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For an algebraic variety $V$ and an algebraic group $G$ operating on $V$ ,

we can construct the variety $V_{G}$ of G-orbits on $V$ and the natural rational
mapping $f$ of $V$ to $V_{G}$ (cf. [S]). The variety $V_{G}$ is obtained as a model of
the subfield of all the G-invariant elements in the field of rational functions
on $V$ .

The purpose of this paper is to prove several results concerning on the
relations between the Albanese varieties (and the spaces of linear differential
forms of the first kind) of $V$ and of $V_{G}$ . Denoting by $G_{0}$ the connected com-
ponent of $G$ containing the identity element, we see that the finite group
$G/G_{0}$ operates on the variety $V_{G_{0}}$ of $G_{0}$-orbits on $V$ and $V_{G}$ is naturally bira-
tionally equivalent to the variety $(V_{Go})_{G/Go}$ of $(G/G_{0})$ -orbits on $V_{G_{0}}$ . Hence we
may restrict ourselves to the two cases: (i) $G$ is connected and (ii) $G$ is a
finite group; and the second case (ii) has already been treated in our previous
paper [3].

In \S 1, we shall give the definition of the variety $V_{G}$ and prove several
preliminary results.

In \S 2, we shall first construct the Albanese variety Alb $(V_{G})^{1)}$ of $V_{G}$ as a
quotient abelian variety of the Albanese variety $A=Alb(V)$ of $V$ (Theorem
1). In particular, for the connected algebraic group $G_{0}$ , we define a rational
homomorphism $\varphi$ of $G_{0}$ into $A$ and it will be proved that $A_{1}=A/\varphi(G_{0})$ is the
Albanese variety of $V_{a_{0}}$ (Theorem 2). Then we shall also prove that Alb (V)

is isogenous to the direct product of Alb $(V_{Go})$ and the Albanese variety of
the generic $G_{0}$ -orbit $\overline{G_{0}P}^{2)}$ on $V$ (Theorem 3) and we have the inequality
$ 0\leqq\dim$ Alb $(V)-\dim$ Alb $(V_{G_{0}})\leqq\dim V-\dim V_{G_{0}}$ . Moreover, by means of the
[-adic representations $M_{\iota}^{(A)}$ and $M_{\iota}^{(A^{*})}$ of the rings of endomorphisms of $A$ and
$A^{*}=Alb(G_{0})$ , we define the two matrix representations of the finite group
$G/G_{0}$ . Then, if $G$ operates regularly and effectively on $V$ , we shall show that
the dimension of $Alb(V_{G})$ is equal to the half of the difference of the multi-

1) For a variety $W$. Alb $(W)$ denotes an Albanese variety of $W$.
2) Cf. \S 1.
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plicities of the identity representation in $(M_{\iota^{(A)}}|G/G_{0})$ and in $(M_{\iota}^{(A^{*})}|G/G_{0})$

(Theorem 4).

In \S 3, we suppose that $V$ and $V_{G}$ are complete and nonsingular. Then,

under some assumptions on the index $(G:G_{0})$ and on the homomorphism
$\varphi$ , we shall prove the inequality $0\leqq\dim \mathfrak{D}_{0}(V_{G})-\dim \mathfrak{D}_{0}(Alb(V_{G}))\leqq\dim \mathfrak{D}_{0}(V)$

$-\dim \mathfrak{D}_{0}(Alb(V))^{3)}$ (Theorem 5). Next, for the inclusion mapping $f$ of $\overline{G}_{0}^{-}P$

into $V$ , we shall decide the image and the kernel of the adjoint mapping $\delta c$

of $\mathfrak{D}_{0}(V)$ into $\mathfrak{D}_{0}(\overline{G_{0}P})$ (Theorem 6) and then shall give a necessary and suf-
ficient condition for an element to of $\mathfrak{D}_{0}(V)$ to belong to $\delta f(\mathfrak{D}_{0}(V_{G}))$ (Theorem 7).

Finally, as an appendix, we shall consider a complete homogeneous space
$V$ for a connected algebraic group $\tilde{G}$ . It will be proved that $V$ is birationally
equivalent to the direct product of Alb (V) and of a rational variety and so
we have $\dim \mathfrak{D}_{0}(V)=\dim \mathfrak{D}_{0}(Alb(V))$ .

\S 1. The variety of orbits

Let $V$ be an algebraic variety and let $G$ be an algebraic group operating
on $V$ ; let $k$ be a field of definition for $V,$ $G$ and the operation of $G$ on $V$ .
This implies that, for each component $G_{i}$ of $G$ , there exists a rational map-
ping $(g_{i}, P)\rightarrow g_{i}P$ of $G_{i}\times V$ to $V$ defined over $k$ such that if $(g_{i}, g_{j}, P)$ is a
generic point of $G_{i}\times G_{j}\times V$ over $k$ , then we have $g_{i}(g_{j}P)=(g_{i}g_{j})P$ and
$k(g_{i}, g_{i}P)=k(g_{i}, P)$ (cf. [8], [10]).

Then we can construct the variety $V_{c}$ of G-orbits on $V$ and the natural
rational mapping $f$ of $V$ to $V_{G}$ , both defined over $k$ , which are characterized
to within a birational correspondence by the following properties: $f$ is a gen-
erically surjective and separable mapping and, for generic points $P_{1},$ $P_{2}$ of $V$

over $k$ , we have $f(P_{1})=f(P_{2})$ if and only if we have $g_{1}P_{1}=g_{2}P_{2}$ with generic
points $g_{1},$ $g_{2}$ of some components of $G$ over $k(P_{1}, P_{2})$ (cf. [8]). If we identify
$k(V_{G})$ with a subfield of $k(V)$ by $f$, then $k(V_{G})$ consists of all G-invariant
functions. Let $P$ be a generic point of $V$ over $k$ and $g_{i}$ a generic point of a
component $G_{i}$ of $G$ over $k(P)$ . Then $g_{?}P$ is also a generic point of $V$ over $k$

and, as $(gg_{i}^{-1})g_{i}P=gP$ with a generic point $g$ of a component of $G$ over
$k(g_{i}, P)$ , we have $f(g_{i}P)=f(P)$ .

Let $N$ be a normal algebraic subgroup of $G$ defined over $k$ . Let $\pi_{N}$ be
the canonical rational homomorphism of $G$ to $G/N$ and $f^{\prime}$ the natural rational
mapping of $V$ to the variety $V_{N}$ of N-orbits on $V$ . Then, by the rule
$\pi_{N}(g_{i})f^{\prime}(P)=f^{\prime}(g_{i}P)$ for a generic point $(g_{i}, P)$ of each $G_{i}\times V$ over $k,$ $G/N$

operates on the variety $V_{N}$ and the variety $(V_{N})_{G/N}$ of $(G/N)$-orbits on $V_{N}$ is

3) For a complete, nonsingular variety $W,$ $\mathfrak{D}_{0}(W)$ denotes the space of linear dif-
ferential forms of the first kind on $W$
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naturally birationally equivalent to $V_{\theta}$ (cf. [8]). On the other hand, let $\lambda$ be
a surjective rational homomorphism of $G$ to an algebraic group $G^{\prime}$ operating
on $V$ . We suppose that $G^{\prime},$ $\lambda$ and the operation of $G^{\prime}$ on $V$ are defined over
$k$ . If the operation of $G$ on $V$ is the composite of $\lambda$ and that of $G^{\prime}$ , i. e. we
have $g_{i}P=\lambda(g_{i})P$ for a generic point $(g_{\ell}, P)$ of each $G_{i}\times V$ over $k$ , then the
variety $V_{G}$ , of $G^{\prime}$ -orbits on $V$ is considered as the variety of G-orbits on $V$

and conversely.
Let $G_{0}$ be the component of $G$ containing the identity element $e$ and let

$f_{0}$ be the natural rational mapping of $V$ to the variety $V_{a_{0}}$ of $G_{0}$-orbits on
V. Let $P$ be a generic point of $V$ over $k$ and put $Q=f_{0}(P)$ , which is a generic
point of $V_{o_{0}}$ over $k$ . Then, as $k(Q)$ is algebraically closed in $k(P)$ and $f_{0}$ is
separable (cf. [8]), $P$ has a locus $X$ over $k(Q)$ . For a generic point $g_{0}$ of $G_{0}$

over $k(P),$ $g_{0}P$ is a generic point of $V$ over $k$ and we have $f_{0}(g_{0}P)=f_{0}(P)=Q$

and the locus of $g_{0}P$ over $k(Q)$ coincides with $X$ . When $G_{0}$ operates regularly
on $V,$ $X$ is equal to the Zariski closure $\overline{G_{0}P}$ of the $G_{0}$ -orbit of $P(i$ . $e$ . the
locus of $g_{0}P$ over $k(P))$ . In fact, let $P^{\prime}$ be a generic point of $X$ over $k(P)$ .
Then $P^{\prime}$ is a generic specialization of $P$ over $k(Q)$ and so we have $f_{0}(P^{\prime})=$

$f_{0}(P)=Q$ , which implies that we have $g_{0}P=g_{0}^{\prime}P^{\prime}$ with generic points $g_{0},$
$g_{0}^{\prime}$

of $G_{0}$ . As $G_{0}$ operates regularly on $V$ , we have $P^{\prime}=g_{0^{-1}}^{\prime}g_{0}P$ and so $X$ is
contained in $\overline{G_{0}P}$ . Conversely, we have $\dim\overline{G_{0}P}=\dim_{k(P)}g_{0}P\leqq\dim_{k(Q)}g_{0}P$

$=\dim X$. Hence we have $X=\overline{G_{0}P}$. In the following, whether or not $G_{0}$

operates regularly on $V$ , we denote by $\overline{G_{0}P}$ the locus $X$ of $P$ over $k(Q)$ . Hence
we have

(1) $\dim\overline{G_{0}P}=\dim V-\dim V_{o_{0}}$ .
Let $V^{\prime}$ be an algebraic variety birationally equivalent to $V$ such that $G_{0}$

operates regularly on $V^{\prime}$ and the operations of $G_{0}$ on $V$ and on $V^{\prime}$ commute
with the birational transformation $T$ (cf. [10]). Then $X=\overline{G_{0}P}$ is birationally
equivalent to the locus of $T(P)$ over the $G_{0}$ -invariant subfield $k(Q)$ of $k(P)$

$=k(T(P))$ , which coincides with the closure of the orbit $G_{0}T(P)$ in $V^{\prime}$ . Hence
we see that $\overline{G_{0}P}$ is birationally equivalent to a prehomogeneous space (and

so to a homogeneous space) for $G_{0}$ .

\S 2. Albanese varieties

Let $A$ be an Albanese variety of $V$ and $\alpha$ a canonical mapping of $V$ into
$A$ , both defined over $k$ .

Let $G_{0},$ $G_{1},$ $\cdots$ , $G_{n}$ be the components of $G$ , all defined over $k$ , and let
$(g_{i}, P)$ be a generic point of $G_{i}\times V$ over $k(i=0,1, , n)$ . Let $W_{i}$ be the
locus of $\alpha(g_{i}P)-\alpha(P)$ over $k$ and let $C$ be the intersection of all the closed
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subgroups of $A$ containing $W_{0},$ $W_{1},$ $\cdots$ , $W_{n}$ . Then $C$ is an algebraic subgroup
of $A$ , defined over $k$ (cf. [9]).

LEMMA 1. Let $\lambda^{\prime}$ be a rational homomorphism of $A$ into an abelian variety
$A^{\prime}$ , defined over $K\supset k$ , such that $\lambda^{\prime}(C)=0$ . Then there exists a rational map-
ping $\alpha^{\prime}$ of $V_{G}$ into $A^{\prime}$ , defined over $K$, such that $\lambda^{\prime}\circ\alpha=\alpha^{\prime}\circ f$. Moreover, if
$\lambda^{\prime}$ is surjective, then $\alpha^{\prime}(V_{G})$ generates $A^{\prime}$ .

PROOF. Let $P$ be a generic point of $V$ over $K$. For any generic point
$g_{i^{\prime}}$ of $G_{i}$ over $K(P)$ , we have $\lambda^{\prime}(\alpha(g_{i}^{\prime}P))=\lambda^{\prime}(\alpha(P))$ , which implies that $\lambda^{\prime}(\alpha(P))$

is rational over $K(f(P))$ . Hence there exists a rational mapping $\alpha^{\prime}$ such that
$\lambda^{\prime}\circ\alpha=\alpha^{\prime}\circ f$. If $\lambda^{\prime}$ is surjective, then any point $y^{\prime}$ of $A^{\prime}$ can be written in

the form $y^{\prime}=\sum^{f}\lambda^{\prime}\circ\alpha(P_{i}^{\prime})$ with some $P_{i}^{\prime}$ in $V$ . Then $y^{\prime}$ is a specialization of
$y=\sum^{t}\lambda^{\prime}\circ\alpha(P_{i})=\sum^{t}\alpha^{\prime}\circ f(P_{i})$ over $K$, where $P_{1},$ $\cdots$ , $P_{t}$ are independent generic
points of $V$ over $K$.

LEMMA 2. Let $\alpha^{\prime}$ be a rational mapping of $V_{G}$ into an abelian variety $A^{\prime}$ .
Then there exists a rational homomorphism $\lambda^{\prime}$ of $A$ into $A^{\prime}$ such that $\lambda^{\prime}\circ\alpha$

$=\alpha^{\prime}\circ f+constant$ and $\lambda^{\prime}(C)=0$ .
PROOF. From the universal mapping property of $\alpha$ , it follows the exist-

ence of the rational homomorphism $\lambda^{\prime}$ such that $\lambda^{\prime}\circ\alpha=\alpha^{\prime}\circ f+constant$ . Let
2’ and $\alpha^{\prime}$ be defined over $K\supset k$ and $(g_{i}, P)$ a generic point of $G_{i}\times V$ over $K$.
Then we have $f(g_{i}P)=f(P)$ (cf. \S 1) and so $\lambda^{\prime}(\alpha(g_{i}P)-\alpha(P))=\alpha^{\prime}(f(g_{i}P))-\alpha^{\prime}(f(P))$

$=0$ . Since $\alpha(g_{i}P)-\alpha(P)$ is a generic point of $W_{i}$ over $K$ and $\lambda^{\prime}$ is defined
over $K$, we have $\lambda^{\prime}(C)=0$ .

THEOREM 1. The abelian variety $A_{0}=A/C$ is an Albanese variety of $V_{G}$ ,

defined over $k$ . Moreover, there exists a canonical mapping $\alpha_{0}$ of $V_{G}$ into $A_{0}$

such that

(2) $\alpha_{0}\circ f=\mu\circ\alpha$ ,

where $\mu$ is the canonical homomorphism of $A$ onto $A/C$ .
PROOF. Since we have $\mu(C)=0$ , there exists a rational mapping $\alpha_{0}$ of $V_{G}$

into $A_{0}$ , defined over $k$ , such that $\mu\circ\alpha=\alpha_{0}$ of and $\alpha_{0}(V_{G})$ generates $A_{0}$ (see

Lemma 1). On the other hand, for a rational mapping $\alpha^{\prime}$ of $V_{G}$ into an
abelian variety $A^{\prime}$ , there exists a rational homomorphism $\lambda^{\prime}$ of $A$ into $A^{\prime}$

such that $\lambda^{\prime}\circ\alpha=\alpha^{\prime}\circ f+constant$ and $\lambda^{\prime}(C)=0$ (see Lemma 2). Then we have
a rational homomorphism $\rho$ of $A_{0}=A/C$ into $A^{\prime}$ such that $\lambda^{\prime}=\rho\circ\mu$ , from
which we have $\alpha^{\prime}=\rho\circ\alpha_{0}+constant$ .

Let $L$ be the maximal connected linear algebraic subgroup of $G_{0},$ $A^{*}=G_{0}/L$

the Albanese variety of $G_{0}$ and $\pi$ the canonical homomorphism of $G_{0}$ onto $A^{*}$ ,

all assumed to be defined over $k$ . By a well-known theorem on abelian va-
rieties, there exist a rational homomorphism $\varphi$ of $G_{0}$ into $A$ , defined over $k$ ,

an endomorphism $\eta$ of $A$ and a constant point $c$ of $A$ such that we have
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$\alpha(g_{0}P)-\alpha(P)=\varphi(g_{0})+\eta(\alpha(P))+c$ . For $g_{0}=e$ , we have $\eta(\alpha(P))+c=0$ and, as
$\alpha(V)$ generates $A$ , we see that $\eta=0$ and $c=0,$ $i$ . $e$ .

(3) $\alpha(g_{0}P)-\alpha(P)=\varphi(g_{0})$ .
Since $\varphi(L)=0$ , there exists a rational homomorphism $\varphi^{*}$ of $A^{*}$ into $A$ , defined
over $k$ , such that $\varphi=\varphi^{*}\circ\pi$ . If $G_{0}$ operates faithfully on $V$ , then it is proved
that $\varphi^{*}$ is an isogeny of $A^{*}$ to an abelian subvariety of $A$ (cf. [7]).

THEOREM 2. The abelian variety $A_{1}=A/\varphi^{*}(A^{*})$ is an Albanese variety of
$V_{G_{0}}$ defined over $k$ .

PROOF. From the definition, the locus $W_{0}$ of $\alpha(g_{0}P)-\alpha(P)$ over $k$ coincides
with the abelian subvariety $\varphi(G_{0})=\varphi^{*}(A^{*})$ of $A$ (see (3)).

COROLLARY 1. If $G_{0}=L$ is linear, then $Alb(V_{L})$ is isomorphic to Alb $(V)^{4)}$ .
COROLLARY 2. If $G_{0}$ operates faithfully on $V$ , then we have

(4) $\dim$ Alb $(V_{G_{0}})=\dim$ Alb $(V)-\dim$ Alb $(G_{0})$ .

PROOF. $A^{*}$ is an Albanese variety of $G_{0}$ and $\varphi^{*}$ is an isogeny by our
assumption (cf. [7]). Hence we have $\dim\varphi^{*}(A^{*})=\dim$ Alb $(G_{0})$ .

Let $P$ be a generic point of $V$ over $k$ and let $(B, \beta)$ be an Albanese va-
riety of the variety $\overline{G_{0}P}$ . For the inclusion mapping $\zeta$ of $\overline{G_{0}P}$ into $V$ , there
exists a rational homomorphism $\psi$ of $B$ into $A$ such that $\alpha\circ\zeta=\psi\circ\beta+constant$ .
Hence we have, for a generic point $g_{0}$ of $G_{0}$ over $k(P)$ ,

(5) $\varphi(g_{0})=\alpha\circ c(g_{0}P)-\alpha\circ c(P)=\psi\circ\beta(g_{0}P)+constant$ .

LEMMA 3. $\psi$ is an isogeny of $B$ onto $\varphi^{*}(A^{*})$ .
PROOF. Let $G^{\prime}$ be a connected algebraic group which is the image of $G_{0}$

by a rational homomorphism $\lambda$ and operates faithfully on $V$ such that the
operation of $G_{0}$ on $V$ is the composite of $\lambda$ and that of $G^{\prime}$ (cf. [10]). Let $A^{*\prime}$

$=G^{\prime}/L^{\prime}$ be the Albanese variety of $G^{\prime}$ and $\varphi^{*\prime}$ the rational homomorphism of
$A^{*\prime}$ into $A$ defined in a similar way as $\varphi^{*}$ . Then we have $V_{o_{0}}=V_{G},,\overline{G_{0}P}=\overline{G^{\prime}P}$

and $\varphi^{*}(A^{*})=\varphi^{*/}(A^{*\prime})$ . We have $\psi(B)\supset\varphi^{*}(A^{*})=\varphi^{*\prime}(A^{*/})$ (see (5)) and so
$\dim B\geqq\dim\psi(B)\geqq\dim\varphi^{*/}(A^{*\prime})$ . On the other hand, as $G^{\prime}\overline{P}=\overline{G_{0}P}$ is biration-
ally equivalent to a homogeneous space for $G^{\prime}$ (cf. \S 1), we have $\dim B$

$\leqq\dim$ Alb $(G^{\prime})=\dim A^{*/}$ (cf. [6]). Since $\varphi^{*\prime}$ is an isogeny (cf. [7]), we have
$\dim A^{*1}=\dim B=\dim\psi(B)=\dim\varphi^{*\prime}(A^{*\gamma})$ and so $\psi$ is an isogeny of $B$ onto
$\varphi^{*\prime}(A^{*\prime})=\varphi^{*}(A^{*})$ .

Since $A$ is isogenous to the direct product of $A_{1}$ and $\varphi^{*}(A^{*})$ (see Theorem
2), we have the following

THEOREM 3. $A=Alb(V)$ is isogenous to the direct product of $A_{1}=Alb(V_{G_{0}})$

and of $B=Alb(\overline{G_{0}P})$ : $A\sim A_{1}\times B$ . In particular, we have

4) See footnote 1).
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(6) $\dim$ Alb $(V)=\dim$ Alb $(V_{G_{0}})+\dim$ Alb $(\overline{G_{0}P})$ .
COROLLARY 1. We have

(7) $ 0\leqq\dim$ Alb $(V)-\dim$ Alb $(V_{o_{0}})\leqq\dim V-\dim V_{G_{0}}$ .
PROOF. Since $\overline{G_{0}P}$ is birationally equivalent to a homogeneous space for

$G_{0}$ , we have $\dim$ Alb $(\overline{G_{0}P})\leqq\dim\overline{G_{0}P}$ (cf. [6]) and so the inequality (7) (see

(1), (6)).

COROLLARY 2. In Corollary 1,
(i) If $G_{0}=L$ is linear, then the equality $\dim$ Alb $(V)-\dim$ Alb $(V_{G_{0}})=0$

holds. When $G_{0}$ operates faithfully on $V$ , the converse is also true. In this
case, we have Alb $(V)\cong Alb(V_{o_{0}})$ .

(ii) If $G_{0}=A^{*}$ is an abelian variety, then the equality dim Alb(V)

$-\dim$ Alb $(V_{o_{0}})=\dim V-\dim V_{G0}$ holds. When $G_{0}$ operates faithfully on $V$ ,

the converse is also true.
PRCOF. (i) The equality holds if and only if $\varphi^{*}(A^{*})=0$ (see Theorem 2);

hence we have the assertion. (ii) The equality holds if and only if we have
$\dim$ Alb $(G_{0}\overline{P})=\dim\overline{G_{0}P},$ $i$ . $e.\overline{G}_{0}\overline{P}$ is birationally equivalent to a homogeneous
space for an abelian variety (cf. [6]); hence the first part is clear. Conversely,
if the equality holds, we have $(\dim Alb(V)-\dim Alb(V_{L}))+(\dim Alb(V_{L}\rangle$

$-\dim Alb(V_{oo}))=(\dim V-\dim V_{L})+(\dim V_{L}-\dim V_{a_{0}})$ . Then we have
$\dim Alb(V)-\dim Alb(V_{L})=0$ (see $(i)$) and, as $V_{G_{0}}=(V_{L})_{A^{*}},$ $\dim Alb(V_{L})$

$-\dim$ Alb $(V_{G_{0}})=\dim V_{L}-\dim V_{o_{0}}$ (see the first part of (ii)). Hence we have
$\dim V-\dim V_{L}=\dim LP=0$ (see (1)); so, if $G_{0}$ operates faithfully on $V$ , then,

as $L$ is defined over $k$ , we have $L=\{e\}$ .
We suppose that $G_{0}$ operates regularly on $V$ . Then, for a point $P_{0}$ on $V$ ,

we denote by $\overline{G_{0}P}_{0}$ the Zariski closure of the $G_{0}$-orbit of $P_{0},$ $i$ . $e$ . the locus of
$g_{0}P_{0}$ over $k(P_{0})$ with a generic point $g_{0}$ of $G_{0}$ over $k(P_{0})$ , and by $(B_{0}, \beta_{0})$ the
Albanese variety of $\overline{G_{0}P}_{0}$ . Clearly $\overline{G_{0}P_{0}}$ is also a prehomogeneous space for
$G_{0}$ and we have $\dim B_{0}\leqq\dim\overline{G_{0}P}_{0}$ (cf. [6]). If $\alpha$ is defined at $P_{0}$ (for ex-
ample, if $P_{0}$ is simple on $V$), we have $\varphi(g_{0})=\alpha(g_{0}P_{0})-\alpha(P_{0})$ for a generic
point $g_{0}$ of $G_{0}$ over $k(P_{0})$ and we can also prove, in a similar way as the
proof of Lemma 3 and (5), that there exists an isogeny $\psi_{0}$ of $B_{0}$ onto $\varphi^{*}(A^{*})$

such that $\varphi(g_{0})=\psi_{0}\circ\beta_{0}(g_{0}P_{0})+constant^{5)}$ . Hence we have
THEOREM 3’. If $G_{0}$ operates regularly on $V$ and $\alpha(P_{0})$ is defined, then

$A=Alb(V)$ is isogenous to the direct product of $A_{1}=Alb(V_{c_{0}})$ and of $B_{0}$

$=Alb(\overline{G{}_{0}P}_{0}):A\sim A_{1}\times B_{0}$ .
$CoROLLARY$ . We have

5) Hence all the closures $\overline{G_{0}P_{0}}$ of $G_{0}$-orbits (such that $\alpha(P_{0})$ is defined) have the
Albanese varieties isogenous to each other.
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(8) $ 0\leqq\dim$ Alb $(V)-\dim$ Alb $(V_{G_{0}})\leqq\dim\overline{G_{0}}P_{0}$ .

In the rest of this section, we assume that $G$ operates regularly and
effectively on $V$ . Then, for the homomorphism $\varphi^{*}$ of $A^{*}=Alb(G_{0})$ into $A$ ,
we have, using the notations in the proof of Lemma 3, $\varphi^{*\prime}\circ\lambda=\varphi^{*}$ . As $G_{0}$

operates effectively on $V$ , the kernel of $\lambda$ must be trivial and so we see that
$\varphi^{*}$ is also an isogeny.

For a point $g$ in $G$ , we have $gG_{0}g^{-1}\subset G_{0}$ and, as $\pi$ is a canonical map-
ping of $G_{0}$ into the Albanese variety $A^{*}$ , there exists an element $\xi_{g}$ of $d(A^{*})^{6\rangle}$

such that

(9) $\pi(gg_{0}g^{-1})=\xi_{g}\circ\pi(g_{0})$

for all $g_{0}$ in $G_{0}$ . Since $\pi$ is a homomorphism, we have $\xi_{g_{0}}=\delta_{A^{*}}^{6)}$ for $g_{0}$ in $G_{\theta}$

and so the mapping $g\rightarrow\xi_{g}\rightarrow M_{\iota}^{(A^{*})}(\xi_{g})^{6)}$ defines a matrix reoresentation of the
finite group $G/G_{0}$ .

On the other hand, for a point $g$ in $G$ , there exist an element $\eta_{g}$ of $d(A)$

and a constant point $a_{g}$ in $A$ such that

(10) $\alpha(gP)=\eta_{g}\circ\alpha(P)+a_{g}$

for a generic point $P$ of $V$ . We have $\eta_{g_{0}}=\delta_{A}$ for $g_{0}$ in $G_{0}$ and so the map-
ping $g\rightarrow\eta_{g}\rightarrow M_{\iota}^{(A)}(\eta_{g})$ defines also a matrix representation of the finite group
$G/G_{0}$ .

THEOREM 4. Let $G=G_{0}g_{0}UG_{0}g_{1}U\ldots\cup G_{0}g_{n}(g_{0}=e)$ be the decomposition
of $G$ into the cosets of $G_{0}$ . Then we have

(11) $\dim Alb(V_{G})=2^{-rankM_{\iota}^{(A)}(\sum_{i=0}^{n}\eta_{g_{i}})}1-2-rankM_{\iota}^{(A^{*})}(\sum_{i=0}^{n}\xi_{g_{i}})1$

$=_{2}^{1}--$($the$ multiplicity of id in $M_{\iota}^{(A)}|G/G_{0}$)

$-2^{-}$
($the1$ multiplicity of id in $M_{\iota}^{(A^{*})}|G/G_{0}$),

where id is the identity representation.
PROOF. For a point $g$ in $G$ and a point $g_{0}$ in $G_{0}$ , we have $\eta_{g}\circ\varphi(g_{0})$

$=\eta_{g}(\alpha(g_{0}P)-\alpha(P))=\alpha((gg_{0}g^{-1})gP)-\alpha(gP)=\varphi(gg_{0}g^{-1})$ (see (3)). Hence we
have $\eta_{g}(\varphi(G_{0}))\subset\varphi(G_{0})$ and so $\eta_{g}$ induces an element $\eta_{g}^{*}$ of $d(\varphi^{*}(A^{*}))$ . Since
$\varphi=\varphi^{*}\circ\pi$ , we see that $\varphi^{*}\circ\pi(gg_{0}g^{-1})=\varphi^{*}\circ\xi_{g}\circ\pi(g_{0})$ is equal to $\varphi(gg_{0}g^{-})$

6) For an abelian variety $A$ , we use the following notations: $\cup t(A)=the$ ring of
endomorphisms of $A,$ $\delta_{A}=the$ identity element of $d(A),$ $M_{l}(A)=the$ l.adic representa-
tion of $\mathcal{A}(A)$ .
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$=\eta_{g}\circ\varphi(g_{0})=\eta_{g}\circ\varphi^{*}\circ\pi(g_{0})$ . Hence we have $\varphi^{*}\circ\xi_{g}=\eta_{g}\circ\varphi^{*}$ for all $g$ in $G$ and,
as $\varphi^{*}$ is an isogeny of $A^{*}$ to $\varphi^{*}(A^{*})$ , we have

(12) $M_{\iota}^{(A^{*})}(\xi_{g})=M\cdot M_{\iota}^{(\varphi(A))}**(\eta_{g}^{*})\cdot M^{-1}$

with a nonsingular matrix $M$ independent of $g$ . Let $D$ be an abelian sub-
variety of $A$ such that $A=\varphi^{*}(A^{*})+D$ and $\varphi^{*}(A^{*})\cap D$ is a finite group. We
take a rational prime $l$ which does not divide the order of $\varphi^{*}(A^{*})\cap D$ and
fix it. Then, taking suitable l-adic coordinates of $A$ , we may assume that
we have

(13) $M_{\iota}^{(A)}(\eta_{g})=(^{M_{\iota_{0}}^{(\varphi**}(\eta_{g}^{\star})}(A))$
$N_{g}^{*})$ .

Moreover we may assume that $V_{G}$ and $V_{o_{0}}$ are normal and so we have a
Galois covering $f:V_{G0}\rightarrow V_{G}$ with the Galois group $\overline{G}=G/G_{0}$ . (cf. \S 1). Let $f_{0}$

be the natural rational mapping of $V$ to $V_{G_{0}}$ and $\alpha_{1}$ the canonical mapping
of $V_{c_{0}}$ into $A_{1}=Alb(V_{G_{0}})=A/\varphi^{*}(A^{*})$ and let $\mu_{1}$ be the canonical homomor-
phism of $A$ onto $A_{1}=A/\varphi^{*}(A^{*})$ . Then we may assume that we have

(14) $\mu_{1}\circ\alpha=\alpha_{1}\circ f_{0}$

(see (2)). Let $\overline{g}$ be an element of $\overline{G}$ , which is the coset of $G_{0}$ containing an
element $g$ of $G$ . Then we have $\overline{g}(f_{0}(P))=f_{0}(gP)$ (cf. \S 1). Moreover there
exist an element $\overline{\eta}_{\overline{g}}$ of $d(A_{1})$ and a constant point $\overline{a}_{\overline{g}}$ of $A_{1}$ such that we
have $\alpha_{1}(\overline{g}f_{0}(P))=\overline{\eta}_{\overline{g}}\circ\alpha_{1}(f_{0}(P))+\overline{a}_{\overline{g}}=\overline{\eta}_{\overline{g}}\circ\mu_{1}\circ\alpha(P)+\overline{a}_{\overline{g}}$ , which is also equal to
$\alpha_{1}(f_{0}(gP))=\mu_{1}\circ\alpha(gP)=\mu_{1}\circ\eta_{g}\circ\alpha(P)+\mu_{1}(a_{g})$ . Since $\alpha(V)$ generates $A$ , we have

(15) $\mu_{1}\circ\eta_{g}=\overline{\eta}_{\overline{g}}\circ\mu_{1}$

for all $g$ in $G$ . As $\mu_{1}$ is the canonical homomorphism of $A$ onto $A_{1}$ with the
kernel $\varphi^{*}(A^{*})$ , we have

$M_{\iota}^{(A_{1})}(\sum_{i=0}^{n}\overline{\eta}_{\overline{g}i})=N\cdot(\sum_{i=0}^{n}N_{gt})\cdot N^{-1}$

with a nonsingular matrix $N$ (see (13), (15)); and as $(\sum_{i=0}^{n}\overline{\eta}_{\overline{g}t})(A_{1})$ is isogenous

to $A_{0}=Alb(V_{G})$ and $\dim$ Alb $(V_{G})=-21$-rank $M_{\iota^{(A_{1})}}(\sum_{i=0}^{n}\overline{\eta}_{\overline{g}i})$ (cf. [3]), we have

$\dim$ Alb $(V_{G})=\frac{1}{2}$ rank $(\sum_{i=0}^{n}N_{g_{i}})$

$=-21$-rank $M_{\iota}^{(A)}(\sum_{i=0}^{n}\eta_{gi})-\frac{1}{2}$ rank $M_{l}^{(\varphi*}(A\#))(\sum_{i=0}^{n}\eta_{g\iota}^{*})$

(see (13)). Hence we have the first formula of Theorem (see (12)). The second
formula follows from the first by a group-theoretical lemma in [3].

$CoROLLARY$ . (i) If $G$ is a finite group, then we have
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(16) $\dim$ Alb $(V_{G})=_{2^{-}}^{1}-(the$ multiplicity of id in $M_{\iota}^{(A)}|G)^{7)}$ .

(ii) If $G=G_{0}$ is connected, then we have

(17) $\dim$ Alb $(V_{co})=_{22}^{11}--\deg M_{\iota}^{(A)}---\deg M_{l}^{(A^{*})}$

$=\dim$ Alb $(V)-\dim$ Alb $(G_{0})^{8}$‘.

\S 3. Linear differential forms of the first kind

Let $f$ be the inclusion mapping of $\overline{G_{0}P}$ into $V$ , where $P$ is a generic point
of $V$ over $k$ , and let $t^{*}$ be also the inclusion mapping of $\varphi^{*}(A^{*})$ into $A$ .

LEMMA 4. Let $f_{0}$ be the natural rational mapping of $V$ to $V_{o_{0}}$ . For a dif-
ferential form $\omega_{1}$ on $V_{o_{0}}$ , we have $\delta c\circ\delta f_{0}(\omega_{1})=0$ .

PROOF. Let $b$ be a rational function on $V_{\sigma_{0}}$ defined over $k$ . Then, for a
generic point $g_{0}$ of $G_{0}$ over $k(P),$ $(b\circ f_{0})(g_{0}P)=(b\circ f_{0})(P)$ is rational over
$k(f_{0}(P))$ , which implies that the rational function $\delta f_{0}(b)$ induces a constant
function on $\overline{G_{0}P}$. Hence we have $\delta c\circ\delta f_{0}(db)=d(\delta c\circ\delta f_{0}(b))=0$ .

LEMMA 5. Let $\mu_{1}$ be the canonical rational homomorphism of $A$ onto
$A_{1}=A/\varphi^{*}(A^{*})$ . Then $\delta_{t^{*}}$ induces an isomorphism of $\mathfrak{D}_{0}(A)/\delta\mu_{1}(\mathfrak{D}_{0}(A_{1}))$ onto

$\mathfrak{D}_{0}(\varphi^{*}(A^{*}))^{9)}$ .
PROOF. Clearly $\delta_{C^{*}}maps\mathfrak{D}_{0}(A)onto\mathfrak{D}_{0}(\varphi^{*}(A^{*}))surjectivelyand,$ $as\mu_{1^{\circ f^{*}}}=0$ ,

the kernel of $\delta\zeta^{*}$ in $\mathfrak{D}_{0}(A)$ contains $\delta\mu_{1}(\mathfrak{D}_{0}(A_{1}))$ . Since $\mu_{1}$ is separable, we
have $\dim\delta\mu_{1}(\mathfrak{D}_{0}(A_{1}))=\dim \mathfrak{D}_{0}(A_{1})=\dim \mathfrak{D}_{0}(A)-dim\mathfrak{D}_{0}(\varphi^{*}(A^{*}))$ , which proves
Lemma.

In the following, we assume that
1) the characteristic $p$ of the universal domain does not divide the index

$(G:G_{0})$ .
2) the rational homomorphism $\varphi$ is separable.

We note that, as we have $\varphi=\varphi^{*}\circ\pi$ and $\pi$ is generically surjective and sepa-
rable, the assumption 2) is equivalent to

2’) the rational homomorphism $\varphi^{*}$ is separable.

Let $\alpha^{\prime}$ be the restriction of the rational mapping $\alpha$ to $\overline{G_{0}P,}i$ . $e$ . $\alpha^{\prime}=\alpha\circ c$ .
Then, as we have $\varphi(g_{0})=\alpha^{\prime}(g_{0}P)-\alpha(P),$ $\alpha^{\prime}-\alpha(P)$ defines a generically sur-
jective rational mapping of $\overline{G_{0}P}$ to $\varphi^{*}(A^{*})$ defined over $k(P)$ and we have
(18) $(\alpha-\alpha(P))\circ c=f^{*}\circ(\alpha^{\prime}-\alpha(P))$ .
Moreover, as $\varphi$ is the composite of the generically surjective rational mapping
$g_{0}\rightarrow g_{0}P$ of $G_{0}$ to $\overline{G_{0}}P$ and of $\alpha^{\prime}-\alpha(P)$ , the rational mapping $\alpha^{\prime}-\alpha(P)$ is also

7) Cf. [3].
8) See Cor. 2 of Theorem 2.
9) See footnote 3).
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separable by our assumption $2)^{10)}$ .
THEOREM 5. Let $\omega_{0}$ be a linear differential form on $V_{G}$ . If $\delta f(\omega_{0})$ belongs

to $\delta\alpha(\mathfrak{D}_{0}(A))$ , then $\omega_{0}$ belongs to $\delta\alpha_{0}(\mathfrak{D}_{0}(A_{0}))$ .
PROOF. We have $\delta f(\omega_{0})=\delta\alpha(\theta)$ with an element $\theta$ in $\mathfrak{D}_{0}(A)$ and so we

have $\delta_{t}\circ\delta f(\omega_{0})=\delta f\circ\delta\alpha(\theta)=\delta\alpha^{\prime}\circ\delta\zeta^{*}(\theta)$ (see (18)), which is equal to $\delta c\circ\delta f_{0}\circ\delta\overline{f}(\omega_{0})$

$=0$ (see Lemma 4). Then, as $\alpha^{\prime}-\alpha(P)$ is separable, we see that $\delta\prime^{*}(\theta)=0$

and so there exists an element $\theta_{1}$ of $\mathfrak{D}_{0}(A_{1})$ such that $\theta=\delta\mu_{1}(\theta_{1})$ (see Lemma
5). Hence we have $\delta f_{0}\circ\delta\overline{f}(\omega_{0})=\delta\alpha\circ\delta\mu_{1}(\theta_{1})=\delta f_{0}\circ\delta\alpha_{1}(\theta_{1})$ (see (14)) and, as $f_{0}$

is separable, $\delta\overline{f}(\omega_{0})=\delta\alpha_{1}(\theta_{1})$ . As the characteristic $p$ does not divide the
degree $(G:G_{0})$ of the Galois covering $f:V_{c_{0}}\rightarrow V_{G}$ by our assumption 1), we
have $\omega_{0}=\delta\alpha_{0}(\theta_{0})$ with an element $\theta_{0}$ of $\mathfrak{D}_{0}(A_{0})$ (cf. [4]).

Since $\delta\alpha$ (resp. $\delta\alpha_{0}$) maps $\mathfrak{D}_{0}(A)$ (resp. $\mathfrak{D}_{0}(A_{0})$) injectively into $\mathfrak{D}_{0}(V)$ (resp.
$\mathfrak{D}_{0}(V_{G}))$ , we have the following

THEOREM 5’. Let $V$ and $V_{G}$ be complete and nonsingular. Then we have

\langle 19) $0\leqq\dim \mathfrak{D}_{0}(V_{G})-\dim \mathfrak{D}_{0}(A_{0})\leqq\dim \mathfrak{D}_{0}(V)-\dim \mathfrak{D}_{0}(A)$ .
$CoROLLARY$ . If we have $\delta\alpha(\mathfrak{D}_{0}(A))=\mathfrak{D}_{0}(V)$ , then we have also $\delta\alpha_{0}(\mathfrak{D}_{0}(A_{0}))$

$=\mathfrak{D}_{0}(V_{G})$ .
For the Albanese variety $(B, \beta)$ of $\overline{G_{0}P}$ , there exists an isogeny $\psi$ of $B$

onto $\varphi^{*}(A^{*})$ such that $\alpha^{\prime}-\alpha(P)=\psi\circ\beta+constant$ (see Lemma 3, (5)). Since
$\overline{G_{0}P}$ is birationally equivalent to a homogeneous space for $G_{0},$ $\beta$ is generically
surjective (cf. [6]) and so $\psi$ is separable by our assumption.

LEMMA6. $\delta\zeta inducesasurjectivehomomorphismof\delta\alpha(\mathfrak{D}_{0}(A))onto\delta\beta(\mathfrak{D}_{0}(B))$

with the kernel $\delta\alpha\circ\delta\mu_{1}(\mathfrak{D}_{0}(A_{1}))=\delta f_{0}\circ\delta\alpha_{1}(\mathfrak{D}_{0}(A_{1}))$ .
PROOF. As $\psi$ is a separable isogeny, we have $\delta\psi(\mathfrak{D}_{0}(\varphi^{*}(A^{*}))=\mathfrak{D}_{0}(B)$ and

so $\delta c\circ\delta\alpha(\mathfrak{D}_{0}(A))=\delta\beta\circ\delta\psi\circ\delta^{*}(\mathfrak{D}_{0}(A))=\delta\beta(\mathfrak{D}_{0}(B))$ . On the other hand, for an
element $\theta$ of $\mathfrak{D}_{0}(A),$ $\delta c\circ\delta\alpha(\theta)=0$ if and only if $\delta\alpha^{\prime}\circ\delta\iota^{*}(\theta)=0$ (see (18)), $i$ . $e$ .
$\delta c^{*}(\theta)=0$ . Hence we have the assertion (see Lemma 5 and (14)).

Therefore we have the following
THEOREM 6. Let $V$ and $V_{a_{0}}$ be complete and nonsingular. If we have

$\delta\alpha(\mathfrak{D}_{0}(A))=\mathfrak{D}_{0}(V)$ , then the adjoint mapping $\delta f$ induces an isomorphism of
$\mathfrak{D}_{0}(V)/\delta f_{0}(\mathfrak{D}_{0}(V_{G_{0}}))$ onto $\delta\beta(\mathfrak{D}_{0}(B))$ .

We suppose that $G_{0}$ operates regularly on $V$ . Then, for a point $P_{0}$

on $V$ and the inclusion mapping $c_{0}$ of $\overline{G_{0}P}_{0}$ into $V$ (cf. \S 2), we have also
$(\alpha-\alpha(P_{0}))\circ c_{0}=c^{*}\circ(\alpha^{(0)}-\alpha(P_{0}))$ , where $\alpha^{(0)}$ is the restriction of $\alpha$ to $\overline{G_{0}P}_{0^{11)}}$ .
Moreover, for the Albanese variety $(B_{0}, \beta_{0})$ of $\overline{G_{0}P}_{0}$ , the isogeny $\psi_{0}$ of $B_{0}$ onto
$\varphi^{*}(A^{*})$ defined in \S 2 is also separable by the assumption 2) and so we can

10) As seen in the following arguments, we can replace the assumption 2) by the
weak one: $\alpha^{\prime}-\alpha(P)$ is separable.

11) Since $V$ is assumed to be nonsingular, $\alpha$ is everywhere defined.
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prove, in a similar way as the proof of Lemma 6, that $\delta c_{0}$ induces a surjec-
tive homomorphism of $\delta\alpha(\mathfrak{D}_{0}(A))onto\delta\beta_{0}(\mathfrak{D}_{0}(B_{0}))withthekerne1\delta\alpha\circ\delta\mu_{1}(\mathfrak{D}_{0}(A_{1}))$ .
In particular, if the orbit $G_{0}P_{0}$ is closed, then the variety $G_{0}P_{0}$ is a complete
homogeneous space for $G_{0}$ and so we have $\mathfrak{D}_{0}(G_{0}P_{0})=\delta\beta_{0}(\mathfrak{D}_{0}(B_{0}))$ (cf. Appendix).
Hence we have

THEOREM 6’. If $G_{0}$ operates regularly on $V$ , then, under the same assump-
tion as in Theorem 6 the adjoint mapping $\delta_{t_{0}}$ induces an isomorphism of
$\mathfrak{D}_{0}(V)/\delta f_{0}(\mathfrak{D}_{0}(V_{a_{0}}))$ onto $\delta\beta_{0}(\mathfrak{D}_{0}(B_{0}))$ . In particular, if $G_{0}P_{0}$ is closed, $\delta c_{0}$ induces
an isomorphism of $\mathfrak{D}_{0}(V)/\delta f_{0}(\mathfrak{D}_{0}(V_{o_{0}}))$ onto $\mathfrak{D}_{0}(G_{0}P_{0})$ .

We note that there exists always a closed $G_{0}$-orbit on $V,$ $i$ . $e$ . the $G_{0}$-orbit
having the smallest dimension (cf. [1]). Moreover, if the quotient space $V/G_{0}$

exists, then all the $G_{0}$-orbits on $V$ are closed. If $G_{0}=A^{*}$ is an abelian variety,
then all the $G_{0}$-orbits are also closed (cf. [7]).

When we have $\delta\alpha(\mathfrak{D}_{0}(A))=\mathfrak{D}_{0}(V)$ , Lemma 6 implies that an element $\omega$ of
$\mathfrak{D}_{0}(V)$ belongs to $\delta f_{0}\circ\delta\alpha_{1}(\mathfrak{D}_{0}(A_{1}))$ if and only if $\delta\zeta(\omega)=0$ . On the other hand,
we know, under the assumption 1), an element $\omega_{1}$ of $\delta\alpha_{1}(\mathfrak{D}_{0}(A_{1}))$ belongs to
$\delta\overline{f}\circ\delta\alpha_{0}(\mathfrak{D}_{0}(A_{0}))$ if and only if $\delta\overline{g}(\omega_{1})=\omega_{1}$ for all the elements $\overline{g}$ of the Galois
group $\overline{G}=G/G_{0}$ of the Galois covering $f:V_{o_{0}}\rightarrow V_{G}$ (cf. [5])12). Moreover we
have

(20) $\delta g\circ\delta f_{0}=\delta f_{0}\circ\delta\overline{g}$

for all $g$ in $G$ , where $\overline{g}$ is the coset containing $g^{12)}$ .
THEOREM 7. Let $V$ and $V_{G}$ be complete and nonsingular. When we have

$\delta\alpha(\mathfrak{D}_{0}(A))=\mathfrak{D}_{0}(V)$ , an element $\omega$ of $\mathfrak{D}_{0}(V)$ belongs to the subspace $\delta f(\mathfrak{D}_{0}(V_{G}))$ if
and only if
(21) $\delta\zeta(\omega)=0$ and $\delta g(\omega)=\omega$

for all $g$ in $G^{13)}$ .
PROOF. If $\omega$ belongs to $\delta f(\mathfrak{D}_{0}(V_{G}))\subset\delta f_{0}(\mathfrak{D}_{0}(V_{a_{0}}))$ , we have $\delta c(\omega)=0$ (see

Lemma 4), which implies that there exists an element $\theta_{1}$ of $\mathfrak{D}_{0}(A_{1})$ such that
$\omega=\delta f_{0}\circ\delta\alpha_{1}(\theta_{1})$ (see Lemma 6). Then we have $\delta\alpha_{1}(\theta_{1})=\delta f\overline{(}\omega_{0})$ with $\omega_{0}$ in
$\mathfrak{D}_{0}(V_{G})=\delta\alpha_{0}(\mathfrak{D}_{0}(A_{0}))$ and so $\delta\overline{g}(\delta\overline{f}(\omega_{0}))=\delta\overline{f}(\omega_{0})$ for all $\overline{g}$ in $\overline{G}$ (cf. [5]), i. e.
$\delta g(\omega)=\omega$ for all $g$ in $G$ (see (20)). Conversely if we have $\delta c(\omega)=0$ , there
exists an element $\theta_{1}$ of $\mathfrak{D}_{0}(A_{1})$ such that $\omega=\delta f_{0}\circ\delta\alpha_{1}(\theta_{1})$ (see Lemma 6).
Moreover, if $\delta g(\omega)=\omega$ , we have $\delta\overline{g}\circ\delta\alpha_{1}(\theta_{1})=\delta\alpha_{1}(\theta_{1})$ (see (20)), which implies
that we have $\delta\alpha_{1}(\theta_{1})=\delta\overline{f}(\omega_{0})$ with some $\omega_{0}$ in $\mathfrak{D}_{0}(V_{G})$ (cf. [5]). Hence we have
$\omega=\delta f_{0}\circ\delta f\overline{(}\omega_{0})=\delta f(\omega_{0})$ .

12) We denote by $\delta g$ (resp. $\delta\overline{g}$) the adjoint mapping of the birational mapping of
$V$ to $V:P\rightarrow gP$ (resp. of $V_{G_{0}}$ to V $G_{0}$ : $Q\rightarrow\overline{g}Q$) for an element $g$ of $G$ (resp. $\overline{g}$ of $\overline{G}$).

13) For any $\omega$ in $\mathfrak{D}_{0}(V)$ and any $g_{0}$ in $G_{0}$ , we have $\delta g_{0}(\omega)=\omega$ (cf. [7]).
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We suppose that $G$ is a linear algebraic group. Then we have $G_{0}=L$

and $\varphi(G_{0})=\{0\}$ and so clearly the assumption 2) is satisfied. Moreover the
Albanese variety $B$ of $\overline{LP}$ is trivial, $i$ . $e$ . $\dim B=0$ . Therefore we have the
following results (see Theorems 5’, 6, 7).

$CoROLLARY$ . If $G$ is linear and we have $\delta\alpha(\mathfrak{D}_{0}(A))=\mathfrak{D}_{0}(V)$ , then, under
the assumption 1), we have $\delta\alpha_{0}(\mathfrak{D}_{0}(A_{0}))=\mathfrak{D}_{0}(V_{G})$ and $\delta f(\mathfrak{D}_{0}(V_{G}))=\{\omega\in \mathfrak{D}_{0}(V)|$

$\delta g(\omega)=\omega$ for all $g$ in $G$ }. In particular, we have $\delta f_{0}(\mathfrak{D}_{0}(V_{G_{0}}))=\mathfrak{D}_{0}(V)$ .

Appendix. Complete homogeneous spaces

In this appendix, we shall consider a complete homogeneous space $V$ with
respect to a connected algebraic group $\tilde{G}$ and the space $\mathfrak{D}_{0}(V)$ .

PROPOSITION 1. $V$ is birationally equivalent to the direct product of the
Albanese variety $A=Alb(V)$ and of a rational variety.

PROOF. We may assume that $\tilde{G}$ is generated by an abelian variety $\tilde{A}$

and a connected linear algebraic group $\tilde{L}$ (cf. [6]). Let $\tilde{B}$ be a Borel subgroup
of $\tilde{L}$. Then, since $V$ is complete, there exists a point $P_{0}$ on $V$ which is fixed
by all the elements of $\tilde{B}$ (cf. [1]). Let $K$ be a field of definition for $V,\tilde{G},\tilde{A}$ ,
$\tilde{L}$, the operation of $\tilde{G}$ on $V$ and the solvability for $\tilde{B}$, over which $P_{0}$ is
rational. Let $(a\sim_{1},a\sim_{2},l\sim_{1}, l_{2}^{\sim})$ be a generic point of $\tilde{A}\times\tilde{A}\times\tilde{L}\times\tilde{L}$ over $K$. Then,

as $\pi_{B}^{\sim}(l)\sim_{1}$ and $\pi_{B}^{\sim}(l)^{14)}\sim_{2}$ are independent generic points of $\tilde{L}/\tilde{B}$ over $K$ and $\tilde{L}/\tilde{B}$

is a prehomogeneous space for $\tilde{B}$ (cf. [2]), $i$ . $e$ . there exists a B-orbit on $\tilde{L}/\tilde{B}$

which contains an open set of $\tilde{L}/\tilde{B}$, we have $\pi_{\overline{B}}(l)\sim_{2}=\tilde{b}\pi_{B}^{\sim}(l)\sim_{1}$ with some $\tilde{b}$ in $\tilde{B}$.
As $\tilde{A}$ is contained in the center of $\tilde{G}$ (cf. [8]), we have $\pi_{B}^{\sim}(\sim_{2}al)=(\sim_{2}aa^{-1}\sim_{1}\tilde{b})\pi_{B}^{\sim}(\sim_{1}al)\sim_{2}\sim_{1}$ ,

which implies that $\tilde{G}/\tilde{B}$ is a prehomogeneous space for a connected algebraic
group $\tilde{A}\tilde{B}$ . Then, considering a surjective rational mapping $\tilde{g}\rightarrow\tilde{g}P_{0}$ of $\tilde{G}$ to
$V$ , we see that there exists a surjective rational mapping of $\tilde{G}/\tilde{B}$ to $V$ , which
commutes with the operations of $\tilde{G}$ on $\tilde{G}/\tilde{B}$ and on $V$ . Hence $V$ is also a
prehomogeneous space for $\tilde{A}\tilde{B}$ defined over $K$. Then there exists a homo-
geneous space $V^{*}$ for $\tilde{A}\tilde{B}$, which is birationally equivalent to $V$ . Since $\tilde{A}\tilde{B}/\tilde{B}$

is an abelian variety, the solvable group $\tilde{B}$ is the maximal connected linear
subgroup of $\tilde{A}\tilde{B}$. Hence we see that $V^{*}$ is birationally equivalent to the
direct product of the Albanese variety and of a rational variety (cf. [6]).

Then we have easily the following
PROPOSITION 2. Let $\alpha$ be a canonical mapping of $V$ into $A=Alb(V)$ .

Then we have $\mathfrak{D}_{0}(V)=\delta\alpha(\mathfrak{D}_{0}(A))$ and $\mathfrak{D}_{0}(V)$ is the set of all the G-invariant
linear differential forms on $V$ .

Department of Mathematics
Tsuda College, Tokyo

14) $\pi_{B}^{\sim}$ denotes the canonical rational mapping of $\tilde{G}$ to $\tilde{G}/\tilde{B}$ .
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