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It might be interesting to ask to what extent the topological and alge-
braic structures of the group $H(M)$ of the homeomorphisms on a manifold
$M$ represent the topological structures of $M$. In spite of its importance, un-
fortunately, little has been known about it. Though it seems very difficult
to determine the structures of $H(M)$ , many conjectures or problems have
been set up by several authors.

Among them the following two seem to be interesting and important.
i) Does $H(M)$ contain a $p$ -adic group?
ii) Does a homomorphic image of a vector group into $H(M)$ have the

locally compact closure?
Related to the problem i), the following have been known:
a) $H(M)$ has no small compact connected subgroup [4].

b) $H(M)$ has no small finite group [5].

c) If i) is negative, then any locally compact subgroup of $H(M)$ is neces-
sarily a Lie group [3], [4].

d) If i) is aflirmative, $i$ . $e.$ , a $p$ -adic group $P$ can act effectively on $M$,

then the orbit space $M/P$ has the dimension $\dim M+2$ or $\infty[7]$ .
As for the problem ii), A. M. Gleason and R. S. Palais proposed a follow-

ing problem in [2]:

Is the closure of a homomorphic image of any connected Lie group into
$H(M)$ necessarily a Lie group?

The topology for $H(M)$ is of course the compact open topology.
In the previous paper [8] the author showed that if ii) is affirmative,

then any homomorphic image of any connected Lie group into $f\mathfrak{X}$ ) $\dot{n}as$ the
locally compact closure.

It follows that the problem of Gleason and Palais is equivalent to the
problems i) and ii) above. In fact, if i) is negative and ii) is affirmative,
then their problem is affirmative. Conversely, if their problem is affirmative,
then clearly ii) is affirmative. Moreover, we see that if a $p$-adic group can
act effectively on a connected n-dimensional $manifo$ ] $d$ , then there is a con-
nected $n+1$-dimensional manifold on which a $p$-adic solenoid can act effec-
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tively. $p$-adic solenoid can be considered as the closure of a monomorphic
image of the additive group of the real numbers. Thus, if their problem is
affirmative, then i) is negative.

As far as the problem ii) is concerned, we need to know, first of all,

whether or not there exists such a topology $\mathfrak{T}$ for $R^{n}$ (n-dimensional vector
group) that 1) $\mathfrak{T}$ is weaker than the ordinary topology for $R^{n},$ $2$) $(R^{n}, \mathfrak{T})$ is a
topological additive group and 3) the completion $(R^{n}, \mathfrak{T})$ is not locally compact.

In this paper, it will be shown that such a topology exists (Example I).

Moreover, it will also be shown that there is a topology $\mathfrak{T}$ for $R^{2}$ with the
following properties (Example II):

1) $\mathfrak{T}$ is weaker than the ordinary topology for $R^{2}$ ,
2) $(R^{2},\underline{7})$ is a topological additive group,
3) any one-parameter subgroup of $R^{2}$ is locally compact in $(R^{2}, \mathfrak{T})$ ,

4) the completion of $(R^{2},\underline{\tau})$ is not locally compact.
This Example II means that the problem ii) can not be reduced to the

case of one-parameter group by a mere group theoretical method.
The author would like to acknowledge a financial support given by the

Sakko-kai foundation during the preparation of this paper.

1. Notations.

Let $A_{p}$ be the additive group of the formal power series

$\sum_{t=0}^{\infty}a,p^{t}$ , $0\leqq a_{i}<p$ ,

where $p$ is an integer satisfying $p\geqq 2$ ( $p$ is not necessarily a prime number).

In this group $A_{p}$ , the element $-1$ is expressed by

$\sum_{i=0}^{\infty}(p-1)p^{i}$ .

Corresponding to the $p$-adic expansion of an integer, there is a natural
isomorphism $\varphi_{p}$ from the additive group $Z$ of the integers into $A_{p}$ , which

satisfies $\varphi_{p}(1)=1$ and $\varphi_{p}(-1)=\sum_{i- 0}^{\infty}(p-1)p^{i}$ .

Let $A_{p}^{\prime}$ be the subgroup of $A_{p}$ such that $A_{p}^{\prime}=\{x=\sum a_{i}p^{i}’\in A_{p}$ ; there exists
$r=r(x)$ such that $a_{7+i}=0$ or $p-1$ for all $i>0$ }.
Then we see that $\varphi_{p}(Z)=A_{p}^{\prime}$ .

By $\Vert x\Vert\leqq k$ we mean that $a_{k+j}=0$ or $p-1$ for all $j>0$ , where $x=\sum a_{i}p^{i}$ .
By $D_{p,n}(x)$ is meant the sequence of the integers

$(a_{\lambda}, a_{\lambda-t_{\underline{1}*}} a_{\mu})$ , $2_{\iota}=n(n+1)$ , $\mu=(n+1)(n+2)-1,$ $n\geqq 0$ ,
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where $x=\sum_{i-0}^{\infty}a_{i}p^{i}$ . If $D_{p,n}(x)=(0,0, \cdots , 0)$ (or $(p-1, p-1, \cdots , p-1)$ , then we
denote $D_{p,n}(x)=(0)$ (or $(p-1)$) briefly. By $\xi_{p,n}$ is meant the element of $A_{p}^{\prime}$

such that $D_{p,i}=(0)$ for $i\neq n$ , and $D_{p,n}(x)=(1,0, \cdots , 0)$ . By $\Vert D_{p.n}(x)\Vert\leqq k$ is
meant that

$D_{p.n}(x)=\frac{(*,*,\cdots,*}{k},$
$0,$ $\cdots$

’
$0$) or

$(,,,p-1\frac{**\cdots*}{k},, \cdots ’ p-1)$
.

Since $\Vert\cdot\Vert$ is defined with respect to $x$ and $D_{p,n}(x)$ , we can define $\Vert\cdot\Vert=k$ , if
$\Vert\cdot\Vert\leqq k$ is true and $\Vert\Vert\leqq k-1$ is false, and define $\Vert\cdot\Vert\geqq k$ , if $\Vert\cdot\Vert\leqq k-1$ is false.

These notations are fixed throughout this paper.
By an elementary calculation we see:
A) if $D_{p,i}(x)=(0)$ and $D_{p,i}(y)=(0)$ for $0\leqq i\leqq n$ , then $D_{p,i}(-x)=(O)$ and

$D_{p,i}(x+y)=(0)$ for $0\leqq i\leqq n$ .
B) $\Vert D_{p,m}(x+y)\Vert\leqq\max\{\Vert D_{p,m}(x)\Vert, \Vert D_{p,m}(y)\Vert\}+1$ .
C) $\Vert D_{p,m}(-x)\Vert\leqq\Vert D_{p,m}(x)\Vert+1$ .

2. Example I.

First, we begin with the definition of a topology $\mathfrak{T}$ for $Z$ satisfying the
following properties:

1) $(Z, \mathfrak{T})$ is a topological additive group.
2) $(Z, \mathfrak{T})$ satisfies the second countability axiom.
3) The completion of $(Z, \mathfrak{T})$ is not locally compact.
Putting

$V_{n}=\{x\in A_{p}^{\prime} ; D_{p,i}(x)=(0), 1\leqq i\leqq n, \Vert D_{p,n+j}(x)\Vert\leqq j, j>0\}$

we see that $\{V_{n}\}$ determines a topology $\mathfrak{T}$ for $A_{p}^{\prime}$ such that $(A_{p}^{\prime}, \underline{7})$ is a topo-
logical additive group. In fact, since $A_{p}^{\prime}$ is abelian, we have only to prove
that

(a) $\cap V_{n}=\{0\},$ $V_{n}\supset V_{n+1}$ ,

(b) $-V_{n}\subset V_{n-1},$ $V_{n}+V_{n}\subset V_{n-1}$ ,
(c) for any $x\in V_{n}$ , there is $V_{m}$ such that $x+V_{m}\subset V_{n}$ .
By A), B) and C) above, we see that (a), (b) are satisfied. Thus, we have

only to prove (c). Since $x\in A_{p}^{\prime}$ , there is an integer $m$ such that $m\geqq n+1$

and $D_{p,k}(x)=(0)$ or $(p-1)$ for all $k\geqq m$ . It follows that $x+V_{m}\subset V_{n}$ .
Since $\{V_{n}\}$ and $A_{p}^{\prime}$ consist of countably many elements, we see that

$(A_{p}^{\prime}, \mathfrak{T})$ satisfies the second countability axiom.
Obviously, $(A_{p}^{\prime,\underline{\tau}})$ is not discrete.
It will be shown below that the completion Cl $(A_{p}^{\prime}, \mathfrak{T})$ of $(A_{p}^{\prime}, \mathfrak{T})$ is not

compact.
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Assume that $C1(A_{p}^{\prime}, \mathfrak{T})$ is compact. Then $(A_{p}^{\prime}, \mathfrak{T})$ is totally bounded.
Therefore, for any $V_{n}$ there is a finite set of points

$\{a_{1}, a_{2}, \cdots. a_{k}\}$

such that $\cup\{a_{i}+V_{n}\}=A_{p}^{\prime}$ .
Let $r=\max\{\Vert a_{1}\Vert, \cdots, \Vert a_{k}\Vert\}$ . We choose a sufficiently large $m$ such that

$m(m\dashv- 1)>r$ and $m\geqq n+2$ . From B) in section 1, we see that $\Vert D_{p,m}(a_{i}+V_{n})\Vert$

$\leqq m-n+1$ for all $i$ . This contradicts the assumption that V $\{a_{i}+V_{n}\}=A_{p}^{i}$ ,

because there is an element $x\in A_{p}^{\prime}$ such that $\Vert D_{p,m}(x)\Vert\geqq m-n+2$ . It follows
that Cl $(A_{p}^{\prime}, \mathfrak{T})$ is not compact.

Since $A_{p}^{\prime}\cong Z$, we can prove that Cl $(A_{p}^{\prime}, \mathfrak{T})$ is not locally compact from
the lemmas 2.1-2.3 below.

Let $(G, \mathfrak{T}_{0})$ be a fixed Lie group, where $G$ is the underlying group and
$\mathfrak{T}_{0}$ is the underlying topology for $G$ . Then we denote by $T(G, \mathfrak{T}_{0})$ the set of
pairs of the abstract group $G$ and the topology $\mathfrak{T}$ for $G$ such that (1) $\mathfrak{T}$ is
weaker than $\mathfrak{T}_{0}(2)(G, \mathfrak{T})$ is a topological group with Hausdorff’s separation
axiom and the first countability axiom.

LEMMA 2.1. Let $(Z, \mathfrak{T}_{0})$ and $(R, \mathfrak{T}_{0})$ be the group of integers with discrete
topology and the group of real numbers with the ordinary topology respectively.
Then, there exists a mapping $f$ from $T(Z, \mathfrak{T}_{0})$ into $T(R, \mathfrak{T}_{0})$ satisfying the fol-
lowing properties:

1) $f$ is injective and denoting by $r$ the restriction of the topology for $R$ to
the subgroup $Z,$ $c\circ r=identity$ .

2) Cl $(Z, \mathfrak{T})$ is (locally) compact if and only if Cl $(c(Z, \mathfrak{T}))$ is (locally) com-
pact.

PROOF. Since $(Z, \mathfrak{T})$ satisfies the first countability axiom, there is a
system $\{V_{n}\}$ of countable many neighborhoods of the identity $0$ satisfying
the following properties:

a) $V_{n}=-V_{n},$ $V_{n}\subset V_{n-1}$ b) $V_{n-1}\supset V_{n}+V_{n}$ .
Let $U_{n}$ be an open interval $(-1/2^{n}, 1/2^{n})$ . Put $W_{n}=V_{n}+U_{n}$ . Then we

see easily that $\{W_{n}\}$ determines a topology for $R$ satisfying 1). Since the
closure of $(Z, \mathfrak{T})$ in $C1(c(Z, \mathfrak{T}))$ is identical with $C1(Z, \mathfrak{T})$ and $C1(c(Z, \mathfrak{T}))/C1(Z, \mathfrak{T})$

is a homomorphic image of the circle group $R/Z$, we see that Cl $(r(Z,\underline{\tau}))/$

Cl $(Z,\underline{\yen})$ is compact. Thus, we obtain 2).

LEMMA 2.2. Let $(R,\underline{\yen})\in T(R, \mathfrak{T}_{0})$ . If Cl $(R,\underline{\tau})$ is locally compact, then
either $C1(R, \mathfrak{T})$ is compact or $(R, \mathfrak{T})=(R, \mathfrak{T}_{0})$ .

PROOF. Let $K$ be the maximal compact subgroup of the locally compact
group Cl $(R,\underline{\tau})$ . $Itiswell- knownthatCl(R, \mathfrak{T})/Kisavectorgroup$ . Obviously,
there is a natural homomorphism $\psi$ from $(R, \mathfrak{T})$ into Cl $(R,\underline{\tau})/K$ and $\psi(R)$ is
dense in Cl $(R, \mathfrak{T})/K$. If Cl $(R, \mathfrak{T})/K$ is non-trivial, then we see that $\psi$ is
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monomorphic and $C1(R, \mathfrak{T})/K$ is one dimensional vector group, that is $C1(R,\underline{7})/K$

$\cong(R, \mathfrak{T}_{0})$ . It follows $(R, \mathfrak{T})=(R, \mathfrak{T}_{0})$ . If $C1(R, \mathfrak{T})/K$ is trivial, then $C1(R, \mathfrak{T})$ ,

is compact.
By Lemmas 2.1 and 2.2 we have immediately the following:
LEMMA 2.3. Let $(Z,\underline{T})\in T(Z, \mathfrak{T}_{0})$ . If Cl $(Z, \mathfrak{T})$ is locally compact, then

either Cl $(Z,\underline{7})$ is compact or $(Z, \mathfrak{T})$ is discrete.
The desired example is obtained in the following way. Since Cl $(A_{p}^{\prime}, \mathfrak{T})$

which is constructed above is not locally compact, there is a topology $\mathfrak{T}^{\prime}$ for
$Z$ such that $(Z, \mathfrak{T}^{\prime})$ has non-locally compact completion. Thus, $c(Z, \mathfrak{T}^{\prime})$ is a
desired one.

3. Example II.

As in the section 2, we begin with the construction of a topology $\mathfrak{T}$ for
$Z^{2}$ satisfying the following a), b) and c): a) $(Z^{zc}\underline{T})\in T(Z^{2}, \mathfrak{T}_{0})$ where $\mathfrak{T}_{0}$ is
the discrete topology, b) any one generated subgroup of $(Z^{2}, \mathfrak{T})$ is discrete
under the relative topology in $(Z^{2}, \mathfrak{T})$ and c) $(Z^{2}, \mathfrak{T})$ is not discrete.

Let $p,$ $q$ be integers satisfying $q\geqq p^{3},$ $p\geqq 2$ . Considering the direct pro-
duct $A_{p}^{\prime}\times A_{q}^{\prime}$ , we denote $\eta_{n}^{\prime}=(\xi_{p,n}, \xi_{q,n})$ . The topology $\mathfrak{T}$ for $A_{p}^{\prime}\times A_{q}^{\prime}$ is de-
fined by giving a system of neighborhoods $\{V_{n}\}$ of the identity,

$V_{n}=\{x\in A_{p}^{\prime}\times A_{q}^{\prime}$ ; $x=\sum a_{i}\eta_{i}^{\prime}$ (finite summation), $a_{i}=0$ for $0\leqq i\leqq n$

and $|a_{n+j}|\leqq 2^{j}$ for $j\geqq 1,$ $a_{i}\in Z$}.

In fact, we see immediately by this definition that $\cap V_{n}=\{0\},$ $V_{n}=-V_{n}$ ,

$V_{n}+V_{n}\subset V_{n-1}$ . Thus, to prove that $\{V_{n}\}$ is a system of neighborhoods of
the identity of a topological additive group, we have only to show that for
any $x\in V_{n}$ there exists a neighborhood $V_{m}$ such that $x+V_{m}\subset V_{n}$ .

Let $x\in V_{n}$ and $x=\sum_{i=n+1}^{m}a_{\iota}\eta_{i}^{\prime}$ , then we see by an elementary calculation

that $x+V_{m}\subset V_{n}$ . It follows that $(A_{p}^{\prime}\times A_{q}^{\prime} , \underline{\tau})$ is a topological group satisfying
the first countability axiom.

Since there is a natural isomorphism $\varphi=\varphi_{p}\times\varphi_{q}$ from $Z^{2}$ onto $A_{p}^{\prime}\times A_{q}^{\prime}$ ,
the topological group $(A_{p}^{\prime}\times A_{q}^{\prime} , \mathfrak{T})$ determines the topology $\mathfrak{T}$ (denoted by the
same notation) for $Z^{2}$ such that $(Z^{2}, \mathfrak{T})\in T(Z^{2},$ $\mathfrak{T}w$ .

It will be shown below that this topology $\mathfrak{T}$ is a desired one.
Let $\eta_{n}=(p^{n(n+1)}, q^{n(n+1)})\in Z^{2}$ . Then $\varphi(\eta_{n})=\eta_{n}^{\prime}$ . It follows that

$\varphi^{-1}(V_{n})=\{x\in Z^{2}$ ; $x=\sum a_{\uparrow}\cdot\eta_{i},$ $a_{i}=0$

for $0\leqq i\leqq n,$ $|a_{n+j}|\leqq 2^{j}$ for all $j\geqq 1$ }.

$Z^{2}canbenaturallyimbeddedinR^{2}$ . $Clearly,$ $\varphi^{-1}(V_{n})iscontainedin\{(x_{1}, x_{2})$

$\in R^{2}$ ; $\chi_{1}\cdot\chi_{2}\geqq 0$ }. It will be shown below that $\varphi^{-1},$ $V_{n}(n\geqq 5)$ is contained in
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$\{(x_{1}, x_{2}) ; x_{1}\geqq 0, x_{1}^{2}\leqq x_{2}\}\cup\{(x_{1}, x_{2});x_{1}\leqq 0, -x_{1}^{2}\geqq x_{2}\}$ .

Assume that $z=\sum_{i\Leftarrow n+1}^{m}a_{i}\eta_{i}$ is contained in $V_{n}$ and $a_{m}\neq 0$ . If $a_{m}>0$ , then

by denoting $z=(z_{1}, z_{2})$ we see that $z_{1}\leqq p^{(m+1)(m+2)}$ and $z_{2}\geqq q^{m(m+1)-1}$ . Since
$q\geqq p^{3}$ , if $n\geqq 5$, then $z_{2}\geqq z_{1}^{2}$ . If $a_{m}<0$ , then $-z_{2}\geqq z_{1}^{2}$ .

By the definition of $\{V_{n}\}$ , the subgroup generated by $(0,1)$ is discrete
under the relative topology in $(Z^{2T}\sim)$ .

Let $S$ be a subgroup of $Z^{2}$ generated by an element which is not $(0,1)$ .
We see easily that $S\cap\varphi^{-1}(V_{5})$ consists of a finite number of points. Thus,

there is a neighborhood $V_{m}$ such that $S\cap\varphi^{-1}(V_{m})=\{0\}$ . This means that $S$

is discrete under the relative topology in $(Z^{2}, \mathfrak{T})$ .
On the other hand, $(Z^{2}, \mathfrak{T})$ is not discrete. So we see that $(Z^{2}, \mathfrak{T})$ is a

desired one.
In the same way as in Lemma 2.1, we can define a topology $\mathfrak{T}^{\prime}$ for $R^{2}$

satisfying the following properties:
1) $(R^{2}, \mathfrak{T}^{\prime})\in T(R^{2}, \mathfrak{T}_{0})$ where $\mathfrak{T}_{0}$ is the ordinary topology for $R^{2}$ .
2) Any one parameter subgroup of $R^{2}$ with the relative topology in

$(R^{2}, \mathfrak{T}^{\prime})$ is isomorphic to $(R, \mathfrak{T}_{0})$ .
3) $(R^{2}, \mathfrak{T}^{\prime})$ is not equal to $(R^{2}, \mathfrak{T}_{0})$ .
In fact, putting $W_{n}=V_{n}+U_{n}$ where $U_{n}=\{(x_{1}, x_{2});x_{1}^{2}+x_{2}^{2}<1/2^{n}\}$ , there is

no difficulty to show that $\{W_{n}\}$ determines a topology for $R^{2}$ satisfying $1$ ) $-3$)

.above.
For this group $(R^{2}, \mathfrak{T}‘)$ , which is defined above, it will be shown below

that the completion Cl $(R^{2}, \mathfrak{T}‘)$ of $(R^{2}, \mathfrak{T}^{\prime})$ is not locally compact.
Assume that Cl $(R^{2}, \mathfrak{T}^{\prime})$ is locally compact. Let $K$ be a maximal compact

subgroup of $C1(R^{2}, \mathfrak{T}^{\prime})$ . Since the identity mapping from $(R^{2}, \mathfrak{T}^{\prime})$ into $C1(R^{2}, \mathfrak{T}^{\prime})$

is continuous, so is the identity mapping $i$ from $(R^{2}, \mathfrak{T}_{0})$ into Cl $(R^{2}, \mathfrak{T}^{\prime})$ . If
$K\neq\{0\}$ , then by Lemma 2.3 in [8], we see that there is a one-parameter
subgroup $R$ in $R^{2}$ such that the closure of $i(R)$ in Cl $(R^{2}, \mathfrak{T}^{\prime})$ is contained in
$K$. This contradicts the property 2) of $(R^{2}, \mathfrak{T}^{\prime})$ . It follows that Cl $(R^{2}, \mathfrak{T}^{\prime})$ is
a vector group. Since $iR^{2}$ is dense in Cl $(R^{2}, \mathfrak{T}^{\prime})$ , we see that

Cl $(R^{2}, c\sim Y)=(R^{2}, \mathfrak{T}^{\prime})=(R^{2}, \mathfrak{T}_{0})$ .
This also contradicts the property 3) of $(R^{2}, \mathfrak{T}^{\prime})$ . Consequently, we see that
Cl $(R^{2}, \mathfrak{T}^{\prime})$ is not locally compact.

This example II is a desired one announced in the introduction.

Tokyo Metropolitan University



Some examples of fopological groups 153

References

[1] R. F. Arens, Topology for homeomorphism groups, Amer. J. Math., 68 (1946),
593-610.

[2] A. M. Gleason and R. S. Palais, On a class of transformation groups, Amer. J.
Math., 79 (1957), 631-648.

[3] D. Montgomery and L. Zippin, Topological transformation groups, Interscience,
New York, 1955.

[4] D. Montgomery, Finite dimensionality of certain transformation groups, Illinois
J. Math., 1 (1957), 28-35.

[5] P. A. Smith, Transformations of finite period III, Newman’s theorem, Ann.
Math., 42 (1941), 446-458.

[6] C. T. Yang, $p$ -adic transformations groups, Michigan Math. J., 7 (1960), 201-218.
[ 7] H. Omori, Homomorphic images of Lie groups, J. Math. Soc. Japan, 18 (1966),

97-117.


	Some examples of topological ...
	1. Notations.
	2. Example I.
	3. Example II.
	References


