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Closed hypersurfaces with constant mean curvature
in a Riemannian manifold

By Kentaro YANO

(Received Feb. 1, 1965)

It has been proved by H. Liebmann [3] and W. S\"uss [4] that the only
convex closed hypersurface with constant mean curvature is a sphere. To
prove this theorem we need integral formulas of Minkowski.

Prof. Y. Katsurada [1], [2] derived integral formulas of Minkowski type
which are valid in an Einstein space and proved the following generalisation
of the theorem of Liebmann-S\"uss.

THEOREM. Let $M$ be an $(m+1)$-dimensional orientable Einstein space and
$S$ a closed orientable hypersurface in $M$ whose first mean curvature is constant.
We suppose that $M$ admits $a$ one-parameter group of conformal transformations
such that the inner product a of the generating vector $v^{h}$ and the normal $C^{h}$

to the hypersurface does not change the sign $(and\neq 0)$ on S. Then every point
of $S$ is umbilical.

The main purpose of the present paper is to derive three integral formulas
which are valid in a general Riemannian manifold and to generalise Katsurada’s
theorem to the case of general Riemannian manifolds admitting a one-para-
meter group of homothetic transformations.

\S 0. Preliminaries.

We consider an orientable $(m+1)$-dimensional Riemannian manifold $M$ with
positive definite metric and denote by $g_{ji},$ $\nabla_{j},$ $K_{kji}^{h},$ $K_{ji}=K_{kji^{k}}$, the fundamental
metric tensor, the covariant differentiation with respect to the Riemannian
connection, the curvature tensor, and the Ricci tensor of $M$ respectively, where
and in the sequel the indices $h,$ $i,$ $j,$ $k$ , run over the range 1, 2, $\cdot$ .. , $m,$ $m+1$ .

We assume that there is given an orientable hypersurface $S$ whose local
expression is
(0.1) $\xi^{h}=\xi^{h}(\eta^{a})$ ,

where $\xi^{h}$ are local coordinates in $M$ and $\eta^{a}$ are local parameters on the hyper-
surface $S$ , where and in the sequel the indices $a,$ $b,$ $c,$ $d,$ $\cdots$ run over the range
$i,\dot{2},$ $\cdots’\dot{m}$ .
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If we put

(0.2) $B_{b}^{h}=\partial_{b}\xi^{h}$ , $\partial_{b}=\partial/\eta^{b}$ ,

then the first fundamental tensor of $S$ is given by

(0.3) $g_{cb}=g_{ji}B_{c^{j}}B_{b}^{i}$ .
We assume that $B_{b}^{h}$ $(b=i,\dot{2}, \cdots , \dot{m})$ give the positive direction in $S$ and

choose the unit normal $C^{h}$ to $S$ in such a way that $B_{b}^{h},$ $C^{h}$ give the positive
direction in $M$.

Denoting by $\nabla_{c}$ the van der Waerden-Bortolotti covariant differentiation
along the $S$ , we can write equations of Gauss and Weingarten in the form

\langle 0.4) $\nabla_{c}B_{b}^{h}=h_{cb}C^{h}$ ,

(0.5) $\nabla_{c}C^{h}=-h_{c^{\alpha}}B_{a}^{h}$

respectively, where $h_{cb}$ is the second fundamental tensor of $S$ and $h_{c}^{a}=h_{cb}g^{b}$“.
If we denote by $k_{1},$ $k_{2},$ $\cdots$ , $k_{m}$ the principal curvatures of $S$ , that is, the

roots of the characteristic equation

(0.6) $|h_{cb}-kg_{cb}|=0$ ,

then the first mean curvature $H_{1}$ and the second mean curvature $H_{2}$ of $S$ are
respectively given by

(0.7) $mH_{1}=\sum_{a}k_{a}=h_{c^{c}}$

and

(0.8) $\left(\begin{array}{l}m\\2\end{array}\right)H_{2}=\sum_{c<b}k_{c}k_{b}=\frac{1}{2}(h_{c^{b}}h_{b^{b}}-h_{c}^{b}h_{b}^{c})$ .

Now, the equations of Gauss and those of Codazzi are respectively written
as
(0.9) $K_{kjih}B_{a^{k}}B_{c^{j}}B_{b}^{i}B_{a}^{h}=K_{lcba}-(h_{tla}h_{cb}-h_{ca}h_{ab})$

and

(0.10) $K_{kjih}B_{a}^{k}B_{c^{j}}B_{b}^{i}C^{h}=\nabla_{a}h_{cb}-\nabla_{c}h_{lb}$ .
Transvecting $g^{cb}$ to the equations of Codazzi and remembering $g^{cb}B_{c^{j}}B_{b}^{i}$

$=g^{ji}-C^{j}C^{i}$ , we find
(0.11) $K_{kh}B_{a^{k}}C^{h}=\nabla_{d}h_{c^{c}}-\nabla_{c}h_{a^{c}}$ .

We now assume that there is given a global vector field $v^{h}(\xi)$ in $M$ and
denote by $C$ the Lie differentiation with respect to $v^{h}$ . (See [5].) The vector
field $v^{h}$ is said to be conformal, homothetic or Killing when it satisfies

$\rightarrow Cg_{ji}=\nabla_{j}v_{i}+\nabla_{i}v_{j}=2\rho g_{ji}$ ,

$-\mathcal{L}g_{ji}=2cg_{ji}$ ,
or

$Jg_{ji}=0$
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respectively, where $\rho$ is a function and $c$ is a constant. When $v^{h}$ is conformal,
it satisfies
(0.12) $X\{jhi\}=\nabla_{j}\nabla_{i}v^{h}++-\rho^{h}g_{ji}$ ,

where $\{_{ji}h\}$ are Christoffel symbols and $\rho_{i}=\nabla_{i}\rho,$ $\rho^{h}=\rho_{i}g^{ih}$ . When $v^{h}$ is homo-
thetic, it satisfies

(0.13) $\rightarrow C\{j^{h_{i}}\}=\nabla_{j}\nabla_{i}v^{h}+K_{kji}^{h}v^{k}=0$

and thus it defines an infinitesimal affine collineation.
On the hypersurface $S$ we can put

(0.14) $v^{h}=B_{a^{h}}v^{a}+\alpha C^{h}$ .
Since we have

$B_{c^{j}}B_{b}^{i}Xg_{ji}=B_{c^{j}}B_{b}^{i}(\nabla_{j}v_{i}+V_{i}v_{j})$

$=\nabla_{c}v_{b}+\nabla_{b}v_{c}-2\alpha h_{cb}$ ,

denoting also by $C$ the Lie differentiation with respect to $v^{a}$ in $S$ , we have

(0.15) $B_{c^{j}}B_{b}^{i}(Xg_{ji})=-Cg_{cb}-2\alpha h_{cb}$ .
Transvecting $v^{a}$ to (0.11), we find

$K_{kh}B_{a^{k}}v^{a}C^{h}=v^{a}\nabla_{tl}h_{c^{c}}-v^{a}(\nabla_{c}h_{a^{c}})$ ,

$K_{ji}(v^{j}-\alpha C^{j})C^{i}=v^{d}\nabla_{d}h_{c^{c}}-\nabla_{c}(h_{a^{c}}v^{a})+h^{cb}\nabla_{c}v_{b}$

and consequently

(0.16) $K_{ji}v^{j}C^{i}-\alpha K_{ji}C^{j}C^{i}=v^{a}\nabla_{a}h_{c^{C}}-\nabla_{c}(h_{t^{c}}\zeta v^{a})+\frac{1}{2}h^{cb}(tg_{cb})$

or
(0.17) $K_{ji}v^{j}C^{i}-\alpha K_{ji}C^{j}C^{i}=v^{a}\nabla_{a}h_{c^{c}}-\nabla_{c}(h_{a^{c}}v^{a})+\alpha h_{c}^{b}h_{b^{C}}$

$+\frac{1}{2}h^{c0}B_{c^{j}}B_{b}^{i}(\rightarrow Cg_{ji})$

by virtue of (0.15).

\S 1. The first integral formula.

We have
$v_{b}=B_{b}^{i}v_{i}$

from which, by covariant differentiation along $S$ ,

$\nabla_{c}v_{b}=\alpha h_{cb}+B_{c^{j}}B_{b^{i}}(\nabla_{j}v_{i})$ .
Transvecting $g^{cb}$ to this, we get

$g^{cb}\nabla_{c}v_{b}=\alpha h_{c^{c}}+\frac{1}{2}g^{cb}B_{c^{j}}B_{b}^{i}(Xg_{ji})$
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or
$g^{cb}\nabla_{c}v_{b}=m\alpha H_{1}+2^{-g^{cb}B_{c^{j}}B_{b^{i}}(Xg_{ji})}1$ .

Thus, assuming $S$ to be compact, we get the integral formula

(1.1) $\int_{s}m\alpha H_{1}dS+\frac{1}{2}\int_{s}g^{cb}B_{c}^{j}B_{b^{i}}(Xg_{ji})dS=0$ ,

where $dS$ denotes the surface element of S. (See [6].)
If the vector field $v^{h}$ is conformal, that is, if $Xg_{ji}=2\rho g_{ji}$ , we have, from

the formula above,

(1.2) $\int_{s}\alpha H_{1}dS+\int_{s}\rho dS=0$ .

\S 2. The second integral formula.

If we put

(2.1) $w_{b}=h_{b}^{a}v_{a}$ ,

we have, by covariant differentiation along $S$ ,

$\nabla_{c}w_{b}=\nabla_{c}(h_{ab}v^{a})$ .
Transvecting $g^{cb}$ to this, we get

$g^{cb}\nabla_{c}w_{b}=\nabla_{c}(h_{a^{c}}v^{a})$ ,

from which, taking account of (0.17)

(2.2) $g^{cb}\nabla_{c}w_{b}=v^{a}\nabla_{l}h_{c}^{c}+\alpha h_{c^{b}}h_{b}^{c}-K_{ji}v^{j}C^{i}+\alpha K_{ji}C^{j}C^{i}+\frac{1}{2}h^{cb}B_{c^{j}}B_{c}^{i}(Xg_{ji})$ .

On the other hand, we have, from (0.7) and (0.8),

$h_{c^{c}}=mH_{1}$ , $h_{c^{b}}h_{0^{c}}=m^{2}H_{1^{2}}-m(m-1)H_{2}$ ,

and consequently, we have, from (2.2),

$g^{cb}\nabla_{c}w_{b}=mv^{a}\nabla_{a}H_{1}+m\alpha\{mH_{1^{2}}-(m-1)H_{2}\}$

$-K_{ji}v^{j}C^{i}+\alpha K_{\dot{J}}{}_{i}C^{j}C^{i}+\frac{1}{2}h^{cb}B_{c}^{j}B_{b^{i}}(Xg_{ji})$ .

Thus, assuming $S$ to be compact, we get the second integral formula

(2.3) $\int_{s}[mv^{tl}\nabla_{d}H_{1}+m\alpha\{mH_{1}^{2}-(m-1)H_{2}\}$

$-K_{ji}v^{j}C^{i}+\alpha K_{ji}C^{j}C^{i}+\frac{1}{2}h^{cb}B_{c^{j}}B_{b^{i}}(Xg_{ji})]dS=0$ .
If the vector field $v^{h}$ is conformal, then we get from (2.3)
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(2.4) $\int_{s}[mv^{a}\nabla_{a}H_{1}+m\rho H_{1}+m\alpha\{mH_{1^{2}}-(m-1)H_{2}\}$

$-K_{ji}v^{j}C^{i}+\alpha K_{ji}C^{j}C^{i}]dS=0$ .

\S 3. The third integral formula.

We have

(3.1) $\alpha=v^{h}C_{h}$ ,

from which, by covariant differentiation along $S$ ,

$\nabla_{b}\alpha=(B_{b}^{i}\nabla_{i}v^{h})C_{h}-h_{b^{a}}v_{a}$

and
$\nabla_{c}\nabla_{b}\alpha=h_{cb}(\nabla_{j}v_{i})C^{j}C^{i}+B_{c^{j}}B_{b}{}^{t}(\nabla_{j}\nabla_{i}v^{h})C_{h}-h_{c}^{a}B_{b^{i}}(\nabla_{i}v^{h})B_{ah}-\nabla_{c}(h_{b}^{a}v_{a})$ .

Transvecting $g^{cb}$ to this, we get

$g^{cb}\nabla_{c}\nabla_{b}\alpha=\frac{1}{2}h_{c}^{c}(Xg_{ji})C^{j}C^{i}+g^{cb}B_{c^{j}}B_{b^{i}}(-Ct_{ji}^{h}\})C_{h}$

$-K_{ji}v^{j}C^{i}-\frac{1}{2}h^{cb}B_{c^{j}}B_{b}^{i}(tg_{ji})-g^{cb}\nabla_{c}(h_{b}^{a}v_{a})$

by virtue of
$\nabla_{j}\nabla_{i}v^{h}=X\{J^{h_{i}}\}-K_{kjl^{h}}v^{k}$ .

Thus, assuming $S$ to be compact, we get the third integral formula

(3.3) $\int_{s}[\frac{1}{2}h_{c^{c}}(Xg_{ji})C^{j}C^{i}$

$+g^{cb}B_{c^{j}}B_{b}^{i}(X\{j^{h}i\})C_{h}-K_{ji}v^{j}C^{i}-\frac{1}{2}h^{cb}B_{c^{j}}B_{b}^{i}(Xg_{ji})]dS=0$ .
We now assume that the vector field $v^{h}$ is conformal, then we have

$x_{g_{ji}=2\rho g_{ji}}$ , $x\{j^{h_{i}}\}=\delta_{j}^{h}\rho_{i}+\delta_{i}^{h}\rho_{J}-g_{ji}\rho^{h}$ .
Thus we find from (3.3)

(3.4) $\int_{s}[m\rho_{i}C^{i}+K_{ji}v^{j}C^{i}]dS=0$ .

Moreover if $v^{h}$ is homothetic,we get

(3.5) $\int_{s}K_{ji}v^{j}C^{i}dS=0$ .

\S 4. Integral formulas for the case $H_{1}=constant$ .
We assume in this section that the Riemannian manifold admits an infini-

tesimal conformal transformation $v^{h}$ and the first mean curvature $H_{1}$ of the
hypersurface $S$ is constant. Then, the first integral formula (1.2) and the
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second integral formula (2.4) become respectively

(4.1) $H_{1}\int_{s}\alpha dS+\int_{s}\rho dS=0$

and

(4.2) $H_{1}\int_{s}\rho dS+\int_{s}\alpha\{mH_{1^{2}}-(m-1)H_{2}\}dS$

$-\frac{1}{m}\int_{s}(K_{ji}v^{j}C^{i}-\alpha K_{ji}C^{j}C^{i})dS=0$ .

Eliminating $\int_{s}\rho dS$ from these equations, we find

(4.3) $\int_{s}(m-1)\alpha(H_{1^{2}}-H_{2})dS-\frac{1}{m}\int_{s}(K_{ji}v^{j}C^{\ell}-\alpha K_{ji}C^{j}C^{i})dS=0$ .

If the Riemannian manifold $M$ under consideration is an Einstein space,
then

$K_{ji}=\lambda g_{ji}$

and consequently we have from (4.3)

(4.4) $\int_{s}\alpha(H_{\iota^{2}}-H_{2})dS=0$ ,

where

(4.5) $H_{1}^{2}-H_{2}=\frac{1}{m^{2}(m-1)}\sum_{a\neq b}(k_{a}-k_{b})^{2}$ .

Using (4.4) and (4.5), Prof. Katsurada proved the theorem mentionned in
the introduction of the present paper.

\S 5. Hypersurfaces with constant first mean curvature in a Riemannian
manifold admitting an infinitesimal homothetic transformation.

We assume in this section that the Riemannian manifold admits an infini-
tesimal homothetic transformation $v^{h}$ and the first mean curvature $H_{1}$ of the
hypersurface is constant. Then the first, the second and the third integral
formulas become respectively

(5.1) $H_{1}\int_{s}\alpha dS+c\int_{s}dS=0$

(5.2) $cH_{1}\int_{s}dS+\int_{s}\alpha\{mH_{1^{2}}-(m-1)H_{2}\}dS+\frac{1}{m}\int_{s}\alpha K_{ji}C^{j}C^{i}dS=0$

(5.3) $\int_{s}K_{ji}v^{j}C^{i}dS=0$ .

Eliminating $\int_{s}dS$ from (5.1) and (5.2), we find
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(5.4) $\int_{s}\alpha[(m-1)(H_{1^{2}}-H_{2})+\frac{1}{m}K_{ji}C^{j}C^{i}]dS=0$ .

From this we have
THEOREM 5.1. Let $M$ be an $(m+1)$-dimensional orientable Riemannian

manifold and $S$ a closed orientable hypersurface in $M$ whose first mean curva-
ture is constant. We suppose that $M$ admits $a$ one-parameter group of homo-
thetic transformations such that the inner product of the generating vector $v^{h}$

and the normal $C^{h}$ to the hypersurface does not change the sign (and $\neq 0$) on
$S$ and that the Ricci curvature $K_{ji}$ with respect to the normal $C^{h}$ is non-negative
on S. Then every point of $S$ is umbilical and $K_{ji}C^{j}C^{i}=0$ on $S$ .

We assume next that the Riemannian manifold under consideration is an
Einstein space: $K_{ji}=\lambda g_{ji}$ . Then from (5.3) we have

(5.7) $\lambda\int_{s}\alpha dS=0$ ,

$\lambda$ being a constant.
Thus if $\alpha$ does not change the sign and is not identically zero on $S$ , we

must have $\lambda=0$ and consequently $K_{ji}=0$ . Thus we have
THEOREM 5.2. Let $M$ be an $(m+1)$-dimensional orientable Einstein space

and $S$ a closed orientable hypersurface in $M$ whose first mean curvature is
constant. We suppose that $M$ admits $a$ one-parameter group of homothetic
transformations such that the inner product of the generating vector $v^{h}$ and the
normal $C^{h}$ to $S$ does not change the sign and is not identically zero on $S$ .
Then the curvature scalar of the space vanishes and every point of the hyper-

surface is umbilical.
If $\alpha=0$ , then (1.2) becomes

$c\int_{s}dS=0$ ,

from which
$c=0$ .

Thus we have
THEOREM 5.3. Let $M$ be an $(m+1)$ -dimensional orientable Riemannian

manifold and $S$ a closed orientable hypersurface in M. If we suppose that $M$

admits $a$ one-parameter group of homothetic transformations such that the
generating vector $v^{h}$ is always tangent to M. Then the group is that of motions.
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