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§0. Introduction.

A linear Lie group is.called elliptic if its Lie algebra contains no matrix
of rank one. A G-structure is called elliptic if G is elliptic. (N. B. G is a linear
subgroup of GL(n, R).) The purpose of this paper is to prove that the glo-
bally defined infinitesimal automorphisms of a G-structure (called G-vector
field) are given by a system of linear elliptic differential equations if and
only if this G-structure is elliptic. (See Lemma for a precise statement.) It
follows easily

THEOREM A. The group of diffeomorphisms of M which leave a given
elliptic G-structure invariant is a finite dimensional Lie group, provided M is
compact.

Theorem A is a generalization of the results of Boothby-Kobayashi-Wang
[1] and Ruh [8] (In fact, Ruh’s sufficient condition clearly implies that the
G-structure in question is elliptic.) Both Lemma and Theorem A are con-
tained implicitly in Guillemin-Sternberg [3] Still we feel their explicit
statements with proofs would be worth publishing because of their impor-
tance. Also we shall provide two examples to show that Theorem A is best
possible in a sense, following suggestions of Professor S. Kobayashi and Pro-
fessor S. Sternberg. Also the author wishes to express his thanks to Pro-
fessor T. Nagano and Professor M. Kuranishi.

§1. Let P(M, =, G) be any G-structure on M, and g be the Lie algebra
of G. That is, P is a subbundle with structure group G of the frame bundle
of M. A (local) diffeomorphism of M is a (local) G-automorphism if and only
if it leaves the G-structure P(M, =, G) invariant.

Let {x%, ---, x"} be a local coordinate system around z < M, defined on an
open neighbourhood U of M. Furthermore, we assume that the neighbour-
hood U is so small that it admits a local cross-section ¢ from U into P. Let
V be an open set of U. A local diffeomorphism f from V into U is a local
G-automorphism if and only if there exists a mapping g from V into G such
that

M (df ) p(x) = p(f(x)) - g(x)
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where (df) means the lift of f to the frame bundle of M. The local cross-
section ¢ is expressed by ¢(x):(x 'Z,gﬁ"(x)(—raa») 2¢;(x)(—2~‘ e,
(x)( o )) where ¢i(x) 1<1,j=n) are differentiable functions on U.

By the definition, we have

df)p(xt, ---,::"):( F(x), ,C)( 8f"> a _ )

axk f(x)

where f=(f%, -+, f™. Let gi(x) A<1i,j=n)be the (i, j)-entries of the matrix
g(x). By (1), we have

200(3) (o) 0 = BHTO (50) 80
Hence we have;
@ % ¢50(-5k ) =D @.

Since the matrix (¢%(x)),=s,,=, 1S nonsingular, we denote by (6%(x));=;, <. the

inverse matrix of (@i(x));=i,;=,- Multiplying (1)’ by 0%(f(x)) and summing it
k

up we get 2;, % f(x))qu.(x)(-g%.—-) = ; Orgh(x) = gh(x). Since the matrix

{g"(x)) belongs to G, we may write the above equation

2 h %
) (3 osCngs <x>( ) o€

A vector field on M is a G-vector field of P by definition if and only if
it generates local G-automorphisms. Let ZXLB% be the local expression

on U of an arbitrary vector field ¥ and ¢,(J t|<e¢) be the local one-parameter
group around z which X generates. If we take a sufficiently small neigh-
bourhood V =z, we may assume that ¢,(|t|<e) maps V into U. X is a G-
-vector field if and only if ¢, satisfies the equation (2) for each #(l¢| <e).
Hence we get

@ (08 (-28 99E )G for any small t.

The matrix in (2)’ is the neutral element of G when ¢ equals 0. Therefore,
differentiating (2)’ at t=0 with respect to the variable ¢, we get the element
of g. lLe,

A B aeon@() | e

Therefore,
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(255 xmgy000 + 3010081 055 <.

Hence we get
Vi R v\ AL "Xk ! aﬁf
2) ( ,Z/r <0k(~’f)¢i(x)(’%;cf' x+¢i(x)(“5;r?)1Xk)) €9.

Let us choose a set of constants ,Ci, ---,,Cl i, j=1, -+, n (where r is the
codimension of g in gli(n, R)) such that

(@)eq if and only if X ,Cial=0, a=1,-,r.
t

Therefore a G-vector field ¥ (locally expressed by ZX"-a%—) satisfies the

linear differential equation with unknown functions X!, ---, X";
. . an £ ae?('x) kY
3 2Ol ) 95075 =0,
a=1, -, 7.

Let D be the linear differential operator which corresponds to (3). For any
n-tuple £ =(&,, -+, &,) # 0, we denote by S(x, &)f (a=1, -, 7r; k=1, .-, n)
S(x, &) =h2 «C O P (& .

Vvilg

The matrix (S(x, &)%) is the symbol of D with respect to & at xe V. Let
D* be the adjoint operator of D with respect to the usual inner product

xY, (Y= xty'. It is well known that the symbol (S, £)?) (n X n matrix)

of the 2nd order linear differential operator D*D with respect to & at x is
given by “(S(x, )D(S(x, ).

Now we shall prove,

LEMMA. The 2nd order linear differential operator D*D is elliptic if and
only if P(M, z, G) is elliptic i.e. g contains no element of rank one.

Proor. Only-if part; Suppose the equation (§(x, &)2)a=0 holds for some
x, & and a=(a"),=s<,. Therefore S, £)2)a, a) =0. By the definition we get,
(S, O, ay = <(S(x, ONS(x, OOPa, a) = Sk, HNa, S, HNa). _ Hence
(Sx, HHa=0, i. e.h,g’p L) P} (x)€,a? =0, a=1,2, -, 7. Defining &, (resp.

a", 1=j, h=n by §,= 3 $;(0)&; (resp. 2" = X O3(x)a”), we get > «Ciléa"=0.
i P »J

By the definition of the constants ,Cj, the matrix (§,@");=;=. lies in g. Now
a matrix (s 0) is of rank one if and only if it can be written as (;b"). Since
the matrix (¢} (x)) is non-singular, (§,, ---, &,) is not zero. Therefore (@', -+, @")
must be zero if ¢ contains no matrix of rank one. Hence a=(a!, :-.a" is
zero, proving that D*D is elliptic. Conversely suppose D*D is elliptic. Sup-
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pose g contains a matrix (£;a’) of rank one, then o’ =(a’?),<,;=, iS a solution
of (S(x,&NHa’=0 for any x=V (here & =(&, -, &) +0). Therefore the
symbol (S(x, &P is singular for &+ 0 and for any x< V. This is a contra-
diction. Q.E.D.

Using the well known fact about elliptic differential operators, we get;

COROLLARY. If M is compact and if P(M, r, G) is elliptic then the vector
space of globally defined G-vector field is finite dimensional.

By Theorem of R.S. Palais [2], [6], and by Corollary above, we have
proved Theorem A.

§2. In this section we shall give two examples to show that Theorem
A is best possible in a sense.

This example is due to Guillemin-Sternberg [3].

ExampLE 1. If G is not elliptic, then the automorphism group of any
totally flat G-structure P over n-dim enclidian space M(n>0), is not a Lie
transformation group in the sense of Gleason-Palais [7]. Here a G-structure
P(M, , G) is called flat, as usual, if M has an atlas whose charts give rise

to local sections of P. That is, the local section (x")—»(—ai—i—

bundle defined by each chart is that of P also. Such a chart will be called
admissible. P(M, =, G) is called totally flat if we can take a global admissible
chart.

Now we give a proof of the assertion above. A vector field X on M is a
G-vector field of P if and only if the matrix (0X%/0x’) in terms of any
global admissible chart is contained in the Lie algebra g of G at each point.
Since G is not elliptic, we may assume g contains either the matrix

—) of the frame

1100 0100
0 n . 1
: 0 or the matrix () 0
0 0

In the first case, for any smooth function f(x!), a vector field f(xl)—(,gcT

is a G-vector field by the above remark.
And in the second case, for any smooth function f(x!), a vector field

f(xl)faa—; is a G-vector field. Therefore the vector space of the G-vector
x

field of P is of infinite dimension. Hence our assertion has been proved.
ExaMPLE 2. Now we shall give the famous non flat example. Let M

be an (orientable) (2n-+1)-dimensional manifold, on which a 1-form « with dw

of maximal rank is given (so-called contact structure). Then the linear dif-



Automorphism group of a G-structure 193

ferential system =0 naturally gives a G-structure. Since w A dw is not
zero, w =0 is not integrable. Thus that G-structure is non flat. It is easy
to see that any G-vector field ¥ is the infinitesimal automorphism of the
contact structure, i.e.

0Xw=fo f: smooth function,

(here 0(X) means the Lie derivative with respect to X) and vice versa. It is
well-known that the vector space of the infinitesimal automorphism of a con-
tact structure is isomorphic to the vector space (of infinite dimension) of the
smooth functions on M?®>*' [4]. Therefore the automorphism group of this
G-structure is not a Lie transformation group.
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