# On the variety of orbits with respect to an algebraic group of birational transformations 

By Makoto IsHIDA

(Received June 12, 1965)

For an algebraic variety $V$ and an algebraic group $G$ operating on $V$, we can construct the variety $V_{G}$ of $G$-orbits on $V$ and the natural rational mapping $f$ of $V$ to $V_{G}$ (cf. [8]). The variety $V_{G}$ is obtained as a model of the subfield of all the $G$-invariant elements in the field of rational functions on $V$.

The purpose of this paper is to prove several results concerning on the relations between the Albanese varieties (and the spaces of linear differential forms of the first kind) of $V$ and of $V_{G}$. Denoting by $G_{0}$ the connected component of $G$ containing the identity element, we see that the finite group $G / G_{0}$ operates on the variety $V_{G_{0}}$ of $G_{0}$-orbits on $V$ and $V_{G}$ is naturally birationally equivalent to the variety $\left(V_{G_{0}}\right)_{G / G_{0}}$ of $\left(G / G_{0}\right)$-orbits on $V_{G_{0}}$. Hence we may restrict ourselves to the two cases: (i) $G$ is connected and (ii) $G$ is a finite group; and the second case (ii) has already been treated in our previous paper [3].

In §1, we shall give the definition of the variety $V_{G}$ and prove several preliminary results.

In $\S 2$, we shall first construct the Albanese variety $\operatorname{Alb}\left(V_{G}\right)^{1)}$ of $V_{G}$ as a quotient abelian variety of the Albanese variety $A=\operatorname{Alb}(V)$ of $V$ (Theorem 1). In particular, for the connected algebraic group $G_{0}$, we define a rational homomorphism $\varphi$ of $G_{0}$ into $A$ and it will be proved that $A_{1}=A / \varphi\left(G_{0}\right)$ is the Albanese variety of $V_{G_{0}}$ (Theorem 2). Then we shall also prove that $\operatorname{Alb}(V)$ is isogenous to the direct product of $\operatorname{Alb}\left(V_{G_{0}}\right)$ and the Albanese variety of the generic $G_{0}$-orbit $\overline{G_{0} P^{2)}}$ on $V$ Theorem 3) and we have the inequality $0 \leqq \operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right) \leqq \operatorname{dim} V-\operatorname{dim} V_{G_{0}}$. Moreover, by means of the $l$-adic representations $M_{i}^{(A)}$ and $M_{i}^{\left(a^{*}\right)}$ of the rings of endomorphisms of $A$ and $A^{*}=\operatorname{Alb}\left(G_{0}\right)$, we define the two matrix representations of the finite group $G / G_{0}$. Then, if $G$ operates regularly and effectively on $V$, we shall show that the dimension of $\operatorname{Alb}\left(V_{G}\right)$ is equal to the half of the difference of the multi-

[^0]plicities of the identity representation in $\left(M_{i}^{(A)} \mid G / G_{0}\right)$ and in ( $\left.M_{i}^{\left(A^{*}\right)} \mid G / G_{0}\right)$ Theorem 4).

In $\S 3$, we suppose that $V$ and $V_{G}$ are complete and nonsingular. Then, under some assumptions on the index ( $G: G_{0}$ ) and on the homomorphism $\varphi$, we shall prove the inequality $0 \leqq \operatorname{dim} \mathfrak{D}_{0}\left(V_{G}\right)-\operatorname{dim} \mathfrak{D}_{0}\left(\operatorname{Alb}\left(V_{G}\right)\right) \leqq \operatorname{dim} \mathfrak{D}_{0}(V)$ $-\operatorname{dim} \mathfrak{D}_{0}(\operatorname{Alb}(V))^{3 l}$ Theorem 5). Next, for the inclusion mapping $c$ of $G_{0} P$ into $V$, we shall decide the image and the kernel of the adjoint mapping $\delta c$ of $\mathfrak{D}_{0}(V)$ into $\mathscr{D}_{0}\left(\overline{G_{0}} P\right)$ Theorem 6) and then shall give a necessary and sufficient condition for an element $\omega$ of $\mathscr{D}_{0}(V)$ to belong to $\delta f\left(\mathfrak{D}_{0}\left(V_{G}\right)\right.$ ) Theorem 7).

Finally, as an appendix, we shall consider a complete homogeneous space $V$ for a connected algebraic group $\tilde{G}$. It will be proved that $V$ is birationally equivalent to the direct product of $\operatorname{Alb}(V)$ and of a rational variety and so we have $\operatorname{dim} \mathfrak{D}_{0}(V)=\operatorname{dim} \mathfrak{D}_{0}(\operatorname{Alb}(V))$.

## § 1. The variety of orbits

Let $V$ be an algebraic variety and let $G$ be an algebraic group operating on $V$; let $k$ be a field of definition for $V, G$ and the operation of $G$ on $V$. This implies that, for each component $G_{i}$ of $G$, there exists a rational mapping $\left(g_{i}, P\right) \rightarrow g_{i} P$ of $G_{i} \times V$ to $V$ defined over $k$ such that if ( $g_{i}, g_{j}, P$ ) is a generic point of $G_{i} \times G_{j} \times V$ over $k$, then we have $g_{i}\left(g_{j} P\right)=\left(g_{i} g_{j}\right) P$ and $k\left(g_{i}, g_{i} P\right)=k\left(g_{i}, P\right)(c f . ~[8], ~[10]) . ~$

Then we can construct the variety $V_{G}$ of $G$-orbits on $V$ and the natural rational mapping $f$ of $V$ to $V_{G}$, both defined over $k$, which are characterized to within a birational correspondence by the following properties: $f$ is a generically surjective and separable mapping and, for generic points $P_{1}, P_{2}$ of $V$ over $k$, we have $f\left(P_{1}\right)=f\left(P_{2}\right)$ if and only if we have $g_{1} P_{1}=g_{2} P_{2}$ with generic points $g_{1}, g_{2}$ of some components of $G$ over $k\left(P_{1}, P_{2}\right)$ (cf. [8]). If we identify $k\left(V_{G}\right)$ with a subfield of $k(V)$ by $f$, then $k\left(V_{G}\right)$ consists of all $G$-invariant functions. Let $P$ be a generic point of $V$ over $k$ and $g_{i}$ a generic point of a component $G_{i}$ of $G$ over $k(P)$. Then $g_{i} P$ is also a generic point of $V$ over $k$ and, as $\left(g g_{i}^{-1}\right) g_{i} P=g P$ with a generic point $g$ of a component of $G$ over $k\left(g_{i}, P\right)$, we have $f\left(g_{i} P\right)=f(P)$.

Let $N$ be a normal algebraic subgroup of $G$ defined over $k$. Let $\pi_{N}$ be the canonical rational homomorphism of $G$ to $G / N$ and $f^{\prime}$ the natural rational mapping of $V$ to the variety $V_{N}$ of $N$-orbits on $V$. Then, by the rule $\pi_{N}\left(g_{i}\right) f^{\prime}(P)=f^{\prime}\left(g_{i} P\right)$ for a generic point $\left(g_{i}, P\right)$ of each $G_{i} \times V$ over $k, G / N$ operates on the variety $V_{N}$ and the variety $\left(V_{N}\right)_{G / N}$ of $(G / N)$-orbits on $V_{N}$ is

[^1]naturally birationally equivalent to $V_{G}$ (cf. [8]). On the other hand, let $\lambda$ be a surjective rational homomorphism of $G$ to an algebraic group $G^{\prime}$ operating on $V$. We suppose that $G^{\prime}, \lambda$ and the operation of $G^{\prime}$ on $V$ are defined over $k$. If the operation of $G$ on $V$ is the composite of $\lambda$ and that of $G^{\prime}$, i.e. we have $g_{i} P=\lambda\left(g_{i}\right) P$ for a generic point ( $g_{i}, P$ ) of each $G_{i} \times V$ over $k$, then the variety $V_{G^{\prime}}$ of $G^{\prime}$-orbits on $V$ is considered as the variety of $G$-orbits on $V$ and conversely.

Let $G_{0}$ be the component of $G$ containing the identity element $e$ and let $f_{0}$ be the natural rational mapping of $V$ to the variety $V_{G_{0}}$ of $G_{0}$-orbits on $V$. Let $P$ be a generic point of $V$ over $k$ and put $Q=f_{0}(P)$, which is a generic point of $V_{G_{0}}$ over $k$. Then, as $k(Q)$ is algebraically closed in $k(P)$ and $f_{0}$ is separable (cf. [8]), $P$ has a locus $X$ over $k(Q)$. For a generic point $g_{0}$ of $G_{0}$ over $k(P), g_{0} P$ is a generic point of $V$ over $k$ and we have $f_{0}\left(g_{0} P\right)=f_{0}(P)=Q$ and the locus of $g_{0} P$ over $k(Q)$ coincides with $X$. When $G_{0}$ operates regularly on $V, X$ is equal to the Zariski closure $\overline{G_{0} P}$ of the $G_{0}$-orbit of $P$ (i.e. the locus of $g_{0} P$ over $k(P)$ ). In fact, let $P^{\prime}$ be a generic point of $X$ over $k(P)$. Then $P^{\prime}$ is a generic specialization of $P$ over $k(Q)$ and so we have $f_{0}\left(P^{\prime}\right)=$ $f_{0}(P)=Q$, which implies that we have $g_{0} P=g_{0}^{\prime} P^{\prime}$ with generic points $g_{0}, g_{0}^{\prime}$ of $G_{0}$. As $G_{0}$ operates regularly on $V$, we have $P^{\prime}=g_{0}^{\prime-1} g_{0} P$ and so $X$ is contained in $\overline{G_{0} P}$. Conversely, we have $\operatorname{dim} \overline{G_{0} P}=\operatorname{dim}_{k(P)} g_{0} P \leqq \operatorname{dim}_{k(Q)} g_{0} P$ $=\operatorname{dim} X$. Hence we have $X=\overline{G_{0} P}$. In the following, whether or not $G_{0}$ operates regularly on $V$, we denote by $\overline{G_{0} P}$ the locus $X$ of $P$ over $k(Q)$. Hence we have

$$
\begin{equation*}
\operatorname{dim} \overline{G_{0} P}=\operatorname{dim} V-\operatorname{dim} V_{G_{0}} . \tag{1}
\end{equation*}
$$

Let $V^{\prime}$ be an algebraic variety birationally equivalent to $V$ such that $G_{0}$ operates regularly on $V^{\prime}$ and the operations of $G_{0}$ on $V$ and on $V^{\prime}$ commute with the birational transformation $T$ (cf. [10]). Then $X=\overline{G_{0} P}$ is birationally equivalent to the locus of $T(P)$ over the $G_{0}$-invariant subfield $k(Q)$ of $k(P)$ $=k(T(P))$, which coincides with the closure of the orbit $G_{0} T(P)$ in $V^{\prime}$. Hence we see that $\overline{G_{0} P}$ is birationally equivalent to a prehomogeneous space (and so to a homogeneous space) for $G_{0}$.

## § 2. Albanese varieties

Let $A$ be an Albanese variety of $V$ and $\alpha$ a canonical mapping of $V$ into $A$, both defined over $k$.

Let $G_{0}, G_{1}, \cdots, G_{n}$ be the components of $G$, all defined over $k$, and let ( $g_{i}, P$ ) be a generic point of $G_{i} \times V$ over $k(i=0,1, \cdots, n)$. Let $W_{i}$ be the locus of $\alpha\left(g_{i} P\right)-\alpha(P)$ over $k$ and let $C$ be the intersection of all the closed
subgroups of $A$ containing $W_{0}, W_{1}, \cdots, W_{n}$. Then $C$ is an algebraic subgroup of $A$, defined over $k$ (cf. [9]).

Lemma 1. Let $\lambda^{\prime}$ be a rational homomorphism of $A$ into an abelian variety $A^{\prime}$, defined over $K \supset k$, such that $\lambda^{\prime}(C)=0$. Then there exists a rational mapping $\alpha^{\prime}$ of $V_{G}$ into $A^{\prime}$, defined over $K$, such that $\lambda^{\prime} \circ \alpha=\alpha^{\prime} \circ f$. Moreover, if $\lambda^{\prime}$ is surjective, then $\alpha^{\prime}\left(V_{G}\right)$ generates $A^{\prime}$.

Proof. Let $P$ be a generic point of $V$ over $K$. For any generic point $g_{i}^{\prime}$ of $G_{i}$ over $K(P)$, we have $\lambda^{\prime}\left(\alpha\left(g_{i}^{\prime} P\right)\right)=\lambda^{\prime}(\alpha(P))$, which implies that $\lambda^{\prime}(\alpha(P))$ is rational over $K(f(P))$. Hence there exists a rational mapping $\alpha^{\prime}$ such that $\lambda^{\prime} \circ \alpha=\alpha^{\prime} \circ f$. If $\lambda^{\prime}$ is surjective, then any point $y^{\prime}$ of $A^{\prime}$ can be written in the form $y^{\prime}=\Sigma^{t} \lambda^{\prime} \circ \alpha\left(P_{i}^{\prime}\right)$ with some $P_{i}^{\prime}$ in $V$. Then $y^{\prime}$ is a specialization of $y=\sum^{t} \lambda^{\prime} \circ \alpha\left(P_{i}\right)=\sum^{t} \alpha^{\prime} \circ f\left(P_{i}\right)$ over $K$, where $P_{1}, \cdots, P_{t}$ are independent generic points of $V$ over $K$.

Lemma 2. Let $\alpha^{\prime}$ be a rational mapping of $V_{G}$ into an abelian variety $A^{\prime}$. Then there exists a rational homomorphism $\lambda^{\prime}$ of $A$ into $A^{\prime}$ such that $\lambda^{\prime} \circ \alpha$ $=\alpha^{\prime} \circ f+$ constant and $\lambda^{\prime}(C)=0$.

Proof. From the universal mapping property of $\alpha$, it follows the existence of the rational homomorphism $\lambda^{\prime}$ such that $\lambda^{\prime} \circ \alpha=\alpha^{\prime} \circ f+$ constant. Let $\lambda^{\prime}$ and $\alpha^{\prime}$ be defined over $K \supset k$ and ( $g_{i}, P$ ) a generic point of $G_{i} \times V$ over $K$. Then we have $f\left(g_{i} P\right)=f(P)\left(\mathrm{cf}\right.$. § 1) and so $\lambda^{\prime}\left(\alpha\left(g_{i} P\right)-\alpha(P)\right)=\alpha^{\prime}\left(f\left(g_{i} P\right)\right)-\alpha^{\prime}(f(P))$ $=0$. Since $\alpha\left(g_{i} P\right)-\alpha(P)$ is a generic point of $W_{i}$ over $K$ and $\lambda^{\prime}$ is defined over $K$, we have $\lambda^{\prime}(C)=0$.

Theorem 1. The abelian variety $A_{0}=A / C$ is an Albanese variety of $V_{G}$, defined over $k$. Moreover, there exists a canonical mapping $\alpha_{0}$ of $V_{G}$ into $A_{0}$ such that

$$
\begin{equation*}
\alpha_{0} \circ f=\mu \circ \alpha, \tag{2}
\end{equation*}
$$

where $\mu$ is the canonical homomorphism of $A$ onto $A / C$.
Proof. Since we have $\mu(C)=0$, there exists a rational mapping $\alpha_{0}$ of $V_{G}$ into $A_{0}$, defined over $k$, such that $\mu \circ \alpha=\alpha_{0} \circ f$ and $\alpha_{0}\left(V_{G}\right)$ generates $A_{0}$ (see Lemma 1). On the other hand, for a rational mapping $\alpha^{\prime}$ of $V_{G}$ into an abelian variety $A^{\prime}$, there exists a rational homomorphism $\lambda^{\prime}$ of $A$ into $A^{\prime}$ such that $\lambda^{\prime} \circ \alpha=\alpha^{\prime} \circ f+$ constant and $\lambda^{\prime}(C)=0$ (see Lemma 2). Then we have a rational homomorphism $\rho$ of $A_{0}=A / C$ into $A^{\prime}$ such that $\lambda^{\prime}=\rho \circ \mu$, from which we have $\alpha^{\prime}=\rho \circ \alpha_{0}+$ constant.

Let $L$ be the maximal connected linear algebraic subgroup of $G_{0}, A^{*}=G_{0} / L$ the Albanese variety of $G_{0}$ and $\pi$ the canonical homomorphism of $G_{0}$ onto $A^{*}$, all assumed to be defined over $k$. By a well-known theorem on abelian varieties, there exist a rational homomorphism $\varphi$ of $G_{0}$ into $A$, defined over $k$, an endomorphism $\eta$ of $A$ and a constant point $c$ of $A$ such that we have
$\alpha\left(g_{0} P\right)-\alpha(P)=\varphi\left(g_{0}\right)+\eta(\alpha(P))+c$. For $g_{0}=e$, we have $\eta(\alpha(P))+c=0$ and, as $\alpha(V)$ generates $A$, we see that $\eta=0$ and $c=0$, i. e.

$$
\begin{equation*}
\alpha\left(g_{0} P\right)-\alpha(P)=\varphi\left(g_{0}\right) . \tag{3}
\end{equation*}
$$

Since $\varphi(L)=0$, there exists a rational homomorphism $\varphi^{*}$ of $A^{*}$ into $A$, defined over $k$, such that $\varphi=\varphi^{*} \circ \pi$. If $G_{0}$ operates faithfully on $V$, then it is proved that $\varphi^{*}$ is an isogeny of $A^{*}$ to an abelian subvariety of $A$ (cf. [7]).

Theorem 2. The abelian variety $A_{1}=A / \varphi^{*}\left(A^{*}\right)$ is an Albanese variety of $V_{G_{0}}$ defined over $k$.

Proof. From the definition, the locus $W_{0}$ of $\alpha\left(g_{0} P\right)-\alpha(P)$ over $k$ coincides with the abelian subvariety $\varphi\left(G_{0}\right)=\varphi^{*}\left(A^{*}\right)$ of $A$ (see (3)).

Corollary 1. If $G_{0}=L$ is linear, then $\operatorname{Alb}\left(V_{L}\right)$ is isomorphic to $\operatorname{Alb}(V)^{4}$. Corollary 2. If $G_{0}$ operates faithfully on $V$, then we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right)=\operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(G_{0}\right) . \tag{4}
\end{equation*}
$$

Proof. $A^{*}$ is an Albanese variety of $G_{0}$ and $\varphi^{*}$ is an isogeny by our assumption (cf. [7]). Hence we have $\operatorname{dim} \varphi^{*}\left(A^{*}\right)=\operatorname{dim} \operatorname{Alb}\left(G_{0}\right)$.

Let $P$ be a generic point of $V$ over $k$ and let $(B, \beta)$ be an Albanese variety of the variety $\overline{G_{0}} P$. For the inclusion mapping $c$ of $G_{0} P$ into $V$, there exists a rational homomorphism $\psi$ of $B$ into $A$ such that $\alpha \circ \iota=\psi \circ \beta+$ constant. Hence we have, for a generic point $g_{0}$ of $G_{0}$ over $k(P)$,

$$
\begin{equation*}
\varphi\left(g_{0}\right)=\alpha \circ \iota\left(g_{0} P\right)-\alpha \circ \iota(P)=\psi \circ \beta\left(g_{0} P\right)+\text { constant } . \tag{5}
\end{equation*}
$$

Lemma 3. $\psi$ is an isogeny of $B$ onto $\varphi^{*}\left(A^{*}\right)$.
Proof. Let $G^{\prime}$ be a connected algebraic group which is the image of $G_{0}$ by a rational homomorphism $\lambda$ and operates faithfully on $V$ such that the operation of $G_{0}$ on $V$ is the composite of $\lambda$ and that of $G^{\prime}$ (cf. [10]). Let $A^{* \prime}$ $=G^{\prime} / L^{\prime}$ be the Albanese variety of $G^{\prime}$ and $\varphi^{* /}$ the rational homomorphism of $A^{* \prime}$ into $A$ defined in a similar way as $\varphi^{*}$. Then we have $V_{G_{0}}=V_{G^{\prime}}, \overline{G_{0} P}=\overline{G^{\prime}} P$ and $\varphi^{*}\left(A^{*}\right)=\varphi^{* \prime}\left(A^{* \prime}\right)$. We have $\psi(B) \supset \varphi^{*}\left(A^{*}\right)=\varphi^{* \prime}\left(A^{* \prime}\right)$ (see (5)) and so $\operatorname{dim} B \geqq \operatorname{dim} \psi(B) \geqq \operatorname{dim} \varphi^{* \prime}\left(A^{* \prime}\right)$. On the other hand, as $\overline{G^{\prime} P}=\overline{G_{0} P}$ is birationally equivalent to a homogeneous space for $G^{\prime}$ (cf. §1), we have $\operatorname{dim} B$ $\leqq \operatorname{dim} \operatorname{Alb}\left(G^{\prime}\right)=\operatorname{dim} A^{* \prime}(c f .[6])$. Since $\varphi^{* \prime}$ is an isogeny (cf. [7]), we have $\operatorname{dim} A^{* \prime}=\operatorname{dim} B=\operatorname{dim} \psi(B)=\operatorname{dim} \varphi^{* \prime}\left(A^{* \prime}\right)$ and so $\psi$ is an isogeny of $B$ onto $\varphi^{* \prime}\left(A^{* \prime}\right)=\varphi^{*}\left(A^{*}\right)$.

Since $A$ is isogenous to the direct product of $A_{1}$ and $\varphi^{*}\left(A^{*}\right)$ (see Theorem 2), we have the following

Theorem 3. $A=\operatorname{Alb}(V)$ is isogenous to the direct product of $A_{1}=\operatorname{Alb}\left(V_{G_{0}}\right)$ and of $B=\operatorname{Alb}\left(\overline{G_{0}} P\right): A \sim A_{1} \times B$. In particular, we have
4) See footnote 1).

$$
\begin{equation*}
\operatorname{dim} \operatorname{Alb}(V)=\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right)+\operatorname{dim} \operatorname{Alb}\left(\overline{G_{0}} P\right) . \tag{6}
\end{equation*}
$$

Corollary 1. We have

$$
\begin{equation*}
0 \leqq \operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right) \leqq \operatorname{dim} V-\operatorname{dim} V_{G_{0}} \tag{7}
\end{equation*}
$$

Proof. Since $G_{0} P$ is birationally equivalent to a homogeneous space for $G_{0}$, we have $\operatorname{dim} \operatorname{Alb}\left(\overline{G_{0}} \bar{P}\right) \leqq \operatorname{dim} \overline{G_{0} P}$ (cf. [6]) and so the inequality (7) (see (1), (6)).

Corollary 2. In Corollary 1,
(i) If $G_{0}=L$ is linear, then the equality $\operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right)=0$ holds. When $G_{0}$ operates faithfully on $V$, the converse is also true. In this case, we have $\operatorname{Alb}(V) \cong \operatorname{Alb}\left(V_{G_{0}}\right)$.
(ii) If $G_{0}=A^{*}$ is an abelian variety, then the equality $\operatorname{dim} \operatorname{Alb}(V)$ $-\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right)=\operatorname{dim} V-\operatorname{dim} V_{G_{0}}$ holds. When $G_{0}$ operates faithfully on $V$, the converse is also true.

Proof. (i) The equality holds if and only if $\varphi^{*}\left(A^{*}\right)=0$ (see Theorem 2); hence we have the assertion. (ii) The equality holds if and only if we have $\operatorname{dim} \mathrm{Alb}\left(\overline{G_{0} P}\right)=\operatorname{dim} \overline{G_{0} P}$, i. e. $G_{0} P$ is birationally equivalent to a homogeneous space for an abelian variety (cf. [6]); hence the first part is clear. Conversely, if the equality holds, we have $\left(\operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(V_{L}\right)\right)+\left(\operatorname{dim} \operatorname{Alb}\left(V_{L}\right)\right.$ $\left.-\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right)\right)=\left(\operatorname{dim} V-\operatorname{dim} V_{L}\right)+\left(\operatorname{dim} V_{L}-\operatorname{dim} V_{G_{0}}\right)$. Then we have $\operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(V_{L}\right)=0$ (see (i)) and, as $V_{G_{0}}=\left(V_{L}\right)_{A^{*}}, \operatorname{dim} \operatorname{Alb}\left(V_{L}\right)$ $-\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right)=\operatorname{dim} V_{L}-\operatorname{dim} V_{G_{0}}$ (see the first part of (ii)). Hence we have $\operatorname{dim} V-\operatorname{dim} V_{L}=\operatorname{dim} L P=0$ (see (1)); so, if $G_{0}$ operates faithfully on $V$, then, as $L$ is defined over $k$, we have $L=\{e\}$.

We suppose that $G_{0}$ operates regularly on $V$. Then, for a point $P_{0}$ on $V$, we denote by $\overline{G_{0} P_{0}}$ the Zariski closure of the $G_{0}$-orbit of $P_{0}$, i.e. the locus of $g_{0} P_{0}$ over $k\left(P_{0}\right)$ with a generic point $g_{0}$ of $G_{0}$ over $k\left(P_{0}\right)$, and by $\left(B_{0}, \beta_{0}\right)$ the Albanese variety of $\overline{G_{0} P_{0}}$. Clearly $\overline{G_{0} P_{0}}$ is also a prehomogeneous space for
 ample, if $P_{0}$ is simple on $\left.V\right)$, we have $\varphi\left(g_{0}\right)=\alpha\left(g_{0} P_{0}\right)-\alpha\left(P_{0}\right)$ for a generic point $g_{0}$ of $G_{0}$ over $k\left(P_{0}\right)$ and we can also prove, in a similar way as the proof of Lemma 3 and (5), that there exists an isogeny $\psi_{0}$ of $B_{0}$ onto $\varphi^{*}\left(A^{*}\right)$ such that $\varphi\left(g_{0}\right)=\psi_{0} \circ \beta_{0}\left(g_{0} P_{0}\right)+$ constant ${ }^{5}$. Hence we have

Theorem 3'. If $G_{0}$ operates regularly on $V$ and $\alpha\left(P_{0}\right)$ is defined, then $A=\operatorname{Alb}(V)$ is isogenous to the direct product of $A_{1}=\operatorname{Alb}\left(V_{\sigma_{0}}\right)$ and of $B_{0}$ $=\operatorname{Alb}\left(\bar{G}_{0} P_{0}\right): A \sim A_{1} \times B_{0}$.

Corollary. We have

[^2]\[

$$
\begin{equation*}
0 \leqq \operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right) \leqq \operatorname{dim} \overline{G_{0}} P_{0} . \tag{8}
\end{equation*}
$$

\]

In the rest of this section, we assume that $G$ operates regularly and effectively on $V$. Then, for the homomorphism $\varphi^{*}$ of $A^{*}=\operatorname{Alb}\left(G_{0}\right)$ into $A$, we have, using the notations in the proof of Lemma 3, $\varphi^{* / \circ} \circ=\varphi^{*}$. As $G_{0}$ operates effectively on $V$, the kernel of $\lambda$ must be trivial and so we see that $\varphi^{*}$ is also an isogeny.

For a point $g$ in $G$, we have $g G_{0} g^{-1} \subset G_{0}$ and, as $\pi$ is a canonical mapping of $G_{0}$ into the Albanese variety $A^{*}$, there exists an element $\xi_{g}$ of $\mathcal{A}\left(A^{*}\right)^{6)}$ such that

$$
\begin{equation*}
\pi\left(g g_{0} g^{-1}\right)=\xi_{g} \circ \pi\left(g_{0}\right) \tag{9}
\end{equation*}
$$

for all $g_{0}$ in $G_{0}$. Since $\pi$ is a homomorphism, we have $\xi_{g_{0}}=\delta_{A^{*}}{ }^{6}$ ) for $g_{0}$ in $G_{0}$ and so the mapping $g \rightarrow \xi_{g} \rightarrow M_{i}^{\left(\Lambda^{* *}\right)}\left(\xi_{g}\right)^{6)}$ defines a matrix representation of the finite group $G / G_{0}$.

On the other hand, for a point $g$ in $G$, there exist an element $\eta_{g}$ of $\mathcal{L}(A)$ and a constant point $a_{g}$ in $A$ such that

$$
\begin{equation*}
\alpha(g P)=\eta_{g} \circ \alpha(P)+a_{g} \tag{10}
\end{equation*}
$$

for a generic point $P$ of $V$. We have $\eta_{g_{0}}=\delta_{A}$ for $g_{0}$ in $G_{0}$ and so the mapping $g \rightarrow \eta_{g} \rightarrow M_{l}^{(A)}\left(\eta_{g}\right)$ defines also a matrix representation of the finite group $G / G_{0}$.

Theorem 4. Let $G=G_{0} g_{0} \cup G_{0} g_{1} \cup \cdots \cup G_{0} g_{n}\left(g_{0}=e\right)$ be the decomposition of $G$ into the cosets of $G_{0}$. Then we have

$$
\begin{align*}
\operatorname{dim} \operatorname{Alb}\left(V_{G}\right)= & \frac{1}{2} \operatorname{rank} M_{i}^{(A)}\left(\sum_{i=0}^{n} \eta_{g_{i}}\right)-\frac{1}{2} \operatorname{rank} M_{i}^{\left(A^{*}\right)}\left(\sum_{i=0}^{n} \xi_{z_{i}}\right)  \tag{11}\\
= & \frac{1}{2}\left(\text { the multiolicity of id in } M_{i}^{(A)} \mid G / G_{0}\right) \\
& -\frac{1}{2}\left(\text { the multiplicity of id in } M_{i}^{\left(A^{*}\right)} \mid G / G_{0}\right),
\end{align*}
$$

where id is the identity representation.
Proof. For a point $g$ in $G$ and a point $g_{0}$ in $G_{0}$, we have $\eta_{g} \circ \varphi\left(g_{0}\right)$ $=\eta_{g}\left(\alpha\left(g_{0} P\right)-\alpha(P)\right)=\alpha\left(\left(g g_{0} g^{-1}\right) g P\right)-\alpha(g P)=\varphi\left(g g_{0} g^{-1}\right) \quad$ (see (3)). Hence we have $\eta_{g}\left(\varphi\left(G_{0}\right)\right) \subset \varphi\left(G_{0}\right)$ and so $\eta_{g}$ induces an element $\eta_{g}^{*}$ of $\mathcal{A}\left(\varphi^{*}\left(A^{*}\right)\right)$. Since $\varphi=\varphi^{*} \circ \pi$, we see that $\varphi^{*} \circ \pi\left(g g_{0} g^{-1}\right)=\varphi^{*} \circ \xi_{g} \circ \pi\left(g_{0}\right)$ is equal to $\varphi\left(g g_{0} g^{-1}\right)$

[^3]$=\eta_{g} \circ \varphi\left(g_{0}\right)=\eta_{g} \circ \varphi^{*} \circ \pi\left(g_{0}\right)$. Hence we have $\varphi^{*} \circ \xi_{g}=\eta_{g} \circ \varphi^{*}$ for all $g$ in $G$ and, as $\varphi^{*}$ is an isogeny of $A^{*}$ to $\varphi^{*}\left(A^{*}\right)$, we have
\[

$$
\begin{equation*}
M_{i}^{\left(A^{*}\right)}\left(\xi_{g}\right)=M \cdot M_{l}^{\left(\varphi^{*}\left(a^{* *}\right)\right.}\left(\eta_{g}^{*}\right) \cdot M^{-1} \tag{12}
\end{equation*}
$$

\]

with a nonsingular matrix $M$ independent of $g$. Let $D$ be an abelian subvariety of $A$ such that $A=\varphi^{*}\left(A^{*}\right)+D$ and $\varphi^{*}\left(A^{*}\right) \cap D$ is a finite group. We take a rational prime $l$ which does not divide the order of $\varphi^{*}\left(A^{*}\right) \cap D$ and fix it. Then, taking suitable $l$-adic coordinates of $A$, we may assume that we have

$$
M_{l}^{(\Lambda)}\left(\eta_{g}\right)=\left(\begin{array}{cc}
M_{l}^{\left(\varphi^{*}\left(A^{*}\right)\right)}\left(\eta_{g}^{*}\right) & *  \tag{13}\\
0 & N_{g}^{*}
\end{array}\right) .
$$

Moreover we may assume that $V_{G}$ and $V_{G_{0}}$ are normal and so we have a Galois covering $\bar{f}: V_{G_{0}} \rightarrow V_{G}$ with the Galois group $\bar{G}=G / G_{0}$. (cf. §1). Let $f_{0}$ be the natural rational mapping of $V$ to $V_{G_{0}}$ and $\alpha_{1}$ the canonical mapping of $V_{G_{0}}$ into $A_{1}=\operatorname{Alb}\left(V_{G_{0}}\right)=A / \varphi^{*}\left(A^{*}\right)$ and let $\mu_{1}$ be the canonical homomorphism of $A$ onto $A_{1}=A / \varphi^{*}\left(A^{*}\right)$. Then we may assume that we have

$$
\begin{equation*}
\mu_{1} \circ \alpha=\alpha_{1} \circ f_{0} \tag{14}
\end{equation*}
$$

(see (2)). Let $\bar{g}$ be an element of $\bar{G}$, which is the coset of $G_{0}$ containing an element $g$ of $G$. Then we have $\bar{g}\left(f_{0}(P)\right)=f_{0}(g P)$ (cf. § 1 ). Moreover there exist an element $\bar{\eta} \bar{g}$ of $\mathcal{A}\left(A_{1}\right)$ and a constant point $\bar{a}_{\bar{g}}$ of $A_{1}$ such that we have $\alpha_{1}\left(\bar{g} f_{0}(P)\right)=\bar{\eta} \bar{g}_{g} \circ \alpha_{1}\left(f_{0}(P)\right)+\bar{a}_{\bar{g}}=\bar{\eta}_{\bar{g}} \circ \mu_{1} \circ \alpha(P)+\bar{a}_{\bar{g}}$, which is also equal to $\alpha_{1}\left(f_{0}(g P)\right)=\mu_{1} \circ \alpha(g P)=\mu_{1} \circ \eta_{g} \circ \alpha(P)+\mu_{1}\left(a_{g}\right)$. Since $\alpha(V)$ generates $A$, we have

$$
\begin{equation*}
\mu_{1} \circ \eta_{g}=\bar{\eta}_{\bar{g}} \circ \mu_{1} \tag{15}
\end{equation*}
$$

for all $g$ in $G$. As $\mu_{1}$ is the canonical homomorphism of $A$ onto $A_{1}$ with the kernel $\varphi^{*}\left(A^{*}\right)$, we have

$$
M_{i}^{\left(A_{1}\right)}\left(\sum_{i=0}^{n} \bar{\eta}_{\overline{g_{i}}}\right)=N \cdot\left(\sum_{i=0}^{n} N_{g_{i}}\right) \cdot N^{-1}
$$

with a nonsingular matrix $N$ (see (13), (15)); and as $\left(\sum_{i=0}^{n} \bar{\eta}_{\bar{g}_{i}}\right)\left(A_{1}\right)$ is isogenous to $A_{0}=\operatorname{Alb}\left(V_{G}\right)$ and $\operatorname{dim} \operatorname{Alb}\left(V_{G}\right)=\frac{1}{2} \operatorname{rank} M_{i}^{\left(A_{1}\right)}\left(\sum_{i=0}^{n} \bar{\eta}_{\bar{g} i}\right)$ (cf. [3]), we have

$$
\begin{aligned}
\operatorname{dim} \operatorname{Alb}\left(V_{G}\right) & =\frac{1}{2} \operatorname{rank}\left(\sum_{i=0}^{n} N_{g_{i}}\right) \\
& =\frac{1}{2} \operatorname{rank} M_{i}^{(4)}\left(\sum_{i=0}^{n} \eta_{g_{i}}\right)-\frac{1}{2} \operatorname{rank} M_{l}^{\left(\varphi^{\left.*\left(A^{*}\right)\right)}\left(\sum_{i=0}^{n} \eta_{g i}^{*}\right)\right.}
\end{aligned}
$$

(see (13)). Hence we have the first formula of Theorem (see (12)). The second formula follows from the first by a group-theoretical lemma in [3].

Corollary. (i) If $G$ is a finite group, then we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Alb}\left(V_{G}\right)=\frac{1}{2}-\left(\text { the multiplicity of id in } M_{i}^{(A)} \mid G\right)^{7)} \tag{16}
\end{equation*}
$$

(ii) If $G=G_{0}$ is connected, then we have

$$
\begin{align*}
\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right) & =\frac{1}{2} \operatorname{deg} M_{i^{(A)}}^{\left(-\frac{1}{2}\right.} \operatorname{deg} M_{i^{\left(A^{*)}\right)}}  \tag{17}\\
& =\operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(G_{0}\right)^{8)} .
\end{align*}
$$

## § 3. Linear differential forms of the first kind

Let $\iota$ be the inclusion mapping of $\overline{G_{0} P}$ into $V$, where $P$ is a generic point of $V$ over $k$, and let $\iota^{*}$ be also the inclusion mapping of $\varphi^{*}\left(A^{*}\right)$ into $A$.

Lemma 4. Let $f_{0}$ be the natural rational mapping of $V$ to $V_{G_{0}}$. For a differential form $\omega_{1}$ on $V_{G_{0}}$, we have $\delta \iota \circ \delta f_{0}\left(\omega_{1}\right)=0$.

Proof. Let $b$ be a rational function on $V_{G_{0}}$ defined over $k$. Then, for a generic point $g_{0}$ of $G_{0}$ over $k(P),\left(b \circ f_{0}\right)\left(g_{0} P\right)=\left(b \circ f_{0}\right)(P)$ is rational over $k\left(f_{0}(P)\right)$, which implies that the rational function $\delta f_{0}(b)$ induces a constant function on $\bar{G}_{0} P$. Hence we have $\delta \iota \circ \delta f_{0}(d b)=d\left(\delta \iota \circ \delta f_{0}(b)\right)=0$.

Lemma 5. Let $\mu_{1}$ be the canonical rational homomorphism of $A$ onto $A_{1}=A / \varphi^{*}\left(A^{*}\right)$. Then $\delta \iota^{*}$ induces an isomorphism of $\mathfrak{D}_{0}(A) / \delta \mu_{1}\left(\mathfrak{D}_{0}\left(A_{1}\right)\right)$ onto $\mathfrak{D}_{0}\left(\varphi^{*}\left(A^{*}\right)\right)^{9)}$.

Proof. Clearly $\delta c^{*}$ maps $\mathfrak{D}_{0}(A)$ onto $\mathfrak{D}_{0}\left(\varphi^{*}\left(A^{*}\right)\right)$ surjectively and, as $\mu_{1} \circ \iota^{*}=0$, the kernel of $\delta \iota^{*}$ in $\mathscr{D}_{0}(A)$ contains $\delta \mu_{1}\left(\mathscr{D}_{0}\left(A_{1}\right)\right)$. Since $\mu_{1}$ is separable, we have $\operatorname{dim} \delta \mu_{1}\left(\mathscr{D}_{0}\left(A_{1}\right)\right)=\operatorname{dim} \mathfrak{D}_{0}\left(A_{1}\right)=\operatorname{dim} \mathfrak{D}_{0}(A)-\operatorname{dim} \mathfrak{D}_{0}\left(\varphi^{*}\left(A^{*}\right)\right)$, which proves Lemma.

In the following, we assume that

1) the characteristic $p$ of the universal domain does not divide the index $\left(G: G_{0}\right)$.
2) the rational homomorphism $\varphi$ is separable.

We note that, as we have $\varphi=\varphi^{*} \circ \pi$ and $\pi$ is generically surjective and separable, the assumption 2 ) is equivalent to
$2^{\prime}$ ) the rational homomorphism $\varphi^{*}$ is separable.
Let $\alpha^{\prime}$ be the restriction of the rational mapping $\alpha$ to $\overline{G_{0} P}$, i. e. $\alpha^{\prime}=\alpha \circ \ell$. Then, as we have $\varphi\left(g_{0}\right)=\alpha^{\prime}\left(g_{0} P\right)-\alpha(P), \alpha^{\prime}-\alpha(P)$ defines a generically surjective rational mapping of $\overline{G_{0} P}$ to $\varphi^{*}\left(A^{*}\right)$ defined over $k(P)$ and we have

$$
\begin{equation*}
(\alpha-\alpha(P)) \circ \iota=\iota^{*} \circ\left(\alpha^{\prime}-\alpha(P)\right) . \tag{18}
\end{equation*}
$$

Moreover, as $\varphi$ is the composite of the generically surjective rational mapping $g_{0} \rightarrow g_{0} P$ of $G_{0}$ to $\overline{G_{0}} P$ and of $\alpha^{\prime}-\alpha(P)$, the rational mapping $\alpha^{\prime}-\alpha(P)$ is also
7) Cf. [3].
8) See Cor. 2 of Theorem 2 .
9) See footnote 3).
separable by our assumption 2$)^{101}$.
TheOrem 5. Let $\omega_{0}$ be a linear differential form on $V_{G}$. If $\delta f\left(\omega_{0}\right)$ belongs to $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)$, then $\omega_{0}$ belongs to $\delta \alpha_{0}\left(\mathfrak{D}_{0}\left(A_{0}\right)\right.$ ).

Proof. We have $\delta f\left(\omega_{0}\right)=\delta \alpha(\theta)$ with an element $\theta$ in $\mathfrak{D}_{0}(A)$ and so we have $\delta \iota \circ \delta f\left(\omega_{0}\right)=\delta \iota \circ \delta \alpha(\theta)=\delta \alpha^{\prime} \circ \delta \iota *(\theta)$ (see (18)), which is equal to $\delta \iota \circ \delta f_{0} \circ \delta \bar{f}\left(\omega_{0}\right)$ $=0$ (see Lemma 4). Then, as $\alpha^{\prime}-\alpha(P)$ is separable, we see that $\delta \iota^{*}(\theta)=0$ and so there exists an element $\theta_{1}$ of $\mathfrak{D}_{0}\left(A_{1}\right)$ such that $\theta=\delta \mu_{1}\left(\theta_{1}\right)$ (see Lemma 5). Hence we have $\delta f_{0} \circ \delta \bar{f}\left(\omega_{0}\right)=\delta \alpha \circ \delta \mu_{1}\left(\theta_{1}\right)=\delta f_{0} \circ \delta \alpha_{1}\left(\theta_{1}\right)$ (see (14)) and, as $f_{0}$ is separable, $\delta \bar{f}\left(\omega_{0}\right)=\delta \alpha_{1}\left(\theta_{1}\right)$. As the characteristic $p$ does not divide the degree ( $G: G_{0}$ ) of the Galois covering $\bar{f}: V_{G_{0}} \rightarrow V_{G}$ by our assumption 1), we have $\omega_{0}=\delta \alpha_{0}\left(\theta_{0}\right)$ with an element $\theta_{0}$ of $\mathfrak{D}_{0}\left(A_{0}\right)$ (cf. [4]).

Since $\delta \alpha$ (resp. $\delta \alpha_{0}$ ) maps $\mathfrak{D}_{0}(A)$ (resp. $\mathfrak{D}_{0}\left(A_{0}\right)$ ) injectively into $\mathfrak{D}_{0}(V)$ (resp. $\mathscr{D}_{0}\left(V_{G}\right)$ ), we have the following

Theorem 5'. Let $V$ and $V_{G}$ be complete and nonsingular. Then we have

$$
\begin{equation*}
0 \leqq \operatorname{dim} \mathfrak{D}_{0}\left(V_{G}\right)-\operatorname{dim} \mathfrak{D}_{0}\left(A_{0}\right) \leqq \operatorname{dim} \mathfrak{D}_{0}(V)-\operatorname{dim} \mathfrak{D}_{0}(A) . \tag{19}
\end{equation*}
$$

Corollary. If we have $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)=\mathfrak{D}_{0}(V)$, then we have also $\delta \alpha_{0}\left(\mathfrak{D}_{0}\left(A_{0}\right)\right)$ $=\mathfrak{D}_{0}\left(V_{G}\right)$.

For the Albanese variety $(B, \beta)$ of $\overline{G_{0} P}$, there exists an isogeny $\psi$ of $B$ onto $\varphi^{*}\left(A^{*}\right)$ such that $\alpha^{\prime}-\alpha(P)=\psi \circ \beta+$ constant (see Lemma 3, (5)). Since $\overline{G_{0} P}$ is birationally equivalent to a homogeneous space for $G_{0}, \beta$ is generically surjective (cf. [6]) and so $\psi$ is separable by our assumption.

Lemma 6. $\delta$ c induces a surjective homomorphism of $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)$ onto $\delta \beta\left(\mathscr{D}_{0}(B)\right)$ with the kernel $\delta \alpha \circ \delta \mu_{1}\left(\mathfrak{D}_{0}\left(A_{1}\right)\right)=\delta f_{0} \circ \delta \alpha_{1}\left(\mathfrak{D}_{0}\left(A_{1}\right)\right)$.

Proof. As $\psi$ is a separable isogeny, we have $\delta \psi\left(\mathscr{D}_{0}\left(\varphi^{*}\left(A^{*}\right)\right)=\mathscr{D}_{0}(B)\right.$ and so $\delta \iota \circ \delta \alpha\left(\mathfrak{D}_{0}(A)\right)=\delta \beta \circ \delta \psi \circ \delta \iota^{*}\left(\mathfrak{D}_{0}(A)\right)=\delta \beta\left(\mathfrak{D}_{0}(B)\right)$. On the other hand, for an element $\theta$ of $\mathfrak{D}_{0}(A), \delta \iota \circ \delta \alpha(\theta)=0$ if and only if $\delta \alpha^{\prime} \circ \delta \iota^{*}(\theta)=0$ (see (18)), i. e. $\delta \iota^{*}(\theta)=0$. Hence we have the assertion (see Lemma 5 and (14)).

Therefore we have the following
Theorem 6. Let $V$ and $V_{G_{0}}$ be complete and nonsingular. If we have $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)=\mathfrak{D}_{0}(V)$, then the adjoint mapping $\delta \iota$ induces an isomorphism of $\mathfrak{D}_{0}(V) / \delta f_{0}\left(\mathfrak{D}_{0}\left(V_{G_{0}}\right)\right)$ onto $\delta \beta\left(\mathfrak{D}_{0}(B)\right)$.

We suppose that $G_{0}$ operates regularly on $V$. Then, for a point $P_{0}$ on $V$ and the inclusion mapping $c_{0}$ of $\bar{G}_{0} P_{0}$ into $V$ (cf. § 2), we have also $\left(\alpha-\alpha\left(P_{0}\right)\right) \circ \iota_{0}=\iota^{*} \circ\left(\alpha^{(0)}-\alpha\left(P_{0}\right)\right)$, where $\alpha^{(0)}$ is the restriction of $\alpha$ to $\bar{G}_{0} P_{0}^{11)}$. Moreover, for the Albanese variety $\left(B_{0}, \beta_{0}\right)$ of $\overline{G_{0} P_{0}}$, the isogeny $\psi_{0}$ of $B_{0}$ onto $\varphi^{*}\left(A^{*}\right)$ defined in $\S 2$ is also separable by the assumption 2 ) and so we can

[^4]prove, in a similar way as the proof of Lemma 6, that $\delta \iota_{0}$ induces a surjective homomorphism of $\delta \alpha\left(\mathscr{D}_{0}(A)\right)$ onto $\delta \beta_{0}\left(\mathscr{D}_{0}\left(B_{0}\right)\right)$ with the kernel $\delta \alpha \circ \delta \mu_{1}\left(\mathscr{D}_{0}\left(A_{1}\right)\right)$. In particular, if the orbit $G_{0} P_{0}$ is closed, then the variety $G_{0} P_{0}$ is a complete homogeneous space for $G_{0}$ and so we have $\mathfrak{D}_{0}\left(G_{0} P_{0}\right)=\delta \beta_{0}\left(\mathscr{D}_{0}\left(B_{0}\right)\right)$ (cf. Appendix). Hence we have

Theorem $6^{\prime}$. If $G_{0}$ operates regularly on $V$, then, under the same assumption as in Theorem 6 the adjoint mapping $\delta c_{0}$ induces an isomorphism of $\mathfrak{D}_{0}(V) / \delta f_{0}\left(\mathfrak{D}_{0}\left(V_{G_{0}}\right)\right)$ onto $\delta \beta_{0}\left(\mathfrak{D}_{0}\left(B_{0}\right)\right)$. In particular, if $G_{0} P_{0}$ is closed, $\delta \epsilon_{0}$ induces an isomorphism of $\mathfrak{D}_{0}(V) / \delta f_{0}\left(\mathfrak{D}_{0}\left(V_{G_{0}}\right)\right.$ ) onto $\mathfrak{D}_{0}\left(G_{0} P_{0}\right)$.

We note that there exists always a closed $G_{0}$-orbit on $V$, i. e. the $G_{0}$-orbit having the smallest dimension (cf. [1]). Moreover, if the quotient space $V / G_{0}$ exists, then all the $G_{0}$-orbits on $V$ are closed. If $G_{0}=A^{*}$ is an abelian variety, then all the $G_{0}$-orbits are also closed (cf. [7]).

When we have $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)=\mathfrak{D}_{0}(V)$, Lemma 6 implies that an element $\omega$ of $\mathscr{D}_{0}(V)$ belongs to $\delta f_{0} \circ \delta \alpha_{1}\left(\mathscr{D}_{0}\left(A_{1}\right)\right)$ if and only if $\delta \iota(\omega)=0$. On the other hand, we know, under the assumption 1), an element $\omega_{1}$ of $\delta \alpha_{1}\left(\mathfrak{D}_{0}\left(A_{1}\right)\right)$ belongs to $\delta \bar{f} \circ \delta \alpha_{0}\left(\mathscr{D}_{0}\left(A_{0}\right)\right)$ if and only if $\delta \bar{g}\left(\omega_{1}\right)=\omega_{1}$ for all the elements $\bar{g}$ of the Galois group $\bar{G}=G / G_{0}$ of the Galois covering $\bar{f}: V_{G_{0}} \rightarrow V_{G}$ (cf. [5]) ${ }^{12}$. Moreover we have

$$
\begin{equation*}
\delta g \circ \delta f_{0}=\delta f_{0} \circ \delta \bar{g} \tag{20}
\end{equation*}
$$

for all $g$ in $G$, where $\bar{g}$ is the coset containing $g^{12)}$.
Theorem 7. Let $V$ and $V_{G}$ be complete and nonsingular. When we have $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)=\mathfrak{D}_{0}(V)$, an element $\omega$ of $\mathfrak{D}_{0}(V)$ belongs to the subspace $\delta f\left(\mathfrak{D}_{0}\left(V_{G}\right)\right)$ if and only if

$$
\begin{equation*}
\delta \iota(\omega)=0 \quad \text { and } \quad \delta g(\omega)=\omega \tag{21}
\end{equation*}
$$

for all $g$ in $G^{133}$.
Proof. If $\omega$ belongs to $\delta f\left(\mathfrak{D}_{0}\left(V_{G}\right)\right) \subset \delta f_{0}\left(\mathfrak{D}_{0}\left(V_{G_{0}}\right)\right)$, we have $\delta \iota(\omega)=0$ (see Lemma 4), which implies that there exists an element $\theta_{1}$ of $\mathfrak{D}_{0}\left(A_{1}\right)$ such that $\omega=\delta f_{0} \circ \delta \alpha_{1}\left(\theta_{1}\right)$ (see Lemma 6). Then we have $\delta \alpha_{1}\left(\theta_{1}\right)=\delta \bar{f}\left(\omega_{0}\right)$ with $\omega_{0}$ in $\mathfrak{D}_{0}\left(V_{G}\right)=\delta \alpha_{0}\left(\mathfrak{D}_{0}\left(A_{0}\right)\right)$ and so $\delta \bar{g}\left(\delta \bar{f}\left(\omega_{0}\right)\right)=\delta \bar{f}\left(\omega_{0}\right)$ for all $\bar{g}$ in $\bar{G}$ (cf. [5]), i.e. $\delta g(\omega)=\omega$ for all $g$ in $G$ (see (20)). Conversely if we have $\delta \iota(\omega)=0$, there exists an element $\theta_{1}$ of $\mathfrak{D}_{0}\left(A_{1}\right)$ such that $\omega=\delta f_{0} \circ \delta \alpha_{1}\left(\theta_{1}\right)$ (see Lemma 6). Moreover, if $\delta g(\omega)=\omega$, we have $\delta \bar{g} \circ \delta \alpha_{1}\left(\theta_{1}\right)=\delta \alpha_{1}\left(\theta_{1}\right)$ (see (20)), which implies that we have $\delta \alpha_{1}\left(\theta_{1}\right)=\delta \bar{f}\left(\omega_{0}\right)$ with some $\omega_{0}$ in $\mathfrak{D}_{0}\left(V_{G}\right)$ (cf. [5]). Hence we have $\omega=\delta f_{0} \circ \delta \bar{f}\left(\omega_{0}\right)=\delta f\left(\omega_{0}\right)$.

[^5]We suppose that $G$ is a linear algebraic group. Then we have $G_{0}=L$ and $\varphi\left(G_{0}\right)=\{0\}$ and so clearly the assumption 2) is satisfied. Moreover the Albanese variety $B$ of $\overline{L P}$ is trivial, i.e. $\operatorname{dim} B=0$. Therefore we have the following results (see Theorems $5^{\prime}, 6,7$ ).

Corollary. If $G$ is linear and we have $\delta \alpha\left(\mathfrak{D}_{0}(A)\right)=\mathfrak{D}_{0}(V)$, then, under the assumption 1), we have $\delta \alpha_{0}\left(\mathfrak{D}_{0}\left(A_{0}\right)\right)=\mathfrak{D}_{0}\left(V_{G}\right)$ and $\delta f\left(\mathfrak{D}_{0}\left(V_{G}\right)\right)=\left\{\omega \in \mathfrak{D}_{0}(V) \mid\right.$ $\delta g(\omega)=\omega$ for all $g$ in $G\}$. In particular, we have $\delta f_{0}\left(\mathfrak{D}_{0}\left(V_{G_{0}}\right)\right)=\mathfrak{D}_{0}(V)$.

## Appendix. Complete homogeneous spaces

In this appendix, we shall consider a complete homogeneous space $V$ with respect to a connected algebraic group $\tilde{G}$ and the space $\mathscr{D}_{0}(V)$.

Proposition 1. $V$ is birationally equivalent to the direct product of the Albanese variety $A=\mathrm{Alb}(V)$ and of a rational variety.

Proof. We may assume that $\tilde{G}$ is generated by an abelian variety $\tilde{A}$ and a connected linear algebraic group $\widetilde{L}$ (cf. [6]). Let $\tilde{B}$ be a Borel subgroup of $\widetilde{L}$. Then, since $V$ is complete, there exists a point $P_{0}$ on $V$ which is fixed by all the elements of $\tilde{B}$ (cf. [1]). Let $K$ be a field of definition for $V, \tilde{G}, \tilde{A}$, $\widetilde{L}$, the operation of $\tilde{G}$ on $V$ and the solvability for $\tilde{B}$, over which $P_{0}$ is rational. Let $\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{l}_{1}, \widetilde{l}_{2}\right)$ be a generic point of $\tilde{A} \times \tilde{A} \times \widetilde{L} \times \widetilde{L}$ over $K$. Then, as $\pi_{\widetilde{B}}\left(\widetilde{l}_{1}\right)$ and $\pi_{\widetilde{B}}\left(\widetilde{l}_{2}\right)^{14)}$ are independent generic points of $\widetilde{L} / \tilde{B}$ over $K$ and $\widetilde{L} / \tilde{B}$ is a prehomogeneous space for $\tilde{B}$ (cf. [2]), i. e. there exists a $\tilde{B}$-orbit on $\widetilde{L} / \tilde{B}$ which contains an open set of $\tilde{L} / \tilde{B}$, we have $\pi_{\widetilde{B}}\left(\tilde{l}_{2}\right)=\tilde{b} \pi_{\widetilde{B}}\left(\tilde{l}_{1}\right)$ with some $\tilde{b}$ in $\tilde{B}$. As $\tilde{A}$ is contained in the center of $\tilde{G}\left(\right.$ cf. [8]), we have $\pi_{\widetilde{B}}\left(\widetilde{a}_{2} \tilde{l}_{2}\right)=\left(\tilde{a}_{2} \tilde{a}_{1}^{-1} \tilde{b}\right) \pi_{\tilde{B}}\left(\tilde{a}_{1} \tilde{l}_{1}\right)$, which implies that $\tilde{G} / \tilde{B}$ is a prehomogeneous space for a connected algebraic group $\tilde{A} \tilde{B}$. Then, considering a surjective rational mapping $\tilde{g} \rightarrow \tilde{g} P_{0}$ of $\tilde{G}$ to $V$, we see that there exists a surjective rational mapping of $\tilde{G} / \hat{B}$ to $V$, which commutes with the operations of $\tilde{G}$ on $\tilde{G} / \widetilde{B}$ and on $V$. Hence $V$ is also a prehomogeneous space for $\tilde{A} \tilde{B}$ defined over $K$. Then there exists a homogeneous space $V^{*}$ for $\tilde{A} \tilde{B}$, which is birationally equivalent to $V$. Since $\tilde{A} \tilde{B} / \tilde{B}$ is an abelian variety, the solvable group $\tilde{B}$ is the maximal connected linear subgroup of $\tilde{A} \tilde{B}$. Hence we see that $V^{*}$ is birationally equivalent to the direct product of the Albanese variety and of a rational variety (cf. [6]).

Then we have easily the following
Proposition 2. Let $\alpha$ be a canonical mapping of $V$ into $A=\operatorname{Alb}(V)$. Then we have $\mathfrak{D}_{0}(V)=\delta \alpha\left(\mathfrak{D}_{0}(A)\right)$ and $\mathfrak{D}_{0}(V)$ is the set of all the $\tilde{G}$-invariant linear differential forms on $V$.

> Department of Mathematics Tsuda College, Tokyo
14) $\pi_{\tilde{B}}$ denotes the canonical rational mapping of $\widetilde{G}$ to $\widetilde{G} / \widetilde{B}$.

## References

[1] A. Borel, Groupes linéaires algébriques, Ann. of Math., 64 (1956), 20-82.
[2] C. Chevalley, Classification des groupes de Lie algébriques, séminaire E.N.S. (1956-58).
[3] M. Ishida, On Galois coverings of algebraic varieties and Albanese varieties attached to them, J. Fac. Sci. Univ. Tokyo. Sect. I, 8 (1960), 577-604.
[4] M. Ishida, On coverings of algebraic varieties, J. Math. Soc. Japan, 13 (1961), 211-219.
[5] M. Ishida, On groups of automorphisms of algebraic varieties, J. Math. Soc. Japan, 14 (1962), 276-283.
[6] M. Ishida, On algebraic homogeneous spaces, Pacific J. Math., 15 (1965), 525-535.
[7] H. Matsumura, On algebraic groups of birational transformations, Rend. Accad. Naz. Lincei, 34 (1963), 151-155.
[8] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., 78 (1956), 401-443.
[9] M. Rosenlicht, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl., 43 (1957), 25-50.
[10] A. Weil, On algebraic groups of transformations, Amer. J. Math., 77 (1955), 355-391.


[^0]:    1) For a variety $W$, $\operatorname{Alb}(W)$ denotes an Albanese variety of $W$.
    2) Cf. § 1 .
[^1]:    3) For a complete, nonsingular variety $W, \mathfrak{D}_{0}(W)$ denotes the space of linear differential forms of the first kind on $W$.
[^2]:    5) Hence all the closures $\overline{G_{0} P_{0}}$ of $G_{0}$-orbits (such that $\alpha\left(P_{0}\right)$ is defined) have the Albanese varieties isogenous to each other.
[^3]:    6) For an abelian variety $A$, we use the following notations: $\mathcal{A}(A)=$ the ring of endomorphisms of $A, \delta_{A}=$ the identity element of $\mathcal{A}(A), M_{l}^{(A)}=$ the $l$-adic representation of $\mathcal{A}(A)$.
[^4]:    10) As seen in the following arguments, we can replace the assumption 2 ) by the weak one: $\alpha^{\prime}-\alpha(P)$ is separable.
    11) Since $V$ is assumed to be nonsingular, $\alpha$ is everywhere defined.
[^5]:    12) We denote by $\delta g$ (resp. $\delta \bar{g}$ ) the adjoint mapping of the birational mapping of $V$ to $V: P \rightarrow g P$ (resp. of $V_{G_{0}}$ to $V_{G_{0}}: Q \rightarrow \bar{g} Q$ ) for an element $g$ of $G$ (resp. $\bar{g}$ of $\bar{G}$ ).
    13) For any $\omega$ in $\mathfrak{D}_{0}(V)$ and any $g_{0}$ in $G_{0}$, we have $\delta g_{0}(\omega)=\omega$ (cf. [7]).
