_{0}}(z)$ }.

A.1.2. In formalism,

(a) $\{a\}(b_{1}, -- , b_{n})=c$ means $\exists x$( $T_{n}$($a,$ $b_{1},$ $b_{2},$ $\cdots$ , $b_{n},$ $x$) &U(x, $c)$),

(b) $\forall x^{\tau}A(x^{\tau})$ means $\forall x(N^{\tau}(x)\supset A(x))$ ,

$\exists x^{\tau}A(x^{\tau})$ means $\exists x$( $N^{\tau}(x)$ &A(x)).
By (a), (b) we can make a formula of $Z$ correspond to each E-formula, for

example $A(\{e\}(p))$ means $\exists x\exists y$ ($A(x)\&T_{1}(e,$ $p,$ $y)$ &U(y, $x)$).

PROPOSITION 1. If $\exists x^{\tau}\forall y^{\sigma}A^{\prime}(x^{\tau}y^{\sigma})$ is the GE-interpretation of the closure
of $A$ , and if $A^{*}(x^{\rightarrow})$ is the formula of $Z$ corresponding to $\forall y^{\sigma}A^{\prime}(x^{\tau}y^{\sigma})$ by (a),
(b), then the following (c), (d) hold.

(c)
$-\hat{z}_{d}^{I}$ A (with proof p)

$D-\hat{z}_{a}^{I}A^{*}(\{\overline{e}_{a}\}(\overline{p}))\&N^{\tau}(\{\overline{e}_{d}\}(\overline{p}))$ .

In other words, if $\mapsto\acute{z}_{a}^{IA}$ , then GE-interpretation is also provable in $\hat{Z}_{a}^{I}$ , and

number $z$ inProposition 5.5 is provably effective in $\hat{Z}_{a}^{I}$ .
(d) The formula obtained by formalizing (c) is provable in $Z^{I}$ . That is

$|-\hat{z}^{I}$ Prf $[\hat{Z}_{a}^{I}](a, p)\supset Pr[Z_{a}^{I}](\cdots)$ ,

where $(\cdots)$ is Godel-number of the following formula of $Z$ :
$A^{*}(\{\overline{e}_{a}\}(p))\&N^{r}(\{\overline{e}_{d}\}(p)$ .

The outline of the proof.
In case $d=1$ , we have the proposition by formalizing the proof of Pro-

position 5.2.
Firstly, the closure of GE-interpretation of the defining equation (i), (ii),

etc. is provable in $Z^{I}$ . To show this, we need the formal theory of partial
recursive function of [2] Chapter XII. Secondly, WJ-inference for E-formula
holds in $Z^{I}$ .

That is, if $A\supset\forall x(N^{\tau}(x)\supset B(O, x))$ , and $\forall x\forall y\{N^{\tau}(x)\supset A$ &B(y, $\{\overline{e}_{0}\}(y,$ $x)$)

$\supset B(y+1, x)\}$ are provable in $Z^{I}$, then $\forall x\forall y(N^{\tau}(x)\supset(A\supset B(y, x))$ is provable
in $Z^{I}$ : this is obvious.

(d) is obtained by formalizing the above. This is provable in $Z^{I}$ . As in
Proposition 5.5, suppose that $-\hat{z}_{a}^{I}$, A and that A is $\forall xB(x)$ and is conclusion
of K-rule whose premise is $\forall xPr[\hat{Z}_{a}^{I},](b(x))$ . And suppose that Prop. 1 (c), (d).

hold for $d^{\prime}$ and for the proof of this premise. By our assumption,
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(e)
$-z_{\sim^{\urcorner a}}^{I},$

$\forall x$ Prf $[\hat{Z}_{a}^{I},](b(x)\{\overline{e}\}(x))\&N^{((0)(0))}(\overline{e})$ ,

where $e$ is determined effectively from the proof of
$\forall xPr[\hat{Z}_{a}^{I},](b(x))$ in $\hat{Z}_{oa\prime,\sim}^{I}$ .

And by our assumption of (c) for $d^{\prime}$ ,

(f) $Prf[\hat{Z}_{a}^{I},](b(x), \{\overline{e}\}(x))$

$\subset>\mapsto z_{a}^{I(B(\overline{x}))^{*}(\{\overline{e}_{a\prime}\}(\{\overline{e}\}(x)))}$

$\&N^{\tau}(\{\overline{e}_{d},\}(\{\overline{e}\}(x)))$ .
If $\exists x^{\tau}\forall y^{\sigma}C(x^{\tau}, y^{\sigma}, a)$ is $B(a)^{GE}$ , and if we put $\{e^{\prime}\}(x)\simeq\{e_{a}\}(\{e\}(x))$ , then

(g) $(x)\leftarrow\hat{z}_{cl}^{I,}\forall y^{o}C(\{\overline{e}^{\prime}\}(\overline{x}), y,\overline{x})\&N^{\tau}(\{\overline{e}^{\prime}\}(\overline{x}))$ .

Since the formalization of (f) is provable in $Z^{1}$ by (d) and since (e) holds, we
have the formalization of (g) in $Z_{2}^{I_{d^{\prime}}}$ .

Therefore, by K-rule, $\forall x\forall y^{o}C(\{\overline{e}^{\prime}\}(x), y^{\sigma}, x)$ and $\forall xN^{\tau}(\{\overline{e}^{\prime}\}(x))$ are provable
in $Z_{2a}^{I},$ . That is, $\mapsto z_{2}^{r_{a}A^{*}(\overline{e}^{\prime})}\&N^{(\tau_{(0))}},(\overline{e}^{\prime})$ .

(d) of Proposition $A,$ $1$ for $Z_{o}^{I}-a$ ’ is very complicated but the above inference
remains in the frame of $Z^{I}$ .

$Z_{a}^{I}$ , and even $Z_{a}^{c}$ is not complete progression for true formula under GE-
interpretation (not necessarily prenex formula). For, there is a formula $C$, of
the form $\forall x\exists y\forall z[A(y, x)\vee 7A(z, x)$ which is not general recursively true [17]

Appendix 1, or [6] P. 123). Then, the GE-interpretation of $7C$ is true, but
from the form of $7C,$ $7C$ is not provable in $\hat{Z}_{a}^{I}$ (even in $Z_{a}^{c}$ ) for any $d\in O$ .
We do not know what is the recursive progression which is complete for any
GE-interpretation true formula or for any recursively realizable formula.

A.2. No-counterexample-interpretation.
If A is a prenex formula of the form $\forall x_{1}\exists y_{1},$ $\forall x_{n}\exists y_{n}B(x_{1}, x_{n}, y_{1}, y_{n})$

and if $A^{*}$ is the prenex form of $7A$, the no-counterexample-interpretation
is defined as Godel interpretation of $7A^{*}[6][17]$ ;

i. e. $\exists\varphi_{1},$ $\exists\varphi_{n}\forall x\forall f_{2},$ $\forall f_{n}B[x_{1}, f_{2}(\varphi_{1}), \prime f_{n}(\varphi_{1}, \varphi_{n-1}), \varphi_{1}, ’\varphi_{n}]$ .
If A is classically true, then there exist recursive functionals $\varphi_{1},$

$\cdots$ , $\varphi_{n}$ such
that for every $x$ and every recursive functions $f_{2}f_{8},$ $\cdots$ , $f_{n}$ ,

$B[x_{1}f_{2}(\varphi_{1}), \cdots, f_{n}(\varphi_{1}, \varphi_{n-1}), \varphi_{1}, \varphi_{n}]$

is true [6] p. 124. Moreover, Kreisel pointed out that if A is provable in
some system, $\varphi_{i}’ s$ are not only recursive, but also belong to some subclass
depending on the system considered. For example, as Kreisel showed in [17],

if A is provable in $Z^{c},$
$\varphi$ can be taken as ordinal recursive functionals of

finite order. On the other hand every classically true formula A is provable
in $Z_{a}^{c}$ for some $d$, and the following proposition holds.
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PROPOSITION A.2. If a prenex formula A is provable in $Z_{a}^{c}$ , then its no-
counterexample-interpretation is true and the above $\varphi_{1},$

$\cdots$ , $\varphi_{n}$ can be taken as
effective operations and it is provable in $Z_{a}^{1}$ that $\varphi_{1},$

$\cdots$ , $\varphi_{n}$ are effective opera-
tions. That is, if the types of $\varphi_{1},$

$\cdots$ , $\varphi_{n}$ are $\tau_{1},$
$\cdots$ , $\tau_{n}$ respectively, and if $\varphi_{i}$

is $\{n_{i}\}$ , then $-z_{a}^{I}N^{r_{i}}(\overline{n}_{\dot{f}})$ .
PROOF. If $\forall x_{1}\exists y_{1},$ $\cdots$ , $\forall x_{n}\exists y_{n}B(x_{1}, \cdots , x_{n}, y_{1}, \cdots , y_{n})$ is provable in $Z_{a}^{c}$ , then

o-transIation
$\forall x_{1}7\forall y_{1}7\ldots 7\forall x_{n}7\forall y_{n}7B(x_{1}, x_{n}, y_{1}, y_{n})$

is provable in $Z_{a}^{I}$ by Theorem 2. Also in $Z_{a}^{1}$ , we have

$\exists x_{1}\forall y_{1},$ $\exists x_{\iota}\forall y_{n}7B(x_{1}, x_{n}, y_{1}, y_{n})$

$\supset 7\forall x_{1}7\forall y_{1}7\ldots 7\forall x_{\uparrow t}7\forall y_{n}7B(x_{1}, ’ x_{n}, y_{1}, y_{n})$ ,

and so
$7\exists x_{1}\forall y_{1},$ $\exists x_{n}\forall y_{n}7B(x_{1}, \lrcorner x_{n}, y_{1}, y_{n})$

is provable in $Z_{a}^{I}$ . For instance, in case $n=2$ ,

$7\exists x_{1}\forall y_{1}\exists x_{2}\forall y_{2}7B(x_{1}, x_{2}, y_{1}, y_{2})$

is provable in $Z_{(}^{I}t$ .
Its GE-interpretation is true by proposition 5.5. So there are numbers

$w_{1},$ $w_{2}$ , such that
$B[x_{1}, \{z_{2}^{\tau}\}(\{\overline{w}\}(x, z_{2}^{\tau})), \{\overline{w}_{1}\}(x_{1}z_{2}^{\tau}), \{\overline{w}_{2}\}(x_{1}z_{2}^{\tau})]$

where $\tau$ is $((0)(0))$ is verifiable and $-z_{a}^{I}N^{\tau_{1}}(\overline{w}_{1})$ and $-z_{a^{N^{\tau_{9}}(\overline{w}_{2})}}^{I}$ by proposition

1, where $\tau_{1}$ is of the type $((0), $(0)
$,$

$((0)(0)))$ and $\tau_{2}$ is of the same type as $\tau_{1}$ .
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