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\S 1. Introduction.

Let $S$ be a locally compact metric space and $D$ be an open set having
closure $S$ and non-empty compact boundary $\partial D=S-D$ . Let $B(S)[B(\partial D)]$ be
the Borel field generated by all the closed sets in $S[\partial D]$ , and $B(S)[B(\partial D)]$

be the space of real-valued bounded $B(S)$ -measurable [ $B(\partial D)$-measurable]

functions on $S[\partial D]$ . Suppose that we are given a Markov process $X=(x_{t}(w)$ ,
$W,$ $P_{x}$ : $x\in S$ ) taking values in $S$ . Here $W$ is a space of path functions $w$ , and
we denote the initial point by the subscript $x$ in $P_{x}$ . Precise definitions will
be given in Section 2. The word ’ Markov process’ is used for time homo-
geneous Markov process in this paper. We define operators $G_{\alpha}$ : $B(S)\rightarrow B(S)$

and $H_{\alpha}$ : $B(\partial D)\rightarrow B(S)$ by

$G_{\alpha}f(x)=E_{x}[\int_{0}^{\zeta}e^{-\alpha t}f(x_{t})dt]$

and
$H_{\alpha}f(x)=E_{x}[e^{-\alpha\sigma}f(x_{\sigma})]$ ,

where $\zeta=\zeta(w)$ is the lifetime, $\sigma=\sigma(w)$ is the first hitting time to $\partial D$ , and $E_{x}$

is the integration by $P_{x}$ . We call $G_{\alpha}$ the $\alpha$ -order Green operator of $X$, and
$H_{\alpha}$ the $\alpha$ -order hitting operator to $\partial D$ of X. $G_{\alpha}[H_{a}]$ is an integral operator
by a measure $G_{\alpha}(x, dy)[H_{\alpha}(x, dy)]$ on $S[\partial D]$ , called the $\alpha$-order Green measure
[ $\alpha$ -order hitting measure to $\partial D$]. Further, define $G_{a}^{\min}$ : $B(S)\rightarrow B.(S)$ by

$G_{a}^{\min}f(x)=E_{x}[\int_{0}^{{\rm Min}(\sigma,\zeta)}e^{-a\iota}f(x_{t})dt]$ .

Then, $G_{a}^{\min}$ is the $\alpha$ -order Green operator of a Markov process, which we call
the minimal part of $X$ . To say intuitively, we get the minimal part, killing
$x_{t}$ at the instant $x_{t}$ reaches $\partial D$ . Roughly speaking, the motion of $X$ is deter-
mined by its minimal part and its behavior on the boundary. But, how can
we characterize the behavior on the boundary? This is not simple, since the
time spent by $X$ on the boundary may have zero Lebesgue measure. We are
concerned with this problem under some conditions.

Let $m$ be a measure on $S$ finite for any compact set, and let $m(\partial D)=0$ ,

$m$ is fixed through this paper except in Section 6. We assume that the
Markov process $X$ satisfies Condition $(A)$ stated in Section 2. Condition $(A)$

requires, among others, that $G_{\alpha}(x, dy)$ is expressed by $g_{\alpha}(x, y)m(dy)$ for each $x$
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in $S$ and $dy$ in a neighborhood of the boundary, and that the function $g_{\alpha}(x, y)$

is jointly measurable and uniquely determined for $x$ in $S$ and $y$ in a neigh-
borhood of $\partial D$ by a certain regularity condition. The main purpose of this
paper is to prove the following theorems.

THEOREM 1. For each $\alpha>0,$ $x\in S$ , and $f\in B(S)$ , there is one and only one
finite signed measure $\mu_{\alpha}(dy, f)$ on $\partial D$ such that

(1.1) $G_{\alpha}f(x)=G_{\alpha}^{\min}f(x)+\int_{\partial D}g_{\alpha}(x, y)\mu_{\alpha}(dy, f)$

holds. $\mu_{\alpha}(dy, f)$ depends only on the minimal part of X. That is, if two Mar-
kov processes satisfying Condition $(A)$ have the same $G_{\alpha}^{\min}$ , then they induce the
same $\mu_{\alpha}(dy, f)$ .

Put $\mu(dy)=\mu_{1}(dy, 1)$ , and let us define an operator $K^{\alpha}$ : $L_{\infty}(\partial D, \mu)\rightarrow B(\partial D)$ by

(1.2) $K^{\alpha}f(x)=\int_{\partial D}g_{\alpha}(x, y)f(y)\mu(dy)$ , $x\in\partial D$ .

THEOREM 2. The Green operator of $X$ is decomposed as follows:
(1.3) $G_{\alpha}=G_{\alpha}^{\min}+H_{\alpha}K^{\alpha}\hat{H}_{\alpha}$ , $\alpha>0$ ,

where $\hat{H}_{\alpha}$ is an operator from $B(S)$ to $L_{\infty}(\partial D, \mu)$ depending only on the minimal
part of X. $H_{\alpha}$ is also determined by the minimal part.

THEOREM 3. For each $\alpha>0,$ $K^{\alpha}$ is the O-order Green operator of a Markov
process on the boundary, which is obtained from $X$ through time change and
killing.

We call the Markov process stated in Theorem 3 Ueno’s process on the
boundary of order $\alpha$ (or, simply, $\alpha$ -order U-process) induced by $X$ . Let $\varphi(t, w)$

be the nonnegative continuous additive functional of $X$ corresponding to the
measure $\mu$ , namely, satisfying

$(\langle 1.4)$ $E_{x}[\int_{0}^{\infty}e^{-\alpha t}d\varphi(t)]=\int_{\partial D}g_{\alpha}(x, y)\mu(dy)$ .

We call $\varphi(t, w)$ the local time on the boundary induced by $X$ . Write $\tau(t, w)$

for the right continuous inverse of $\varphi(t, w)$ . Then, $x_{\tau(t)}$ is a Markov process
taking values in $\partial D$ , (that is, the Markov process made from $X$ through time
change by $\varphi(t))$ . This we call the O-order U-process induced by $X$. This
nomenclature will be justified in Section 5.

THEOREM 4. Any Markov process satisfying Condition $(A)$ is determined
by its minimal part and the O-order U-process induced by it.

In proving the above theorems we use the process obtained by a killing
of $X$ and then by reversion of the direction of time scale from the killing
time. Its properties needed are established in Section 3. Section 4 contains
the proof of Theorems 1 and 2, while Section 5 proves Theorems 3 and 4.
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In Section 6 we shall explain our motivation to the problem, make a discussion
on Condition $(A)$ and show further properties of the time-reversed process and
the U-process.

The Markov process on the boundary was first introduced by Ueno [16]

in the case of diffusion processes on a differentiable manifold. There he de-
rived also the decomposition of type (1.3) (see (6.2)). Suppose that $m$ is an
invariant measure for the given process $X$, and $X$ has the adjoint Markov
process $\hat{X}$. Making use of the notion of time reversion for stationary pro-
cesses, Fukushima and Ikeda (private communication) proved the formula (1.3)
in this case, under the assumption that $X$ has continuous paths. However,
their definitions of $K^{\alpha}$ and $\hat{H}_{\alpha}$ are different from ours. Their $K^{\alpha}$ is defined
by (1.2) with $\mu$ replaced by some a priori given measure $\nu$ on $\partial D$ , and their
$\hat{H}_{\alpha}$ is defined by $\hat{H}_{\alpha}f(y)=\int\hat{h}_{\alpha}(y, x)f(x)m(dx)$ , where the $\alpha$ -order hitting measure
$\hat{H}_{\alpha}(dy, x)$ to $\partial D$ of $\hat{X}$ is supposed to have density $\hat{h}_{\alpha}(y, x)$ with respect to $v(dy)$ .
In their case, (1.3) is, essentially,

$\int_{\partial D}H_{\alpha}(x, dy)g_{\alpha}(y, z)=\int_{\partial D}g_{a}(x, y)\hat{H}_{a}(dy, z)$

proved by Hunt [3, III, (18, 3), p. 168]. Fukushima and Ikeda proved also the
fact stated in our Theorem 3 [2, pp. 91-100]. Invariant measures, however,
depend not only on the minimal part but also on the behavior on the boundary.
The $\hat{H}_{\alpha}$ defined by them is not determined by the minimal part, and their
results do not imply our Theorem 4.

$AcKNOWLEDGEMENT$ . It is my pleasure to express my hearty thanks to
Minoru Motoo and Tadashi Ueno. Motoo has been attacking the same prob-
lem and gave me important remarks. Ueno read the original draft and gave
me valuable advices.

\S 2. Definitions and assumptions.

Let $S^{*}$ be $S\cup\{\Delta\}$ where $\Delta$ is a point adjoined to $S$ as an isolated point.
Denote by $W_{s}$ the set of all paths $w:[0, +\infty]\rightarrow S^{*}$ which satisfy the following
two conditions:
$(w_{1})$ $w(t)$ is right continuous and has lefthand limits as a function of $t$ except
at $ t=+\infty$ .
$(w_{2})$ There exists $\zeta(w)\in[0, +\infty]$ , called the lifetime of $w$ , such that $w(t)\in S$

for $t<\zeta(w)$ and $ w(t)=\Delta$ for $t\geqq\zeta(w)$ .
In particular, $\lim_{t\uparrow\zeta(w)}w(t)$ exists if $\zeta(w)<+\infty$ . Set $x_{t}=x_{t}(w)=w(t)$ . The shifted

path $w_{s}^{+}$ of $w$ is defined by $x_{t}(w_{s}^{+})=x_{t+s}(w)$ . Let $W$ be a subset of $W_{s}$ ,

and suppose that $W$ is closed under the transformations $w\rightarrow w_{s}^{+}$ for all $s>0$ .
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Let us denote by $B(S^{*})$ the Borel field generated by the closed sets in $S^{*}$, and
by $B_{t}$ the Borel field of subsets of $W$ generated by the sets $\{x_{s}\in A\}$ with
$s\leqq t$ and $A\in B(S^{*})$ . Denote $B=B_{+\infty}$ . Given a system of probability measures
$P_{x}$ on $B$ for all $x\in S^{*}$ , we call $X=(x_{t}(w), W, P_{x}:x\in S^{*})$ a Markov process on
$S$ if it satisfies:
$(M_{1})$ for each fixed $B$ in $B,$ $P_{x}(B)$ is $B(S^{*})$ -measurable function of $x$ ;
$(M_{2})$ $P_{x}$($x_{0}=x$ or $\Delta$ ) $=1$ for each $x\in S^{*};$

$(M_{3})$ (Markov property) for every $x\in S$ , every $t>0$ and every bounded B-
measurable $f$,

$E_{x}(f(w_{t}^{+})|B_{\ell})=E_{x_{t}}(f)$ .
Often we write simply $X=(W, P_{x}:x\in S)$ . We use the notation $P_{\gamma}(B)$

$=\int_{s}\gamma(dx)P_{x}(B),$ $E_{\gamma}(f)=\int_{W}f(w)P_{\gamma}(dw)$ , and $E_{\gamma}(f;B)=\int_{B}f(w)P_{\gamma}(dw)$ for finite

signed measure $\gamma$ on $S$ .
A function $\rho:W\rightarrow[0, +\infty]$ is called Markov time, if $\{\rho<t\}\in B_{t}$ for each

$t$ . If $\rho$ is a Markov time, the Borel field consisting of all $B$ in $B$ such that
$B\cap\{\rho<t\}\in B_{t}$ for all $t$ is denoted by $B_{\rho}^{*}$ . A Markov process $X$ is said to
have the strong Markov property if, for each $x\in S$ , Markov time $\rho$ , and
bounded B-measurable $f$ we have

$E_{x}(f(w_{\rho}^{+})|B_{\rho}^{*})=E_{x_{\rho}}(f)$ .
$X$ is said to be quasi-left continuous if whenever $\{\rho_{n}\}$ is a sequence of Markov
times satisfying $\rho_{n}\uparrow\rho<\zeta$ on a set $B$ in $B$, then

$P_{x}(x_{\rho_{n}}\rightarrow x_{\rho}, B)=P_{x}(B)$ , $x\in S$ .
A nonnegative $B(S)$-measurable function $u$ is called $\alpha$ -excessive (relative to
$X)$ if

$E_{x}(e^{-at}u(x_{t});t<\zeta)\leqq u(x)$

for each $t>0$ and $x\in S$ , and if the lefthand member increases to the righthand
as $t\downarrow 0$ . A $[0, +\infty]$ -valued function $\varphi(t, w)$ of $t\geqq 0$ and $w\in W$ is called a
nonnegative additive functional of $X$ if, for each $t,$ $\varphi(t)$ is $B_{t}$-measurable and if

$P_{x}(\varphi(t+s, w)=\varphi(t, w)+\varphi(s, w_{t}^{+})$ for all $t,$ $s\geqq 0$) $=1$

and
$P_{x}$($\varphi(t)=\varphi(\zeta-0)$ for all $ t\geqq\zeta$) $=1$

for each $x\in S^{*}$ .
Let $F$ be an open or closed subset of $S$ . The first hitting time to $F$ is

defined by
$\sigma_{F}(w)=\inf$ { $t:t>0$ and $x_{t-0}(w)\in F$ } ,

with the convention that the infimum of the empty set is $+\infty$ . We write $\sigma$

for $\sigma_{\partial D}$ . If $F$ is open, then $\sigma_{F}$ is a Markov time, and it coincides with the
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infimum of $t>0$ such that $x_{t}\in F$. Let $B(F)=$ { $B:B\subset F$ and $B\in B(S)$ }. We
use the space $C(F)$ of real-valued bounded continuous functions on $F$, the space
$B(F)$ of real-valued bounded $B(F)$-measurable functions on $F$. The norm is
$\Vert f\Vert=\sup_{x}|f(x)|$ . We denote $f\in C_{0}(F)[B_{0}(F)]$ , if $f$ is in $C(F)[B(F)]$ and van-
ishes outside of a compact subset of $F$. In case $F$ is open, $f$ in $C_{0}(F)$ or $B_{0}(F)$

is, if needed, considered as extended to $S$ to vanish outside of $F$.
Henceforth the letter $W$ is used for the subset of $W_{s}$ consisting of all $w$

such that
$(w_{8})$ for any $t>0,$ $w(t)\in\partial D$ implies $w(t-O)\in\partial D$ , and $w(t-O)\in\partial D$ implies
$w(t)\in\partial D\cup\{\Delta\}$ .
Then, we have

LEMMA 2.1. $\sigma$ is a Markov time.
PROOF. First, note that if $V$ is an open set and if $\sigma_{V}(w)<\infty$ , then $x_{\sigma_{V}}(w)$

belongs to $\overline{V}^{1)}$ . Let us denote by $V_{n}$ the set of points $x$ satisfying $d(x, \partial D)$

$<n^{-12)}$ . $\sigma_{n}(w)\equiv\sigma_{Vn}(w)$ being monotone non-decreasing, put $\lim_{n\rightarrow\infty}\sigma_{n}(w)=\rho(w)$ .
We define $\sigma^{\prime}$ by $\sigma^{\prime}(w)=\sigma(w)$ if $x_{0}(w)\not\in\partial D$ , and by $\sigma^{\prime}(w)=0$ if $x_{0}(w)\in\partial D$ . We
prove $\rho=\sigma^{\prime}$ . First, $\rho\leqq\sigma^{\prime}$ is obvious. Let $\rho(w)<+\infty$ . If there is an $N$ such
that $\sigma_{n}(w)=\sigma_{N}(w)$ for all $n\geqq N$, then we have $x_{\sigma_{n}}(w)\in\partial D$ , and so $\rho(w)=\sigma_{n}(\iota v)$

$=\sigma^{\prime}(w)$ by $(w_{3})$ . If there is no such $N$, then $x_{\rho-0}(w)\in\partial D$ and hence, $\rho(w)=\sigma^{\prime}(w)$ .
Thus, $\sigma^{\prime}$ is a Markov time, and so is $t+\sigma^{\prime}(w_{\iota}^{+})$ . Since $t+\sigma^{\prime}(w_{t}^{+})\downarrow\sigma(w)$ as $t\downarrow 0$ ,

the proof is complete.
Let us define $w_{s}^{-}$ by

$x_{t}(w)$ $t<s$ ,
$ x_{t}(w_{s}^{-})=\Delta$

$t\geqq s$ .
Then, $w\in W$ implies $w_{s}^{-}\in W$ for each $s$ , and $w\rightarrow w_{\overline{\sigma}}$ is B-measurable trans-
formation. Given a Markov process $X=(W, P_{x} ; x\in S)$ , define $P_{x}^{\min}(B)=P_{x}(w_{\overline{\sigma}}$

$\in B),$ $B\in B$ . Then, $X^{\min}=(W, P_{x}^{\min} : x\in S)$ is again a Markov process, which
we call the minimal part of $X$. The Green operator of $X^{\min}$ is just $Gm^{in}$ de-
fined in Section 1.

CONDITION $(A)$ . We say that a Markov process $X$ satisfies Condition $(A)$ ,
if the following hold:
$(A_{1})$ $X$ has the strong Markov property.
$(A_{2})$ $X$ is quasi-left continuous.
$(A_{3})$ (Conservativity) $P_{x}(\zeta=\infty)=1$ for each $x\in S$ .
$(A_{4})$ (Regularity of $\partial D$ relative to $X^{\min}$) $P_{x}^{\min}(\zeta=0)=1$ at every $x\in\partial D$ .
$(A_{6})$ For each $x\in S,$ $G_{\alpha}(x, dy)$ is absolutely continuous with respect to $m$ .

1) $\overline{V}$ is the closure of $V$.
2) $d$ is the metric of $S$ .
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$(A_{6})$ There are an open neighborhood $V_{0}$ of $\partial D$ and a nonnegative (possibly
infinite) $B(S)\times B(V_{0})$ -measurable function $g_{a}(x, y)$ for each $\alpha>0$ , having four
properties below:
$(A_{6,1})$ $g_{\alpha}(x, y)$ is the density of $G_{\alpha}(x, dy)$ in $V_{0}$ with respect to $m(dy)$ .
$(A_{6,2})$ For each $\alpha>0$ and $y\in V_{0},$ $g_{a}(x, y)$ is an $\alpha$ -excessive function of $x$ .
$(A_{6,S})$ If $\beta>\alpha>0$, then

$g_{a}(x, y)=g_{\beta}(x, y)+(\beta-\alpha)\int_{s}G_{a}(x, dz)g_{\beta}(z, y)$

$=g_{\beta}(x, y)+(\beta-\alpha)\int_{s}G_{\beta}(x, dz)g_{\alpha}(z, y)$

holds for each $x\in S$ and $y\in V_{0}$ .

$(A_{6,4})$ Put $\hat{G}_{\alpha}f(y)=\int_{s}f(x)m(dx)g_{\alpha}(x, y)$ , if the right side is defined. Then,

there is an $\alpha_{0}\geqq 0$ such that for each $f\in C_{0}(S),$ $\alpha>\alpha_{0}$ , and $y\in V_{0},\hat{G}_{a}f(y)$ is
defined and $\hat{G}_{\sigma}f\in C(V_{0})$ . For each $f\in C_{0}(S),$ $\alpha\hat{G}_{\alpha}f(y)$ tends to $f(y)$ boundedly
on $\partial D$ as $\alpha$ tends to infinity. For each $\alpha>\alpha_{0}$ , there is an $f\in C_{0}(S)$ such that
$\hat{G}_{a}f(y)\geqq 1$ on $\partial D$ .
$(A_{7})$ For some $\alpha_{1}>0$ and some finite signed measure $\gamma_{0}$ on $S$ , define $m_{0}$ by

$m_{0}(F)=\int_{s}\gamma_{0}(dx)G_{\alpha_{1}}^{\min}(x, F)$ , FE $B(V_{0})$ .

Then, $m_{0}$ is nonnegative on $V_{0}$ , and $m$ is absolutely continuous with respect
to $m_{0}$ on $V_{0}-\partial D$ with continuous density $k(x)^{3)}$ .

We call $g_{a}(x, y)$ the $\alpha$ -order Green function of $X$ . For $y$ in a neighborhood
of $\partial D$ , the Green function is uniquely determined by $X$ and $m$ . For, we need
only verify it for sufficiently large $\alpha$ by $(A_{6,3})$ , and, if $g_{\alpha}(x, y)$ and $g_{\alpha^{\prime}}(x, y)$ are
both Green functions of $X$, then $(A_{6,1})$ and $(A_{6,4})$ imply that

$\int_{s}f(x)m(dx)g_{a}(x, y)=\int_{s}f(x)m(dx)g_{\alpha^{\prime}}(x, y)$

for each $f$ in $C_{0}(S)$ , large $\alpha$ , and $y$ near $\partial D$ . So we have $g_{a}(x, y)=g_{\alpha^{\prime}}(x, y)$ ,

noting $(A_{5})$ and using

(2.1) $\beta\int_{s}G_{a+\beta}(x, dz)g_{a}(z, y)\uparrow g_{\alpha}(x, y)$ as $\beta\rightarrow\infty$

by $(A_{6,2})$ .
Condition $(A)$ contains rather strong regularity conditions on $\hat{G}_{a}$ . But, it

says nothing about the existence of the so-called adjoint process.
An immediate consequence of the condition $(A_{5})$ is that $X$ has no sojourn

3) $k(x)$ is necessarily nonnegative. We assume its finiteness, but do not assume
its boundedness.
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on the boundary: $G_{a}(x, \partial D)=0$ .
In the following three sections. we assume that $X=(W, P_{x} : x\in S)$ satisfies

Condition $(A)$ .

\S 3. Reversion of time.

By the so-called killing procedure we can make from $X$ the Markov
process $X^{\prime}=$ $(W, P_{x^{\prime}} : x\in S)$ whose $\alpha$ -order Green operator is $G_{\alpha^{\prime}}=G_{a+1}$ . The
construction is as follows. Let $P$ be a probability measure on $[0, +\infty]:P(dt)$

$=e^{-t}dt$, and put $\Omega=W\times[O, +\infty]$ and $P_{x}^{\Omega}=P_{x}\times P$ . For $\omega=(w, s)\in\Omega$ , define
$x_{t}^{\prime}(\omega)=x_{t}(w)$ if $t<s$ and $ x_{t}^{\prime}(\omega)=\Delta$ if $t\geqq s$ . Define $\pi;\Omega\rightarrow W$ by $x_{t}(\pi(\omega))=x_{t}^{\prime}(\omega)$ ,

and then put $P_{x^{\prime}}(B)=P_{x}^{\Omega}(\pi^{-1}(B))$ for $B\in B$ .
We have $P_{x^{\prime}}(W^{0})=1$ , where $W^{0}=\{w : \zeta(w)<\infty\}$ . For $w\in W^{0}$ set

$\hat{x}_{t}(w)=x(w)\Delta^{\zeta(w)-t^{}0}$

$0\leqq t<\zeta(w)$ ,

$t\geqq\zeta(w)$ ,

performing reversion of the direction of time. Clearly $\hat{x}_{t}(w)$ satisfies $(w_{1})-(w_{3})’\backslash $

as a function of $t$ . Note that

(3.1) $\hat{x}_{t-0}=\lim_{s\uparrow t}x_{\zeta-s-0}=x_{\zeta-t}$ , $ 0<t\leqq\zeta$ .

If $P_{x^{\prime}}(x_{t}\in dy)=q(t, x, y)m(dy)$ and $q(t, x, y)$ has some regularities, then it is
proved [4, Theorem 3.6] that the process $(\hat{x}_{t}, P_{\nu^{\prime}})$ has the time homogeneous
Markov property for an arbitrary initial measure $\nu$ of $X^{\prime}$ and that

(3.2) $P_{\nu}^{\prime}(\hat{x}_{s+t}\in dx|\hat{x}_{s}, s^{\prime}\leqq s)=m(dx)\eta(x)q(t, x,\hat{x}_{s})\eta(\hat{x}_{s})^{-1}$

where $\eta(y)=\int_{s}\nu(dx)\int_{0^{\infty}}q(t, x, y)dt$ . Therefore, in order to use the time reversed

process in the following sections, it is important to choose $\nu$ appropriately.
It is inconvenient to confine ourselves to ordinary measures, and we use a
signed measure in place of $\nu$ .

LEMMA 3.1. There is a finite signed measure $\gamma$ on $S$ such that

(3.3) $\int_{s}\gamma(dx)g_{1}(x, y)k(y)=1$

holds for $m_{0}$-almost every $y$ in $V_{0}-\partial D$ .
PROOF. By the resolvent equation

(3.4) $G_{\alpha}^{\min}-G_{\beta}^{\min}+(\alpha-\beta)G_{\alpha}^{\min}G_{\beta}^{\min}=0$ ,

we can suppose $\alpha_{1}=1$ in $(A_{7})$ . Since the strong Markov property implies

(3.5) $G_{\alpha}=G_{\alpha}^{\min}+H_{a}G_{a}$ ,

we have
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$\int f(x)m_{0}(dx)=\int\gamma_{0}(dx)G_{1}^{\min}f(y)$

$=\int\gamma_{0}(dx)G_{1}f(x)-\int\gamma_{0}(dx)H_{1}(x, dy)G_{1}f(y)$ .
Hence, we have (3.3) if we set

(3.6) $\gamma(F)=\gamma_{0}(F)-\int\gamma_{0}(dx)H_{1}(x, F)$ , $F\in B(S)$ .
Henceforth, $\gamma$ is the signed measure in the above lemma. We describe

finite dimensional distributions for the process $(\hat{x}_{t}, P_{\gamma^{\prime}})$ by making use of the
quantities of $X$ .

LEMMA 3.2. For each $n\geqq 0,0=t_{0}<t_{1}<\ldots<t_{n},$ $f_{i}\in B(S)(i=0,1, \cdots , n-1)$

and $f_{n}\in B_{0}(V_{0})$ , we have

(3.7) $E_{\gamma}^{\prime}[\prod_{i=0}^{n}f_{i}(\hat{x}_{\iota_{i}})]=e^{-\iota_{n}}\int_{V_{0}}m_{0}(dx)f_{n}(x)E_{x}[IIf_{i}(x_{t_{n}-\iota_{i}})]$ .
In particular,

(3.8) $E_{\gamma^{\prime}}[f(\hat{x}_{t})]=e^{-t}\int_{V_{0}}m_{0}(dx)f(x)$

holds for each $t\geqq 0$ and $f\in B_{0}(V_{0})$ .
PROOF. It is sufficient to prove (3.7) for continuous $f_{i}$ . We have

(3.9) $E_{x^{\prime}}$ [ $\prod_{i=0}^{n}f_{i}(\hat{x}_{\iota_{i}})]=e^{-\iota_{n}}E_{x}[\int_{0^{\infty}}e^{-t}\prod_{i=0}^{n}f_{i}(x_{t+\iota_{n}-c_{i}})dt]^{4)}$

as is seen below:

$E_{x^{\prime}}$ [ $\prod_{i=0}^{n}f_{i}(\hat{x}_{\iota_{i}})]=E_{x^{\prime}}$ [ $\prod_{i=0}^{n}f_{i}(x_{t\leftarrow\iota_{i}-0});t_{n}<\zeta<\infty]$

$=\lim_{h\downarrow 0j}\sum_{\Rightarrow 0}^{\infty}E_{x^{\prime}}$ [ $\prod_{i=0}^{n}f_{i}(x_{c_{n}+jh-t_{i}});t_{n}+jh<\zeta\leqq t_{n}+(j+1)h]$

$=\lim_{h\downarrow 0}\sum_{j=0}^{\infty}E_{x}$ [ $\prod_{i=0}^{n}f_{i}(x_{\iota_{n}+jh-t_{i}})(e^{-\ell_{n}-jh}-e^{-\ell_{n}-(j+1)h})]$

$=E_{x}[\int_{\iota_{n}^{\infty}}e^{-t}\prod_{i=0}^{n}f_{i}(x_{c-\iota_{i}-0})dt]$ ,

and we can drop $-0$ in the last member, since each path has at most an
enumerable number of discontinuities. (3.7) follows from (3.9) combined with
(3.3):

$E_{\gamma^{\prime}}$ [ $\prod_{i=0}^{n}f_{i}(\hat{x}_{t_{i}})]=e^{-\iota_{n}}E_{\gamma}[\int_{0}^{\infty}e^{-t}dtf_{n}(x_{t})E_{x_{t}}(\prod_{i=0}^{n-1}f_{i}(x_{t_{n}-\iota_{i}}))]$

$=e^{-\iota_{n}}\int_{V_{0}}m_{0}(dx)f_{n}(x)E_{x}[\prod_{i=0}^{n-1}f_{i}(x_{\iota_{n}-\iota_{i}})]$ .

4) This is a special case of [4, Lemma 3.3].
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Define
$\hat{\sigma}_{F}(w)=\inf$ { $t:t>0$ and $\hat{x}_{\iota-0}(w)\in F$ }

for $F$ open or closed. We have, by (3.1),

(3.10) $\hat{\sigma}_{F}=\inf$ { $\zeta-t:t<\zeta$ and $x_{\ell}\in F$ } $=\zeta-\tau_{F}$ ,

where $\tau_{F}$ is the last hitting time to $F$ :
$\tau_{F}(w)=\sup$ { $t:t\geqq 0$ and $x_{t}(w)\in F$ },

with the convention that the supremum of the empty set is $-\infty$ . Clearly, $\hat{\sigma}_{F}$

and $\tau_{F}$ are B-measurable, if $F$ is an open set.
In the sequel, we frequently use the integral

(3.11) $E_{\gamma}^{\prime}[e^{-(\alpha-1)\hat{\sigma}_{V}}f(\hat{x}_{0})h(\hat{x}_{\hat{\sigma}_{V}});\hat{\sigma}_{V}<\infty]$ ,

where $f,$ $h\in B(S),$ $\alpha>0$, and $V$ is open. (3.11) is well defined and takes a
finite value. For, it is obvious for $\alpha\geqq 1$ , and, in case $0<\alpha<1$ , we need only
note

$E_{x^{\prime}}(e^{-(\alpha-1)\zeta})=E_{x}[\int_{0^{\infty}}e^{-t}dte^{-(\alpha-1)t}]=\frac{1}{\alpha}$ .
Although $\gamma$ is a signed measure, the righthand member in (3.7) is nonnegative
if $f_{i}’ s$ are nonnegative. So we have

COROLLARY To LEMMA 3.2. (3.11) is nonnegative if $f$ and $h$ are nonnegative
and if $V$ is contained in $V_{0}$ .

In fact, we can suppose $h\in C(S)$ , and have

$(3.11)=\lim_{n\rightarrow\infty j}\sum_{=1}^{\infty}E_{\gamma^{\prime}}[e^{-(\alpha-1)j_{2}-n}f(\hat{x}_{0})h(\hat{x}_{j2^{-n}});\hat{x}_{i2}-n\not\in V(1\leqq i\leqq j-1),\hat{x}_{jz^{-n}}\in V]$

$=\lim_{n\rightarrow\infty}\sum_{j=1}^{\infty}e^{\leftrightarrow\alpha j_{2}-n}\int_{V}m_{0}(dx)h(x)E_{x}[f(x_{j2}-n);x_{(j-i)z^{-n\not\in}}V(1\leqq i\leqq j-1)]$ ,

which is nonnegative.
Let $\{V_{N} : N=1, 2, \}$ be a sequence of open neighborhoods of $\partial D$ such

that the closure of $V_{N}$ is a compact subset of $V_{N+1}$ and $\{V_{N}\}$ exhausts $V_{0}$ .
Let $U_{N}$ be the set of points $x$ in $V_{N}$ satisfying $d(x, \partial D)>N^{-1}$ and $k(x)<N$.
Take continuous functions $\chi_{N}^{*}$ satisfying $\chi_{U_{N}}\leqq\chi_{N}^{*}\leqq\chi_{UN+1^{5)}}$ and set $k_{N}(x)$

$=k(x)\chi_{N}^{*}(x)$ .
LEMMA 3.3. Let $V$ be an open neighborhood of $\partial D$ with closure contained

in $V_{0}$ . Then we have

(3.12) $\lim_{N\rightarrow\infty}E_{\gamma}^{\prime}[e^{-(\alpha-1)\hat{\sigma}_{V}}f(\hat{x}_{0})(k_{N}\hat{G}_{\beta}g)(\hat{x}_{\hat{\sigma}_{V}})]$

$=\int_{s}g(x)m(dx)\int_{s}(\delta(x, dy)+(\alpha-\beta)G_{\beta}(x, dy))E_{y}[\int_{\sigma}^{\infty_{V}}e^{-\alpha t}f(x_{t})dt]^{6)}$

5) $\chi_{U}$ Is the indicator function of a set $U$.
6) $\delta(x, dy)$ is the unit mass at a point $x$ .
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for each $\alpha>0,$ $\beta>\alpha_{0},$ $f\in B(S)$ and $g\in C_{0}(S)$ . In particular,

(3.13) $\lim_{N\rightarrow\infty}E_{\gamma^{\prime}}[e^{-(\alpha-1)_{\hat{\sigma}_{V}}}f(\hat{x}_{0})(k_{N}\hat{G}_{a}g)(\hat{x}_{\hat{\sigma}_{V}})]$

$=\int_{s}g(x)m(dx)E_{x}[\int_{\sigma}^{\infty_{V}}e^{-xt}f(x_{t})dt]$ .

PROOF. Denote by $I_{N}$ the lefthand member in (3.12) before letting $ N\rightarrow\infty$ .
Similarly to the proof of the preceding corollary, we express $I_{N}$ using the
finite dimensional distribution of $(\hat{x}_{t}, P_{\nu^{\prime}})$ , and use Lemma 3.2. Thus we have

$I_{N}=\lim_{n\rightarrow\infty}\sum_{j=1}^{\infty}e^{-\cap j_{2}-n}\int_{V}m_{0}(dx)k_{N}(x)\hat{G}_{\beta}g(x)E_{x}[f(x_{j2^{-n}});x_{(j-i)2}-n\not\in V(1\leqq i\leqq j-1)]$ ,

and hence,

$I_{N}=\lim_{n\rightarrow\infty}\sum_{j=1}^{\infty}e^{-aj_{2^{-n}}}\int_{s}m(dx)g(x)\int_{0^{\infty}}e^{-\beta t}dt$

$E_{x}[(\chi_{N}^{*}\chi_{V})(x_{t})E_{x_{t}}(f(x_{j2^{-n}});x_{(j-i)2^{-n}}\not\in V(1\leqq i\leqq j-1))]$ ,

which we denote by $\lim_{n\rightarrow\infty}I_{N}(n, \alpha, \beta)$ . We have

(3.14) $I_{N}(n, \alpha, \beta)-I_{N}(n, \alpha, \alpha)$

$=(\alpha-\beta)\sum_{j=1}^{\infty}e^{-\alpha j2^{\rightarrow n}}\int_{s}m(dx)g(x)\int_{0^{\infty}}e^{-\alpha t}dt\int_{0^{\infty}}e^{-\beta s}ds$

$E_{x}[(\chi_{N}^{*}\chi_{V})(x_{s+c})E_{x_{S+t}}(f(x_{j2^{\rightarrow n}});x_{(j-i)2^{-n\not\in}}V(1\leqq i\leqq j-1))]$ .
Let $\tau_{V}^{t}(w)$ be the last hitting time to $V$ before $t$, that is,

$\tau_{V}^{t}(w)=\sup$ { $s:0\leqq s<t$ and $x_{s}(w)\in V$ } ,

and let $\tau_{V}^{t}(n, w)$ be defined by $\tau_{V}^{t}(n, w)=t-j2^{-n}$ if $x_{\iota-\iota_{2}-n}\not\in V(1\leqq i\leqq j-1)$ and
$X_{t-j2}-n\in V$ , and $\tau_{V}^{t}(n, w)=-\infty$ if $\chi_{t-i2}-n\not\in V$ for all $i=1,2,$ $\cdots$ Then,

$I_{N}(n, \alpha, \alpha)$

$=\sum_{j=1}^{\infty}\int m(dx)g(x)\int_{j2}^{\infty_{-n}}e^{-\alpha t}dtE_{x}[f(x_{t})(\chi_{N}^{*}\chi_{V})(X_{t-j2}-n);x_{\iota-i2}-n\not\in V(1\leqq i\leqq j-1)]$

$=\int m(dx)g(x)E_{x}[\int_{0}^{\infty}e^{-at}f(x_{c})\chi_{N}^{*}(x_{\tau_{V}^{t}(n)})\chi\{\tau_{V}^{t}(n)\geqq 0\}(w)dt]$ .

Since, by the right continuity of paths, $\tau_{V}^{t}(n)$ is smaller than and increases to
$\tau_{V}^{t}$ as $ n\rightarrow\infty$ , we have

$I_{N}(n, \alpha, \alpha)\rightarrow n\rightarrow\infty\int m(dx)g(x)E_{x}[\int_{0^{\infty}}e^{-\alpha t}f(x_{c})\chi_{N}^{*}(x_{\tau_{V^{-0}}^{t}})\chi_{\{>0\}^{dt]}}\tau_{V}^{t}$

$\rightarrow N\rightarrow\infty\int m(d_{X})g(x)E_{x}[\int_{0^{\infty}}e^{-at}f(x_{t})\chi_{D}(x_{\tau_{V}^{t}-0})x_{t^{\tau_{V}^{t}>0}\}^{dt]}}\cdot$

Here we can omit $\chi_{D}(x_{\tau_{V}^{t}-0})$ since $X\tau_{V^{-0}}^{t}\in\partial D$ implies $x_{\tau_{V}^{t}}\in\partial D$ and $\tau_{V}^{t}=t$ and

since
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$E_{x}[\int_{0^{\infty}}e^{-\alpha t}f(x_{t})\chi_{\partial D}(x_{t})dt]=0$ .
Hence, we have

$\lim_{N\rightarrow\infty}\lim_{n\rightarrow\infty}I_{N}(n, \alpha, \alpha)=\int m(dx)g(x)E_{x}[\int_{\sigma_{V}^{\infty}}e^{-\alpha t}f(x_{t})dt]$ ,

noting that $\tau_{V}^{t}>0$ is equivalent to $\sigma_{V}<t$ .
Similarly the righthand member in (3.14) tends to

$(\alpha-\beta)\int m(dx)g(x)\int_{0^{\infty}}e^{-\beta s}dsE_{x}[E_{x_{S}}(\int_{0^{\infty}}e^{-\alpha t}f(x_{t})\chi_{N}^{*}(x_{\tau_{V^{-0}}^{t}})dt)]$

as $ n\rightarrow\infty$ , and this has the limit

$(\alpha-\beta)\int m(dx)g(x)\int_{0}^{\infty}e^{-\beta s}dsE_{x}[E_{x_{1}\backslash }(\int_{\sigma}^{\infty_{V}}e^{-cxt}f(x_{t})dt)]$

as $ N\rightarrow\infty$ . Thus the limit of $I_{N}$ as $ N\rightarrow\infty$ is just the righthand side of (3.12),
and the proof of the lemma is complete.

Note that, we used in the above proof the property $(w_{3})$ of paths and the
fact that $X$ has no sojourn on the boundary.

We write $\hat{\sigma}$ for $\hat{\sigma}_{\partial D}$ . $\hat{\sigma}$ is B-measurable, as is proved similarly to Lemma
2.1.

LEMMA 3.4. For each $n\geqq 1,0=t_{0}<t_{1}<\ldots<t_{n},$ $f_{i}\in B(S)$ ($0\leqq i\leqq n-1\rangle$

and $f_{n}\in B_{0}(V_{0})$ , the following formula holds:

(3.15) $E_{\gamma^{\prime}}$ [ $\prod_{i=0}^{n}f_{i}(\hat{x}_{c_{i}});t_{n}<\hat{\sigma}]=e^{-c_{n\int_{V_{0}}m_{0}(dx)f_{n}(x)E_{x}[\prod_{i=0}^{n-1}f_{i}(x_{\iota_{n}-\iota_{i}});}}t_{n}<\sigma]$ .

PROOF. Let $V_{j}$ be the open set consisting of all $x$ such that $d(x, \partial D)<j^{-1}$ .
By virtue of Lemma 3.2 we have

$E_{\gamma^{f}}$ [ $\prod_{i=0}^{n}f_{i}(\hat{x}_{t_{i}});t_{n}\leqq\hat{\sigma}_{V_{j}}]$

$=$ $\lim_{r_{\rightarrow\infty},j\backslash }E_{\gamma^{\prime}}[\prod_{i=0}^{n}f_{i}(\hat{x}_{t_{i}});\hat{X}_{l2}-N\not\in V_{j}(1\leqq l\leqq 2^{N}-1)]$

$=\lim_{N\rightarrow\infty}e^{-\iota_{n\int m_{0}(dx)f_{n}(x)E_{x}[\prod_{i=0}^{n-1}f_{i}(x_{r_{n}\leftrightarrow c_{i}});}}x_{(1-\iota_{2^{-N}})\iota_{n}}\not\in V_{j}(1\leqq l\leqq 2^{N}-1)]$

$=e^{-t_{n}}\int m_{0}(dx)f_{n}(x)E_{x}$ [ $\prod_{i=0}^{n-1}f_{i}(x_{c_{n}-\iota_{i}});t_{n}\leqq\sigma_{V_{j}}]$ .

By the same sort of argument as in the proof of Lemma 2.1, we can prove

$(t_{n}<\hat{\sigma},\hat{x}_{0}\in D)=\bigcup_{j=1}^{\infty}(t_{n}\leqq\hat{\sigma}_{V_{j}},\hat{x}_{0}\in D)$ , and similarly for $(t_{n}<\sigma, x_{0}\in D)$ . On the

other hand, $m_{0}(\partial D)=0$ and

(3.16) $P_{x^{\prime}}(x_{0}\in\partial D)=0$ , $x\in S$

by (3.9). Hence we have (3.15), by letting $ j\rightarrow\infty$ .
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\S 4. Proof of Theorems 1 and 2.

LEMMA 4.1. Let $\mu_{i}(i=1,2)$ be finite signed measures on $\partial D$ , and $\alpha$ be a

positive number. Suppose that, for m-almost every $x,$ $\int_{\partial D}g_{\alpha}(x, y)\mu_{i}(dy)(i=1,2)$

are defined and coincide. Then, $\mu_{1}=\mu_{2}$ .
PROOF. By virtue of $(A_{6,3})$ and $(A_{6,4})$

$\iint f(x)m(dx)g_{\beta}(x, y)\mu_{i}(dy)$ $(i=1,2)$

coincide for each $f\in C_{0}(S)$ and $\beta>\alpha_{0}$ . Multiply $\beta$ and let $\beta\rightarrow\infty$ . Then we
have $\mu_{1}=\mu_{2}$ since, by the assumption $(A_{6,4}),$ $\beta\hat{G}_{\beta}f\rightarrow f$ boundedly on $\partial D$ .

PROOF OF THEOREM 1. For every $\alpha>0$, every $f\in B(S)$ , and every open
neighborhood $V$ of $\partial D$ with closure contained in $V_{0}$ , put

(4.1) $\mu_{\alpha}^{V}(dx, f)=k(x)\nu_{\alpha}^{V}(dx, f)$ ,

where $\nu_{\alpha}^{V}(\cdot, f)$ is a finite signed measure defined by

$\nu_{\alpha}^{V}(F, f)=E_{\gamma}^{\prime}[e^{-(a-1)\hat{\sigma}_{V}}f(\hat{x}_{0});\hat{x}_{\hat{\sigma}_{V}}\in F_{\cap}D]$ .
For a while, suppose that $f\geqq 0$ . Then $\mu_{a}^{V}(\cdot, f)$ is nonnegative by Corollary
to Lemma 3.2. For each $\beta>\alpha_{0}$ and $g\in C_{0}(S)$ we have, by Lemma 3.3,

(4.2) $\int_{V_{0}}\hat{G}_{\beta}g(x)\mu_{a}^{V}(dx, f)$

$=\int_{s}g(x)m(dx)\int_{s}(\delta(x, dy)+(\alpha-\beta)G_{\beta}(x, dy))E_{y}[\int_{\sigma^{\infty_{V}}}e^{-\alpha t}f(x_{t})dt]$ .

Since, by $(A_{6,4})$ , there is a nonnegative $g\in C_{0}(S)$ such that $\hat{G}_{\beta}g(y)\geqq 2^{-1}$ in a
neighborhood $V_{0}^{\prime}$ of $\partial D$ , we have

$\mu_{\alpha}^{V}(S, f)\leqq 2\int\hat{G}_{\beta}g(x)\mu_{\alpha}^{V}(dx, f)\leqq 2\int g(x)m(dx)(I+|\alpha-\beta|G_{\beta})G_{\alpha}f(x)^{7)}$ ,

if $\overline{V}\subset V_{0}^{\prime}$ . Therefore, $\{\mu_{\alpha}^{V}(\cdot, f);\overline{V}\subset V_{0}^{\prime}\}$ is uniformly bounded. We can prove
that $\mu_{\alpha}^{\gamma}(\cdot, f)$ is convergent to a finite measure on $\partial D$ in the weak star topology
as $V$ shrinks to $\partial D$ , that is, as $d(\partial D, S-V)\rightarrow 0$ . In fact, let $\{V_{n}^{(i)}\}(i=1,2)$ be

two sequences of neighborhoods decreasing to $\partial D$ such that $\mu_{\alpha^{n}}^{V^{(i)}}(\cdot, f)$ tends
to some $\mu_{i}$ as $ n\rightarrow\infty$ . Then $\mu_{i}$ are finite measures on $\partial D$ and (4.2) implies
that, for each $g\in C_{0}(S)$ ,

(4.3) $\int_{\partial D}\hat{G}_{\beta}g(x)\mu_{i}(dx)=\int_{s}g(x)m(dx)\int_{s}(\delta(x, dy)+(\alpha-\beta)G_{\beta}(x, dy))u(y)$

where $u(x)=E_{x}[\int_{\sigma^{\infty}}e^{-\alpha t}f(x_{t})dt]$ . Hence, $\mu_{1}=\mu_{2}$ by Lemma 4.1. Note that $\overline{V}$ is

7) $I$ is the identity operator.
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compact, if $V$ is a sufficiently small neighborhood of $\partial D$ . Let us denote the
limit by $\mu_{\alpha}(\cdot, f)$ . In order to prove that $\mu_{\alpha}(\cdot, f)$ satisfies (1.1), it is sufficient
to verify

(4.4) $u(x)=\int_{\partial D}g_{\alpha}(x, y)\mu_{\alpha}(dy, f)$ .

As (4.3) is true with $\mu_{\alpha}(\cdot, f)$ in place of $\mu_{\dot{t}}$ , we have

$\int g_{\beta}(x, y)\mu_{\alpha}(dy, f)=(I+(\alpha-\beta)G_{\beta})u(x)$

for m-almost every $x$ . Hence, $(A_{6,3})$ implies that

$\int g_{\alpha}(x, y)\mu_{\alpha}(dy, f)=(I+(\alpha-\beta)G_{\beta})u+(\beta-\alpha)G_{\alpha}(I+(\alpha-\beta)G_{\beta})u$

m-almost everywhere, and we have (4.4) for m-almost every $x$ by the resolvent
equation
(4.5) $G_{\alpha}-G_{\beta}+(\alpha-\beta)G_{\alpha}G_{\beta}=0$ .
The both sides of (4.4) being $\alpha$ -excessive, (4.4) holds without any exceptional
point, and we have proved (1.1) for nonnegative $f$.

For general (not necessarily nonnegative) $f\in B(S),$ $\mu_{a}^{V}(\cdot, f)$ is finite and
tends to a finite signed measure on $\partial D$ as well. Denoting the limit by $\mu_{\alpha}(\cdot, f)$ ,

we have (1.1). Note that
(4.6) $\mu_{\alpha}(\cdot, c_{1}f_{1}+c_{2}f_{2})=c_{1}\mu_{\alpha}(\cdot, f_{1})+c_{2}\mu_{a}(\cdot, f_{2})$

for every constant $c_{i}$ and every $f_{i}\in B(S),$ $i=1,2$. The uniqueness of the
signed measure $\mu_{a}(\cdot, f)$ satisfying (1.1) is an immediate consequence of
Lemma 4.1.

Finally, let us prove that $\mu_{\alpha}(\cdot, f)$ depends only on the minimal part of $X$ .
Let $g$ be in $C_{0}(D)$ and $V$ be an open neighborhood of $\partial D$ such that $\overline{V}\subset V_{0}$ .
Since the sequence $\{U_{N}\}$ introduced before Lemma 3.3 exhausts $V_{0}-\partial D$ , we
have

$\int g(x)\mu_{\alpha}^{V}(dx, f)=E_{\gamma^{\prime}}[e^{-(\alpha-1)\hat{\sigma}_{V}}f(\hat{x}_{0})(gk_{N})(\hat{x}_{\hat{\sigma}_{V}})]$

if $N$ is large enough. By (3.16) we can add the restriction $\hat{\sigma}_{V}<\hat{\sigma}$ in the ex-
pectation on the right side, and this in turn equals

$\lim_{n\rightarrow\infty}\sum_{j=1}^{\infty}E_{\gamma}^{\prime}[e^{\rightarrow(\alpha-1)j2^{-n}}f(\hat{x}_{0})(gk_{N})(\hat{x}_{j2^{-n}})$ ;

$\hat{X}_{i2}-n\not\in V(1\leqq i\leqq i-1),\hat{x}_{j2}-n\in V,$ $j2^{-n}<\hat{\sigma}$].
Therefore

$\int g(x)\mu_{a}^{V}(dx, f)=\lim_{n\rightarrow\infty f}\sum_{=1}^{\infty}e^{-\alpha jz-n}$

$\int_{V}g(x)m(dx)E_{x}[f(x_{j2^{-n}});X_{t2}-n\not\in V(1\leqq i\leqq j-1), j2^{-n}<\sigma]$
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by Lemma 3.4. Hence, $\mu_{\alpha}^{V}(\cdot, f)$ is determined by the minimal part of $X$ and
so is $\mu_{a}(\cdot, f)$ . The proof of Theorem 1 is complete.

REMARK. The Markov process $X^{(\beta)}=(W, P_{x}^{(\beta)} : x\in S)$ whose $\alpha$ -order Green
operator is $G_{\alpha+\beta}$ is made from $X$ in a similar way as $X^{\prime}$ . We can use $X^{(\beta)}$

in constructing $\mu_{\alpha}(\cdot, f)$ . In fact, there is a finite signed measure $\gamma_{l^{;}}$ on $S$

satisfying

$\beta\int\gamma_{\beta}(dx)g_{\beta}(x, y)k(y)=1$

$m_{0}$ -almost everywhere in $V_{0}-\partial D$ , and we have, using this $\gamma_{\beta}$ ,

$\mu_{\alpha}(dx, f)=\lim_{V\downarrow\partial D}k(x)E_{r_{\beta}}^{(\beta)}[e^{-(a-\beta)\hat{\sigma}_{V}}f(\hat{x}_{0});\hat{x}_{\hat{\sigma}_{V}}\in dx\cap D]$

where limit is in the weak star sense; in particular,

$\mu_{\alpha}(dx, f)=\lim_{V\downarrow\partial D}k(x)E_{r_{\alpha}}^{(\alpha)}[f(\hat{x}_{0});\hat{x}_{\hat{\sigma}_{V}}\in dx\cap D]$ .

We list some properties of $\mu_{\alpha}(\cdot, f)$ .
PROPOSITION 4.1. (i) $\mu_{\alpha}(\cdot, f)$ is the weak star limit of $\mu_{\alpha}^{V}(\cdot, f)$ defined by

$\}(4.1)$ as $V$ shrinks to $\partial D$ .
(ii) $\mu_{\alpha}(\cdot, f)$ is linear with respect to $f$.
(iii) $\mu_{\alpha}(\cdot, f)$ is nonnegative if $f\geqq 0$ .
(iv) For each $\alpha,$ $\beta>0$ and $f\in B(S)$ .

\langle 4.7) $\mu_{\alpha}(\cdot, f)-\mu_{\beta}(\cdot, f)+(\alpha-\beta)\mu_{\alpha}(\cdot, G_{\beta}^{\min}f)=0$ .
(v) For every choice of $\alpha,$ $\beta>0$ and $f\in B(S),$ $\mu_{\alpha}(\cdot, f)$ is absolutely contin-

uous with respect to $\mu_{\beta}(\cdot, 1)$ .
PROOF. (i), (ii) and (iii) are proved already in the proof of Theorem 1.

Using $(A_{6,3}),$ $(1.1),$ $(3.4)$ and (4.5), we have

$G_{\alpha}f=G_{\beta}^{\min}f+\int g_{\beta}(x, y)\mu_{\beta}(dy, f)+(\beta-\alpha)\int G_{\alpha}(x, dy)(G_{\beta}^{\min}f(y)$

$+\int g_{\beta}(y, z)\mu_{\beta}(dz, f))$

$=G_{\alpha}^{\min}f+(\alpha-\beta)G_{\alpha}^{\min}G_{\beta}^{\min}f+\int g_{\alpha}(x, y)\mu_{\beta}(dy, f)+(\beta-\alpha)G_{\alpha}G_{\beta}^{\min}f$

$=G_{\alpha}^{\min}f+\int g_{\alpha}(x, y)\mu_{\beta}(dy, f)+(\beta-\alpha)\int g_{a}(x, y)\mu_{\alpha}(dx, G_{\beta}^{\min}f)$ .

Thus (4.7) holds. Applying (iii) to $\Vert f\Vert+f$ and $\Vert f\Vert-f$, we obtain

\langle 4.8) $|\mu_{\alpha}(F, f)|\leqq\Vert f\Vert\mu_{a}(F, 1)$ , $F\in B(\partial D)$ .
This combined with (4.7) will imply (v), and the proof is complete.

PROOF OF THEOREM 2. Recalling (v) of the above proposition, denote by
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$\hat{H}_{\alpha}f$ the Radon-Nikodym derivative of $\mu_{a}(\cdot, f)$ with respect to $\mu=\mu_{1}(\cdot, 1)$ . It
follows from (4.7) and (4.8) that $\hat{H}_{\alpha}f$ is a $\mu$-essentially bounded function. Since

$G_{\alpha}f(x)=\int g_{\alpha}(x, y)\mu_{a}(dy, f)=K^{\alpha}\hat{H}_{\alpha}f(x)$ , $x\in\partial D$ ,

by (1.1), (1.2) and $(A_{4})$ , we have (1.3) by (3.5). $\hat{H}_{\alpha}$ is determined by the minimal
part of $X$ , as $\mu_{\alpha}(\cdot, f)$ is.

$H_{\alpha}$ is also determined by the minimal part. For, $H_{\alpha}(x, dy)=\delta(x, dy)$ if
$x\in\partial D$ , and, if $x\in D$ , then $P_{x}$ ( $\sigma_{n}<\sigma$ and $\sigma_{n}\uparrow\sigma$) $=1$ where $\sigma_{n}’ s$ are the Markov
times, in the proof of Lemma 2.1, and we have $P_{x}(x_{\sigma-0}=x_{\sigma}, 0<\sigma<\infty)$

$=P_{x}(\sigma<\infty)$ by the quasi-left continuity. Note that $\sigma(w)=\sigma(w_{\mathcal{O}(w)})$ if $x_{0}(w)\in D$ .
Thus the proof of Theorem 2 is complete.

PROPOSITION 4.2. (i) $\hat{H}_{\alpha}$ and $K^{\alpha}$ are nonnegative bounded linear operators

from $B(S)$ to $L_{\infty}(\partial D, \mu)$ and from $L_{\infty}(\partial D, \mu)$ to $B(\partial D)$ , respectively.
(ii) $\hat{H}_{\alpha}-\hat{H}_{\beta}+(\alpha-\beta)\hat{H}_{\alpha}G_{\beta}^{\min}=0$ .
(iii) $\hat{H}_{\alpha}H_{\beta}=\hat{H}_{\beta}H_{\alpha}$ .
(iv) If $f=f^{\prime}$ m-almost everywhere, then $\hat{H}_{\alpha}f=\hat{H}_{\alpha}f^{\prime}$ .
PROOF. (i) and (ii) are obvious consequences of the definition and Propo-

sition 4.1. To prove (iii), we note first

(4.9) $H_{\alpha}-H_{\beta}+(\alpha-\beta)G_{\alpha}^{\min}H_{\beta}=0$ ,

which is easily seen. Using (ii) and (4.9) we have
$\hat{H}_{\alpha}H_{\beta}=\hat{H}_{\alpha}(H_{\alpha}+(\alpha-\beta)G_{\beta}^{\min}H_{\alpha})=\hat{H}_{\beta}H_{\alpha}$ .

If $f=f^{\prime}$ m-almost everywhere, then $G_{\alpha}f=G_{\alpha}f^{\prime}$ and $G_{\alpha}^{\min}f=G_{\alpha}^{\min}f^{\prime}$ by $(A_{5})$ ,

and hence, $\mu_{\alpha}(\cdot, f)=\mu_{\alpha}(\cdot, f^{\gamma})$ by Theorem 1, and $\hat{H}_{a}f=\hat{H}_{\alpha}f^{\prime}$ , completing the
proof.

\S 5. Proof of Theorems 3 and 4.

The following lemma is a slight extension of a result by Nagasawa [9].

LEMMA 5.1. Let $U$ be an open set. Then

(5.1) $g_{\alpha}(x, y)=E_{x}(e^{-\alpha\sigma_{U}}g_{a}(x_{\sigma_{U}}, y))$

for each $x\in S,$ $y\in U\cap\partial D$ , and $\alpha>0$ .
PROOF. (5.1) is obvious for m-almost every $y$ in $U\cap V_{0}$ , since, if $g$ vanishes

outside of $U$, then
$G_{\alpha}g(x)=E_{x}(e^{-\alpha\sigma_{U}}G_{\alpha}g(x_{\sigma_{U}}))$ .

By the $\alpha$ -excessivity of $g_{a}(x, y)$ we have
$g_{a}(x, y)\geqq E_{x}(e^{-a\sigma_{U}}g_{\alpha}(x_{\sigma_{U}}, y))$ .

Let us prove the $re$verse inequality for $y\in U\cap\partial D$ . Denote the right side of
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(5.1) by $g_{\alpha}^{\prime}(x, y)$ . Fix a point $y$ in $U\cap\partial D$ and choose $f\in C_{0}(U\cap V_{0})$ satisfying
$0\leqq f\leqq 1$ and $f(y)=1$ . Then, we have, for each nonnegative $h\in C_{0}(S)$ ,

$\int h(x)m(dx)g_{\alpha}(x, y)=\lim_{\beta\rightarrow\infty}\beta\int\int h(x)m(dx)g_{\alpha}(x, z)f(z)m(dz)g_{\beta}(z, y)$

$\leqq\lim_{\beta\rightarrow\infty}\sup\beta\int h(x)m(dx)E_{x}[e^{-a\sigma_{U}}\int G_{\alpha}(x_{\sigma_{U}}, dz)g_{\beta}(z, y)]$ ,

replacing $g_{\alpha}(x, z)$ by $g_{\alpha}^{\prime}(x, z)$ and deleting $f(z)$ . Since $(A_{6,3})$ implies

$g_{\beta^{\prime}}(x, y)+(\beta-\alpha)E_{x}[e^{-\alpha\sigma_{U}}\int G_{\alpha}(x_{\sigma_{U}}, dz)g_{\beta}(z, y)]$

$=g_{\beta^{\prime}}(x, y)+(\beta-\alpha)E_{x}[e^{-\alpha\sigma_{U}}\int G_{\beta}(x_{d_{U}}, dz)g_{\alpha}(z, y)]$

and $g_{\beta}^{\prime}(\cdot, y)$ is finite m-almost everywhere, we obtain

$\int h(x)m(dx)g_{\alpha}(x, y)\leqq\lim_{\beta\rightarrow}\sup_{\infty}\beta\int h(x)m(dx)E_{x}[e^{-\alpha\sigma}\iota^{\gamma}\int G_{\beta}(x_{\sigma_{U}}, dz)g_{\alpha}(z, y)]$ .

The right side is equal to $\int h(x)m(dx)g_{a}^{\prime}(x, y)$ by (2.1), and hence $g_{a}(\cdot, y)$

$\leqq g_{\alpha}^{\prime}(\cdot, y)$ m-almost everywhere. The both sides being $\alpha$-excessive, this holds
everywhere, and the proof is complete.

LEMMA 5.2. (i) There is a unique (up to $P_{x}$-probability $0$ for all x) non-
negative continuous additive functional $\varphi(t)$ of $X$ such that

(5.2) $E_{x}[\int_{0^{\infty}}e^{-at}d\varphi(t)]=\int_{\partial D}g_{\alpha}(x, y)\mu(dy)$ , $\alpha>0$ , $x\in S$ .

(ii) It holds with probability 1 for each $x$ that $\varphi(t)$ is flat on every time
interval I such that $x_{t}\not\in\partial D,$ $t\in I$.

(iii) $P_{x}$($\varphi(t)>0$ for each $t>0$) $=1$ if and only if $x\in\partial D$ .
(iv) $H_{\alpha}K^{\alpha}f(x)=\int_{\partial D}g_{\alpha}(x, y)f(y)\mu(dy)=E_{x}[\int_{0^{\infty}}e^{-\alpha t}f(x_{t})d\varphi(t)]$

for each $f\in B(\partial D)$ .
PROOF. Fix $\alpha$ for a while and denote the righthand side of (5.2) by $u(x)$ .

Then, $u$ is $\alpha$ -excessive and we have

$u(x)=E_{x}[\int_{\sigma^{\infty}}e^{-\alpha t}(1+(\alpha-1)G_{1}^{\min}1(x_{t}))dt]$

by (1.1) and (4.7). Here we can replace $\sigma$ by the $\sigma^{\prime}$ defined in the proof of
Lemma 2.1. Let $\rho_{n}$ be a sequence of Markov times increasing to $\rho$ . Then we
have $\rho_{n}+\sigma^{\prime}(w_{\rho_{n}}^{+})\rightarrow\rho+\sigma^{\prime}(w_{p}^{+})$ , and hence $E_{x}(e^{-\alpha\rho_{n}}u(x_{\rho_{n}}))$ tends to $E_{x}(e^{\neg}\alpha\rho u(x_{\rho}))$ .
Hence, it follows from the result of Meyer [7, $2^{e}$ partie, Th\’eor\‘eme 3.4] and
\v{S}ur [14, Theorem 1] that there exists a unique nonnegative continuous additive
functional satisfying (5.2) for this fixed $\alpha$ . Note that, by the $B(S)$-measur-
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ability of $u$ , we can say that $\varphi(t)$ is not only $\bigcap_{\nu}(B_{t})_{\nu}- measurable^{8)}$ , but $B_{f}-$

measurable (cf. footnote in [8, \S 2]). For the $\varphi(t)$ thus obtained, the validity
of (5.2) for all $\alpha>0$ has been proved in [10, Lemma 6.3] and (i) holds. $\mu$

being a measure on $\partial D$ , we have (ii), since Lemma 5.1 suffices to prove [10,

Lemma 4.1]. Write $u_{1}(x)=E_{x}[\int_{0^{\infty}}e^{-t}d\varphi(t)]$ . Put $\rho=\inf\{t:\varphi(t)>0\}$ , then $\rho^{\mu}$

is a Markov time and we have

$0=E_{x}[\int_{0^{\rho}}e^{-t}d\varphi(t)]=u_{1}(x)-E_{x}[e^{\leftrightarrow\rho}u_{1}(x_{\rho})]$

$\geqq G_{1}1(x)-E_{x}[e^{-\rho}G_{1}1(x_{\rho})]=E_{x}[\int_{0^{\rho}}e^{-t}dt]$

for $x\in\partial D$ , since $u_{1}\leqq G_{1}1$ on $S$ and $u_{1}=G_{1}1$ on $\partial D$ . Hence $P_{x}(\rho=0)=1$ for
$x\in\partial D$ , and we have ‘if’ part of (iii), while ‘ only if ’ part is a consequence
of (ii). The second equality in (iv) is proved in [10, Theorem 4.1]. The
meaning of the last member in (iv) is

$E_{x}[\int_{0}^{\infty}e^{-\alpha t}f^{*}(x_{t})d\varphi(t)]$ ,

where $f^{*}$ is an extension of $f$ to $S$ . But (ii) implies that this is independent
of the choice of extensions. The first equality in (iv) is seen from

$H_{\alpha}K^{a}f(x)=\int_{\partial D}H_{\alpha}(x, dy)E_{y}[\int_{0^{\infty}}e^{-at}f(x_{t})d\varphi(t)]$

$=E_{x}[\int_{\sigma^{\infty}}e^{-\alpha t}f(x_{t})d\varphi(t)]=E_{x}[\int_{0^{\infty}}e^{-\alpha t}f(x_{t})d\varphi(t)]$ ,

completing the proof.
The above proof of the ‘ if ‘ part of (iii) is due to Motoo, a special case

of [8, Lemma 5.5]. We call $\varphi(t)$ the local time on the boundary induced by $X$.
PROOF OF THEOREM 3. Let $\alpha>0$ . Let $\tau(t)$ be the right continuous inverse

of $\varphi(t)$ , that is, $\tau(t, w)=\sup\{s:\varphi(s)\leqq t\}$ . Put $W^{1}=\{w:x_{\tau(t)}\in\partial D$ for all
$t<\varphi(\infty)\}$ . Then we have $P_{x}(W^{1})=1$ by Lemma 5.2 (ii). Let $\Omega$ and $P^{\Omega}$ be as
defined at the beginning of Section 3. For $\omega=(w, s)\in W^{1}\times[0, +\infty]$ we define
$\tilde{x}_{t}^{(\alpha)}(\omega)=x_{\tau(t,w)}(w)$ if $\alpha\tau(t, w)<s$ and $t<\varphi(\infty, w)$ , and define $\tilde{x}_{t}^{(a)}(\omega)=\Delta$ if other-
wise. Let $W_{\partial D}$ be the set of all $w:[0, +\infty]\rightarrow(\partial D)^{*}=\partial DU\{\Delta\}$ satisfying
$(w_{1})$ and $(w_{2})$ with $S$ replaced by $\partial D$ . Define $\pi^{(\alpha)}$ ; $W^{1}\times[O, +\infty]\rightarrow W_{\partial D}$ by
$x_{t}(\pi^{(\alpha)}(\omega))=\tilde{x}_{t}^{(\alpha)}(\omega)$ , and put $F_{x}^{(a)}(B)=P^{\Omega}((\pi^{(\alpha)})^{\rightarrow 1}(B))$ for $x\in(\partial D)^{*}$ and $B\in B(W_{\partial D})$ ,

where $B(W_{\partial D})$ is the smallest Borel field that makes all $x_{t}(w)(w\in W_{\text{{\it \^{a}}} D})$

measurable. Then, $(W_{\partial D},\tilde{P}_{x}^{(\alpha)} : x\in\partial D)$ is a Markov process on $\partial D$ . It satisfies
$\tilde{P}_{x}^{(\alpha)}(x_{0}=x)=1$ for each $x\in\partial D$ by Lemma 5.2 (iii), and its transition proba-

8) $\nu$ is a finite measure on $S$ and $(B_{t})_{\nu}$ is the completion of $B_{t}$ with respect to $P_{\nu}$ .
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bility is
$P_{x}^{\Omega}(\tilde{x}_{t}^{(\alpha)}\in F)=E_{x}(e^{-\alpha\tau(t)} ; x_{r(t)}\in F)$ .

We denote this process by $\tilde{X}^{(\alpha)}$ and call it the $\alpha$ -order U-process induced by $X$ .
In short, $\tilde{X}^{(\alpha)}$ is the Markov process obtained from $X$ through time change by
$\varphi(t)$ and killing by $e^{-\alpha t}$ . Its $\lambda$ -order Green operator is

(5.3) $K_{\lambda^{\alpha}}f(x)=E_{x}[\int_{0^{\infty}}e^{-\alpha\iota-\lambda\varphi(t)}f(x_{t})d\varphi(t)]$ .
As a consequence of (5.3) and Lemma 5.2 (iv), we have $K^{\alpha}=K_{0^{\alpha}}$ , and the proof
of Theorem 3 is complete.

Put $\tilde{x}_{t}^{(0)}(w)=x_{\tau(t,w)}(w)$ if $t<\varphi(\infty, w)$ and $\tilde{x}_{t}^{(0)}(w)=\Delta$ if otherwise. Define
$\pi^{(0)}$ ; $W^{1}\rightarrow W_{\partial D}$ by $x_{t}(\pi^{(0)}(w))=\tilde{x}_{t}^{(0)}(w)$ and $\tilde{P}_{x}^{(0)}$ by $\tilde{P}_{x}^{(0)}(B)=P_{x}((\pi^{(0)})^{-1}(B))$ for
$x\in(\partial D)^{*}$ and $B\in B(W_{\partial D})$ . Then $\tilde{X}^{(0)}=(W_{\partial D},\tilde{P}_{x}^{(0)} : x\in\partial D)$ is the Markov
process obtained through time change by $\varphi(t)$ , and we call $\tilde{X}^{(0)}$ the O-order
U-process induced by $X$ . The $\lambda$ -order Green operator of $\tilde{X}^{(0)}$ is

(5.4) $K_{\lambda}^{0}f(x)=E_{x}[\int_{0^{\infty}}e^{-\lambda\varphi(t)}f(x_{t})d\varphi(t)]$ .

PROOF OF THEOREM 4. Define $G_{\alpha}^{\lambda}(\alpha>0)$ by

(5.5) $G_{\alpha^{\lambda}}f(x)=E_{x}[\int_{0^{\infty}}e^{-\alpha\iota-\lambda\varphi(l)}f(x_{t})dt]$ .

Let $\alpha,$ $\beta,$
$\lambda$ and $\mu$ be nonnegative numbers. Then we have

(5.6) $H_{\alpha}K_{\lambda^{a}}-H_{\beta}K_{\mu}^{\beta}+(\lambda-\mu)H_{\alpha}K_{\lambda^{a}}K_{u}^{\beta}+(\alpha-\beta)G_{\alpha^{\lambda}}H_{\beta}K_{\mu}^{\beta}=0$ ,

if $\alpha+\lambda>0$ and $\beta+\mu>0$ ; and

(5.7) $G_{\alpha^{\lambda}}-G_{\beta}^{u}+(\alpha-\beta)G_{\alpha}^{\lambda}G_{\beta}^{\mu}+(\lambda-\mu)H_{\alpha}K_{\lambda^{\alpha}}G_{\beta}^{\mu}=0$ ,

if $\alpha$ and $\beta>0$ [$10$, Theorems 2.1 and 2.2]. As a special case we have $G_{\alpha^{\lambda}}=G_{\alpha}$

$-\lambda H_{\alpha}K_{\lambda^{\alpha}}G_{\alpha}$ and

(5.8) $K_{\lambda^{a}}-K_{\mu}^{\alpha}+(\lambda-\mu)K_{\lambda^{a}}K_{\mu}^{\alpha}=0$ ,

and hence,

(5.9) $G_{\alpha}^{\lambda}=G_{a}^{\min}+H_{\alpha}K_{\lambda^{\alpha}}\hat{H}_{\alpha}$

by (1.3). It follows from (5.6) and (5.9) that
$K_{\lambda^{a}}-K_{\lambda}^{\beta}+(\alpha-\beta)K_{\lambda^{\alpha}}\hat{H}_{\alpha}H_{\beta}K_{\lambda}^{\beta}=0$ .

Using Proposition 4.2 (iii) and letting $\alpha\downarrow 0$, we have

(5.10) $K_{\lambda^{0}}-K_{\lambda}^{\beta}-\beta K_{\lambda^{0}}\hat{H}_{\beta}H_{0}K_{\lambda}^{\beta}=0$ .
Therefore, for each $\beta>0$ we have

\langle 5.11) $K_{\lambda}^{\beta}=\sum_{n=0}^{\infty}(-\beta K_{\lambda^{0}}\hat{H}_{\beta}H_{0})^{n}K_{\lambda^{0}}$
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if $\lambda$ is sufficiently large, because $\hat{H}_{\beta}$ and $H_{0}$ are bounded and $\Vert K_{\lambda^{0}}\Vert\leqq\lambda^{-1}$ .
Suppose that $X_{1}$ and $X_{2}$ are both Markov processes satisfying Condition $(A)$

and that $X_{1}^{\min}=X_{2}^{mh}$ and $\tilde{X}_{1}^{(0}‘=\tilde{X}_{2}^{(0)}$ . Then, by virtue of Theorem 2, $H_{\alpha}(\alpha\geqq 0)$

and $\hat{H}_{\alpha}(\alpha>0)$ are common to $X_{1}$ and $X_{2}$ . Let $\beta>0$ . By (5.11), $K^{\beta_{\lambda}}$ is common
to $X_{1}$ and $X_{2}$ as well as $K_{\lambda^{0}}$, if $\lambda$ is sufficiently large. Therefore $K_{\lambda}^{\beta}$ is common
to $X_{1}$ and $X_{2}$ for all $\lambda>0$ by (5.8), and so is $K^{\beta}=K_{0}^{\beta}=\lim_{\lambda\rightarrow 0}K_{\lambda}^{\beta}$ . Hence, the

Green operator $G_{\alpha}$ is common to $X_{1}$ and $X_{2}$ by Theorem 2, which implies
$X_{1}=X_{2}$ [$5$ , p. 35]. This completes the proof.

REMARK. $G_{\alpha^{\lambda}}$ is the a-order Green operator of the Markov process on $S$

obtained from $X$ through killing by $e^{-\lambda\varphi(t)}$ . The decomposition (5.9) is the
analogue to (1.3) for this process.

PROPOSITION 5.1. For each $\alpha$ and $\beta>0$ we have

(5.12) $K^{\alpha}-K^{\beta}+(\alpha-\beta)K^{a}\hat{H}_{\alpha}H_{\beta}K^{\beta}=0$ .
This is a consequence of (1.3) and (5.6).

\S 6. Some comments.

A. Motivation to the problem.
Ueno $[15, 16]$ proved the following results. Let $D$ be a bounded domain

with compact closure in an N-dimensional $C^{\infty}$-manifold, and let its boundary
$\partial D$ be an $(N-1)$-dimensional hypersurface. Given a second order elliptic
differential operator $A$ on $D\cup\partial D$ with nonpositive coefficient in the zero order
term, we assume that $\partial D$ and the coefficients in $A$ are sufficiently smooth.
Let $Lu=0$ be a boundary condition of Vencel’ type. That is, for fixed $x\in\partial D$ ,

(6.1) $Lu(x)=\sum_{i.j=1}^{N-1}\alpha_{ij}(x)\frac{\partial^{2}u}{\partial\xi_{i}\partial\xi_{j}}(x)+\sum_{i=1}^{N-1}\beta_{i}(x)\frac{\partial u}{\partial\xi_{i}}(x)+\gamma(x)u(x)$

$+\delta(x)Au(x)+\mu(x)\frac{\partial u}{\partial n}(x)+\int_{D\cap\partial D}[u(y)-u(x)$

$-\sum_{i=1}^{N-1}\frac{\partial u}{\partial\xi_{i}}(x)(\xi_{i}(y)-\xi_{i}(x))]\nu_{x}(dy)$ ,

where $\xi_{i}(1\leqq i\leqq N-1)$ are extensions to $DU\partial D$ of a system of coordinate

functions on $\partial D$ around $x$, and $\frac{\partial}{\partial n}$ is the inward-directed normal derivative

associated with the coefficients in the second order terms in $A$ . Now, suppose
that we can find, for sufficiently many functions $f$ on $\partial D$ , a solution of
$(\alpha-A)u=0$ with the boundary condition $(\beta-L)u=f$. Then, under some reg-
ularity conditions on $L$ , there exists a Markov process $X$ whose infinitesimal
generator is $A$ with the boundary condition $Lu=0$ . Furthermore, there exists
a Markov process on the boundary with infinitesimal generator $\overline{LH_{\alpha}}$ , and the
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Green operator of $X$ is expressed as follows:

(6.2) $G_{\alpha}=G_{\alpha}^{\min}+H_{\alpha}(\overline{LH}_{\alpha})^{-1}\overline{LG_{\alpha}^{\min}}$ .
Here, $\overline{LH_{\alpha}}$ and $\overline{LG_{\alpha}^{\min}}$ are certain extensions of $LH_{\alpha}$ and $LG_{\alpha}^{\min}$ , respectively.

Let $\delta=0,$ $\nu_{x}(D)=0$ , and $\mu=1$ in (6.1). Then, whatever $\alpha_{ij},$
$\beta_{i},$

$\gamma$ and $\nu_{x}$

on $\partial D$ are, $LG_{\alpha}^{\min}$ is reduced to $\frac{\partial}{\partial n}G_{\alpha}^{\min}$ , and (6.2) implies that $X$ is determined

by two components–the minimal part and the Markov process on the boundary

with infinitesimal generator $\overline{LH}_{a}$ . It was our aim to generalize this fact.
B. Remarks to Condition $(A)$ ; Motoo’s example.
We fixed a measure $m$ in stating Condition $(A)$ . To emphasize its depend-

ence on $m$ , let us call it Condition $(A_{m})$ . Suppose that we are given two
Markov processes $X_{1}$ and $X_{2}$ , which satisfy Conditions $(A_{m_{1}})$ and $(A_{m_{2}})$ , respec-
tively, and that they have the same minimal parts, and further suppose
$(*)$ $m_{2}$ is absolutely continuous with respect to $m_{1}$ with positive continuous

density $b(x)$ in a neighborhood of $\partial D$ .
Let us denote the quantities of $X_{i}$ by the subscript $i$ . Then, we have the
following:

(i) $\mu_{\alpha,2}(dx, f)=b(x)\mu_{\alpha,1}(dx, f)$ ;
(ii) $\hat{H}_{\alpha 1}=\hat{H}_{\alpha,2}$ ;
(iii) If $X_{1}$ and $X_{2}$ induce the same O-order U-processes, then $X_{1}=X_{2}$ .
PROOF. (ii) is an obvious consequence of (i), and (iii) is proved from (ii)

similarly to Section 5. To verify (i), take $g$ and $V$ as in the last paragraph
of the proof of Theorem 1. Then,

$\int g(x)\mu_{\alpha_{2}}^{V},(dx, f)=\lim_{n\rightarrow\infty}\sum_{j=1}^{\infty}e^{-\alpha j2^{-n}}\int_{V}g(x)b(x)m_{1}(dx)E_{x}[f(x_{j2^{-n}})$ ;

$X_{i2}-n\not\in V(1\leqq i\leqq j-1),$ $j2^{-n}<\sigma]=\int g(x)b(x)\mu_{\alpha,1}^{V}(dx, f)$ ,

from which (i) follows.
Motoo remarked me that (iii) is not necessarily valid unless we assume

$(*)$ . The following example is due to him. Let $S$ be the real line $R^{1}$ and
$D=R^{1}-\{0\},$ $\partial D=\{0\}$ . Let $X_{1}$ be a diffusion with infinitesimal generator
$D_{v_{1}}D_{u_{1}}$ of Feller [1] such that $ u_{1}(-\infty)=-\infty$ and $ u_{1}(+\infty)=+\infty$ , and let $X_{2}$

be the diffusion with infinitesimal generator $D_{v_{2}}D_{u_{2}}$ where

$u_{2}(x)=\left\{\begin{array}{l}u_{1}(x),\\u_{1}(0)+c(u_{1}(x)-u_{1}(0)),\end{array}\right.$ $x\leqq 0,x>0$

,
and

$v_{2}(x)=\left\{\begin{array}{l}v_{1}(x),\\v_{1}(0)+c^{-1}(v_{1}(x)-v_{1}(O)),\end{array}\right.$ $x>0x\leqq 0$

,
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$c$ being a positive constant. Denote by $m_{1}[m_{2}]$ the measure induced by $v_{1}[v_{2}]$ .
Then, $X_{1}$ and $X_{2}$ satisfy Conditions $(A_{m_{1}})$ and $(A_{m_{2}})$ , respectively, and it is
obvious that $X_{1}^{\min}=X_{2}^{\min}$ . Moreover, we can prove $P_{x,1}(\varphi_{1}(\infty)=\infty)=P_{x,2}(\varphi_{2}(\infty)$

$=\infty)=1,$ $x\in R^{1}$ , for their local times on the boundary9). Hence, their O-order
U-processes are both at a standstill at $0$ . $X_{1}$ and $X_{2}$ are, however, different
from each other if $c\neq 1$ . In this example, $X_{1}$ and $X_{2}$ induce also the same
l-order U-processes by virtue of (5.10), since $\hat{H}_{1,1}H_{0}f(0)=\hat{H}_{1,2}H_{0}f(O)=f(O)$ .
Though $m_{1}$ and $m_{2}$ are mutually absolutely continuous, the density is discon-
tinuous at $0$ , and hence, $(*)$ does not hold.

C. Remarks to the time-reversed process in Section 3.
If $0=t_{0}<t_{1}<\ldots<t_{n},$ $f_{i}\in B(S)(0\leqq i\leqq n-1)$ and $f_{n},$ $g\in B_{0}(V_{0})$ , then we

have

(6.3) $E_{r^{\prime}}[(\prod_{i=0}^{n}f_{i}(\hat{x}_{tt}))\int_{t_{n}}^{\infty}e^{-(\alpha-I)t}g(x_{t}^{A})dt]=\lim_{N\rightarrow\infty}E_{\gamma^{\prime}}[e^{-(\alpha-1)tn}(\prod_{i=0}^{n}f_{i}(\hat{x}_{\iota_{i}}))h_{N}(\hat{x}_{c_{n}})]$ ,

where $h_{N}(y)=\int_{V_{0}}g(x)m(dx)g_{\alpha}(x, y)k(y)$ if $y\in V_{0}-\partial D$ and if this integral is

smaller than $N$, and $h_{N}(y)=0$ if otherwise. In fact, (6.3) is a consequence of
Lemma 3.2, the both sides being equal to

$\int_{V_{0}}g(x)m_{0}(dx)E_{x}[\int_{t_{n}}^{\infty}e^{-\alpha c}\prod_{i=0}^{n}f_{i}(x_{c-\iota_{t}})dt]$ .
Suppose $V_{0}=S$ in this paragraph. Then (6.3) suggests that the process

$(\hat{x}_{t}, P_{\gamma^{\prime}})$ has the time homogeneous Markov property, whose (a $-1$)-order Green
measure is $m_{0}(dy)g_{\alpha}(y, x)k(x)$ . Its transition probability is $m_{0}(dy)q(t, y, x)k(x)$ ,

that is, $m(dy)k(y)^{-1}q(t, y, x)k(x)$ , if we can write $q(t, x, y)m(dy)$ for the transition
probability of $X^{\prime}$ . This is in accordance with (3.2) combined with (3.3). By
the technique in the proof of Lemma 3.3, one can prove that

(6.4) $\lim_{N\rightarrow\infty}E_{\gamma^{\prime}}[f(\hat{x}_{0})\int_{\hat{\sigma}}^{\infty_{V}}e^{-(\alpha-1)\ell}(gk_{N})(\hat{x}_{t})dt]=\int_{s}g(x)m(dx)E_{x}[\int_{\sigma^{\infty_{V}}}e^{-\alpha\iota}f(x_{t})dt]$

for each $f$ and $g\in B(S)$ . Combining (3.13) and (6.4), we see that a kind of
strong Markov property holds for the process $(\hat{x}_{t}, P_{\gamma^{\prime}})$ . One can also see that

(6.5) $\lim_{N\rightarrow\infty}E_{\gamma^{\prime}}[f(\hat{x}_{0})\int_{0^{A}}^{\sigma_{V}}e^{-(\alpha-1)t}(gk_{N})(\hat{x}_{t})dt]=\int_{s}g(x)m(dx)E_{x}[\int_{0^{\sigma_{V}}}e^{-al}f(x_{t})dt]$ .

(6.5) suggests that the minimal part of the process $(\hat{x}_{t}, P_{\gamma^{\prime}})$ is determined only
by the minimal part of $X$, which is proved in Lemma 3.4 in a different
manner.

Further, it is to be remarked that (3.13) is an analogue to Hunt’s formula

9) Motoo proved that if $X$ satisfies Condition $(A)$ and if $P_{x}(\sigma<\infty)=1$ for each
$x\in S$, then $P_{x}(\varphi(\infty)=\infty)=1,$ $x\in S$ [ $8$ , Theorem 5.2].
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[3, III (18.3)].

D. Further properties of U-processes.
Suggested by Neveu [11], Fukushima and Ikeda observed the following

facts [2, pp. 93-99]. Though their definitions of $H_{a}$ and $K^{\alpha}$ differ from ours,
their results remain valid in our case. Define $Z_{a}=\alpha\hat{H}_{n}H_{0}$ , for $\alpha>0$ . Then
$Z_{\alpha}$ is a bounded nonnegative operator $B(\partial D)\rightarrow L_{\infty}(\partial D, \mu)$ and satisfies $Z_{\alpha}-Z_{\beta}$

$=(\alpha-\beta)\hat{H}_{\alpha}H_{\beta}$ . Therefore, we have
$K_{\lambda}^{\alpha}-K_{\mu^{\beta}}+(\lambda-\mu)K_{\lambda}^{\alpha}K_{\mu}^{\beta}+K_{\lambda}^{\alpha}(Z_{\alpha}-Z_{\beta})K_{\mu^{\beta}}=0$

by (5.6) and (5.9). The range $\mathfrak{R}$ and the null space $\mathfrak{R}$ of $K_{\lambda}^{a}$ are both inde-
pendent of $\alpha$ and $\lambda$ . We define an operator $Q^{(\alpha)}$ from $\mathfrak{R}$ to $B(\partial D)/\mathfrak{R}$ by $Q^{(\alpha)}$

$=\lambda-(K_{\lambda^{\alpha}})^{-1}$ , which is independent of $\lambda$ . $Q^{(\mathfrak{a})}$ is the generator in the sense of
[5] of the $\alpha$ -order U-process, and we have

$Q^{(a)}=Q^{(0)}-Z_{a}$ .
The strong Markov property of U-processes is verified similarly to

Volkonskii [17, pp. 154-157]. They are quasi-left continuous, as is proved by
Motoo [8, Theorem 6.12].

Choosing arbitrary $\beta>0$ and $f\in B(S)$ satisfying $\inf_{x\in S}f(x)>0$ , put $\mu^{\#}(\cdot)$

$=\mu_{\beta}(\cdot, f)$ . $\mu^{\#}$ can be used instead of $\mu$ . $\varphi^{\#}(t)$ thus obtained is connected with
$\varphi(t)$ as follows: there is a function $a$ in $B(\partial D)$ such that $\inf_{x\in\partial D}a(x)>0$ and

(6.6) $\varphi^{\#}(t)=\int_{0^{t}}a(x_{s})d\varphi(s)$ .

For, there is a constant $c$ such that $\mu\leqq c\mu^{\#}$ and $\mu^{\#}\leqq c\mu$, and we can choose a

version $a$ of $\frac{\mu^{\#}(dx)}{\mu(dx)}$ satisfying $c^{-1}\leqq a\leqq c$ .
E. The case that $E_{x}^{\min}(\sigma)$ is bounded.
Put $h(x)=E_{x}^{\min}(\sigma)=G_{0}^{\min}1(x)$ , and assume that $h$ is bounded. Then, the defi-

nition of $\mu_{\alpha}(\cdot, f)$ is naturally extended to the case $\alpha=0$ . Namely, we can
prove

LEMMA $6E.1$ . For each $f$ in $B(S),$ $\mu_{\alpha}(\cdot, f)$ converges in weak star to a
finite signed measure on $\partial D$ as $\alpha\downarrow 0$ . The statements $(ii)-(iv)$ in Proposition
4.1 remain valid even if $\alpha$ or $\beta$ is zero.

PROOF. It follows from the boundedness of $h$ and (4.7) that { $\mu_{\alpha}(\cdot, f)$ :
$\alpha>0\}$ is uniformly bounded. If $f\geqq 0$ , then $\mu_{a}(\cdot, f)$ increases as $\alpha$ decreases.
Hence, the first half of the lemma is true. (4.7) with $\alpha=0$ is obvious. Since
$H_{a}$ can be considered as an integral operator, $\mu_{a}(dx, G_{\beta}^{\min}f)=\hat{H}_{\alpha}G_{\beta}^{\min}f(x)\mu(dx)$

$\rightarrow\hat{H}_{\alpha}G_{0}^{\min}f(x)\mu(dx)$ in weak star as $\beta\downarrow 0$ , Therefore we have (4.7) with $\beta=0$ .
(ii), (iii) and (iv) are easily proved.

Put $\mu_{0}(\cdot, 1)=\mu^{\#}(\cdot)$ . Then $\mu$ and $\mu^{\#}$ are mutually absolutely continuous.
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Define
$\hat{H}_{\alpha^{\#}}f(x)=\frac{\mu_{\alpha}(dx,f)}{\mu^{\#}(dx)}$

for $\alpha\geqq 0$ and $f\in B(S)$ , and

$K\# af(x)=\int_{\partial D}g_{\alpha}(x, y)f(y)\mu^{\#}(dy)$

for $\alpha>0$ and $f\in B(\partial D)$ . Then we have $\hat{H}_{\alpha}\# 1(x)\uparrow\hat{H}_{0^{\#}}1(x)=1\mu^{\#}$ -almost every-
where as $\alpha\downarrow 0$ . And further, there is a positive constant $c_{\alpha}$ such that $\hat{H}_{a}\# 1(x\rangle$

$\geqq c_{\alpha}\mu^{\epsilon}$ -almost everywhere, since

$|\mu_{0}(F, f)|\leqq\Vert f\Vert(1+\alpha\Vert h\Vert)\mu_{\alpha}(F, 1)$ , $F\in B(\partial D)$ ,

by (4.7) with $\beta=0$ . Let us call the process obtained through time change by
$\varphi^{\#}(t)$ in the following lemma the O-order $U^{\#}$ -process induced by $X$ . Then,
Theorems 2, 3, 4, Propositions 4.2 and 5.1 remain true if we replace $H_{a}$ by $\hat{H}_{\alpha}^{\#}$ ,
$K^{\alpha}$ by $K^{\#\alpha}$, and O-order U-process by O-order $U^{\#}$ -process. The formulas in
Propositions 4.2 and 5.1 hold for $\alpha$ and $\beta$ including zero.

LEMMA $6E.2$ . Lemma 5.2 (i) is valid if $\mu$ is replaced by $\mu^{\#}$ in (5.2). The
additive functional $\varphi^{\#}(t)$ thus found is connected with $\varphi(t)$ in such a way that

$\varphi(t)=\int_{0^{\ell}}H_{1}^{\#}1(x_{s})d\varphi^{\#}(s)$ .

PROOF. Using (1.1) and (4.7) with $\beta=0$ , we have

$\int g_{\alpha}(x, y)\mu^{\#}(dy)=E_{x}[\int_{\sigma}^{\infty}e^{-\alpha\iota}(1+\alpha h(x_{t}))dt]$ .

Thus the existence and the uniqueness of $\varphi^{*}(t)$ is proved similarly to Lemma
5.2 (i). Further we have

$\int g_{\alpha}(x, y)\mu(dy)=\int g_{\alpha}(x, y)\hat{H}_{1}^{\#}1(y)\mu^{*}(dy)$

$=E_{x}[\int_{0^{\infty}}e^{-\alpha\iota}\hat{H}_{1}\#_{1(x_{t})d\varphi^{\#}(t)]}$ ,

completing the proof.
F. Example of process with Condition $(A)$ .
Let a domain $D$ and an elliptic differential operator $A$ be as at the

beginning of this section, and suppose that the zero order term of $A$ vanishes
identically. Let $m$ be the Riemannian volume measure connected with the
coefficients of the second order terms of $A$ . Consider the reflecting boundary

condition $\frac{\partial u}{\partial n}=0$ . Then, the Markov process $X$ associated satisfies Condition

$(A)$ . The Green function is constructed by S. Ito [6]. In the condition $(A_{6,4})$

we can take $V_{0}=DU\partial D$ and $\alpha_{0}={\rm Max}({\rm Max}\hat{c}(x), 0)x\in S$ where $\hat{c}$ is the coefficient
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in the zero order term of the formal adjoint of $A$ . In $(A_{7})$ we can take $\gamma_{0}=m$ .
Then $k(x)$ tends to infinity as $x$ approaches $\partial D$ .

In this example, the author [12] stated that $X$ is transformed to the

Markov process $\tilde{X}$ on the boundary with infinitesimal generator $\overline{\frac{\partial}{\partial n}H_{0}}$ through

time change by a certain additive functional $i(t, w)$ defined in [13]. The
connection between $t(t, w)$ and the local time on the boundary $\varphi(t, w)$ in this
paper is that there is a positive continuous function $a$ on $\partial D$ satisfying (6.6)

with $\varphi^{\#}(t)$ replaced by $t(t)$ . Hence, $\tilde{X}$ and the O-order U-process $\tilde{X}^{(0)}$ are trans-
formed to each other by time change.

Tokyo University of Education
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