Closed hypersurfaces with constant mean curvature in a Riemannian manifold

By Kentaro Yano

(Received Feb. 1, 1965)

It has been proved by H. Liebmann [3] and W. Süss [4] that the only convex closed hypersurface with constant mean curvature is a sphere. To prove this theorem we need integral formulas of Minkowski.

Prof. Y. Katsurada [1], [2] derived integral formulas of Minkowski type which are valid in an Einstein space and proved the following generalisation of the theorem of Liebmann-Süss.

Theorem. Let M be an ($m+1$)-dimensional orientable Einstein space and S a closed orientable hypersurface in M whose first mean curvature is constant. We suppose that M admits a one-parameter group of conformal transformations such that the inner product α of the generating vector v^{h} and the normal C^{h} to the hypersurface does not change the sign $(a n d \neq 0)$ on S. Then every point of S is umbilical.

The main purpose of the present paper is to derive three integral formulas which are valid in a general Riemannian manifold and to generalise Katsurada's theorem to the case of general Riemannian manifolds admitting a one-parameter group of homothetic transformations.

§ 0. Preliminaries.

We consider an orientable ($m+1$)-dimensional Riemannian manifold M with positive definite metric and denote by $g_{j i}, \nabla_{j}, K_{k j i}{ }^{h}, K_{j i}=K_{k j i}{ }^{k}$, the fundamental metric tensor, the covariant differentiation with respect to the Riemannian connection, the curvature tensor, and the Ricci tensor of M respectively, where and in the sequel the indices h, i, j, k, \cdots run over the range $1,2, \cdots, m, m+1$.

We assume that there is given an orientable hypersurface S whose local expression is

$$
\begin{equation*}
\xi^{h}=\xi^{h}\left(\eta^{a}\right), \tag{0.1}
\end{equation*}
$$

where ξ^{h} are local coordinates in M and η^{a} are local parameters on the hypersurface S, where and in the sequel the indices a, b, c, d, \cdots run over the range $\dot{i}, \dot{2}, \cdots, \dot{m}$.

If we put

$$
\begin{equation*}
B_{b}^{h}=\partial_{b} \xi^{h}, \quad \partial_{b}=\partial / \eta^{b}, \tag{0.2}
\end{equation*}
$$

then the first fundamental tensor of S is given by

$$
\begin{equation*}
g_{c b}=g_{j i} B_{c}{ }^{j} B_{b}{ }^{i} . \tag{0.3}
\end{equation*}
$$

We assume that $B_{b}{ }^{h}(b=\dot{1}, \dot{2}, \cdots, \dot{m})$ give the positive direction in S and choose the unit normal C^{h} to S in such a way that $B_{b}{ }^{h}, C^{h}$ give the positive direction in M.

Denoting by ∇_{c} the van der Waerden-Bortolotti covariant differentiation along the S, we can write equations of Gauss and Weingarten in the form

$$
\begin{align*}
& \nabla_{c} B_{b}{ }^{h}=h_{c b} C^{h}, \tag{0.4}\\
& \nabla_{c} C^{h}=-h_{c}{ }^{a} B_{a}{ }^{h} \tag{0.5}
\end{align*}
$$

respectively, where $h_{c b}$ is the second fundamental tensor of S and $h_{c}{ }^{a}=h_{c b} g^{b a}$.
If we denote by $k_{1}, k_{2}, \cdots, k_{m}$ the principal curvatures of S, that is, the roots of the characteristic equation

$$
\begin{equation*}
\left|h_{c b}-k g_{c b}\right|=0, \tag{0.6}
\end{equation*}
$$

then the first mean curvature H_{1} and the second mean curvature H_{2} of S are respectively given by

$$
\begin{equation*}
m H_{1}=\sum_{a} k_{a}=h_{c}^{c} \tag{0.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{m}{2} H_{2}=\sum_{c<b} k_{c} k_{b}=\frac{1}{2}\left(h_{c}{ }^{b} h_{b}{ }^{b}-h_{c}{ }^{b} h_{b}{ }^{c}\right) . \tag{0.8}
\end{equation*}
$$

Now, the equations of Gauss and those of Codazzi are respectively written as

$$
\begin{equation*}
K_{k j i \hbar} B_{d}{ }^{k} B_{c}{ }^{j} B_{b}{ }^{i} B_{a}{ }^{h}=K_{d c b a}-\left(h_{d a} h_{c b}-h_{c a} h_{d b}\right) \tag{0.9}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{k j i h} B_{a}{ }^{k} B_{c}{ }^{j} B_{b}{ }^{i} C^{h}=\nabla_{d} h_{c b}-\nabla_{c} h_{d b} . \tag{0.10}
\end{equation*}
$$

Transvecting $g^{c b}$ to the equations of Codazzi and remembering $g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}$ $=g^{j i}-C^{j} C^{i}$, we find

$$
\begin{equation*}
K_{k h} B_{d}{ }^{k} C^{h}=\nabla_{d} h_{c}{ }^{c}-\nabla_{c} h_{d}{ }^{c} . \tag{0.11}
\end{equation*}
$$

We now assume that there is given a global vector field $v^{h}(\xi)$ in M and denote by \mathcal{L} the Lie differentiation with respect to v^{h}. (See [5].) The vector field v^{h} is said to be conformal, homothetic or Killing when it satisfies
or

$$
\begin{aligned}
\mathcal{L} g_{j i} & =\nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \rho g_{j i}, \\
\mathcal{L} g_{j i} & =2 c g_{j i}, \\
\mathcal{L} g_{j i} & =0
\end{aligned}
$$

respectively, where ρ is a function and c is a constant. When v^{h} is conformal, it satisfies

$$
\begin{equation*}
\mathcal{L}\left\{{ }_{j i}^{h}\right\}=\nabla_{j} \nabla_{i} v^{h}+K_{k j i}{ }^{h} v^{k}=\delta_{j}^{h} \rho_{i}+\delta_{i}^{h} \rho_{j}-\rho^{h} g_{j i}, \tag{0.12}
\end{equation*}
$$

where $\left\{{ }_{j i}\right\}$ are Christoffel symbols and $\rho_{i}=\nabla_{i} \rho, \rho^{h}=\rho_{i} g^{i h}$. When v^{h} is homothetic, it satisfies

$$
\begin{equation*}
\mathcal{L}\left\{{ }_{j i}^{h}\right\}=\nabla_{j} \nabla_{i} v^{h}+K_{k j i}{ }^{h} v^{k}=0 \tag{0.13}
\end{equation*}
$$

and thus it defines an infinitesimal affine collineation.
On the hypersurface S we can put

$$
\begin{equation*}
v^{h}=B_{a}{ }^{h} v^{a}+\alpha C^{h} . \tag{0.14}
\end{equation*}
$$

Since we have

$$
\begin{aligned}
B_{c}{ }^{j} B_{b}{ }^{i} \mathcal{L} g_{j i} & =B_{c}{ }^{j} B_{b}{ }^{i}\left(\nabla_{j} v_{i}+\nabla_{i} v_{j}\right) \\
& =\nabla_{c} v_{b}+\nabla_{b} v_{c}-2 \alpha h_{c b},
\end{aligned}
$$

denoting also by \mathcal{L} the Lie differentiation with respect to v^{a} in S, we have

$$
\begin{equation*}
B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L} g_{j i}\right)=\mathcal{L} g_{c b}-2 \alpha h_{c b} . \tag{0.15}
\end{equation*}
$$

Transvecting v^{d} to (0.11), we find

$$
\begin{aligned}
& K_{k h} B_{d}{ }^{k} v^{d} C^{h}=v^{d} \nabla_{d} h_{c}{ }^{c}-v^{d}\left(\nabla_{c} h_{d}{ }^{c}\right), \\
& K_{j i}\left(v^{j}-\alpha C^{j}\right) C^{i}=v^{d} \nabla_{d} h_{c}{ }^{c}-\nabla_{c}\left(h_{d} v^{d} v^{d}\right)+h^{c} \nabla_{c} v_{c}
\end{aligned}
$$

and consequently

$$
\begin{equation*}
K_{j i} \nu^{j} C^{i}-\alpha K_{j i} C^{j} C^{i}=v^{d} V_{d} h_{c}{ }^{c}-\nabla_{c}\left(h_{d}{ }^{c} v^{d}\right)+\frac{1}{2} h^{c b}\left(\mathcal{L} g_{c b}\right) \tag{0.16}
\end{equation*}
$$

or

$$
\begin{align*}
K_{j i} v^{j} C^{i}-\alpha K_{j i} C^{j} C^{i}= & v^{d} \nabla_{d} h_{c}{ }^{c}-\nabla_{c}\left(h_{d}{ }^{c} v^{d}\right)+\alpha h_{c}{ }^{b} h_{b}{ }^{c} \tag{0.17}\\
& +\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L} g_{j i}\right)
\end{align*}
$$

by virtue of (0.15),

§ 1. The first integral formula.

We have

$$
v_{b}=B_{b}{ }^{i} v_{i}
$$

from which, by covariant differentiation along S,

$$
\nabla_{c} v_{b}=\alpha h_{c b}+B_{c}{ }^{j} B_{b}{ }^{i}\left(\nabla_{j} v_{i}\right) .
$$

Transvecting $g^{c b}$ to this, we get

$$
g^{c b} \nabla_{c} v_{b}=\alpha h_{c}{ }^{c}+\frac{1}{2} g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L} g_{j i}\right)
$$

or

$$
g^{c b} \nabla_{c} v_{b}=m \alpha H_{1}+\frac{1}{2} g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L} g_{j i}\right) .
$$

Thus, assuming S to be compact, we get the integral formula

$$
\begin{equation*}
\int_{S} m \alpha H_{1} d S+\frac{1}{2} \int_{S} g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L} g_{j i}\right) d S=0, \tag{1.1}
\end{equation*}
$$

where $d S$ denotes the surface element of S. (See [6].)
If the vector field v^{h} is conformal, that is, if $\mathcal{L} g_{j i}=2 \rho g_{j i}$, we have, from the formula above,

$$
\begin{equation*}
\int_{S} \alpha H_{1} d S+\int_{S} \rho d S=0 . \tag{1.2}
\end{equation*}
$$

§2. The second integral formula.

If we put

$$
\begin{equation*}
w_{b}=h_{b}{ }^{a} v_{a}, \tag{2.1}
\end{equation*}
$$

we have, by covariant differentiation along S,

$$
\nabla_{c} w_{b}=\nabla_{c}\left(h_{d b} v^{d}\right) .
$$

Transvecting $g^{c b}$ to this, we get

$$
g^{c b} \nabla_{c} w_{b}=\nabla_{c}\left(h_{d}{ }^{c} v^{d}\right),
$$

from which, taking account of (0.17)

$$
\begin{equation*}
g^{c b} \nabla_{c} w_{b}=v^{a} \nabla_{d} h_{c}{ }^{c}+\alpha h_{c}{ }^{b} h_{b}{ }^{c}-K_{j i} \nu^{j} C^{i}+\alpha K_{j i} C^{j} C^{i}+\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{c}{ }^{i}\left(\mathcal{L} g_{j i}\right) . \tag{2.2}
\end{equation*}
$$

On the other hand, we have, from (0.7) and (0.8),

$$
h_{c}{ }^{c}=m H_{1}, \quad h_{c}{ }^{b} h_{b}{ }^{c}=m^{2} H_{1}{ }^{2}-m(m-1) H_{2},
$$

and consequently, we have, from (2.2),

$$
\begin{aligned}
g^{c b} \nabla_{c} w_{b}= & m v^{d} \nabla_{d} H_{1}+m \alpha\left\{m H_{1}^{2}-(m-1) H_{2}\right\} \\
& -K_{j i} v^{j} C^{i}+\alpha K_{j i} C^{j} C^{i}+\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L} g_{j i}\right) .
\end{aligned}
$$

Thus, assuming S to be compact, we get the second integral formula

$$
\begin{align*}
& \int_{s}\left[m v^{d} \nabla_{d} H_{1}+m \alpha\left\{m H_{1}^{2}-(m-1) H_{2}\right\}\right. \tag{2.3}\\
& \left.\quad-K_{j i} v^{j} C^{i}+\alpha K_{j i} C^{j} C^{i}+\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L} g_{j i}\right)\right] d S=0 .
\end{align*}
$$

If the vector field v^{h} is conformal, then we get from (2.3)

$$
\begin{gather*}
\int_{S}\left[m v^{a} \nabla_{d} H_{1}+m \rho H_{1}+m \alpha\left\{m H_{1}^{2}-(m-1) H_{2}\right\}\right. \tag{2.4}\\
\left.-K_{j i} v^{j} C^{i}+\alpha K_{j i} C^{j} C^{i}\right] d S=0 .
\end{gather*}
$$

§ 3. The third integral formula.

We have

$$
\begin{equation*}
\alpha=v^{h} C_{h}, \tag{3.1}
\end{equation*}
$$

from which, by covariant differentiation along S,

$$
\nabla_{b} \alpha=\left(B_{b}{ }^{i} \nabla_{i} v^{h}\right) C_{h}-h_{b}{ }^{a} v_{a}
$$

and

$$
\nabla_{c} \nabla_{b} \alpha=h_{c b}\left(\nabla_{j} v_{i}\right) C^{j} C^{i}+B_{c}{ }^{j} B_{b}{ }^{i}\left(\nabla_{j} \nabla_{i} v^{h}\right) C_{h}-h_{c}{ }^{a} B_{b}{ }^{i}\left(\nabla_{i} v^{h}\right) B_{a h}-\nabla_{c}\left(h_{b}{ }^{a} v_{a}\right) .
$$

Transvecting $g^{c b}$ to this, we get

$$
\begin{aligned}
g^{c b} \nabla_{c} \nabla_{b} \alpha= & \frac{1}{2} h_{c}{ }^{c}\left(\mathcal{L} g_{j i}\right) C^{j} C^{i}+g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L}\left\{{ }_{j i j}^{h}\right\}\right) C_{h} \\
& -K_{j i} v^{j} C^{i}-\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}^{i}\left(\mathcal{L} g_{j i}\right)-g^{c b} \nabla_{c}\left(h_{b}{ }^{a} v_{a}\right)
\end{aligned}
$$

by virtue of

$$
\nabla_{j} \nabla_{i} v^{h}=\mathcal{L}\left\{h_{j i}^{h}\right\}-K_{k j i}^{h} v^{k} .
$$

Thus, assuming S to be compact, we get the third integral formula

$$
\begin{align*}
\int_{S}[& \frac{1}{2} h_{c}{ }^{c}\left(\mathcal{L} g_{j i}\right) C^{j} C^{i} \tag{3.3}\\
& \left.+g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L}\left\{{ }_{j i}^{h}\right\}\right) C_{h}-K_{j i} v^{j} C^{i}-\frac{1}{2} h^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\left(\mathcal{L} g_{j i}\right)\right] d S=0 .
\end{align*}
$$

We now assume that the vector field v^{h} is conformal, then we have

$$
\mathcal{L} g_{j i}=2 \rho g_{j i}, \quad \mathcal{L}\left\{{ }_{j i}^{h}\right\}=\delta_{j}^{h} \rho_{i}+\delta_{i}^{h} \rho_{j}-g_{j i} \rho^{h} .
$$

Thus we find from (3.3)

$$
\begin{equation*}
\int_{S}\left[m \rho_{i} C^{i}+K_{j i} v^{j} C^{i}\right] d S=0 . \tag{3.4}
\end{equation*}
$$

Moreover if v^{h} is homothetic,we get

$$
\begin{equation*}
\int_{S} K_{j i} v^{j} C^{i} d S=0 \tag{3.5}
\end{equation*}
$$

§ 4. Integral formulas for the case $H_{1}=$ constant.

We assume in this section that the Riemannian manifold admits an infinitesimal conformal transformation v^{h} and the first mean curvature H_{1} of the hypersurface S is constant. Then, the first integral formula (1.2) and the
second integral formula (2.4) become respectively

$$
\begin{equation*}
H_{1} \int_{S} \alpha d S+\int_{S} \rho d S=0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{align*}
H_{1} \int_{S} \rho d S & +\int_{S} \alpha\left\{m H_{1}^{2}-(m-1) H_{2}\right\} d S \tag{4.2}\\
& -\frac{1}{m} \int_{S}\left(K_{j i} \nu^{j} C^{i}-\alpha K_{j i} C^{j} C^{i}\right) d S=0 .
\end{align*}
$$

Eliminating $\int_{S} \rho d S$ from these equations, we find

$$
\begin{equation*}
\int_{S}(m-1) \alpha\left(H_{1}^{2}-H_{2}\right) d S-\frac{1}{m} \int_{S}\left(K_{j i} v^{j} C^{i}-\alpha K_{j i} C^{j} C^{i}\right) d S=0 . \tag{4.3}
\end{equation*}
$$

If the Riemannian manifold M under consideration is an Einstein space, then

$$
K_{j i}=\lambda g_{j i}
$$

and consequently we have from (4.3)

$$
\begin{equation*}
\int_{S} \alpha\left(H_{1}^{2}-H_{2}\right) d S=0, \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{1}^{2}-H_{2}=\frac{1}{m^{2}(m-1)} \sum_{a \neq b}\left(k_{a}-k_{b}\right)^{2} . \tag{4.5}
\end{equation*}
$$

Using (4.4) and (4.5), Prof. Katsurada proved the theorem mentionned in the introduction of the present paper.
§ 5. Hypersurfaces with constant first mean curvature in a Riemannian manifold admitting an infinitesimal homothetic transformation.

We assume in this section that the Riemannian manifold admits an infinitesimal homothetic transformation v^{h} and the first mean curvature H_{1} of the hypersurface is constant. Then the first, the second and the third integral formulas become respectively

$$
\begin{gather*}
H_{1} \int_{S} \alpha d S+c \int_{S} d S=0 \tag{5.1}\\
c H_{1} \int_{S} d S+\int_{S} \alpha\left\{m H_{1}^{2}-(m-1) H_{2}\right\} d S+\frac{1}{m} \int_{S} \alpha K_{j i} C^{j} C^{i} d S=0 \tag{5.2}
\end{gather*}
$$

$$
\begin{equation*}
\int_{S} K_{j i} v^{j} C^{i} d S=0 \tag{5.3}
\end{equation*}
$$

Eliminating $\int_{S} d S$ from (5.1) and (5.2), we find

$$
\begin{equation*}
\int_{S} \alpha\left[(m-1)\left(H_{1}^{2}-H_{2}\right)+\frac{1}{m} K_{j i} C^{j} C^{i}\right] d S=0 . \tag{5.4}
\end{equation*}
$$

From this we have
Theorem 5.1. Let M be an $(m+1)$-dimensional orientable Riemannian manifold and S a closed orientable hypersurface in M whose first mean curvature is constant. We suppose that M admits a one-parameter group of homothetic transformations such that the inner product of the generating vector v^{h} and the normal C^{h} to the hypersurface does not change the sign (and $\neq 0$) on S and that the Ricci curvature $K_{j i}$ with respect to the normal C^{h} is non-negative on S. Then every point of S is umbilical and $K_{j i} C^{j} C^{i}=0$ on S.

We assume next that the Riemannian manifold under consideration is an Einstein space : $K_{j i}=\lambda g_{j i}$. Then from (5.3) we have

$$
\begin{equation*}
\lambda \int_{S} \alpha d S=0, \tag{5.7}
\end{equation*}
$$

λ being a constant.
Thus if α does not change the sign and is not identically zero on S, we must have $\lambda=0$ and consequently $K_{j i}=0$. Thus we have

Theorem 5.2. Let M be an ($m+1$)-dimensional orientable Einstein space and S a closed orientable hypersurface in M whose first mean curvature is constant. We suppose that M admits a one-parameter group of homothetic transformations such that the inner product of the generating vector v^{h} and the normal C^{h} to S does not change the sign and is not identically zero on S. Then the curvature scalar of the space vanishes and every point of the hypersurface is umbilical.

If $\alpha=0$, then (1.2) becomes

$$
c \int_{S} d S=0
$$

from which

$$
c=0 .
$$

Thus we have
Theorem 5.3. Let M be an ($m+1$)-dimensional orientable Riemannian manifold and S a closed orientable hypersurface in M. If we suppose that M admits a one-parameter group of homothetic transformations such that the generating vector v^{h} is always tangent to M. Then the group is that of motions.

Department of Mathematics
Tokyo Institute of Technology

Bibliography

[1] Y. Katsurada, Generalized Minkowski formulas for closed hypersurfaces in a Riemannian space, Ann. Mat. Pura Appl., 57 (1962), 283-294.
[2] Y. Katsurada, On a certain property of closed hypersurfaces in an Einstein space, Comment. Math. Helv., 38 (1964), 165-171.
[3] H. Liebmann, Über die Verbiebung der geschlossenen Flächen positiver Krüm. mung, Math. Ann., 53 (1900), 91-112.
[4] W. Süss, Zur relativen Differentialgeometrie V, Tôhoku Math. J., 31 (1929), 202209.
[5] K. Yano, The theory of Lie derivatives and its applications, Amsterdam, 1957.
[6] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, No. 32, 1953.

