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Introduction. In the present paper we shall prove some properties of
torsion-free discrete subgroups I’ of the title which were announced in our
previous note [2], and then we shall show a method for the construction of
all such I. Those properties are possessed by subgroups I of more general
abstract groups G (defined in §1), e. g. free product of two groups with some
amalgamated subgroups, and so we shall treat them together in an abstract
manner. In §2, we shall show that I' is isomorphic to a free group with
some explicitly given set of generators. In §3, we shall compute the number
of primitive conjugacy classes of I' with given “degree” or, what is the
same, evaluate certain “{ function” attached to I'C G. This is based on
the results of §2. §4 is for the construction of all I'. The problem is noth-
ing but a purely combinatorial one. There are many /' and they have many
non-trivial deformations. In the case where G= PL(2) over p-adic fields, these,
together with the remarks on spectral decompositions of L%(G/I") given at the
end of §3, show that although some I" (with G/I" compact) are arithmetically
defined, their arithmetical properties are not preserved by taking subgroups
with finite indices (cf. also § 4) ; here everything is algebraic and, in gen-
eral, not arithmetic. For example, Ramanujan’s conjecture for some type of
modular cusp forms is equivalent with some conjecture for arithmetically de-
fined I', but the latter fails to be true if we take some subgroups of I’ with
finite indices instead of /'. Finally in §5, a remark on the structure of “p-
unit groups” of totally definite quaternion algebras, which is a direct appli-
cation of Theorem 1 (§2), is given.

Throughout the followings, for any set S, | S| will denote its cardinal num-
ber ; and the summation symbol X over some subsets of a set implies disjoint
union. For any ring A and positive integer n, M(n, A) will denote the ring
of all n by n matrices whose entries are elements of A.

* This work was supported by the National Science Foundation Grant.
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§1. Definition of (G,!) and ['.

Let G be an abstract group. Assume that for each element x of G we are
given some non-negative rational integer [(x), called the length of x, satisfying
the following conditions (G, I, I), (G, !, II); where G, denotes the set of all
elements of G with length [ ({=0, 1,2, ---)and U denotes G, (once and for all).

(G, 1, I) For any [=0,1,2, -, G, is non-empty, U= G, forms a subgroup
of G and

G'=G, UGU=G, |U\G/|<o forall [=01,2,--.

According to this we can define the double coset ring (G, U) with respect
to U and G. Since each G; is a union of finite number of U-double-cosets, it
can be considered as an element of R(G, U) (by taking formal sum instead of
disjoint union).

(G, 1, II) Put | U\G,|=g¢g+1. Then, as elements of R(G, U),

Q) G} = G,+(g+1)U
)] GG = G +qGi-, (1=2).

From this it follows directly that | U\G,|=¢'+¢"" for [=1.

ExaMPLE 1. Let G be the free group with n generators x,, ---, x,. For
any x € G, let [(x) be the sum of absolute values of exponents of x,, ---, x, in
the reduced expression of x. Then G, | satisfies (G, !, I, I]), and U= {1},
g=2n—1.

EXAMPLE 2. G=PL(@2, k)=GL(2, k)/k* where k is a locally compact field
under a discrete valuation. Let o (resp. p) be the ring of integers (resp. prime
ideal) of k2. As a representative modulo k* of any element x of G, we can

2
choose a matrix ((a;;)) (1=1,j=<2)suchthat q;;€0 (1=1¢,/<2) and Y a;p=no.
1,7=1

Put det. ((a;))o =9, Then, [(x) depends only on x. Now G, [ satisfies (G, |,
I, II) with g=Np, and U= PL(2, 0)= GL(2, 0)/o*.

ExAMPLE 3. Let U be any (abstract) group with a proper subgroup H,
such that (U: H;) <. Let H be another group with a subgroup H, with
index two, where H, is isomorphic to H,. Then the free product G of U and
H with “amalgamated subgroups” I, and H, satisfies (G, [, I, I) with some
length . (G, ) satisfying (G, !, I, IT) can be obtained in this manner if and
only if G, consists of a single U-double-coset. (Detailed explanation is given
in §5, Supplement 1) E.g. G=PL(2, k), U, etc. being as in example 2, G is
the free product of U and U, with amalgamated subgroup U, where U, is
the group of all matrices ((a;)) (1=1,7j=2) in GL(2, 0) with a,; =0 (mod p)
divided by the center, and (73 is the normalizor of Uz in G; namely ﬁBZUB

U Uzw, where o= (?r é), b = 7o.
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Throughout the followings we shall fix once and for all any pair (G, I(x))
satisfying the conditions (G, [, I, IT) (as well as the above notations), and con-
sider subgroups I' of G satisfying either (/'I) alone or both (I'I) and (/')
which are stated as follows.

(I'I). I is torsion-free, and I' N\ x*Ux= {1} for any xG.

'mn. |UNG/T'| < co.

In example 1, (/') is satisfied by any subgroup of G and (I'II) is equi-
valent with (G:I')<oco. In example 2, (I']) is equivalent with torsion-freeness
and discreteness of [' in G, and (I'I), (I'I]) is equivalent with torsion-freeness,
discreteness of /" in G and compactness of G/I'. In example 3, (I']) is equi-
valent with the condition that no element of I other than the identity is
conjugate to the elements of U or H.

Our purpose is, given any (G, l(x)) satisfying (G, [, I, II) and I" satisfying
(I'I-IT) (or sometimes only (I'I)) to study the structure, method for construc-
tion, and to see how conjugacy classes of I' are embedded in those of G.

§2. The structure of I'.

2-1. In this section, we shall prove Theorems 1 and 1’.

THEOREM 1. Let I' be a subgroup of G satisfying (I'I). Then I' is iso-
morphic to a free group (over a set of at most countable generators). If more-
over (I'IT) is satisfied, the number of generators of I' is finite and is equal to

»%(q——l)/H—l, where g+1=|U\G,|, h=|U\G/I"|. (When q is even, h must

also be even.)

COROLLARY. Any torsion-free discrete subgroup I' of PL(2, k), k being as
in the example 2, is isomorphic to a free group (over a set of at most counta-
ble generators). If moreover PL(2, k)/I" is compact, the number of free genera-

tors of I is equal to 5 (¢—Dh+1, where g=Np and h=|PL(, \PL(2, K)/T.

As for applications to ‘“p-unit groups” of totally definite quaternion alge-
bras, cf. § 5, Supplement 2.

Before going into the proof of Theorem 1, we need a few elementary
lemmas on (G, ). The proof of Theorem 1 will be based on Lemma 1, Lem-
ma 5 and on the particular choice of representatives of U\G/I".

2-2. LEmMA 1. Let =, m, -, 7w, be a set of representatives of U\G,.
Then for any 1=0,1,2, -, the product m; mw;, --- ©y has length | if and only
if TyTinsn € U holds for all n=1,2, -.-,[—1; and conversely any element x&G
with length | has a unique factorization of the form:

3) X = Uy Ty - Ty

where ue U and ny,m;,,, U for all n=1,2,---,1-1.
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q
In short, G,= Y, Urn; implies G,=>Urn;, -+ &;, the disjoint union 3’ being
t=0

taken over all 0<1,, -+, 1, =< q such that n;,m;,,, & U for all n=1,2,.,[—1.
ProOF. By (2) we obtain

@ Gi=G+cGo+'Gry+ - (=1

where ¢, ¢/, --- are non-negative integers. In fact, it is trivial for /[=1; so

assume that (4) is true for some /=1, and multiply G, on both sides. Then
from (2) follows directly that (4) is true also for /4-1.

(4) implies in particular that the length of a product of / elements of G,
is at most equal to . Now, the expression of G! by the formal sum of left
U-cosets, multiplicity being taken into account, will be

(5) 2Ury -+ ny=2"'Urny - 7;+ lower length terms,

the first formal sum 2 being taken over all 0 <i,, ---, i, < ¢, the second formal
sum 2’ being taken over all 01, --,#<¢ such that =, m,, & U for all
n=1,2,.-,l—1, On the other hand, the number of terms under 2/ in () is
q'+4¢*~* which is also equal to |U\G;|. Thus by comparing (4) and (5) we see
that all left U-cosets under 2’ in (5) must be mutually distinct, elements of
such left U-cosets must have length [/, and that

G,=2"Un; -, (disjoint union)

which proves Lemma 1.

REMARK. Moreover we can easily verify that under the condition (G, [, I)
the statement of Lemma 1 is equivalent with the condition (G, [, II) for G and
i(x).

It is direct consequence of Lemma 1 that for any xy, -+, x, € G we have

Wy e xp) S Wxe)+ - +U(xy)
and that

Wxy =+ xp)=Ux)+ -+ +(x,)  (mod 2).

We say that the product x,--x, is free when the equality instead of the
above inequality holds.

LEMMA 2. Suppose x,y,z€ G,ye U. If the two products xy, yz are both
free, then the product xyz is also free.

Proor. Let 7, -+, m, be as in Lemma 1 and factorize z=um,, --- my, YU
=W Ty oo Ty XU =U"T,, - ,,, Where u, u/, u” € U, [=1(2), m=I(y) >0, n=I(x)
(cf. lemma 1). By the assumption, y- z, x - y are free products; hence x 7, & U,
T, T, & U.  Therefore by Lemma 1, xyz=u’z,, --- 7,7, =+ Ty,Tz, - Ty has
length [+m-+n. Q.E.D.

LEMMA 3. Let x -y be a free product and let xy=un; ---m; be the fac-
torization 3) of xy. Then x=un; - wyu', y=uw"‘m,, . Ty With some w' U
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and m=1[(x).

Proor. Let y=u'zm,,,, --- =; be the factorization (3) for y. Since the fac-
torization of xy can be obtained by factorizations of x, y and then by carrying
the elements of U to the left (no influence to y-side), we see directly by the
uniqueness of factorization (3) for xy that j,. =in4, -+ ,Ji =1, and hence
y=u'n;,,, - n; for some u’ € U. Q.E.D.

LEMMA 4. Let x,ye G and put I(xy)=1(x)+I(y)—2d. Then d=1I(x), I(y);
and if x=x"-x', y=y'-y" are free products with d<1(x"), I(y’), then I[(x'y")
= l(x")+1(y")—2d.

Proor. The first assertion is clear. Let x=un; -+ 7, y=u'n, -+ w;, be
the factorization (3) of x, y. By Lemma 3, x' =u"m; - 7wy, y' =u'm; - wsu'"’
with w”, " e U, l(x)=1—s+1=d, I(y')=t=d. It is enough to prove that
W(myy e mguw'my, - wy)=(—s+1)+t—2d. This can be seen easily from the pro-
cess of obtaining the factorization (3) for xy from that of x and y above.

Q.E.D.

LEMMA 5. Let x,, -+, x, be any elements of G and put

Uxaxin) = 1)+ 1(x541)—2d; (l=si=n-1).
If U(x;3) > di+dyy, holds for all 1 1<i<n—1), then
l(-xl T xn): l(x1)+ s +l<xn)~2(d1+ o +dn~1) .

ProOF. Factorize each x; into free product x;=a;b;c; with I(a))=d;,,
I(b)=U(x;)—d;—y—d; >0, l(c;)=d; (here we understand @,=c¢,=1). Lemma 4
shows that c¢a;,, €U (1=1=<n-—1) and that [(b;c;a;4,0;4,)=U(b)+1(b;s,), and
hence the product (b;c;a;4,)-biy and hence also the product (b;c;a501) (by41Ci41@ias)
are free. Now our lemma follows directly from Lemma 2. Q. E.D.

COROLLARY. Let S be a subset of G such that SN\S™'=¢. Assume that
(y)> dgy+d,, holds for any three elements x,y,z€ SISt with xy+1, yz+1,
where dgy, d,, are defined by Uxy)=I)+I(y)—2d,, (yz)=Iy)+I(z)—2d,,.
Then the subgroup of G generated by S is the free group over S.

Proor. By Lemma 5, any reduced word #1 over S has positive length,
and hence cannot be the identity. Q. E.D.

2-3. Now let I' be a subgroup of G satisfying (I'I). Since |U\G,| < co

for 1=0,1,2, -, | U\G| is countable. Put G= 3 Ux,l", h=|IN\G/I'| < oco. Let
i=1

R(G, U) be the double coset ring with respect to U and G, and let & be the
subring of R(G, U) generated by G, ({=0,1, 2, --). For each U-double-coset
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UyU in G, we correspond an A X h matrix whose (7, j)-component is the ele-
ment of the group ring Z[I'] of I" over the ring of rational integers Z de-
fined by the formal (finite) sum of all elements of I' ~\x;'UyUx;. Then this
gives a homomorphism ¢ of R(G, U) into the ring M of all 2 X h matrices
((myy)) over Z[I'] such that for each ¢ (resp. j), m;;=0 for almost all j (resp.
1), and hence the restriction ¢|%T of ¢ to T gives that of ¥ into M. Put
T,=¢(G)(=0,1,2,-). Then by (4)

©) Ti=T+cTi gt Tyt -
where ¢, ¢/, -~ are non-negative integers. Since any element y of /' is con-
tained in some G;, and hence appears in (1,1) component of T;,, we see directly
from (6) that I" is generated by the set of elements of I which appear in
some components of T, i.e. I' is generated by I'n\x7'Gyx, A =4,j=<h). It is
also easy to see that if we put A;=((a®)), af =|1I" N x7'G.x;|, then

h h
@ ap=aP, Nah=3ay=q"+q¢"

Jj=1 i=1

for any [=1,2,+-, and 14,7

2-4. THE PROOF OF THEOREM 1. (A) Put G———?’L]lUx,’;F (disjoint), and
Si=x"GxyNI 1<i,j<h). We have seen that these Si; (1=i,j<h) to-
gether generate I'. To find a minimum set of generators, we need some
special representatives of U\G/I'.

For that purpose, we fix once and for all a set of representatives =z, 7,
.-, m, of U\Gy, and consider the totality [/, of all elements of G, which have
expressions of the form =y --- ;,, where =, ,7;, & U for n=1,2,-..,/—1. By

Lemma 1, I, is a set of representatives of U\G,; hence Il = G II, is that of
=0

U\G. We shall introduce in I/ a lexicographic ordering in the following
manner.

1) xell, yell,, | >I'=x>y.
2) xyell, x=n; - m;, y=n;-1;,
13=J1 -1 =Jm-1» b >Jm fOr SOme m=1=x>y.
Now let UxI" be any U\G/I' double-coset and let x, be the smallest element
among UxI'N\II(+#0). We shall call x, the smallest representative of UxI,
and denote by R the set of all such smallest representatives of U\G/I" double-
cosets. Thus G=URI", |R|=h, and k> 1.

Moreover & has the following properties. Let xR, x+1 and put x=r,
ey (U=0x)>0). Then y=m,_, - m;, also belongs to R, and it is the only
element in R which is smaller than x and which satisfies x~*G,y > 1. In fact,
let us suppose that y were not smallest in Uyl" ~ /] and let y’ be the smallest.
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Put y=uy'y, us U, rel'. Then xy'=x,yr'=m,uy’. Choose u' €U so
that wxyt=wruy e I nUx[. If (y)<Uy)=1-1, then l(uw'xy )< 1+I(3")
< l=I(x); hence a contradiction. So I(y")=I[(y)=I[—1. But the uniqueness of
factorization (cf. Lemma 1) shows that y’ <y implies w/m,uy’ < m;y i.e. w'xy™!
< x; hence a contradiction. This proves that y eR. Secondly assume that
zeR, z<x and x7'G,z>1. Thus z=nx with z=G,. Since [(2)<I(x) by
assumption we have [(2)=I[(nx)=I[—1 and hence m=ux;' with ue U, i.e.
Z=umy , - mw;. Since zeR, u=1 i.e. z=y; hence the second assertion is
proved.

Now put ft= {x, x,, -}, 1=, <, < - 50, G = z”:l UxI'. Put Syy=x71G,x,

NI'. The above argument shows that for each j>1 there exists unique
suffix 1= p(j) <Jj such that S;;21. We shall show that the following subsets
of G:

Sy A=si<jsh 1+ p(),

Seps—{l} @=j=h)

()

and
T, A=i2h)

where T, is subset of S;; satisfying S;;=T,IT:!, T:N\T7'=¢, are mutually
h R

disjoint, and that I" is the free group over their union S. Since ) |S;;|= 3 |Sy!
j=1 i=1

=g+1 by (6), this would show that if (I'II) is satisfied, i.e. if A < oo, then I
is a free group with (¢—1)h/2+1 generators.

(B) First, let y €S;;, y+1 and put y=ux;'nx;,, xG,. Then, the product
xi'emex; 1s free, i.e. I(y)=I(x;)+U(x)+(x;). In fact, let us first show that the
product «- x, is free. Suppose j#1 (i.e. x;+ 1), otherwise it is trivial. Let
x;=m; - 7wy (I=1(x,)) be the factorization which we defined above. Suppose
7+ x; were not free, then znn;, e U, i.e. y =x7'un,_, -+ m;, with u e U, but we
have shown that x; =m;_, -7, €R. Thus x,=u"'x;y € Ux,I’, and hence
j’ =1, and hence y =xj'ux; € x;'Ux;. By ([']) this implies y=1, which is a
contradiction to our hypothesis, and so, the product = - x; is free. If we apply
the same argument for y~'< S, we see that the product x;'- =z is also free,
and hence by Lemma 2, the product x;'-7-x; is free.

(©) Now let y=xi'mx; €S, v/ =x5'w'x, €Sy, m, 7' =Gy, 7,7 #1,
and consider the product 7y’ =x;'wx;x;'w’x,. We shall show that
® W) =)+ Ur)—2d  with d < Min ((x,), (x)
unless ([, )=(@,j) and yy’=1.

Put x;=1m; - 75, X = Mpp =+ Ty, [ =1(x;), m=1(x,), and put l(x,xz)=I1+m
—2d’ (d’ £ Min(l, m) by Lemma 4). If d’< Min (/, m) then d=d’ < Min ([, m)
by Lemma 5; so (8) holds. So let us suppose that d’= Min(/, m). This im-
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plies that either [ >m, and k, =7, -, kpy=7Jm Or [<m and j, =k, - ,j=Fk,
or j==Fk. First, assume that [>m is the case. Then yy’'=x7'nz, - 7,7 X,
and hence to show (8), it suffices to show that =, 7'« U. Suppose on the
contrary that n; .z’ € U, and put «,,, x.= x,. (Since it is a right free factor
of x;, it belongs to %.) Then =x,x;'nw’< U, which implies that x.y'x;i'e U,
and hence k’=/, and hence y’=1, which is a contradiction. So we have
T e’ & U, and hence (8) is valid for the case [>m. Just by the same man-
ner, we see that (8) holds for the case /< m. Finally if j=#&, (8) is equivalent
with zz’ & U. Suppose on the contrary that zz’ < U. Then x;'yy’x, € U, and
hence x,< Ux,[" i.e. k=i and 7y’ e x,Ux;’, and hence y’=7"1, and (8) is
completely proved.

This shows that the sets (x) are mutually disjoint, and assertions (B) and
(C) together enable us to apply the Corollary of Lemma 5 for the set

S= U Si U (Spcm—’{l})lu T,

1§i<j§h 2=j=h =ish

o)

which proves the theorem. Q.E.D.
Thus the following theorem is obtained from the above proof of Theorem 1.
THEOREM 1. [I', and other notations being as in Theorem 1 and as in the

proof of Theorem 1 (part (A)), the subsets (x) of I' are mutually disjoint and

their union S=SI") is a set of free generators of I'.

REMARK. For each j (2<7=<h), i=p(j) is the minimum suffix (1 <i<h)
such that S;;#+ ¢, In fact, if y=x{'mx;&S;;, we have (by the definition of
neMN), urx;=x, where u = U is chosen such that uz~'x;  [I. This implies
Xi = Xoepy 1€ 12 p(J),

§3. Conjugacy classes of ['C G with given degree.

Throughout this section we assume that /' is a subgroup of G satisfying
(I'I) and (I'II), and hence is isomorphic to a free group with finite number
of generators. For any conjugacy class {7} + {1} of I', we define its degree
by :

deg {r} = l}([i(l} l(x—'yx) (>0).

Any element y =1 of I" or conjugacy class {y} = {1} in I is called primitive
if y generates its centralizer in [’ (which is always free cyclic group); hence
any element (resp conjugacy class) = {1} in /" is a positive power of the
uniquely determined primitive element (resp. conjugacy class). Our purpose
in this section is to count the number of primitive conjugacy classes of [’
with given degree, or what is the same, to evaluate the following formal
infinite product:
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)] Zp(u) =TI (1—udes?)=
5

where # runs over all primitive conjugacy classes of I'. Taking log. of both
sides of (9), we have
ymdeg P

) log Zr(u) - P%“>1 m - m§=31

N
m

-um

where N,,= > degP is the sum of deg P for all P such that deg P divides

deg Pim
m. More generally, let p be a finite dimensional representation of /' over a

field of characteristic 0, and let y(y)(y € I") be the trace of p(y). Let us define
Zp(u, y) by:

P m>um deg P

_ wX(f, = < l\_]ﬁhx_ m
©") log Zr(u, )= p,f:"'zx m mz=)1 m

log Z,0, X)=1
where x(Q)= x(y) for any conjugacy class Q= {y} in I" and
Npx=2d 3 2P™%.

dim degP=d

When G= PL(2, k), k being a locally compact field under a discrete valua-
tion, our Zp{u,y) is an analogue of Szlberg’s { functions for discrete sub-
groups of SL(2, R). According to the structure theorems (Theorem 1’) in §2,
we can evaluate our Zp{u, y) algebraically (for general ). Namely, put

G= Zh) Ux, " (h=1U\G/T'), SE =x7'Gx;N T, S;;=SH ((=0,1<i,;<h). Leto
i=1
be as in § 2 the homomorphism of the subring T of R(G, U) generated by
G, (1=0,1,2, ) into M(h, Z[I']) defined by
PG=W = 7).
res?
p can be extended to the representation of the group ring Z[/'] of I'" in a
natural manner, and hence also to that of M(h, Z[[I']). Thus
G~ A= 3, oM  (Z0)

res

gives a representation of ¥ with degree y(1)A. (These notations will be kept
throughout this section.) Then we have:
THEOREM 2. The notations being as above, we have

Q0 Zp(u, x)=A—u?)"4xdet (1—A¥u+qu?)?

where gy, = (g—Lhy(1)/2.

The proof of this will be given after another lemma. Let 7, 7, -, 7,
be a set of representatives of U\G,, and let /I and its lexicographic orderings
be defined as before. Let x,, ---, x, Il be the smallest representatives of
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U\G/I" with respect to our ordering. As before put S =x;Gx,;, S;;=S%
(=1,1<1,7<h) for such x;,. Thus the sets S;; 1=1<j=<h, 1% p())) Socps
—{(1}2=Zj<h), T1<i<h), where S;;=T,\IT;7, T,NT7'=¢, are mutually
disjoint and their union S constitutes a set of free generators of I.

LEMMA 6. The notations being as above,

(1) Leti,jA<i,j<h) andl=1 be given. Then S consist of all elements
7 of the form:

(11) 7= 04104189 > Tignfs

where iy, -+, 1,-; are any set of indices among {1,2, -, h} such that S,,_,., are
non-empty (m=1, 2, -+, 1—1; we understand that iy=1, 1,,=J); Cip_rin, A€ ONY
elements of S (m=1,2, -, l—=1) such that if i,—,=1p4, then o,
* 1.

Moreover for any element of S the expression is unique. (Since S is
a set of free generators of I, this expression is nothing but the expression
of v by the given free generators of I'—the only thing different is that some
0f Gipyim Can be the identify 1.)

(il) For the sake of simplicity put o,=o0,_,, ASv=ID). Assume that
O0,= " =0, 4110, =1, 0,10, #1 (R =20). Then we have

deg {r} =1—-2k.

ime—1tm me1tm7 tmim 41

(ii) Let k=0. Then the conjugates of y in I' which are contained in
S® for some 1=m, n<h are

X==010y " Gy Gy *+* G104, **+, 0101 *** Oy .

If v(r=1) of the above expressions coincides with x (e.g. o,= -+ =0,=1 can
happen), then x is contained in exactly v different SE’s (I is fixed).

Proor. (i): Immediate, by homomorphism ¢ and (4) of §1. (ii), (iii): Im-
mediate, by the fact that S is a set of free generators of /' and that for any
r# 1 of I', deg {y} is the smallest integer / such that y is conjugate (in I')

to some element of \’LJS,E?. Q.E.D.

i=1
The above lemma shows that if f(3) is any class function on I’ whose
value domain is an additive abelian group, then we have, for any positive
integer m,

12) S S fn=Xd % Y.
i=1 Tesgn); dlm degP=d
deg{r}=m

Denote the both sides of (12) by N, , and put

i=1

=2 [ (nzD,
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Then by Lemma 6 (ii), we have

[m-1/2]
(13) am,f:Nm,f+(Q'“l) r; qk_l m—2k,f (mgl)
or what is the same,
[m-1/2]
(13) Nows = ny=@=D "3 Gy -

THE PROOF OF THEOREM 2. In (13’) put f=y, the character of p. Thus
N, coincides with the one defined by (97), and we have a, = tr. A%. Now
(1), (2) of §1 is equivalent with the following equality between the formal
power series:

i CGpx™=1—=x)1—Gx+gx?)™,
m=0

where G,,(m =0) are considered as elements of T CR(G, U). Since G, — A%
gives a representation of 2. we have

a4 > Agam= (L)1 Af 2-+qx®) .
m==0
Let a,, -, a, (M=y(1)h) be the eigenvalues of A? and put 1—a;x+gx?

=(l—ax)(1—ajx) <1< M). Then, by the eigenvalues of Az (m=1) are

aP @t (g—D S @) e m) (L1 m)
k=1

where ¢;,(m) = g™?—q™?*(m even), =(g™ 2—q™ ¥%)(a;+aj) (m odd). From this
follows directly that the eigenvalues of

[m/2]

A—@-DE Aw  (mzD)

are al’ta™ (1<i1< M); hence we have:

[m/2] M ,
15) Up,x—(g—1) ’gi Ap—2k,0 = z_gl (ap+ai™).
By (13") and we have
ot im (g—1hy@A) --- m:even
(16) Nm,x—‘ El(ai ’JLa'i )+{ 0 eeme Odd .
Now our theorem follows immediately from [(16) Q.E.D.

REMARK 1. In the case of G=PL(2, k), k being a locally compact field
under a discrete valuation, the above formulae (10) can also be obtained by

spectral decomposition of induced representation Ind. p and by calculating its
ria

trace by making use of Gelfand-Graev’s trace formula for unitary representa-
tions of SL(2, k). Comparing this with our algebraically obtained formula
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we get information on the multiplicity of “ special representation ” (an-
alogue of the first member of the discrete series in SL(2, R)-case) (cf. Gelfand-
Graev [I]) of G in L¥G/I'). Cf. [2], §2—determinant part correspond to
principal series of class one (more or less well-known), and (1—u?)~%x cor-
respond to “special representation ” part.

REMARK 2. As before, put

M
det 1—Afu+qu)= I 1 —au)l—aw), a;ai=gq.
i=1

If o is unitary, then Ay are hermitian, and hence a;,= a;+aj are real. By a
trivial estimation (cf. the proposition below) we have |q;|<q+1 1 =i < M),
and |a;| < g+1 except for some obvious cases. But in general (even if p=1),
it is not true that |a;|=|a}|=q"? (or equivalently that |a;| <2¢?). In the
case where G=PL(2, k), k being the same as in the previous remark, it is
equivalent to say that in general L¥G/I") contains supplementary series. By
Corollary 2 of Theorem 3 (§4) it is easy to construct such examples. Some
of them are given in [2], § 4.

Although Ramanujan’s conjecture for p-part of some modular cusp forms
(which belong to some congruence subgroups of the modular group) is equi-
valent with the statement that, for certain I and p, Irnﬁl; p does not contain

supplementary series, such examples seem to diminish the hope of proving it
by group theoretical methods. As for corresponding polynomials (and cxam-
ples of analogue of Ramanujan’s conjectures) for discrete subgroups of Sp(4, @),
cf. [4] (though stated in different formulations).

Finally put G’ = OJ Ga. By (G, L [, II), G’ forms a normal subgroup of G
=0

with index two in G. Put ["=G'nI" and define sgn by sgny=1 for
rel’, =—1 for y& I, Then we have:

PROPOSITION. If p is unitary, then |a;|<q+1 (L Zi < M). If moreover p
1s irreducible and not 1 or sgn, then |a;] <gq+1. When p=1 (resp. sgn), A}
has. g+1 (resp. —(g+1)) as an eigenvalue with multiplicity one (when I'=1",
both +(q+1) are simple eigenvalues).

Proor. First let us recall that Sy, ¢ forany j=2, ---, h. So, for any
two given indices i, (1 <i+#j<h) we can find a sequence =1y, iy, ===, 1, =J
of indices among {1, 2, .-+, A} such that S, ; ,+#¢ for v=1,2,--., r—1

Let M be the (unitary) representation space of p. Let x="x,, x,, -+, x4);
€M Q<1< h) be an eigenvector of Ar. Thus Afx = Ax with some real A
We can assume that || x;, || = Max || x;|| =1 for some 7,, where || | denotes the

1=i=h

metric of M. Thus we have i > o(y)x;=Axy,. Since EhlSWl—_—q—{—l, by
i1

J=1 €844

taking || || of both sides we obtain |4| <¢+1. If A=¢+1 we have A;‘x;(q‘+q“1)x
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for [=1,2,-, and | x,||=-- =] x,]l. Then it follows directly that for any
rS¥ we have p(r)x;=x; Since any element y of I' is contained in S{f
for some [, we have p(y)x,==x, for all yI', and so if p is irreducible p
must be 1, and hence x,=x,=--=x, If A=-—(¢g+1) we obtain Ajx
=(—1Yq*+q" ), for I=1,2,---, and p(y)x, = sgn (y)x, for any y = I'. Hence,
by irreducibility we have p(y)= sgn(y), and the equation p(y)x;= —x; for all
r € S;, determines x,, ---, x, up to a scalar multiple. Q.E.D.

¢4, The construction of I.

Our purpose in this section is to construct (all) I" satisfying (I'I). For
the sake of simplicity we assume here that:

ASSUMPTION IN §4: G, consists of a single U-double-coset, or, what is
the same, (G, /) are those constructed in example 3 (§1 and §5, Supplement 1).
E.g. G=PL(2, k) satisfies this.

Let us first treat the simplest case where h=|I"\G/U|=1, i.e. G=UI.
In this case [" is generated by G, [ which can be expressed as G, I’
=TUTL,TNT'=¢,G, = TETUT+ TZ)TUr—l (disjoint). So ¢-+1 must be even

(and in this case it can be seen directly by Lemma 1 and corollary of Lemma
5 that I" is a free group over T'). Conversely, suppose that g-+1 is even. Let
o be any substitution on the set of indices {0, 1,2, ---, g} such that ¢2=1 and

that o()+i for all i (0<i<g). Let G,= 3 Un, and choose any element z,
=0

from Urn,n7;,,U (0=<i<gq, +#¢ by our assumpticn) in such a way that z,q
=gz;' for all 7. Then, if we put {z,, -+, 2,} =TYT", TN\T '=¢, from Lem-
ma 1 and corollary of Lemma 5, it follows that 7 generates a (free) subgroup
I' of G satisfying (I'I, II) with h=1.
Now we shall briefly discuss the general case. Let =, 7, ---, 7, be again
a set of representatives of U\G, and let /I,, IT and its lexicographic orderings
be defined as before. Foreachi=0,1,2, -, g, put Ur;'= Uryw, with 0=¢()=q.
For any 1<h < oo, assume that we are given some AXh matrix A=((a;,))
satisfying the following properties (Al-3).
(Al) a;; (1 =1,j=<h) are non-negative rational integers, and a,; 1 <1< h)
are even.
(A2) ay=a; 1=<i,j<h) and il‘;“l, a;;=q+1 for each j(1=<7=<h). (Hence
for each ¢ (resp. j) there exists only a finite number of j (resp. 7)
such that a;;+ 0).
(A3) For each i >1 let j= p(i) be the minimum suffix j such that a,;+ 0.
Then p(i)<7 and p2)=< p(3) =< -
These properties are possessed by the matrix A= ((x7'Gyx;\I'|)) where
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I’ is a subgroup of G satisfying (I']) and where = {l=x,<x,< -} /I is
the set of “smallest” representatives of U\G/I" (i.e. x;= Min (Ux;[" N\ II)) (ct.
§2). Our problem here is, conversely, for given A satisfying (Al1-3), to con-
struct (all) I" satisfying (/') such that A=((x7'Gx;\I"]).

Put Q=1{0,1,2,-.-,4}. For any (i,7) 1=1,j=h, we choose a subset Py
of Q satisfying the following conditions.

(P) |Pyl=a;; A=1,j=h).

(P2) For each j(1<j<h), Q= 3 P, (disjoint).
i=1

(P3) For each :>1, let p; be the minimum element of P,y
Then ¢(¢;) € Ppwys; and for each given j =1 and ¢, > 1 such that p())=p(")=J,
we assume p; > p; if and only if i >1.

Since p(i) <1, and since we can start choosing P,; from smaller j’s, it is
clear that it is possible to choose such {P;;;1=<1i,j<h}. Now for each
i,j (1<1,7=<h), we choose a bijection ¢;; of P;; on P; such that o,0;=1,
oo pt) = @(p;) for i1 >1, and o,(v)+ v for each v € P,;. (This is possible since
|Pyl=ay; is even.) For each i,j and v € P;; choose any element x{¥ out of
Ur, N5 U(# ¢ by our assumption on (G, [)) in such a way that x{u®’=x{1
holds for each 1,j,v and that x{8=m, (hence x%#%P =x,!) for each i>1.
Define x,, x,, -+ inductively by x;,=1, x;=x,,x,, for each i >1. (Thus x, el
for all 1=1,2, .-, and by (P3), 1=x,<x,< ) Put P,;={xP|veP,;}CG,
Si;=x7'"Pix; 1=1,j=<h). Thus Sy =1 for i >1. Then we have:

THEOREM 3. The notations being as above, the subgroup I' of G generated
by all Si; (L =1, j £ h) satisfies (I'I). Moreover R = {1l =x, < x,< ---} constitutes
a complete set of representatives of U\G/I" with x;= Min (Ux,I"~II) (i=1,2, ---);
and x7'Gyx;N\I'=Sy; (hence Gy xL'x7'= Py, and A=(|x7'Gx;N\T'|)) holds
for each 1,7 A=Z1, 7 h)).

Conversely every subgroup I' of G satisfying (I'I) is constructed in this
manner.

SKETCH OF PROOF. Converse part is essentially proved in §2.

Now, by our construction, the family of subsets P;(1=1,j<h) of G, has
the following properties (i)-(v).

@) xe€Py yePy x+y—-Ux+Uy.
xeP;y; yelPy, x+y—xU+yU.

i) Pij=P;; x€P;—Ux+Ux"".

i) X IPyl=g+1 V=12, h.

(iv) xe Py —ux~'x;=x; w'xx;=x;, where u,u’ €U are so chosen that
uxx, w'xx;e ll. Equalities hold if and only if j=pQ), x=rm,,
u=uw'=1lori=p(j) x=n,}, u=u' =1

(v) Forany i>1, Ppp27,,.
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(All except (iv) are direct consequences of our construction. As for (iv),
since P;;= Pj3' we need only check w/xx;=x;. First, assume that I(x;) = I(x).
Since x;=1m,xp, we have I(uw'xx)=1+41(x;)>(x;); hence u'xx;>x; unless
xmy; €U, But Pogy; = n;; by (v); hence if Ux= Urn,, (1) shows that i = p(j),
x=m,. must be the case. In this case u=1, xx;=x;. Secondly assume that
I(x;) <Il(x;), Since we assume that P;;# ¢ we have j = p(i) and hence x;=x,,
If j > p(?) then by our definition of ordering we have w/xx;>m, xpp=1x; If
7= p@), by our choice of p; (minimum element of P,,) we have u/xx;= x;,
the equality being valid if and only if x==,, (and hence u/=1); hence (iv)
is verified.)

By using (i)-(v) we can prove the theorem without any difficulties. Let
I’ be the subgroup of G generated by all S;; (1<1,j<h). First, we can verify
that if x e Il is not contained in R then g{(UxS,j)mHC UxI' NIl contains

an element which is smaller than x. (In fact put x=mu; - 7y V=1, , - Ty
O<m=l,y,=1) and let m=m, be the maximum suffix for which y, e R.
Put y,,=x, Let j be the suffix for which Py 3 iy, Then x;<yngs=my, %,
by (iv), and hence if we put 7:x,;17r;n110xjeskj, we have xy <=x.) Since, by

the property of our ordering, UxI" ~n Il must have the minimum element, we
h

have G=\J Ux,I.
i=1

By (i), (ii), (v) and corollary of Lemma 5 in §2 it is easy to see that
Sij (1 §J <i = h ] + P(i))’ Si.ﬂ(i) (2 §i§ h): Ti (1 = i = h); where Si'i,: TiU Ti_ly Ti
NT;'= ¢, are mutually disjoint and their union S is a set of free generators
of I', i.e. I' is a free group over S. In particular I" is torsion-free. To
verify I'nx"'Ux= {1} for all x G, it is enough to see I' N\ x;7'Ux;= {1} for
i=1,2, -, which can be verified in the same manner. The disjointness of
Ux ['A<i<h) is as follows. Let us suppose that x,=ux,r, -7, for some
i+j, where ue U and 7, S,,,, for some i,,j,, and let y, --- 7, be the reduced
expression. Put y,=xj'mx;. Then in the factorization of x;, wx;, must appear
on the right side, i.e. x;=z-(wx;) (free product) with some ze G. Then
mx;,=u'x; with some '€ U and k, which is impossible by (i) and (v). Now
if weputS{,=x71'%;nG,DS;; é Il%j!::q—i—lzi‘_l1 |Si;| must hold ; hence Sy,
=S, Q.E.D.

COROLLARY 1. Assume that G satisfies the assumption of §4 and let I" be
a subgroup of G satisfying (I'I, IT). Then there exists a subgroup U’ = U'(I")
of U with finite index in U such that if S={z, ---, z;} is a set of free genera-
tors of I' and if u,, -+, u, € U’, then S’' = {u,z,, -, w,z;} also generates a free
group I' over S’ which satisfies (I'l, II) with |U\G/I"’|=|U\G/I"|.

COROLLARY 2. Let G be as above, let h be a positive integer and let A be
an h X h matrix whose entries are non-negative integers, Then A can be ex-
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pressed as A= Nnx7'G.x;])) by some subgroup I' of G satisfying (I'I, IT)
and by some set of representatives xy, -+, x, of U\NG/I" if and only if there exists
a substitution matrix T such that T7'AT satisfies (Al-3).

§5. Supplements.

1. On example 3 of §1. (Construction of (G, [) satisfying (G, [, I, II) such
that G, consists of only one U-double-coset.)

Let U be a group with a proper subgroup H, such that (U: H,) < c and
let H be another group which has a subgroup H, with (H: H,)=2. Assume
that there exists an isomorphism # of H, onto H,. Let G be the free product
of U, H with amalgamated subgroups H,(i=1, 2), i.e. the free product of U, H
modulo all relations which arise by identification of elements of H, and H,
by 6. If 1=M,.--, M, (n=(U:H,)) are the set of representatives of H\U
and if ¢ is any element of H not contained in H,, then every element of G
can be expressed uniquely (cf. e.g. A.G. Kurosh [5] in the form

X = hMIO'M]O' eee
or
= haMoM, ---

where h € H, (identified by 6 with H,), 1,7, --- #1. Let {[(x) be the number of
o’s in the above expression. Then (G, I) satisfies (G, [, I, II) with U=G,, ¢+1
=(U: H,) and G, consists of a single U-double-coset. Conversely every such
(G,1) can be defined in this way. In fact if x € G, by our assumption we
have xU N\ Ux"'= ¢. Let o be any element of xU N Ux~!, and so 7' Uoal.
Put H,=0¢'UoU. Then it is easy to see (e.g. by Lemma 1) that G is the
free product of U and H,s with an amalgamated subgroup H,.

2. “p-unit groups” of totally definite quaternion algebras.

Let D be a totally definite quaternion algebra over a totally real algebraic
number field F. Let p be a finite prime of F which does not divide the dis-
criminant of D. Let g be the maximal order of I’ and let o be a g-order of
D such that o(?gp is maximal. Put

['={ae D|acph for some 1< Z and (Na)=y" for some p < Z}
'=r ) NF~.

Then, by the isomorphism
D@Fn% MQ, Fy), where F, denotes the p-adic completion of F, I' can be

regarded as a discrete subgroup of G= PL(2, F,) with compact quotient space
(finiteness of group index between unit groups of o and that of F, and finite-
ness of class number of p). Thus if I" is torsion-free (of course if we take a
suitable suborder o’ of o, /" defined from o’ will be so), then it is free group
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with —%—(q—l)h—}—l generators, where g=Np, and h=|U\G/I'|, U= PL(2, g).

Now, h is the number of such left o-ideal classes (we only consider such
ideals whose left orders are o) that are represented by some ideals which
coincide with o except at p; and by Eichler-Kneser’s (generalized) approxima-
tion theorem on quaternion algebra, if o is maximal it is equal to the quotient
of the class number of D by the class number of F with respect to the ideal
group generated by p and all ideals of the form (@), a: totally positive.

University of Tokyo, and
The Institute for Advanced Study
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