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Introduction.

In this paper, we are concerned with Mordell’s conjecture on the set of
rational points on algebraic curves in “ relative case “ (cf. [2] p. 139).

Let $k$ be any field and $K$ be a function field with $k$ as constant field, $i$ . $e$ .
a regular extension of finite type of $k$ . Let $C$ be a complete non-singular
curve defined over $K$. We say that $C$ is trivially defined, if there is a curve
$C_{0}$ defined over $k$ which is birationally equivalent to $C$ over $K$. Then our
main Theorem reads:

If the genus $g$ of $C$ is $\geqq 2$ , then the set of all rational points of $C$ over $K$

is a finite set or $C$ is trivially defined*).
This was proved by Grauert [3] in the case where the characteristic of

$/e$ is $0$ and $k$ is algebraically closed. Manin [4] obtained the same result
with a transcendental method. We shall prove the above Theorem for the
field $k$ of any characteristic $p$ (which may be $=0$ or $\neq 0$), without supposing
$k$ to be algebraically closed.

The proof is given in two cases (1) $p=0$ (\S 1), (2) $p\neq 0$ (\S 2)1). We shall
use the results of [3] as formulated at the beginnings of \S 1 and \S 2, and
the theory of abelian varieties (cf. [1], [6]). As to the terminology we fol-
low generally the usage in [1].

More specifically, the method we shall use is that of descent. To explain

$*)$ For the case $p=0$ , we shall prove another related proposition concerning the
curve of genus 1. (See Proposition 1 below.)

1) To avoid misunderstanding we add here the following remark. Grauert [3]
introduced the notion of ‘ quasi-trivially defined curve ’ which implies that of “ trivi-
ally defined curve” when $p=0$ . He considered also a certain fibre variety $X$ with $C$

as fibre, such that when $X$ becomes trivial ( $i$ . $e$ . isomorphic to the direct product of
fibre and base space), then $C$ is trivially defined in our sense. He proved that in case
$p=0$ , $X$ becomes trivial when $C$ is quasi-trivial and used this to obtain his main
Theorem. For the case $p\neq 0$ , he constructed an example showing that $X$ need not
become trivial even if $C$ is quasi-trivial. But this is of course in no contradiction with
the validity of our Theorem for $p=0$ .
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it for the case $p=0$ , the result is already obtained if the ground field $k$ is
$=\overline{k}$ (algebraic closure of $k$), so we have to $\ell$ ‘ descend “ from $\overline{k}$ to $k$ . For this
purpose, we have to consider different fields $k^{\prime},$ $k^{\prime\prime},$ $\cdots$ containing $k$ and sup-
pose the curve $C$ as defined over $k^{\prime}$ or $ k^{\prime\prime}\ldots$ Let $C$ be defined over $k^{J}$ , and
$k^{\prime\prime}\supset k^{\prime}$ . We shall say $C$ is $k‘/k$ -trivially defined over $k^{\gamma/}$ , if there is a curve
$C_{0}$ defined over $k$ which is birationally equivalent to $C$ over $k^{\prime\prime}$ . If $k^{\prime}=k^{\prime\prime}$ ,

we shall say simply $C$ is $k^{\prime}/k$ -trivially defined. When $k$ ‘ contains a field of
definition of $C$ , we denote with $C_{k}$, the set of all $k^{\gamma}$ -rational points on $C$ .
These notations wlll be used throughout this paper.

The author wishes to express his hearty thanks to Professor Iyanaga for
his valuable advice and to the referee for his suggestions for improving the
proof of Lemmas.

\S 1. Case $p=0$

In this paragraph, the characteristic $p$ of the ground field $k$ (and con-
sequently of all fields considered) is always $0$ . $K$ is a function field with
constant field $k$ . $C$ will denote always a complete, non-singular curve defined
over some field $k^{\gamma}$ containing $k$ , with genus $g$.

First we prove the following Proposition for the case $g=1$ (to complete $\cdot$

our main Theorem concerning the case $g\geqq 2$).

PROPOSITION 1. Let $C$ be defined over $K$ and $g=1$ . Then $C_{K}$ forms an
abelian group in the well-known sense. Either this group is finitely generated
or $C$ is $K/k$ -trivially defined.

PROOF. First we notice that if $ C_{K}=\phi$ , our Proposition is trivial. There-
fore we assume $ C_{K}\neq\phi$ . Then $C$ turns out to be abelian variety defined over
$K$. Let $(B, \tau)$ be the $K/k$ -trace of $C$ . Since $K$ is a regular extension of $k$

and $k$ is of characteristic $0,$ $\tau$ is birational isomorphism from $B$ into $C$ , de-
fined over $K$. Therefore $B$ is either a point or one-dimensional. If $B$ is a
point, we have $C_{K}\approx C_{K}/\tau B_{k}$ and, by Mordell-Weil Theorem, $C_{K}$ is finitely
generated. When $B$ is l-dimensional, $B$ is birationally isomorphic to $C$ over
$K$. Since $B$ is defined over $k$ , our Proposition was proved. Q. E. D.

Next we notice the following classical result for the later use.
THEOREM OF DE FRANCHIS. If $C$ is defined over $k$ , then $C_{K}-C_{k}$ is a finite

set.
For the proof we refer to Lang’s book [2] pp. 139-140.
We owe the following Theorem to Grauert [3].

THEOREM OF GRAUERT. If $C$ is defined over $K,$ $k$ is algebraically closed
and $g\geqq 2$ then either $C_{K}$ is a finite set or $C$ is $K/k$ -trivially defined.

Moreover we use the following Lemma.
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LEMMA 1. Let $k^{\prime}$ be an algebraic extension of $k,$ $C$ be defined over $k^{\prime}$ and
the jacobian variety $J$ of $C$ be defined over $k$ . If $C$ is birationally isomorphic
over $k^{\prime}K$ to a curve $C^{*}$ on $J$ defined over Ksuch that the inclusion map $C^{*}\rightarrow J$

makes $J$ the jacobian variety of $C^{*}$ , then $C$ is $k^{\prime}/k$ -trivially defined.
PROOF. First we notice that if the genus $g$ of $C$ is $=1$ , Lemma is trivial.

Therefore we assume $g\geqq 2$ . Let $k^{\prime\prime}$ be a Galois extension of $k$ , containing
$k^{\prime}$ , with Galois group $G=G(k^{\prime\prime}/k)$ such that $C_{k},,$ $\neq\phi$ . Since $K/k$ is a regular
extension, $k^{\prime\prime}K$ is also a Galois extension of $K$ and the Galois group $G(k^{\prime\prime}K/K)$

can be identified with $G$ . For an element $\sigma$ of $G$ and an algebraic object $V$

defined over $k^{\gamma\gamma}K$, we denote by $V^{\sigma}$ the transform of $V$ by $\sigma$ . Since $C$ and
$C^{*}$ are birationally isomorphic over $k^{\prime\prime}K$, there is an automorphism $h$ of $J$

defined over $k^{\prime\prime}K$ and a k’K-rational point $a$ of $J$ such that $h(C^{*})+a=C$ . We
denote by $f$ the birational isomorphism from $C^{*}$ to $C$ induced by $h+a$ . Then
we have $C=h^{\sigma}\circ h^{-1}(C)-h^{\sigma}h^{-1}(a)+a^{\sigma}$ . Since $k^{\prime\prime}K$ is a regular extension of
$k^{\prime\prime},$ $h$ is defined over $k^{\prime\prime}$ by Chow’s Theorem and since $C^{\sigma}$ and $h^{\sigma}\circ h^{-1}(C)$ are
defined over $k^{\prime\prime},$ $h\circ h^{-1}(a)-a^{\sigma}$ is rational over $k^{\prime\prime}$ . If we define an isomorphism

$f_{\tau,\sigma}$ defined over $k^{\prime\prime}$ from $C$ to $C$ by $f^{\tau}(f^{\sigma})^{-1}=f_{\tau,\sigma}$ , then $f_{r,\sigma}$ satisfies the cocycle
conditions 1) $f_{\rho,\tau}\circ f_{\tau,\sigma}=f_{\beta,\sigma}$ and $(f_{\tau,\sigma})^{\rho}=f_{r\rho,\sigma\rho}(\sigma, \tau, \rho\in G)$ . By Weil $s$ Theorem

$ $([1] p. 16) there exists a curve $C_{0}$ defined over $k$ which is birationally iso-
morphic to $C$ over $k^{\prime}$ . Thus we complete the proof of Lemma.

Now we prove our Theorem in case of characteristic $0$ .
THEOREM 1. Let $k$ be a field of characteristic $0$ and $K$ be a function field

with constant field $k$ . Let $C$ be a complete non-singular curve defined over $K$

with genus $\geqq 2$ . Then either the set $C_{K}$ of all rational points of $C$ over $K$ is
Jinite or $C$ is $K/k$ -trivially defined. In the latter case there exists a birational
isomorphism $\theta$ from a curve $C_{0}$ defined over $k$ to $C$ , such that $C_{K}-\theta((C_{0})_{k})$ is a
fnite set.

PROOF. Let $J$ be the jacobian variety of $C$ defined over $K$ and $(B, \tau)$ be
the $K/k$-trace of $J$. Since $K$ is regular extension of $k$ and $k$ is of charac-
teristic $0,$ $\tau$ is a birational isomorphism defined over $K$ from $B$ into $J$ by Cor.
2 of Theorem 9 Chap. VIII of [1]. By the Cor. 1 of the same Theorem $(B, \tau)$

is also $\overline{k}K/\overline{k}$-trace of $J$, where $\overline{k}$ is the algebraic closure of $k$ . We assume
that $C_{K}$ is not a finite set. By the Theorem of Grauert cited above, there
exists a curve $C_{1}$ defined over le which is birationally isomorphic to $C$ over
$kK$. Then there exists a finite Galois extension $k^{\prime}$ of $k$ over which $C_{1}$ is
defined and has a rational point such that $C$ is birationally isomorphic to $C_{1}$

over $k^{\prime}K$. Let $J_{1}$ be the jacobian variety of $C_{1}$ defined over $k^{\prime}$ . Then $J_{1}$ and
$B$ are birationally isomorphic over $k^{\prime}$ . In fact, there is a birational isomor-
phism $\beta$ from $J_{1}$ to $J$ defined over $k^{\prime}K$. Therefore, by the property of trace,
there exists a rational homomorphism $\beta^{\prime}$ from $J_{1}$ to $B$ defined over $k^{\prime}$ such
that $1^{\cap}0=\tau\cdot\beta^{\prime}$ . Since $\tau$ is an into birational isomorphism, $\tau$ and also $\beta^{\prime}$ is
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surjective birational isomorphism. Thus $\beta^{\prime}$ maps $J_{1}$ onto $B$ isomorphically
and birationally over $k^{\prime}$ . So we can identify the curve $C_{1}$ on $J_{1}$ with a curve
$C_{2}$ on $B$ defined over $k^{\prime}$ . Since $ C_{K}\neq\phi$ , we can identify $C$ with a curve on $J$

defined over K. $\tau^{-1}(C)$ is also defined over $K$ and is birationally isomorphic
to $C_{2}$ over $k^{\prime}K$. By Lemma 1, there exists a curve $C_{0}$ defined over $k$ which
is birationally isomorphic to $C_{2}$ over $k^{\prime}$ . If we show that $C$ and $C_{0}$ are bira-
tionally isomorphic over $K$, then our proof will be completed. Let $M$ be a
generic point of $C_{0}$ over $\overline{k}K$. Then we can identify the curve $C_{0}$ with a curve
$C_{0}^{M}$ on $B$ , defined over $k(M)$ by the canonical mapping defined over $k(M)$ .
Since $C$ and $C_{\cup}^{N}$ are birationally isomorphic over $k^{\prime}K(M)$ , there exists an
automorphism $f$ of $B$ defined over $k^{\prime}K(M)$ and a $k^{\prime}K(M)$-rational point $a$ of
$B$ such that $C+a=f(C_{\cup}^{JI})$ . Let $\sigma$ be an automorphism of $k^{\prime}K(M)$ over $K(M)$ .
Then we have $C+a^{\sigma}=f^{\sigma}(C_{0}^{N})$ . Therefore we have $f(C_{0}^{M})=f^{\sigma}(C_{0}^{M})+a-a^{\sigma}$ and
$a=a^{\sigma},$ $f=f^{\sigma*)}$ . Consequently $a$ is rational over $K(M)$ and $f$ is defined over
$K(M)$ . Thus $C$ and $C_{0}^{M}$ are birationally isomorphic over $K(M)$ . Since we
assumed that $C_{K}$ is infinite, $C_{K(M)}$ is also infinite. Hence $(C_{0}^{M})_{K(M)}$ and $(C_{0})_{K(M)}$

are infinite sets. Since we have taken $M$ as a generic point of $C_{0}$ over $K$,

$K(M)$ is also a function field with constant field $k$ . Therefore by Theorem
of de Franchis, $(C_{0})_{K(M)}-(C_{0})_{k}$ is a finite set and $(C_{0})_{k}$ must be an infinite set.
Thus we can take a canonical mapping from $C_{0}$ to $B$ defined over $k$ . If we
identify $C_{0},$ by this canonical mapping, with a curve on $B$ defined over $k$ ,
then there exists a rational point $a$ of $B$ over $k^{\prime}K$ and an automorphism $f$

of $B$ defined over $k^{\prime}K$ such that $C+a=f(C_{0})$ , because $C$ and $C_{0}$ are birationally
isomorphic over $k^{\prime}K$. By the same arguments as above we see that $a$ is
rational over $K$ and $f$ is defined over $K$. Hence $C$ and $C_{0}$ are birationally
equivalent over $K$. The fact that $C_{K}-\theta((C_{0})_{k})$ is a finite set, is clear by the
Theorem of de Franchis. Thus we have completed the proof of our Theorem.

\S 2. Case $p\neq 0$ .

In this paragraph, we assume the characteristic $p$ of $k$ to be $\neq 0$ and the
genus $g$ of $C$ to be $\geqq 2$ . We assume that $C_{K}$ is an infinite set. Other nota-
tions are as in \S 1. We cite the following results from [3] (\S 4 Satz 2 and
its Corollary).

PROPOSITION 2 (Grauert). There is an unramified Galois extension $L$ of
$*)$ Here we notice the following fact. $(g\geqq 2)$ .
“ Let $J$ be the jacobian variety of a curve $C$ . If we consider $C$ as a curve on $J$,

then we have $\{a\in J|C+a=C\}=\{0\}$ . Because if $C+a=C$ we have
$\Theta=\frac{(g-1)}{C+\cdots+}C$

$=\frac{(g-1)}{C+\cdots+}C+a=\Theta_{a}$

. By Corollary 2 of Theorem 32 of [6] we have $a=0$ .
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$\overline{k}K$ and a curve $\Gamma$ defined over $L$ such that $\Gamma$ is an unramified $Gal_{1^{)}}is$ covering

of $C$ and $\Gamma$ is $L/\overline{k}$-trivially defined.
Now we prove:
PROPOSITION 3. The notations being as above, $C$ is $\overline{k}K/\overline{k}$-trivially defined.
PROOF. Let $J$ be the jacobian variety of $C$ defined over $K$ and $(B^{\prime}, \tau^{\prime})$

be the $L/\overline{k}$-trace of $J$. Let $J_{0}$ be the jacobian variety of the curve $\Gamma_{0}$ defined
over $\overline{k}$ which is birationally isomorphic to $\Gamma$ over $L$ . Then there exists a
separable homomorphism $\alpha$ from $J_{0}$ to $J$, which is surjective and defined over $L$ .
We identify the curve $C$ and $\Gamma_{0}$ with the curve on $J$ and $J_{0}$ respectively, the
former being defined over $K$ and the latter over $\overline{k}$ . Then we have $\alpha(\Gamma_{0})$

$=C+a$ for a suitable rational point $a$ of $J$ over $L$ . By the property of trace,

there is a homomorphism $\alpha^{\prime}$ , defined over $\overline{k}$, from $J_{0}$ to $B^{\prime}$ such that $\alpha=\tau^{\prime}\circ\alpha^{\prime}$ .
Therefore $\tau^{\prime}$ must be a surjective separable homomorphism. On the other
hand, by Cor. 2 of Theorem 9, VIII of [1], $\tau^{\prime}$ is a purely inseparable homo-
morphism. Hence $\tau^{\prime}$ is a surjective birational isomorphism, defined over $L$ ,

from $B^{\prime}$ to $J$. Let $C_{1}$ be the image of $\Gamma_{0}$ by $\alpha^{\prime}$ . Then $C_{1}$ is defined over le
and we have $\tau^{\prime}(C_{1})=C+a$ . Since $J$ and $B^{\prime}$ are defined over $kK$ and are
birationally isomorphic over a Galois extension $Lof^{x}\overline{k}K$, they are birationally
isomorphic over $\overline{k}K$. Let $\tau^{\prime\prime}$ be the birational isomorphism over $\overline{k}K$ from $B^{\prime}$

to $J$ such that $\tau^{\prime\gamma}(C_{1})=C+a$ for some kK-rational point $a$ of $J$. Then $\tau^{\prime\prime}+a$

defines a birational isomorphism defined over $\overline{k}K$. This completes the proof
of our Proposition. Q. E. D.

The following Lemma 2 is an analogue of the Lemma 1 in the case of
characteristic $p\neq 0$ .

LEMMA 2. Let $J$ be the jacobian variety of $C$ , which is defined over $k$ . If
$C$ can be identified with a curve on $J$, which is defined over a purely insepara-
ble extension $k^{\prime}$ of $k$ and $C$ is birationally isomorphic over $k^{\prime}K$ to a curve $C^{*}$

on $J$ defined over $K$ such that the inclusion map $C^{*}\rightarrow J$ makes $J$ the jacobian
variety of $C^{*}$ , then $C$ is $k^{\prime}/k$ -trivially defined.

PROOF. Let $g$ be the genus of $C$ and $M_{1},$ $M_{2}$ , $\cdot$ . , $M_{g}$ be a set of indepen-
dent generic points of $C$ over $k^{\gamma}$ . We put $M=M_{1}+\cdots+M_{g}$ where the sum-
mation is taken on $J$. Then we have $k^{\prime}(M)=k^{\prime}(M_{1}, M_{2}, M_{g})_{s}$ , where
$k^{\prime}(M_{1}, M_{2}, \cdot.. , M_{g})_{s}$ is the sub-field of $k^{\prime}(M_{1}$ , $\cdot$ .. , $M_{g})$ which is elementwise in-
variant by the symmetric group $S(g)$ permuting the $g$ points $M_{1},$ $\cdots$ , $M_{g}$ . $M$

is a generic point of $J$ over $k^{\gamma}$ . Since $J$ is defined over $k,$ $k(M)$ is also regular
extension of $k$ . Let $L$ be the separable algebraic closure of $k(M)$ in
$k^{\prime}(M_{1}, M_{2}, \cdots , M_{g})$ . Then $L$ is separably generated over $k$ . Since $k^{\prime}(M_{1},$ $M_{2}$ ,

, $M_{g}$) $\cap\overline{k}=k^{\prime}$ and $k^{\prime}/k$ is purely inseparable extension, we have $L\cap\overline{k}=k$ .
Hence $L$ is a regular extension of $k$ . $L$ and $k^{\prime}(M)$ are linearly disjoint over
$k(M)$ and $L\cdot k^{\prime}(M)=k^{\prime}(M_{1}, M_{2}, \cdot.. , M_{g})$ . It follows that $L$ is a Galois exten-
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sion of $k(M)$ and the Galois group of $L$ over $k(M)$ can be identified with
$S(g)$ . Let $\sigma_{i}(i=1, 2, \cdot , g)$ be elements of $S(g)$ such that $\sigma_{i}(M_{1})=M_{i}$ . Let
$L\cap k^{\prime}(M_{1})=K^{\prime}$ . Then $K^{\prime}$ is a l-dimensional finite type regular extension of
$k$ . Let $C_{0}$ be the complete non-singular model of $K^{\prime}$ over $k^{*)}$ . Then for a
generic point $N_{1}$ of $C_{0}$ over $k$ , we have $k(N_{1})=K^{\prime}$ . If we put $\sigma_{i}(N_{1})=N_{i}$

($i=1,2,$ $\cdots$ , g) we can easily see that $N_{1},$ $N_{2},$ $N_{g}$ are independent generic
points of $C_{0}$ over $k$ and we have $k(N_{1}, N_{2}, \cdots , N_{g})=L,$ $k(N_{1}, N_{2}, \cdots , N_{g})_{s}=k(M)$ .
On the other hand we have $k^{\prime}(N_{1})=k^{\prime}(M_{1})$ . Therefore $C$ and $C_{0}$ are bira-
tionally isomorphic over $k^{\prime}$ . Thus we have completed the proof of Lemma.

Q. E. D.
Combining Lemma 1 and Lemma 2 we prove
LEMMA 3. Let $C$ be a curve defined over an algebraic extension $k^{\prime}$ of $k$

and $J$ be the jacobian variety of C. If we can take $J$ defined over $k$ and if $C$

is birationally isomorphic over $k^{\prime}K$ to a curve $C^{*}$ on $J$ defined over Ksuct that
the inclusion map $C^{*}\rightarrow J$ makes $J$ the jacobian variety of $C^{*}$ , then $C$ is $k^{\prime}/k-$

trivially defined.
PROOF. Let $k_{0}$ be the separable closure of $k$ in $k^{\prime}$ . By Lemma 2, there

exists a curve $C^{\prime}$ defined over $k_{0}$ which is birationally equivalent to $C$ over
$k^{\prime}$ . Let $k_{1}$ be a suitable separable extension of $k_{0}$ over which $C^{\prime}$ has a
rational point. Then we can identify the curve $C^{\prime}$ with a curve $C^{\prime\prime}$ on $J$

which is defined over $k_{1}$ , by a canonical mapping defined over $k_{1}$ . Since $C$“

is birationally isomorphic to $C^{*}$ over $k^{\prime}\cdot k_{1}\cdot K$, there exists an automorphism
and a point $a$ of $J$ such that $f(C^{*})+a=C^{\prime\prime}$ . Since $k^{\prime}k_{1}K$ io primary extension
of $k_{1},$ $f$ is defined over $k_{1}$ , and since $f(C^{*})$ and $C^{\gamma\gamma}$ are defined over $k_{1}K,$ $a$ is
rational over $k_{1}K$. By Lemma 1 there exists a curve $C_{0}$ defined over $k$ which
is birationally equivalent to $C^{\prime\prime}$ over $k_{1}$ . Since C’ and $C_{0}$ are defined over
$k_{0}$ , and $k_{1}$ is separably algebraic over $k_{0},$ $C^{\prime}$ and $C_{0}$ are isomorphic over $k_{0}$

by the unicity of descent (see [1] p. 15, Theorem 2). Thus $C$ is birationally
equivalent to $C_{0}$ over $k^{\prime}$ . Q. E. D.

Now we can prove:
THEOREM 2. Let $k$ be a field of characteristic $p\neq 0$ , and $K$ be a function

field with constant field $k$ . Let $C$ be a complete non-singular curve of genus
$g\geqq 2$ defined over K. Then either $C_{K}$ is a finite set or $C$ is $K/k$ -trivially defined.

PROOF. We shall take over the notations in the proof of Proposition 3.
Let $(B, \tau)$ be the $K/k$ -trace of J. $(B, \tau)$ is also $\overline{k}K/\overline{k}$-trace of $J$. Since $K/k$ is
regular extension, $\tau$ is a purely inseparable isomorphism from $B$ into $J$ by
Cor. 2 of Theorem 9, Chap. VIII of [1]. Since $\tau^{\prime\prime}$ is a surjective birational

$*)$ Let $\varphi^{f}$ be the birational isomorphism from $C$ to $c*$ defined over $k^{\prime}K$ and let
$\psi(M_{i})=M_{i}^{\prime}$ . Then we have $K(N_{i})=K(M_{i}^{\prime})$ . Therefore we can take a complete non-
singular model of $K^{\prime}$ defined over $k$ even if $k$ is not a perfect field.
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isomorphism from $B^{\prime}$ to $J$ defined over $\overline{k}K$ there exists a surjective birational
isomorphism $\beta$ defined over $\overline{k}$ from $B^{\prime}$ to $B$ such that $\tau^{\prime/}=\tau\cdot\beta,$ $\tau$ being a
surjective birational isomorphism defined over $K$. We denote by $C_{2}$ the image
of $C_{1}$ by $\beta$ . Then $C_{2}$ is defined over an algebraic extension $k^{\prime}$ of $k$ . We
also have $\tau^{-1}(C)=C_{2}+a$ for a point $a$ on $B$ . Since $\tau^{-1}(C)$ and $C_{2}$ are defined
over $k^{\prime}K$, by Cor. 2 of Theorem 3.2 of [6] $a$ is rational over $k^{\prime}K$. $\tau^{-1}(C)$ and
$C_{2}$ are birationally equivalent over $k^{\prime}K$. By Lemma 3 there exists a curve $C_{0}$

defined over $k$ , which is birationally isomorphic to $C_{2}$ over $k^{\prime}$ . Let $k_{0}$ be a
suitable algebraic extension of $k$ with finite degree over which $C_{0}$ has a
rational point. Then $C_{0}$ can be identified with a curve $C_{3}$ on $J$, defined over
$k_{0}$ by a canonical mapping defined over $k_{0}$ . By the Cor. 2 of Theorem 32 of
[6] there exists a rational point $a$ of $J$ over $k_{0}K$ such that $C_{3}+a=\tau^{-1}(C)$ .
Therefore $C_{0}$ and $C$ are birationally isomorphic over $k_{0}K$. Since $C$ and $C_{0}$

are defined over $K$, by the unicity of descent (see [1] p. 16, Theorem 2) $C$

and $C_{0}$ are birationally isomorphic over $K$. This completes the proof of our
Theorem. Q. E. D.

University of Tokyo
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