On Mordell's conjecture for algebraic curves over function fields

By Megumu MIWA

(Received Dec. 23, 1965)

Introduction.

In this paper, we are concerned with Mordell's conjecture on the set of rational points on algebraic curves in "relative case" (cf. [2] p. 139).

Let k be any field and K be a function field with k as constant field, i.e. a regular extension of finite type of k. Let C be a complete non-singular curve defined over K. We say that C is *trivially defined*, if there is a curve C_0 defined over k which is birationally equivalent to C over K. Then our main Theorem reads:

If the genus g of C is ≥ 2 , then the set of all rational points of C over K is a finite set or C is trivially defined^{*)}.

This was proved by Grauert [3] in the case where the characteristic of k is 0 and k is algebraically closed. Manin [4] obtained the same result with a transcendental method. We shall prove the above Theorem for the field k of any characteristic p (which may be == 0 or \neq 0), without supposing k to be algebraically closed.

The proof is given in two cases (1) p=0 (§ 1), (2) $p \neq 0$ (§ 2)¹⁾. We shall use the results of [3] as formulated at the beginnings of § 1 and § 2, and the theory of abelian varieties (cf. [1], [6]). As to the terminology we follow generally the usage in [1].

More specifically, the method we shall use is that of descent. To explain

^{*)} For the case p=0, we shall prove another related proposition concerning the curve of genus 1. (See Proposition 1 below.)

¹⁾ To avoid misunderstanding we add here the following remark. Grauert [3] introduced the notion of "quasi-trivially defined curve" which implies that of "trivially defined curve" when p=0. He considered also a certain fibre variety X with C as fibre, such that when X becomes trivial (i.e. isomorphic to the direct product of fibre and base space), then C is trivially defined in our sense. He proved that in case p=0, X becomes trivial when C is quasi-trivial and used this to obtain his main Theorem. For the case $p \neq 0$, he constructed an example showing that X need not become trivial even if C is quasi-trivial. But this is of course in no contradiction with the validity of our Theorem for p=0.

it for the case p=0, the result is already obtained if the ground field k is $=\overline{k}$ (algebraic closure of k), so we have to "descend" from \overline{k} to k. For this purpose, we have to consider different fields k', k'', \cdots containing k and suppose the curve C as defined over k' or $k'' \cdots$. Let C be defined over k', and $k'' \supset k'$. We shall say C is k'/k-trivially defined over k'', if there is a curve C_0 defined over k which is birationally equivalent to C over k''. If k' = k'', we shall say simply C is k'/k-trivially defined. When k' contains a field of definition of C, we denote with $C_{k'}$ the set of all k'-rational points on C. These notations will be used throughout this paper.

The author wishes to express his hearty thanks to Professor Iyanaga for his valuable advice and to the referee for his suggestions for improving the proof of Lemmas.

§1. Case p = 0

In this paragraph, the characteristic p of the ground field k (and consequently of all fields considered) is always 0. K is a function field with constant field k. C will denote always a complete, non-singular curve defined over some field k' containing k, with genus g.

First we prove the following Proposition for the case g=1 (to complete our main Theorem concerning the case $g \ge 2$).

PROPOSITION 1. Let C be defined over K and g=1. Then C_{κ} forms an abelian group in the well-known sense. Either this group is finitely generated or C is K/k-trivially defined.

PROOF. First we notice that if $C_{\kappa} = \phi$, our Proposition is trivial. Therefore we assume $C_{\kappa} \neq \phi$. Then C turns out to be abelian variety defined over K. Let (B, τ) be the K/k -trace of C. Since K is a regular extension of k and k is of characteristic 0, τ is birational isomorphism from B into C, defined over K. Therefore B is either a point or one-dimensional. If B is a point, we have $C_{\kappa} \approx C_{\kappa}/\tau B_{k}$ and, by Mordell-Weil Theorem, C_{κ} is finitely generated. When B is 1-dimensional, B is birationally isomorphic to C over K. Since B is defined over k, our Proposition was proved. Q.E.D.

Next we notice the following classical result for the later use.

THEOREM OF DE FRANCHIS. If C is defined over k, then $C_{\kappa}-C_{k}$ is a finite set.

For the proof we refer to Lang's book [2] pp. 139-140.

We owe the following Theorem to Grauert [3].

THEOREM OF GRAUERT. If C is defined over K, k is algebraically closed and $g \ge 2$ then either C_{κ} is a finite set or C is K/k-trivially defined.

Moreover we use the following Lemma.

M. MIWA

LEMMA 1. Let k' be an algebraic extension of k, C be defined over k' and the jacobian variety J of C be defined over k. If C is birationally isomorphic over k'K to a curve C* on J defined over K such that the inclusion map $C^* \rightarrow J$ makes J the jacobian variety of C*, then C is k'/k-trivially defined.

PROOF. First we notice that if the genus g of C is =1, Lemma is trivial. Therefore we assume $g \ge 2$. Let k'' be a Galois extension of k, containing k', with Galois group G = G(k''/k) such that $C_{k''} \neq \phi$. Since K/k is a regular extension, k''K is also a Galois extension of K and the Galois group G(k''K/K)can be identified with G. For an element σ of G and an algebraic object V defined over k''K, we denote by V^{σ} the transform of V by σ . Since C and C^* are birationally isomorphic over k''K, there is an automorphism h of J defined over k''K and a k''K-rational point a of J such that $h(C^*)+a=C$. We denote by f the birational isomorphism from C^* to C induced by h+a. Then we have $C = h^{\sigma} \circ h^{-1}(C) - h^{\sigma} h^{-1}(a) + a^{\sigma}$. Since k''K is a regular extension of k", h is defined over k" by Chow's Theorem and since C^{σ} and $h^{\sigma} \circ h^{-1}(C)$ are defined over k'', $h \circ h^{-1}(a) - a^{\sigma}$ is rational over k''. If we define an isomorphism $f_{\tau,\sigma}$ defined over k'' from C to C by $f^{\tau}(f^{\sigma})^{-1} = f_{\tau,\sigma}$, then $f_{\tau,\sigma}$ satisfies the cocycle conditions 1) $f_{\rho,\tau} \circ f_{\tau,\sigma} = f_{\rho,\sigma}$ and $(f_{\tau,\sigma})^{\rho} = f_{\tau\rho,\sigma\rho}(\sigma, \tau, \rho \in G)$. By Weil's Theorem ([1] p. 16) there exists a curve C_0 defined over k which is birationally isomorphic to C over k'. Thus we complete the proof of Lemma.

Now we prove our Theorem in case of characteristic 0.

THEOREM 1. Let k be a field of characteristic 0 and K be a function field with constant field k. Let C be a complete non-singular curve defined over K with genus ≥ 2 . Then either the set C_K of all rational points of C over K is finite or C is K/k-trivially defined. In the latter case there exists a birational isomorphism θ from a curve C_0 defined over k to C, such that $C_K - \theta((C_0)_k)$ is a finite set.

PROOF. Let J be the jacobian variety of C defined over K and (B, τ) be the K/k-trace of J. Since K is regular extension of k and k is of characteristic 0, τ is a birational isomorphism defined over K from B into J by Cor. 2 of Theorem 9 Chap. VIII of [1]. By the Cor. 1 of the same Theorem (B, τ) is also $\bar{k}K/\bar{k}$ -trace of J, where \bar{k} is the algebraic closure of k. We assume that C_K is not a finite set. By the Theorem of Grauert cited above, there exists a curve C_1 defined over \bar{k} which is birationally isomorphic to C over $\bar{k}K$. Then there exists a finite Galois extension k' of k over which C_1 is defined and has a rational point such that C is birationally isomorphic to C_1 over k'K. Let J_1 be the jacobian variety of C_1 defined over k'. Then J_1 and B are birationally isomorphic over k'. In fact, there is a birational isomorphism β from J_1 to J defined over k'K. Therefore, by the property of trace, there exists a rational homomorphism β' from J_1 to B defined over k' such that $\beta = \tau \cdot \beta'$. Since τ is an into birational isomorphism, τ and also β' is surjective birational isomorphism. Thus β' maps J_1 onto B isomorphically and birationally over k'. So we can identify the curve C_1 on J_1 with a curve C_2 on B defined over k'. Since $C_K \neq \phi$, we can identify C with a curve on J defined over K. $\tau^{-1}(C)$ is also defined over K and is birationally isomorphic to C_2 over k'K. By Lemma 1, there exists a curve C_0 defined over k which is birationally isomorphic to C_2 over k'. If we show that C and C_0 are birationally isomorphic over K, then our proof will be completed. Let M be a generic point of C_0 over $\bar{k}K$. Then we can identify the curve C_0 with a curve C_0^M on B, defined over k(M) by the canonical mapping defined over k(M). Since C and C_{v}^{M} are birationally isomorphic over k'K(M), there exists an automorphism f of B defined over k'K(M) and a k'K(M)-rational point a of B such that $C + a = f(C_u^M)$. Let σ be an automorphism of k'K(M) over K(M). Then we have $C+a^{\sigma}=f^{\sigma}(C_{0}^{M})$. Therefore we have $f(C_{0}^{M})=f^{\sigma}(C_{0}^{M})+a-a^{\sigma}$ and $a = a^{\sigma}$, $f = f^{\sigma *}$. Consequently a is rational over K(M) and f is defined over K(M). Thus C and C_0^{M} are birationally isomorphic over K(M). Since we assumed that C_K is infinite, $C_{K(M)}$ is also infinite. Hence $(C_0^M)_{K(M)}$ and $(C_0)_{K(M)}$ are infinite sets. Since we have taken M as a generic point of C_0 over K, K(M) is also a function field with constant field k. Therefore by Theorem of de Franchis, $(C_0)_{K(M)} - (C_0)_k$ is a finite set and $(C_0)_k$ must be an infinite set. Thus we can take a canonical mapping from C_0 to B defined over k. If we identify C_0 , by this canonical mapping, with a curve on B defined over k, then there exists a rational point a of B over k'K and an automorphism f of B defined over k'K such that $C+a=f(C_0)$, because C and C_0 are birationally isomorphic over k'K. By the same arguments as above we see that a is rational over K and f is defined over K. Hence C and C_0 are birationally equivalent over K. The fact that $C_{\kappa} - \theta((C_{0})_{k})$ is a finite set, is clear by the Theorem of de Franchis. Thus we have completed the proof of our Theorem.

§ 2. Case $p \neq 0$.

In this paragraph, we assume the characteristic p of k to be $\neq 0$ and the genus g of C to be ≥ 2 . We assume that C_{κ} is an infinite set. Other notations are as in §1. We cite the following results from [3] (§4 Satz 2 and its Corollary).

PROPOSITION 2 (Grauert). There is an unramified Galois extension L of

"Let J be the jacobian variety of a curve C. If we consider C as a curve on J, (g-1)

then we have $\{a \in J \mid C+a=C\} = \{0\}$. Because if C+a=C we have $\Theta = \overbrace{C+\cdots+C}^{(g-1)} = \overbrace{C+\cdots+C+a}^{(g-1)} + C + a = \Theta_a$. By Corollary 2 of Theorem 32 of [6] we have a = 0.

^{*)} Here we notice the following fact. $(g \ge 2)$.

 $\bar{k}K$ and a curve Γ defined over L such that Γ is an unramified Galois covering of C and Γ is L/\bar{k} -trivially defined.

Now we prove:

PROPOSITION 3. The notations being as above, C is $\bar{k}K/\bar{k}$ -trivially defined.

PROOF. Let J be the jacobian variety of C defined over K and (B', τ') be the L/\bar{k} -trace of J. Let J_0 be the jacobian variety of the curve Γ_0 defined over \bar{k} which is birationally isomorphic to Γ over L. Then there exists a separable homomorphism α from J_0 to J, which is surjective and defined over L. We identify the curve C and Γ_0 with the curve on J and J_0 respectively, the former being defined over K and the latter over \bar{k} . Then we have $\alpha(\Gamma_0)$ =C+a for a suitable rational point a of J over L. By the property of trace, there is a homomorphism α' , defined over \bar{k} , from J_0 to B' such that $\alpha = \tau' \circ \alpha'$. Therefore τ' must be a surjective separable homomorphism. On the other hand, by Cor. 2 of Theorem 9, VIII of [1], τ' is a purely inseparable homomorphism. Hence τ' is a surjective birational isomorphism, defined over L, from B' to J. Let C_1 be the image of Γ_0 by α' . Then C_1 is defined over \overline{k} and we have $\tau'(C_1) = C + a$. Since J and B' are defined over kK and are birationally isomorphic over a Galois extension L of k K, they are birationally isomorphic over $\bar{k}K$. Let τ'' be the birational isomorphism over $\bar{k}K$ from B' to J such that $\tau''(C_1) = C + a$ for some $\bar{k}K$ -rational point a of J. Then $\tau'' + a$ defines a birational isomorphism defined over $\bar{k}K$. This completes the proof of our Proposition. Q. E. D.

The following Lemma 2 is an analogue of the Lemma 1 in the case of characteristic $p \neq 0$.

LEMMA 2. Let J be the jacobian variety of C, which is defined over k. If C can be identified with a curve on J, which is defined over a purely inseparable extension k' of k and C is birationally isomorphic over k'K to a curve C* on J defined over K such that the inclusion map $C^* \rightarrow J$ makes J the jacobian variety of C*, then C is k'/k-trivially defined.

PROOF. Let g be the genus of C and M_1, M_2, \dots, M_g be a set of independent generic points of C over k'. We put $M = M_1 + \dots + M_g$ where the summation is taken on J. Then we have $k'(M) = k'(M_1, M_2, \dots, M_g)_s$, where $k'(M_1, M_2, \dots, M_g)_s$ is the sub-field of $k'(M_1, \dots, M_g)$ which is elementwise invariant by the symmetric group S(g) permuting the g points M_1, \dots, M_g . M is a generic point of J over k'. Since J is defined over k, k(M) is also regular extension of k. Let L be the separable algebraic closure of k(M) in $k'(M_1, M_2, \dots, M_g)$. Then L is separably generated over k. Since $k'(M_1, M_2, \dots, M_g) \cap \bar{k} = k'$ and k'/k is purely inseparable extension, we have $L \cap \bar{k} = k$. Hence L is a regular extension of k. L and k'(M) are linearly disjoint over k(M) and $L \cdot k'(M) = k'(M_1, M_2, \dots, M_g)$. It follows that L is a Galois exten-

sion of k(M) and the Galois group of L over k(M) can be identified with S(g). Let σ_i $(i=1, 2, \dots, g)$ be elements of S(g) such that $\sigma_i(M_1) = M_i$. Let $L \cap k'(M_1) = K'$. Then K' is a 1-dimensional finite type regular extension of k. Let C_0 be the complete non-singular model of K' over k^{*} . Then for a generic point N_1 of C_0 over k, we have $k(N_1) = K'$. If we put $\sigma_i(N_1) = N_i$ $(i=1, 2, \dots, g)$ we can easily see that N_1, N_2, \dots, N_g are independent generic points of C_0 over k and we have $k(N_1, N_2, \dots, N_g) = L$, $k(N_1, N_2, \dots, N_g) = k(M)$. On the other hand we have $k'(N_1) = k'(M_1)$. Therefore C and C_0 are birationally isomorphic over k'. Thus we have completed the proof of Lemma. Q. E. D.

Combining Lemma 1 and Lemma 2 we prove

LEMMA 3. Let C be a curve defined over an algebraic extension k' of k and J be the jacobian variety of C. If we can take J defined over k and if C is birationally isomorphic over k'K to a curve C* on J defined over K suct that the inclusion map $C^* \rightarrow J$ makes J the jacobian variety of C*, then C is k'/ktrivially defined.

PROOF. Let k_0 be the separable closure of k in k'. By Lemma 2, there exists a curve C' defined over k_0 which is birationally equivalent to C over k'. Let k_1 be a suitable separable extension of k_0 over which C' has a rational point. Then we can identify the curve C' with a curve C" on J which is defined over k_1 , by a canonical mapping defined over k_1 . Since C" is birationally isomorphic to C* over $k' \cdot k_1 \cdot K$, there exists an automorphism and a point a of J such that $f(C^*) + a = C''$. Since $k'k_1K$ is primary extension of k_1 , f is defined over k_1 , and since $f(C^*)$ and C" are defined over k_1K , a is rational over k_1K . By Lemma 1 there exists a curve C_0 defined over k which is birationally equivalent to C" over k_1 . Since C' and C_0 are defined over k_0 , and k_1 is separably algebraic over k_0 , C' and C_0 are isomorphic over k_0 by the unicity of descent (see [1] p. 15, Theorem 2). Thus C is birationally equivalent to C_0 over k'.

Now we can prove:

THEOREM 2. Let k be a field of characteristic $p \neq 0$, and K be a function field with constant field k. Let C be a complete non-singular curve of genus $g \ge 2$ defined over K. Then either C_{κ} is a finite set or C is K/k-trivially defined.

PROOF. We shall take over the notations in the proof of Proposition 3. Let (B, τ) be the K/k-trace of J. (B, τ) is also $\bar{k}K/\bar{k}$ -trace of J. Since K/k is regular extension, τ is a purely inseparable isomorphism from B into J by Cor. 2 of Theorem 9, Chap. VIII of [1]. Since τ'' is a surjective birational

^{*)} Let ψ be the birational isomorphism from C to C* defined over k'K and let $\psi(M_i) = M'_i$. Then we have $K(N_i) = K(M'_i)$. Therefore we can take a complete non-singular model of K' defined over k even if k is not a perfect field.

isomorphism from B' to J defined over $\bar{k}K$ there exists a surjective birational isomorphism β defined over \bar{k} from B' to B such that $\tau'' = \tau \cdot \beta$, τ being a surjective birational isomorphism defined over K. We denote by C_2 the image of C_1 by β . Then C_2 is defined over an algebraic extension k' of k. We also have $\tau^{-1}(C) = C_2 + a$ for a point a on B. Since $\tau^{-1}(C)$ and C_2 are defined over k'K, by Cor. 2 of Theorem 3.2 of [6] a is rational over k'K. $\tau^{-1}(C)$ and C_2 are birationally equivalent over k'K. By Lemma 3 there exists a curve C_0 defined over k, which is birationally isomorphic to C_2 over k'. Let k_0 be a suitable algebraic extension of k with finite degree over which C_0 has a rational point. Then C_0 can be identified with a curve C_3 on J, defined over k_0 by a canonical mapping defined over k_0 . By the Cor. 2 of Theorem 32 of [6] there exists a rational point a of J over k_0K such that $C_3 + a = \tau^{-1}(C)$. Therefore C_0 and C are birationally isomorphic over k_0K . Since C and C_0 are defined over K, by the unicity of descent (see [1] p. 16, Theorem 2) C and C_0 are birationally isomorphic over K. This completes the proof of our Theorem. Q. E. D.

University of Tokyo

References

- [1] S. Lang, Abelian varieties, Interscience Publ., New York, London, 1959.
- [2] S. Lang, Diophantine geometry, Interscience Publ., New York, London, 1963.
- [3] H. Grauert, Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper, Publ. Math., N°25, I. H. E. S., 1965.
- [4] I. Manin, Proof of one analog of Mordell conjecture for algebraic curves over function fields, Dokl. Acad. Nauk SSSR, 152 (1963), 1061-1063.
- [5] L.J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Cambridge Philos, Soc., 21 (1922), 179-192.
- [6] A Weil, Variétés Abéliennes et courbes algébriques, Hermann, Paris, 1948.