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Many properties proved for analytic functions, or analytic sets, are in fact
far more generally valid. Here we shall deal with the following property of
analytical sets: the existence of ‘ smooth ” points. We recall the following
definitions:

ANALYTIC SET. A closed set $E$ in $R^{n}$ is said to be analytic in an open
set $U$ of $R^{n}$ if, at any point $x\in U\cap E$ , there are local analytic functions

$g_{1},$ $g_{s}$ such that $E$ is defined in a neighborhood of $x$ by $g_{1}=g_{2}=\ldots=g_{s}=0$ .
SMOOTH POINT. A point $x$ of a closed set $E\subset R^{n}$ is called ” smooth ” if

in a neighborhood of $x$ the set $E$ is locally a k-dimensional $C^{\infty}$ imbedded
submanifold (where $k$ is the dimension of $E$ at $x$).

We then have the following well known theorem:
THEOREM. Any analytic set $A$ in $U$ has an open everywhere dense set $A^{\prime}$

of smooth points.
The dimension of the set $A$ at smooth points may vary; but, for a com-

plex analytic set in $C^{n}$ which is irreducible the set of smooth points is con-
nected, and its dimension is the dimension of A. $\ln$ that case $A-A^{\prime}$ is itself
an analytic set with lower dimension than that of $A[1]$ .

DEFINITION. Given an open set $U\subset R^{n}$, an ideal $J$ of the algebra $C^{\infty}(U)$

of $C^{\infty}$ functions in $U$ is said to be a Lojasiewicz ideal if it has a finite num-
ber of generators $f_{1},$ $f_{2},$ $\cdots$ , $f_{s}$ and if for any compact $K\subset U$, there exist posi-
tive constants $A,$ $c$ such that for any $x\in K-E$ ,

$G(x)>A(d(x))^{C}$ , (1)

where $G(x)$ is the sum of squares of a system of generators $G(x)=\sum_{j=1}^{s}f_{j^{2}},$ $d(x)$

being the euclidean distance of $x$ to the set of zeros of $lj$ in $U$.
This definition does not depend on the chosen system of generators

\langle $f_{1},$ $f_{2},$ $\cdots$ , $f_{s}$). For, if $(h_{1}, h_{2}, h_{k})$ is another system of generators, $H=\sum_{j}h_{j^{2}}$

also satisfies a Lojasiewicz inequality in any compact $K\subset U$ with the same
exponent $c$ . Suppose this is not true. Then there exists a point $x$ of the set
$E$ of zeros and a sequence of points $x_{i}\rightarrow x$ such that the quotient $H(x_{i})/d(x_{i})^{c}$

tends to zero as $i$ tends to infinity; hence the $|h_{j}(x_{i})|/d(x_{i})^{c/2}$ also tends to
zero. But we have $f_{r}(x)=\Sigma a_{i}^{r}(x)h_{i}(x)$ , and any inequality of the form $|h_{j}(x_{i})|$

$<Md(x_{i})^{\beta}$ implies an inequality of the form $|f_{j}(x_{i})|<M^{\prime}d(x_{i})^{\beta}$ , which con-
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tradicts the inequality (1). It should be observed that the property of an
ideal to be Lojasiewicz is a local property: if the ideal $J$ is Lojasiewicz in
an open set $U$, then the induced ideal in any open set $U_{1}\subset U$ is also Lojasie-
wicz.

Any analytic ideal is Lojasiewicz (this is the fundamental Lojasiewicz
inequality for analytic functions); a finitely generated ideal in $C^{\infty}(U)$ which
is closed ( $i$ . $e.$ , satisfies Whitney’s spectral theorem: any function whose Taylor
expansion belongs at any point to the induced ideal in the corresponding local
algebra of formal power series belongs to the ideal) is also a Lojasiewicz
ideal [2].

We now prove the
THEOREM 1. Let $E$ be the set of zeros of a Lojasiewicz ideal. Then $E$

has an open everywhere dense set of smooth points.
We have to suppose the ideal $d$ to be non-zero, the inequality (1) being

strict. We need the following lemma:
LEMMA 1. Let $ $ be a Lojasiewicz ideal in a neighborhood $U$ and $j:R^{k}\rightarrow U$

a differentiable imbedding of a k-dimensional manifold in $U$ such that the set
$E$ of zeros of $\mathcal{J}$ is contained in the image $j(R^{k})$ ; then the induced ideal $ j^{-1}(\phi$

is also a Lojasiewicz ideal for $j^{-1}(U)$ in $R^{k}$ .
If $p_{1},$ $p_{2}$ are two points of a compact $K$ in $j^{-1}(U)$ , it is clear that the ratio

$|j(p_{2})-j(p_{1})|/|p_{Z}-p_{1}|$ has on $K$ upper and lower bounds of positive value de-
pending only on the “ curvature ” of the imbedding $j$ ; hence if the function
$G(j(p))$ satisfies on $j(K)$ a Lojasiewicz inequality with respect to the distance
$|j(p_{2})-](p_{1})|$ , it also satisfies a Lojasiewicz inequality (with the same exponent

$c$ and a possibly bigger constant $A$) with respect to the distance $|p_{2}-p_{1}|$ . For
if $x^{\prime}$ is in $j(K)\cap E_{\cap}U$ the nearest point of $E\cap U$ to $x,$ $x^{\prime}=j(p^{\prime}),$ $x=j(p)$ , then
$G(j(p))>A|j(p)-j(p^{\prime})|^{c}$ . Now the nearest point of $p$ on $j^{-1}(E)$ is a point $p^{\prime\prime}$ such
that $|p-p^{\gamma\gamma}|\leqq|p-p^{\gamma}|$ ; hence the inequality $G(j(p))>B|p-p^{\gamma}|^{c}\geqq B|p-p^{\prime\prime}|^{c}$ .

DEFINITION. An ideal $J$ is called flat at a point $x$ if all derivatives of
any function $f$ of the ideal $J$ vanish at $\chi$ .

LEMMA 2. If $i$ is a Lojasiewicz ideal in $V\subset R^{n},$ $U$ any open set relatively
compact in $V$, then in $U\cap E$ there are points where $J$ is not flat.

Suppose $\mathcal{J}$ is flat at all points of $U\cap E$ ; then there exists a neighborhood
$U^{\prime}$ of $U\cap E$ such that for all $x\in U^{\prime}$ there exists a nearest point $x^{\prime}$ in $E_{\cap}U$,
with $G(x)<M|x-x^{\prime}|^{\alpha}$ where the exponent $a$ is greater than $c$ . Such an in-
equality contradicts the inequality (1) if the distance $|x-x^{\prime}|$ is sufficiently small.

DEFINITION. Jacobian extension of an ideal.
Given an ideal 9 in $C^{\infty}(U)$ , we define the jacobian extension of order $k$

of $ $ (notation $J^{k}(\mathcal{J})$) to be the ideal generated by $J$ and all jacobians of order
$k$ of $k$ functions $f_{1},$ $\cdots$ , $f_{k}$ of $\mathcal{J}$ with respect to any set of $k$ coordinates
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$D(f_{1}, f_{2}, \cdot.. , f_{k})/D(x_{i_{1}}$ , $\cdot$ .. , $x_{i_{k}})$ . If $J$ is finitely generated, so is also $J^{k}((j)$ , and
we have the sequence of inclusions:

$ 9\subset J^{n}(J)\subset J^{n-1}(J)\subset$ $\subset J^{1}(\epsilon \mathcal{J})$ .

Such an extension is independent of the coordinates and is invariant under
diffeomorphisms of the ambient space.

We now prove Theorem 1 by induction on the dimension $n$ of the ambient
space. For $n=1$ , we observe that because of Lemma 2, for any open interval
$U$ the set $U\cap E$ , if not empty, contains points where the ideal $J$ is not flat.
Such a point $x$ is obviously an isolated point of $E$ : if $x$ were not isolated,

then any function $f$ of $J$ would vanish in an arbitrary small interval contain-
ing $x$ and so would all derivatives of $f$. Hence the theorem is true for $n=1$ .

Suppose now the theorem true up to dimension $n-1$ , and let $\epsilon 9$ be a
Lojasiewicz ideal on an open set $U$ of $R^{n}$ . Form the successive jacobian ex-
tensions of .9. If the set of zeros $E$ does not become smaller by the extension
$l\rightarrow J^{k}(J)$ then a fortiori $J^{k}(l)$ is a Lojasiewicz ideal. If, in the extension
$i\rightarrow J^{k}(J)$ the set $E$ becomes a smaller set $E^{\prime}$ , then in a neighborhood of any
point $y$ of $E-E^{\prime}$ there exists a system of $k$ functions $f_{1},$ $\cdots$ , $f_{k}$ of 3 with non-
vanishing jacobian with respect to le coordinates; hence the set $E$ is, in a
neighborhood of $y$ , contained in a submanifold of codimension $k$ . As the in-
duced ideal in this submanifold is a Lojasiewicz ideal (Lemma 1), induction
can be used in this case.

It remains to prove that this procedure ends. If $J^{1}(J)$ has the same set
of zeros as $cg$ , we iterate the jacobian extensions of $J^{1}(J)$ ; namely we claim
that there exists a power $s$ such that $J^{1}$ $J^{1}(c\mathcal{J})=(J^{1})^{S}(cg)$ has a smaller set of
zeros in $U$. Let $x$ be a point of $E$ where $1j$ is not flat. Then the Taylor
expansion of a function $g$ of $\mathcal{J}$ starts with a monomial of some degree $t$ ; let
$s$ be the smallest degree occurring in these expansions. Then $(J^{1})^{s}(d)$ contains
an invertible function at $x$ , and the set of zeros of $(J^{1})^{S}(J)$ does not contain
$x$ any longer. Hence the set of zeros does become smaller through jacobian
extensions, and the proof is complete.

We shall now prove another theorem which shows the interest of the
notion of jacobian extension. In some sense the notion plays for the real field
the role of the “ Nullstellensatz ” in the complex case.

THEOREM 2. Let $l$ be a Lojasiewicz ideal in $C^{\infty}(U)$ . For any point of an
open everywhere dense set in the set $E$ of zeros of $J$ , there exists an iterated
jacobian extension of $!j$ which locally induces the ideal of defnition of $E$ .

LEMMA 3. Suppose the Lojasiewicz ideal $!j$ contains locally $k$ coordinate
functions $u_{1},$ $u_{2},$ $\cdots$ , $u_{k}$ . Let $W$ be the local submanifold defined by $ u_{1}=u_{2}=\ldots$

$=u_{k}=0$, and let $w(K)$ denote the restriction of an ideal $K$ to W. Then locally
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the diagram
$(9\rightarrow J^{k+s}((3)$

$\downarrow w$ $\downarrow w$

$w(J)\rightarrow J^{s}(w(J))$

commutes. More precisely, we prove that $w(J^{k+S}(p))=J^{s}(w(J))$ .
First, $w(J^{k+s}(J))$ is contained in $J^{s}(w(3))$ . For, the restriction to $W$ of a

$(k+s)$ minor is a minor of the same order on $W$ if it is taken with respect to
coordinates $(x_{i})$ other than $u_{1},$ $\cdots$ , $u_{k}$ (recall that $J^{k+s}\subset J^{s}$). If the minor contains
some variables $u_{i_{1}},$

$\cdots$ , $u_{\iota_{m}}$ like $D(f_{1}, f_{2}, \cdots , f_{k+s})/D(u_{i_{1}}, \cdots , u_{im}, x_{m+1}, \cdots , x_{k+s})$ we
substitute for the $f_{i}$ expressions of the form: $f(x, u)=f_{w}(x, 0)+ug(x, u)$ , so that
$f_{u}(x, u)=g(x, u)+ug_{u}(x, u)$ ; hence $w(D(f_{1}, \cdots , f_{k+s})/D(u, x))$ is a sum of the form:

$\Sigma g_{1}(x, 0)g_{2}(x, 0)\cdots g_{m}(x, 0)D(f_{m+1}, f_{k+s})/D(x_{m+1}, x_{k+s})$ ,

and $w(J^{k+s}(J))$ is then contained in $J^{S}(w(J))$ . It remains to show that $ w:J^{k+s}(3\rangle$

$\rightarrow J^{S}(w(J))$ is surjective; however this results from the fact that any s-jacobian
$D(g_{1}, \cdots , g_{s})/D(x_{1}, \cdots , x_{s})$ on $W$ is the w-image of $D(u_{1}, \cdots , u_{k}, g_{1}, \cdots , g_{s})/D(u_{1}$ ,
...

$u_{k},$ $X_{1},$ $x_{s}$).

Now the proof of Theorem 2 follows the proof of Theorem 1. If $n=1$ ,

on any smooth point of $E$ where $J$ is not flat, let $s+1$ be the smallest order
of the non-zero terms of the Taylor expansions of functions of Y. Then
$(J^{1})^{s}(\mathcal{J})$ obviously defines the maximal ideal at this point. For an arbitrary $n$ ,

let $y$ be a point of $E$ where some jacobian extension $J^{k}(c\mathcal{J})$ of $J$ contains a
non-zero function. Then $l$ contains $k$ local coordinate functions $u_{1},$ $u_{2},$

$\cdots$ , $u_{k}$ .
Let $W$ be the local submanifold of codimension $k$ defined by $u_{1}=u_{2}=\ldots=u_{k}=0$ ,

and let $w$ denote the local restriction to W. By induction there exists an
iterated jacobian extension $J^{\rho_{1}}\cdots J^{\rho_{s}}(w(3))$ which gives on $W$ the ideal of de-
finition of $E$ near $y$ . Applying Lemma 3, we see that the image under $w$ of
$J^{\rho_{1+k}}$ $J^{\rho_{S}+k}(<\mathcal{J})$ gives locally the same ideal of definition. But, as $(u_{1}, \cdots , u_{k})$

are in this extension $J^{\rho_{1+k}}$ $J^{\rho_{s+k}}(J)$ , it is also the ideal of definition of $E$ near
$y$ on $R^{n}$ . Now this reasoning applies perhaps not to $J$ itself, but at least to
an iterated jacobian extension $j^{\prime}=(J^{1})^{\nu_{1}}(J)$ , which is also Lojasiewicz.

SOME OPEN QUESTIONS.

Let $\mathscr{L}$ be an analytic ideal; let us form the family of ideals containing 3,

closed with respect to jacobian extension and sum. Because of the noetherian
character of germs of analytic sets, this infinite set of ideals defines only a
finite number of analytic sets $A_{i}$ at any point. It is easy to check that given
such a set $A$ , if $B$ is the union of all proper subsets of the family contained
in $A$ , then $A-B$ is an imbedded manifold; hence this family of sets defines
what we may call a “ primary stratification ” of the analytic set defined by $j$ .
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This type of stratification is not fine enough to present the tangential pro-
perties (properties $A,$ $B$ of Whitney [3]) required of a “ stratification ” in the
strongest sense (see [4]). Nevertheless one may hope that there exist canonical
extension operations $X$ generalizing the jacobian extensions (and defined by
polynomial ideals in the space $J^{r}(n, p)$ of local jets) and possessing the follow-
ing property: all canonical extensions of an analytic ideal 3 define a “ true “

stratification.
The following seems to be an interesting class of differentiable ideals: $J$

and all its canonical extensions $Xl$ are Lojasiewicz ideals. Such ” almost
analytic ” ideals probably have the following property: given an ” almost
analytic ” ideal $J$ on $R^{k}$, then for “ almost any ” differentiable map $F:R^{n}\rightarrow R^{k}$ ,

the induced ideal $F^{*}(J)$ is “ almost analytic”.
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