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Introduction

We shall be concerned with the non-selfadjoint operator in the Hilbert
space $\mathfrak{H}$ of abstract functions $f(x)$

(0.1) $L_{1}f\equiv L_{0}f+Vf=xf(x)+\int_{a^{b}}v(x, y)f(y)dy$ ,

where $[a, b]$ may be an infinite interval. More precisely, let $\Omega$ be a fixed
Hilbert space, where the inner product and the norm are denoted by $f\cdot g$ and
$|f|=(f\cdot\overline{f})^{1/2}$ , respectively. $\mathfrak{H}$ is the Hilbert space of all measurable functions

$f(x)(x\in[a, b])$ with values in $\Omega$ such that $\int_{a^{b}}|f(x)|^{2}dx<+\infty$ . We denote the
inner product and the norm in $\mathfrak{H}$ by

$\langle f(x), g(x)\rangle=\int_{a^{b}}f(x)\cdot\overline{g(x)}dx$ and $\Vert f\Vert=\langle f(x), f(x)\rangle^{1/2}$ ,

respectively. Then, $L_{0}f\equiv xf(x)$ is defined in the domain $\mathfrak{D}$ of all functions
$f(x)\in \mathfrak{H}$ satisfying $\int_{a^{b}}(1+|x|)^{2}|f(x)|^{2}dx<+\infty$ . We regard the operator $L_{1}$ as
a disturbed operator of $L_{0}$ by the perturbation $V$.

The above operator (0.1) was initially studied by Friedrichs ([3]). He
supposed that $V$ is small enough to obtain the resolvent of $L_{1}$ by the Neumann
series in terms of the resolvent of $L_{0}$ , and proved, among other things, the
existence of a bounded operator $U$ establishing the similarity of $L_{1}$ to $L_{0}$ .
Namely,

(0.2) $L_{1}=UL_{0}U^{-1}$ .
Recently Faddeev ([2]) treated the same problem without assuming the

smallness of the operator $V$, and showed that the results of Friedrichs are
essentially true even in that case. He assumed however that $V$ is a symmetric
operator. Our aim is to extend his results to the case where $V$ is no longer
symmetric. As we shall show, his method can be applied in the study of the
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behavior of the resolvent of $L_{1}$ without any significant modification. However,

we should mention that in our case some serious difficulties occur when we
consider the integral equation introduced by Faddeev, and these difficulties
make our results considerably weak ones (see Example in \S 1).

Let us explain briefly the outline of our proof.
In \S 2, we first prove that there exists a class of subintervals $\Delta$ of the

real segment $[a, b]$ , to which corresponds the spectral resolution $E_{1}(\Delta)$ of $L_{1}$ .
It should be natural to define $E_{1}(\Delta)$ by using the formula

(0.3) $ E_{1}(\Delta)=\lim_{e\rightarrow+0}\frac{1}{2\pi i}\int_{\Delta}\{R_{1}(\lambda+i\epsilon)-R_{1}(\lambda-i\epsilon)\}d\lambda$ ,

where $R_{1}(z)=(L_{1}-zI)^{-1}$ . However, we define $E_{1}(\Delta)$ explicitly by using the
wave operators $W^{\mathfrak{c}\pm)}(\Delta)$ and $Z^{\mathfrak{c}\pm)}(\Delta)$ , and show that the right side of (0.3) con-
verges to $E_{1}(\Delta)$ in the weak topology of operators. Then we can prove the
relations

(0.4) $E_{1}(\Delta)^{2}=E_{1}(\Delta)$ , $L_{1}E_{1}(\Delta)=E_{1}(\Delta)L_{1}$ .
Next we show the relation

(0.5) $W^{(\pm)}(\Delta)L_{0}=L_{1}W^{(\pm)}(\Delta)$ .
The similarity of $L_{1}$ to $L_{0}$ is then established, by restricting them to the in-
variant subspaces $E_{1}(\Delta)\mathfrak{H}$ and $E_{0}(\Delta)\mathfrak{H}$, respectively, where $E_{0}(\Delta)$ is the resolu-
tion of the identity of $L_{0}$ . We use a stationary method developed by Fried-
richs and Faddeev to construct the wave operators $W^{(\pm)}(\Delta)$ and $Z^{(\pm)}(\Delta)$ .

The operators $W^{(\pm)}(\Delta)$ and $Z^{(\pm)}(\Delta)$ are not in general related to the time
dependent scattering theory since we can not say the uniqueness of the solu-
tion to the equation

(0.6) $i\frac{\partial}{\partial t}u(t)=L_{1}u(t)$ , $u(O)=u_{0}(u_{0}\in \mathfrak{H})$ .

However, if we assume for example ${\rm Im}[V]$ is bounded, then $-iL_{1}$ becomes
the infinitesimal generator of the group $\exp\{-iL_{1}t\}(-\infty<t<+\infty)$ . In this
case $W^{(\pm)}(\Delta)$ and $Z^{(\pm)}(\Delta)$ are used to the study of the asymptotic behaviors
for $ t\rightarrow\pm\infty$ of the solution $u(t)$ to equation (0.6). The scattering theory of $L_{1}$

is discussed in \S 3.
In \S 4, we discuss the completeness of the spectral resolution $E_{1}(\Delta)$ of $L_{1}$ .

We consider this problem in the case when $V$ is a product operator such that
$V=B^{*}A$ . In this case we can use satisfactorily the Cauchy integral formula.
However, we require in our proof that formula (0.3) has a meaning for any
subinterval $\Delta$ of $[a, b]$ . Although this is a well-known fact for selfadjoint
operators, it seems rather difficult to verify this when a non-selfadjoint operator
is concerned with. In this paper, we add this as an assumption.
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Finally, in \S 5, we remark that some additional properties can be obtained
if we restrict $V$ to be dissipative.

We should mention that the works of J. Schwartz ([8]) and Kato ([6])

have some contact points with our study. J. Schwartz investigated the Fried-
richs model (0.1) without assuming the smallness condition on the non-selfad-
joint operator $V$ . He proved the existence and the completeness of the spectral
resolution $E_{1}(\Delta)$ of $L_{1}$ by reducing these problems to the results of Friedrichs
for small perturbation. Our results to the same problems are not much clear
in comparison with those of J. Schwartz. However, we proved them by using
a direct method. Kato ([6]) treated the perturbation theory of general non-
selfadjoint operators. Roughly speaking, his assumptions are that $L_{0}$ is a
closed operator with spectrum on the real line, that $V$ is a small perturbation
by a product operator, $i$ . $e.,$ $V=\kappa B^{*}A$ , where $|\kappa|$ is chosen sufficiently small,
that $A(L_{0}-zI)^{-1}$ and $B(L_{0}^{*}-zI)^{-1}$ are uniformly bounded when $z$ moves in a
neighborhood of the real line, and that $A(L_{0}-zI)^{-1}B^{*}$ is also uniformly bounded.
Under these assumptions he proved among other things that there exist the
wave operators $W^{(\pm)}$ and $Z^{(\pm)}$ which establish the similarity of $L_{1}$ to $L_{0}$ . We
use in \S 4 a modification of Kato’s method.

The author would like to express his sincere graditude to Professor S.
Mizohata for valuable suggestions and corrections. He would also like to
thank Professor T. Ikebe for his helpful discussions.

1. Preliminaries

The operator $V$ is defined by

(1.1) $[Vf](x)=\int v(x, y)f(y)dy$ ,

where $v(x, y)$ is a completely continuous operator in $\Omega$ for any $\chi$ and $y$ in
$[a, b]$ (hereafter we shall write simply $\int$ , if the integration is taken over
$[a, b])$ . We denote by $\overline{v}(x, y)$ and $|v(x, y)|$ the adjoint operator (in $\Omega$) and the
norm of $v(x, y)$ , respectively. Throughout the present paper the kernel $v(x, y)$

of $V$ is assumed to satisfy the following conditions :
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(B) $|v(x, y)-v(x+\Delta x, y+\Delta y)|$

1
$\leqq const(1+|x|+|y|)^{-\delta_{0}}(|\Delta x|^{\gamma_{0}}+|\Delta y|^{\gamma_{0}}),$ $--2<\gamma_{0}<1$ ;

(C) $v(x, a)=v(x, b)=v(a, y)=v(b, y)=0$ if $a$ or $b$ is finite.

We first prove the following theorem.
THEOREM 1.1. Let $V$ be an integral operator satisfying the condition (A).

Then the operator $L_{1}$ defined by (0.1) has the following properties:
(1) $L_{1}$ is a closed operator with the domain $\mathfrak{D}\equiv \mathfrak{D}(L_{0})$ . Let $L_{1}^{*}$ and $V^{*}$ be

the adjoint operators of $L_{1}$ and $V$ , respectively. Then $L_{1}^{*}=L_{0}+V^{*}$ , and $L_{1}^{*}$

has also $\mathfrak{D}$ as the domain of definition.
(2) The essential spectrum of $L_{1}$ consists of the real segment $[a, b]$ , outside

of which $L_{1}$ has at most a countable number of discrete eigenvalues to which
correspond finite dimensional root $subspaces^{2)}$ . The same properties are true
for $L_{1}^{*}$ .

(3) A complex number $z\in[a, b]$ is a discrete eigenvalue of $L_{1}$ if and only
if the complex conjugate $\overline{z}$ is a discrete eigenvalue of $L_{1}^{*}$ . The root subspaces
corresponding to $z$ and $\overline{z}$ are of the same dimension.

PROOF. By the condition (A), it is not difficult to see that $\mathfrak{D}(V)\supset \mathfrak{D}$ . So
the integral operator $V(L_{0}-zI)^{-1}$ with the kernel $v(x, y)(y-z)^{-1}$ is defined
everywhere in $\mathfrak{H}$ for any complex number $z\not\in[a, b]$ . According to the relation

(1.2) $L_{1}-zI=L_{0}+V-zI=\{I+V(L_{0}-zI)^{-1}\}(L_{0}-zI)$ ,

we see that $L_{1}$ is a closed operator with the domain $\mathfrak{D}$ . Since

$(1.1)^{*}$ $[V^{*}f](x)=\int v^{*}(x, y)f(y)dy$ $(f\in \mathfrak{D})$ ,

where $v^{*}(x, y)=\overline{v}(y, x)$ , by the same reasoning, $L_{0}+V^{*}$ is also a closed opera-
tor with the domain $\mathfrak{D}$ . Next, let us prove the relation $L_{1}^{*}=L_{0}+V^{*}$ . It fol-
lows easily from (A) that $v(x, y)(y-z)^{-1}$ is a kernel of the Hilbert-Schmidt
type and

$\int\int\frac{|v(x,y)|^{2}}{|y-z|^{2}}dxdy\leqq const\iint\frac{(1+|x|+|y|)^{-2}\delta_{0}}{|y-z|^{2}}dxdy$

$\leqq const|{\rm Im} z|^{-1}\int(1+|x|)^{-2\delta 0+1}dx\int(1+|y|)^{-1}|y-z|^{-1}dy$ .

Hence there exists a complex number $z$ such that

2) A function $f(x)\in \mathfrak{H}$ is called a generalized eigenfunction of $L_{1}$ corresponding
to an eigenvalue $\lambda$ , if there exists a natural number $n$ such that $(L_{1}-\lambda I)^{n}f=0$ . The
set of all generalized eigenfunctions of $L_{1}$ which correspond to $\lambda$ is called the root sub-
space of $L_{1}$ , corresponding to $\lambda$ .
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$\Vert V(L_{0}-zI)^{-1}\Vert<1$ , $\Vert V^{*}(L_{0}-\overline{z}I)^{-1}\Vert<1$ .
For arbitrarily fixed such a value $z,$ $L_{1}-zI$ has a bounded inverse. Moreover
we have from (1.2) that

$(L_{1}-zI)^{-1*}=\sum_{n=0}^{\infty}[V(L_{0}-zI)^{-1}]^{*n}(L_{0}-\overline{z}I)^{-1}$ .

On the other hand, since
$(1.2)^{*}$ $L_{0}+V^{*}-\overline{z}I=(L_{0}-\overline{z}I)\{I+(L_{0}-\overline{z}I)^{-1}V^{*}\}\subseteqq(L_{0}-\overline{z}I)\{I+[V(L_{0}-zI)^{-1}]^{*}\}$ ,

we have similarly that

$(L_{0}+V^{*}-\overline{z}I)^{-1}=\sum_{n=0}^{\infty}[V(L_{0}-zI)^{-1}]^{*n}(L_{0}-\overline{z}I)^{-1}$ .

Hence we find tne relation $(L_{1}-zI)^{-1*}=(L_{0}+V^{*}-\overline{z}I)^{-1}$ , which implies $L_{1^{*}}$

$=L_{0}+V^{*}$ . The assertion (1) is thus proved. The remainder of the above theo-
rem follows readily from Theorem 5.1 of [5] if we notice the complete con-
tinuity of $V(L_{0}-zI)^{-1}$ . The theorem is proved.

Now we introduce, following Faddeev, the operator $V_{1}(z)$ with the domain
$\mathfrak{D}$, satisfying the equation3)

(1.3) $\{I+VR_{0}(z)\}V_{1}(z)=V$, $R_{0}(z)=(L_{0}-zI)^{-1}$ $(z\not\in[a, b])$ .
LEMMA 1.1. The operator $I+VR_{0}(z)$ is invertible in $\mathfrak{H}$ with the bounded

inverse if $z\not\in[a, b]$ is not an eigenvalue of $L_{1}$ .
PROOF. Let $f+VR_{0}(z)f=0,$ $f\in \mathfrak{H}$ . Then, putting $\psi=R_{0}(z)f\in \mathfrak{D}$, we have

$(L_{0}-zI)\psi+V\psi=0$ . Namely $(L_{1}-zI)\psi=0$ . This implies that $z$ is an eigen-
value of $L_{1}$ . Thus, if we recall that $VR_{0}(z)$ is completely continuous in $\mathfrak{H}$ ,

this proves our assertion.
Let us define the oprators

(1.4) $V_{1}(z)=\{I+VR_{0}(z)\}^{-1}V$ ,

(1.5) $R_{1}(z)=R_{0}(z)-R_{0}(z)V_{1}(z)R_{0}(z)$ .
Then $R_{1}(z)$ gives exactly the resolvent of $L_{1}$ . Let us prove this. We first
notice that the range of $R_{1}(z)$ is contained in $\mathfrak{D}$ . So, we can apply to the
second side of (1.5) the operator $L_{1}-zI$ from the left. Then we see easily
$(L_{1}-zI)R_{1}(z)=I$. Next applying $L_{1}-zI$ from the right, we get

$R_{1}(z)(L_{1}-zI)=I+R_{0}(z)\{V-V_{1}(z)-V_{1}(z)R_{0}(z)V\}$

$=I+R_{0}(z)\{V-V_{1}(z)-[I+VR_{0}(z)]^{-1}VR_{0}(z)V\}$

$=I+R_{0}(z)\{V-V_{1}(z)-V+V_{1}(z)\}=I$ (in $\mathfrak{D}$).

3) This is a fundamental equation in the stationary approach to scattering theory.
Faddeev has developed in [1] a method for the scattering theory of the non-relativistic
three body problem starting with this equation. This equation can be applied to the
relativistic quantum theory (see [7]).
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Conversely, using the resolvent $R_{1}(z)$ of $L_{1},$ $V_{1}(z)$ is represented as follows:

(1.6) $V_{1}(z)=V-VR_{1}(z)V$ .

In fact, there exist always the relations

(1.7) $R_{1}(z)=R_{0}(z)-R_{1}(z)VR_{0}(z)$ ,

(1.8) $R_{1}(z)=R_{0}(z)-R_{0}(z)VR_{1}(z)$ ,

which are called the second resolvent equations. Applying $V_{1}(z)$ to (1.7) from
the right, we get

$R_{0}(z)V_{1}(z)=R_{1}(z)\{I+VR_{0}(z)\}V_{1}(z)=R_{1}(z)V$ .
Namely we have

(1.9) $R_{0}(z)V_{1}(z)=R_{1}(z)V$ ,

which yields relation (1.6). Finally, applying $R_{0}(z)$ to (1.6) from the right, we
have

(1.10) $VR_{1}(z)=V_{1}(z)R_{0}(z)$ .

Next, let us define the operators

$(1.4)^{*}$ $V_{1}^{*}(z)=\{I+V^{*}R_{0}(z)\}^{-1}V^{*}$ ,

$(1.5)^{*}$ $R_{1}^{*}(z)=R_{0}(z)-R_{0}(z)V_{1}^{*}(z)R_{0}(z)$ .
Then we see similarly that $R_{1}^{*}(z)$ is the resolvent of $L_{1}^{*}=L_{0}+V^{*}$ . If $R_{1}(z)$

exists for some $z\not\in[a, b]$ , then we see from (3) of Theorem 1.1 that $R_{1}^{*}(\overline{z})$

exists and we have

(1.11) $R_{1}^{*}(\overline{z})=R_{1}(z)^{*}$ .
Since
$(1.6)^{*}$ $V_{1}^{*}(z)=V^{*}-V^{*}R_{1}^{*}(z)V^{*}$ ,

comparing this formula with $(1.4)^{*}$ and taking (1.11) into account, we have

(1.12) $V_{1}^{*}(z)f=V_{1}(\overline{z})^{*}f$ , $f\in \mathfrak{D}$ ,

where $V_{1}(z)^{*}$ is the adjoint operator of $V_{1}(z)$ . Finally we get

(1.13) $[R_{1}(\overline{z})V]^{*}=V^{*}R_{1}(\overline{z})^{*}=V_{1}^{*}(z)R_{0}(z)$ .
From now on, we shall examine whether the solution $V_{1}(z)$ of equation

(1.3) be an integral operator generated by a smooth kernel similar to $v(x, y)$ ,

even when $z$ approaches the continuous spectrum of $L_{1}$ . For this aim, we can
apply the method developed by Faddeev ([2]) in the case when $V$ is sym-
metric.

The operator $VR_{0}(z)$ is an integral operator such that
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(1.14) $[VR_{0}(z)f](x)=\int\frac{v(x,y)f(y)}{y-z}dy$ , $f\in \mathfrak{H}$

The right side becomes singular when $z$ approaches to the real segment $[a, b]$ .
In order to give a meaning to such a type of singular integrals, we require
the Holder conditions on $f(x)$ .

Let $\mathfrak{B}_{\delta,\mathcal{T}}$ be the space of all continuous functions $f(x)(x\in[a, b])$ with
values in $\Omega$ , satisfying

(1.15) $\Vert f\Vert_{\delta,\mathcal{T}}\equiv\sup_{x,|\Delta x|<1}(1+|x|)^{\delta}\{|f(x)|+\frac{|f(x)-f(x+\Delta x)|}{|\Delta x|^{\gamma}}\}<+\infty$ ,

where $\delta\geqq 0$ and $0<\gamma<1$ . $\mathfrak{B}_{\delta,\tau}$ is a Banach space. Let $\Pi$ be a complex plane
with a slit along the real segment $(a, b)$ , where the points on the upper edge
are distinguished from those on the lower edge and these points are denoted
by $\lambda+i0$ and $\lambda-iO(\lambda\in(a, b))$ , respectively. We denote by $\tilde{\Pi}$ the set composed
of $\Pi$ and those points $\lambda+i0$ and $\lambda-iO(\lambda\in(a, b))$ .

Define the operator

(1.16) $[T(z)f](x)=\int\frac{v(x,y)f(y)}{y-z}dy$ $(z\in\Pi)$

acting on the space $\mathfrak{B}_{\delta,\gamma}$ . Then we get the following estimates due essentially
to Friedrichs ([3])4).

$|[T(z)f](x)|\leqq const(1+|x|)^{-\delta_{0}}(1+|z|)^{-\delta\prime}\Vert f\Vert_{\delta,\gamma}$ ,
(1.17)

$|[T(z)f](x)-[T(z+\Delta z)f](x+\Delta x)|$

$\leqq const(1+|x|)^{-\delta_{0}}(1+|z|)^{-\delta\prime}\Vert f\Vert_{\delta,\gamma}(|\Delta x|^{\gamma_{0^{\prime}}}+|\Delta z|^{\gamma})$ ,

where $\delta^{\gamma}(<\delta)$ and $\gamma_{0}^{\prime}(<\gamma_{0})$ can be chosen as close to $\min(\delta, 1)$ and $\gamma_{0}$ , respec-
tively, as we wish and $\gamma^{\prime}=\min(\gamma_{0}, \gamma)$ . Namely $T(z)$ is a bounded mapping
from $\mathfrak{B}_{\delta,\gamma}$ into $\mathfrak{B}_{\delta_{0},\mathcal{T}_{0}},$ . Now let $\delta<\delta_{0}$ and $\gamma<\gamma_{0}$ . Then, since we can choose

$\gamma_{0}^{\prime}$ such that $\gamma<\gamma_{0}^{\prime}<\gamma_{0}$ , we find that $T(z)$ is a completely continuous operator
defined in $\mathfrak{B}_{\delta,\gamma}$ , following the proof of Faddeev ([2]). It follows immediately
from (1.17) that

4) These estimates are obtained by applying, with the aid of Lemma 2.1 to be
given later, the following estimates due to Faddeev (see [1]; Lemma 1.3 of page 105) :

let $\varphi(x)\in \mathfrak{B}_{\delta,\gamma}$ then the function $\Phi(z)=\int\varphi(x)(x-z)^{-1}dx(z\in\Pi)$ satisfies

$|\Phi(z)|\leqq const(1+|z|)^{-\delta^{\prime}}||\varphi\Vert_{\delta,T}$ ,
$(^{*})$

$|\Phi(z)-\Phi(z+\Delta z)|\leqq const(1+|z|)^{-\delta^{\prime}}||\varphi||_{\delta.\gamma}|\Delta z|^{\gamma}$ .
We remark that the above estimates will play an important role in the following.
Sometime we shall use them without explicit mention.
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$\Vert T(z)\Vert_{\delta,\gamma}\leqq const(1+|z|)^{-\delta^{\prime}}$ ,
(1.18)

$\Vert T(z)-T(z+\Delta z)\Vert_{\delta,\gamma}\leqq const(1+|z|)^{-\delta\prime}|\Delta z|^{\mu}$ ,

where $0<\mu<\frac{\gamma(\gamma_{0}-\gamma)}{\gamma_{0}}5$

)

We can say more. The above estimates show that,

by the passage to the limit, $T(\lambda\pm i0)$ exist and they are also completely con-
tinuous in $\mathfrak{B}_{\delta,\gamma}$ as the uniform limits of cMpletely continuous operators. They
satisfy (1.18) with the same constants.

Now consider the integral equations

(1.19) $f+T(z)f=f_{0}$ $(f_{0}\in \mathfrak{B}_{\delta,\gamma})$ ,

(1.20) $\varphi+T(z)\varphi=0$ .

Since $T(z)$ is completely continuous in $\mathfrak{B}_{\delta,7}(0<\delta<\delta_{0},0<\gamma<\gamma_{0})$ for any fixed
$z\in\tilde{\Pi}$ , we can apply the Fredholm alternative. We call a value $z$ for which
\langle 1.20) has a non-trivial solution a singular point of $T(z)$ . We denote by $\sigma(T)$

the set of all the singular points of $T(z)$ .
As we can see easily, $\sigma(T)$ is independent of the choice of $\delta$ and $\gamma$ . So,

as for the investigation of the property of the singular points, we can fix $\delta$

and $\gamma$ such that $\frac{1}{2}<\delta<\delta_{0}$ and $\frac{1}{2}<\gamma<\gamma_{0}$ . In such a case, we see that
$f\in \mathfrak{B}_{\delta,\gamma}$ belongs to $\mathfrak{H}$ . Consequently, it follows from Lemma 1.1 that, if $z\in\sigma(T)$

is on neither edge of $(a, b)^{6)}$ , then it is a discrete eigenvalue of $L_{1}$ . The con-
verse is also true.

The following lemma is due to Faddeev ([2]; Lemmas 3.6, 3.9).

LEMMA 1.2. $\sigma(T)$ is closed and bounded in $\Pi^{\sim}$ .
In the case when $V$ is symmetric, Faddeev has proved moreover ([2];

Lemmas 3.8, 3.11) that $\lambda+i0(\lambda\in(a, b))$ belongs to $\sigma(T)$ if and only if $\lambda$ is an
eigenvalue of $L_{1}$ , and then $\lambda-iO\in\sigma(T)$ . This fact is proved by using the
property that the solution $\varphi(x)$ of (1.20) for $z=\lambda+i0$ satisfies $\varphi(\lambda)=0$, and the

assumption that $\gamma>\frac{1}{2}$

In the case where $V$ is no longer symmetric, we cannot deduce the above
result, as the following example shows.

EXAMPLE. Let $\lambda\in(a, b)$ , and $v(x)$ be a real valued smooth function whose
support is compact and contained in $(a, b)$ . Suppose furthermore $v(\lambda)^{2}=\frac{1}{\pi}$

and $v(\lambda-\xi)=v(\lambda+\xi)$ for all $\xi$ . Put $v(x, y)=iv(x)v(y)$ and consider

5) This follows from Lemma 1.2 of page 104 of [1] if we notice that the range
of $T(z)$ belongs to $\mathfrak{B}_{\delta_{0},\gamma 0^{\prime}}$ .

6) In the case when $z=a$ or $b$ , we see easily that this value is also an eigenvalue
of $L_{1}$ since $v(a, y)=v(b, y)=0$ .
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$L_{1}f=xf(x)+iv(x)\int v(y)f(y)dy$ , $f\in L^{2}(a, b)$ .

In this case equation (1.20) becomes

$\varphi(x)+iv(x)\int\frac{v(y)\varphi(y)}{y-z}dy=0$ .

This equation has, for $z=\lambda+i0$ , a non-trivial solution $v(x)$ . In fact, we have

$v(x)+iv(x)\{P\int\frac{v(y)^{2}}{y-z}dy+\pi iv(\lambda)^{2}\}^{7)}$

$=v(x)+iv(x)\{0+\pi i\cdot\frac{1}{\pi}\}=0$

taking account of the symmetric property of $v(y)^{2}$ with respect to $ y=\lambda$ . On
the other hand, the value $ z=\lambda$ is not an eigenvalue of $L_{1}$ . In fact, let $\psi(x)$

$\in \mathfrak{D}$ be a solution of the equation

$(\lambda-x)\psi(x)=iv(x)\int v(y)\psi(y)dy$ .

Put $\int v(y)\psi(y)dy\equiv C$ . Then $(\lambda-x)\psi(x)=iCv(x)$ . Since $v(\lambda)\neq 0,$ $\psi(x)$ does not

belong to $L^{2}(a, b)$ unless $C=0$ . Thus $\psi(x)\equiv 0$ .
Incidentally, we can show an example of a selfadjoint operator $L_{1}$ such

that $\lambda\in[a, b]$ is an eigenvalue of $L_{1}$ . In fact, let $\lambda$ be an arbitrary point in
$[a, b]$ . Then we can find a real valued function $v(x)\in C^{1}$ , whose support is

compact and contained in $(a, b)$ , satisfying $v(\lambda)=0$ and $\int(\lambda-x)^{-1}v(x)^{2}dx=1$ .
Then, putting $\psi(x)=(x-\lambda)^{-1}v(x)$ and

$L_{1}f=xf(x)+v(x)\int v(y)f(y)dy$ ,

we have

$(L_{1}-\lambda I)\psi=(x-\lambda)\psi(x)+v(x)\int(x-\lambda)^{-1}v(x)^{2}dx$

$=v(x)-v(x)=0$ .
Thus $\psi(x)$ is an eigenfunction of $L_{1}$ corresponding to the eigenvalue $\lambda$ .

Let us continue for the moment to investigate the property of the singular
points of $T(z)$ . We introduce another operator

$(1.16)^{*}$ $[T^{*}(z)f](x)=\int\frac{v^{*}(x,y)f(y)}{y-z}dy$ $(z\in\Pi),$ $f\in \mathfrak{B}_{\delta,\mathcal{T}}$ ,

where $v^{*}(x, y)=\overline{v}(y, x)$ , and denote the set of the singular points of $T^{*}(z)$ by

7) We denote by $P$ the Cauchy principal value.
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$\sigma(T^{*})$ . Then it follows from (3) of Theorem 1.1 that $z\not\in(a, b)$ belongs to $\sigma(T^{*})$

if and only if $\overline{z}\in\sigma(T)$ (cf. Foot-note 6).

This property can be extended to $z$ lying both edges of $(a, b)$ . Namely
we have the

LEMMA 1.3. The value $z=\lambda\pm iO(\lambda\in(a, b))$ belongs to $\sigma(T^{*})$ if and only if
$\overline{z}=\lambda\mp i0$ belongs to $\sigma(T)$ .

PROOF. It suffices to show the lemma in the case when $z=\lambda+i0$ . Let us
denote by $\mathfrak{B}_{\delta.\gamma}^{\prime}$ the dual of $\mathfrak{B}_{\delta,\mathcal{T}}$ ; that is, the space of all continuous linear
functionals defined on $\mathfrak{B}_{\delta,T}$ . The dual operator $T(z)^{\prime}$ of $T(z)$ is defined by

$[T(z)^{\gamma}F](f)=F(T(z)f)$ , $F\in \mathfrak{B}_{\delta,\gamma}^{\prime}$ , $f\in \mathfrak{B}_{\delta,\mathcal{T}}$ .
Then, applying the Fredholm theory, we see that the homogeneous equation

(1.20)i $\Psi+T(z)^{\prime}\Psi=0$

has a non-trivial solution in $\mathfrak{B}_{\delta.\gamma}^{\prime}$ if and only if $z\in\sigma(T)$ .
It follows immediately from conditions (A) and (B) on $v(x, y)$ that, for any

$\alpha\in\Omega,$ $ v(x, y)\alpha$ belongs to $\mathfrak{B}_{\delta},’$. as a function of $x$ and

(1.21) $\Vert v(\cdot, y)\alpha\Vert_{\delta,\gamma}\leqq const(1+|y|)^{-\delta_{0}+\delta}|\alpha|$ .

Let $\lambda-iO\in\sigma(T)$ and $\Psi$ be a corresponding solution of (1.20). Then we can
define a continuous linear functional on $\Omega$ by $\Psi(v(\cdot, y)\alpha)$ for every fixed $y$ .
Namely, there exists a $\Omega$-valued function $\varphi^{*}(x)$ such that

(1.22) $\Psi(v(\cdot, y)\alpha)=\alpha\cdot\overline{\varphi^{*}(y)}$ .
Here we claim that $\varphi^{*}(y)\not\equiv O$ . In fact, we have for any $f\in \mathfrak{B}_{\delta,T}$

$\Psi(f)=-\Psi(T(\lambda-iO)f)=-\lim_{\epsilon\rightarrow+0}\int\frac{\Psi(v(\cdot,y)f(y))}{y-(\lambda-i\epsilon)}dy$ .

Suppose $\varphi^{*}(y)\equiv 0$ , then this implies $\Psi(v(\cdot, y)\alpha)=0$ for any $y$ and $\alpha\in\Omega$ . Hence
$\Psi(v(\cdot, y)f(y))=0$ . This implies $\Psi(f)=0$ for any $f\in \mathfrak{B}_{\delta,T}$, contrary to our as-
sumption. Now since

$\Psi(v(\cdot, y)\alpha)=-\Psi(T(\lambda-i0)v(\cdot, y)\alpha)$

$=-\lim_{\epsilon\rightarrow+0}\Psi(\int\frac{v(\cdot,u)v(u,y)\alpha}{u-(\lambda-i\epsilon)}du)$ ,

it follows that

$\alpha\cdot\overline{\varphi^{*}(y)}=-\lim_{\epsilon\rightarrow+0}\int\frac{\Psi(v(\cdot,u)v(u,y)\alpha)}{u-(\lambda-i\epsilon)}du$ .

Using again (1.22), we have

$\alpha\cdot\overline{\varphi^{*}(y)}=-\lim_{\epsilon\rightarrow+0}\int\frac{v(u,y)\alpha\cdot\overline{\varphi^{*}(u)}}{u-(\lambda-i\epsilon)}du$ .
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It is easy to see that $\varphi^{*}(y)\in \mathfrak{B}_{\delta_{0}-\delta,\gamma}$ . Thus we have

$(1.20)^{*}$ $\varphi^{*}(y)=-\lim_{\epsilon\rightarrow+0}\int\frac{\overline{v}(u,y)\varphi^{*}(u)}{u-(\lambda+i\epsilon)}du=-[T^{*}(\lambda+iO)\varphi^{*}](y)$ .

Namely $\lambda+i0\in\sigma(T^{*})$ .
Conversely, using a solution $\varphi^{*}(x)$ of the last equation, we can define a

linear functional acting on $\mathfrak{B}_{\delta,1}$, by

$\Psi(f)\equiv\int\frac{f(y)\cdot\overline{\varphi^{*}(y)}}{y-(\lambda-i0)}dy$ , $f\in \mathfrak{B}_{\delta,\gamma}$ .

Then it is not difficult to see that this satisfies equation (1.20) for $z=\lambda-iO$ .
Namely $\lambda-iO\in\sigma(T)$ .

The proof of the above lemma is complete.
Next, we remark the following:
LEMMA 1.4. In order that a value $\lambda\in(a, b)$ be an eigenvalue of $L_{1}$ or $L_{1}^{*}$ ,

it is necessary and sufficient that both $\lambda+i0$ and $\lambda-iO$ belong to $\sigma(T)$ .
PROOF. Let $\lambda+iO$ and $\lambda-iO$ belong to $\sigma(T)$ . Then, by virtue of the above

lemma, we see that they also belong to $\sigma(T^{*})$ . Let $\varphi(x)$ and $\varphi^{*}(x)$ be solutions
of (1.20) and $(1.20)^{*}$ , respectively, corresponding to the singular point $z=\lambda+iO$ .
Then we have

$0=\int\frac{\varphi^{*}(x)\cdot\overline{\varphi(x})}{x-(\lambda+iO)}dx+\int\frac{\varphi^{*}(x)}{x-(\lambda+i0)}$ . $[\int\frac{\overline v(x,y)\varphi(y)}{y-(\lambda+iO)}dy]dx^{8)}$

$=\int\frac{\varphi^{*}(x)\cdot\overline{\varphi(x})}{z-(\lambda+iO)}dx-\int\frac{\varphi^{*}(y)\cdot\overline{\varphi(y})}{y-(\text{\‘{A}}-i0)}dy$

$=2\pi i\varphi^{*}(\lambda)\cdot\overline{\varphi(\lambda)}$ .

This implies that $\varphi(\lambda)=0$ or $\varphi^{*}(\lambda)=0$ . Since $\gamma>\frac{1}{2}$ , we see on putting $\psi(x)$

$=(x-\lambda)^{-1}\varphi(x)$ and $\psi^{*}(x)=(x-\lambda)^{-1}\varphi^{*}(x)$ that $\psi(x)$ or $\psi^{*}(x)$ belongs to $\mathfrak{D}$ . Sup-
pose $\psi(x)\in \mathfrak{D}$ , then we see

$(L_{0}-\lambda I)\psi=\varphi(x)=-\int v(x, y)\psi(y)dy=-V\psi$ .

Namely $(L_{1}-\lambda I)\psi=0$ . This shows that $\lambda$ is an eigenvalue of $L_{1}$ . Similarly,
if we suppose $\psi^{*}(x)\in \mathfrak{D}$, then $\lambda$ becomes an eigenvalue of $L_{1}^{*}$ .

8) In fact this is seen from the relation

$0=<R_{0}(\lambda+i_{6})\varphi^{*},$ $\varphi+T(\lambda+i\epsilon)\varphi>$

$=\int\frac{\varphi^{*}(x)\cdot\overline{\varphi(x)}}{x-(\lambda+i\epsilon)}dx+_{\epsilon}\}_{\rightarrow+0}^{im}\int\frac{\varphi^{*}(x)}{x-(\lambda+i\epsilon)}[\int\frac{v(x,y)\omega(y)}{y-(\lambda+i\epsilon)}dy]dx$ ,

by letting $\epsilon\rightarrow+0$ and noting by virtue of estimates (1.17) that the orders of the inte-
gration and the limit procedure can be arbitrarily changed.
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Conversely, let $\lambda\in(a, b)$ be an eigenvalue of $L_{1}$ , and $\psi(x)$ be a correspond-
ing eigenfunction. Then, since

$(x-\lambda)\psi(x)+\int v(x, y)\psi(y)dy=0$ ,

we see on putting $\varphi(x)=(x-\lambda)\psi(x)$ that $\varphi\in \mathfrak{B}_{\delta,r}$ and $\varphi(\lambda)=0$ . This implies
that $\varphi(x)$ is a solution of (1.20) for $z=\lambda+iO$ as well as $z=\lambda-iO$ . The same
reasoning can be applied in the case when $\lambda$ is an eigenvalue of $L_{1}^{*}$ .

The proof is thus complete.

We return to the non-homogeneous equation (1.19). If $z\in\tilde{\Pi}$ does not be-
long to $\sigma(T)$ , then we can define the operator $B(z)$ by setting

(1.23) $\{I+T(z)\}^{-1}=I+B(z)$ .
It follows from (1.18) that $B(z)$ is a bounded operator in $\mathfrak{B}_{\delta,\gamma}$ , for any $\delta$ and
$\gamma$ such that $0<\delta<\delta_{0}$ and $0<\gamma<\gamma_{0}$ . Moreover

$\Vert B(z)||_{\delta,\gamma}\leqq const(1+|z|)^{-\delta^{\prime}}$ ,
(1.24)

$\Vert B(z)-B(z+\Delta z)\Vert_{\delta,T}\leqq const(1+|z|)^{-\delta}$
‘

$|\Delta z|^{\prime J}$ ,

where $\delta^{\prime}$ and $\mu$ are the same exponents as given in (1.18). The constants in
the right sides are independent of $z\in\tilde{\Pi}$ , whenever $z$ is not in a neighbohood
of $\sigma(T)$ .

Now, let $ v_{1}(\cdot, y;z)\alpha$ be the solution of (1.19) with $f_{0}$ replaced by $ v(\cdot, y)\alpha$ ,
$\alpha\in\Omega$ . Then this is represented by

(1.25) $v_{1}(x, y;z)\alpha=[\{I+B(z)\}v(\cdot, y)\alpha](x)$ .
LEMMA 1.5. $v_{1}(x, y;z)$ is a completely continuous operator in $\Omega$ and van-

ishes when $x$ or $y$ is on the boundary of $[a, b]$ . Moreover the following esti-
mates hold.

$|v_{1}(x, y;z)|\leqq const(1+|x|+|y|)^{-\delta_{1}}$ ,
(1.26)

$|v_{1}(x, y;z)-v_{1}(x+\Delta x, y+\Delta y;z+\Delta z)|$

$\leqq const(1+|x|+|y|)^{-\delta_{1}}(|\Delta x|^{\gamma_{1}}+|\Delta y|^{\gamma_{1}}+|\Delta z|^{\prime z_{1}})$ ,

where $\delta_{1}(<\delta_{0}),$ $\gamma_{1}(<\gamma_{0})$ and $\mu_{1}(<-L_{4^{\underline{0}}})$ can be chosen as close to $\delta_{0},$
$\gamma_{0}$ and $\frac{\gamma_{0}}{4}$ ,

respectively, as we wish. The constants in the right sides are independent of
$z\in\tilde{\Pi}$ , whenever $z$ is not in a neighborhood of $\sigma(T)$ .

PROOF. The first half of the assertion is evident. Applying (1.21) and
(1.24) to the identity (1.25), we get

$|v_{1}(x, y;z)|\leqq const(1+|x|)^{-\delta}(1+|y|)^{-\delta_{0}+\delta}$ ,

$|v_{1}(x, y;z)-v_{1}(x+\Delta x, y+\Delta y;z)|$

$\leqq const(1+|x|)^{-\delta}(1+|y|)^{-\delta_{0}+\delta}(|\Delta x|^{\gamma}+|\Delta y|^{\gamma})$ .
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Since these inequalities are valid for any $\delta$ and $\gamma$ such that $0<\delta<\delta_{0}$ and
$0<\gamma<\gamma_{0}$ with the constants which depend only on the choice of $\delta$ and $\gamma$ , we
can substitute in the right sides the function $(1+|x|+|y|)^{-\delta}$ for $(1+|x|)^{-\delta}$

$(1+|y|)^{-\delta_{0}+\delta}$ . As for the H\"older continuity concerning the variable $z$ , we have

$|v_{1}(x, y;z)-v_{1}(x, y;z+\Delta z)|$

$\leqq const(1+|x|)^{-\delta}\Vert B(z)-B(z+\Delta z)\Vert_{\delta,\gamma}\Vert v(\cdot, y)\Vert_{\delta,\gamma}$

$\leqq const(1+|x|)^{-\delta}(1+|y|)^{-\delta_{0}+\delta}|\Delta z|^{\mu_{1}}$ ,

where $\mu_{1}<\frac{\gamma(\gamma_{0}-\gamma)}{\gamma_{0}}$ . It is easy to see that $\max\frac{\gamma(\gamma_{0}-\gamma)}{\gamma_{0}}=\frac{\gamma_{0}}{4}$ . Hence we

have estimates (1.26) and the lemma is proved.
REMARK. As will be proved in the following section, we can say more:

$v_{1}(x, y;z)$ is a H\"older continuous function of $z$ with the exponent $\mu_{1}$ which
can be chosen as close to $\gamma_{0}$ as we wish. Namely, we can replace $\mu_{1}$ by $\gamma_{1}$ in
the second inequality of (1.26).

Since we can choose $\delta_{1}>\frac{1}{2}$ , the integral operator represented by the

kernel $v_{1}(x, y;z)$ has $\mathfrak{D}$ as its domain of definition. It is obvious that this
integral operator is a solution of equation (1.3). Hence by Lemma 1.1 we see
that this coincides with the operator $V_{1}(z)$ when $z$ is in the resolvent set of
$L_{1}$ . Moreover the kernel $v_{1}(x, y;\lambda\pm i0)$ has a meaning and satisfies (1.26) if
$\lambda+i0$ or $\lambda-iO$ is not in $\sigma(T)$ . We denote by $V_{1}(\lambda\pm i0)$ the boundary operator
generated by $v_{1}(x, y;\lambda\pm i0)$ .

Applying the same reasoning, we obtain the kernel $v_{1}^{*}(x, y;z)$ which gen-
erates the operator $V_{1}^{*}(z)$ . This kernel is estimated in the same way as
$v_{1}(x, y;z)$ in (1.26). By virtue of (1.12) and Lemma 1.3, we find finally that
they are related to each other through

(1.27) $v_{1}^{*}(x, y;z)=\overline{v}_{1}(y, x;\overline{z})$ , $z\in\tilde{\Pi}$ , $z\not\in\sigma(T^{*})$ .

2. The similarity of $L_{1}$ to $L_{0}$

First we state a definition.
DEFINITION. We denote by $\mathfrak{M}_{\delta,\mathcal{T}}(\delta\geqq 0, \gamma>0)$ the set of all the functions

$j(x, y)$ with values in the set of completely continuous operators in $\Omega$ satisfy-
ing that

(A) $|j(x, y)|\leqq const(1+|x|+|y|)^{-\delta}$ ;

(B) $|j(x, y)-j(x+\Delta x, y+\Delta y)|$

$\leqq const(1+|x|+|y|)^{-\delta}(|\Delta x|^{\gamma}+|\Delta y|^{\gamma})$ ;

(C) $j(a, y)=j(b, y)=j(x, a)=j(x, b)=0$ if $a$ or $b$ is finite.
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It is obvious that $\mathfrak{M}_{\delta,\mathcal{T}}$ becomes a Banach space with respect to the norm

(2.1)
$\Vert j\Vert_{\mathfrak{M}_{\delta}\gamma}\equiv\sup_{||\Delta x|^{x,y}\Delta y|\leqq 1}(1+|x|+|y|)^{\delta}\{|j(x, y)|$

$+\frac{|j(x,y)-j(x,y+\Delta y)}{|\Delta y|^{\gamma}}+\frac{|j(x,y)-j(x+\Delta x,y)|}{|\Delta x|^{\gamma}}\}$ .

Clearly $v(x, y)\in \mathfrak{M}_{\delta_{0}.\gamma_{0}}$ and $v_{1}(x, y;z)\in \mathfrak{M}_{\delta_{1},\gamma_{1}}(0<\delta_{1}<\delta_{0},0<\gamma_{1}<\gamma_{0})$ for any
$z\in\tilde{\Pi}$ which is not in $\sigma(T)$ .

We need the following lemma.
LEMMA 2.1. Let $j(x, y)\in \mathfrak{M}_{\delta,\gamma}$ and $f(x)\in \mathfrak{B}_{\delta}/,\gamma’(0<\delta^{\prime}\leqq\delta, 0<\gamma^{\prime}\leqq\gamma)$ . Then

the function $\varphi(x, y)=j(x, y)f(y)$ belongs to $\mathfrak{B}_{\delta}\cdot$ , for any fixed $x$ and satisfies
$\Vert\varphi(x, )||_{\delta’\gamma},$ $\leqq 2(1+|x|)^{-\delta}||j\Vert_{\mathfrak{M}_{\delta,\mathcal{T}}}\Vert f\Vert_{\delta^{\prime},T^{\prime}}$ ,

(2.2)
$\Vert\varphi(x, )-\varphi(x+\Delta x, )\Vert_{\delta\prime.(1-e)\gamma\prime}$

$\leqq 2(1+|x|)^{-\delta}\Vert j\Vert_{\mathfrak{M}_{\delta,7}}\Vert f\Vert_{\delta^{\prime},\gamma\prime}|\Delta x|^{\epsilon\gamma}$ ,

where $\epsilon$ is an arbitrary constant such that $0<\epsilon<1$ .
PROOF. By virtue of (1.15) and (2.1), it follows that

$\sup_{y}(1+|y|)^{\delta}$

‘

$|\varphi(x, y)|\leqq\sup_{y}|j(x,$
$y|\cdot||f\Vert_{\delta}$ ,

$\leqq(1+|x|)^{-\delta}\Vert j\Vert_{\mathfrak{M}_{\delta,\mathcal{T}}}\Vert f$ I $\delta!,\mathcal{T}^{l}$

$\sup_{y,|\Delta y|\leqq 1}(1+|y|)^{\delta;}\frac{|\varphi(x,y)-\varphi(x,y+\Delta y)|}{|\Delta y|^{\gamma}}\leqq\sup_{y,|\Delta y|\leqq 1}(1+|y|)^{\delta\prime}$

$\times\{\frac{|j(x,y)-j(x,y+\Delta y)|}{|\Delta y|^{\mathcal{T}^{\prime}}}|f(y)|+\frac{|f(y)-f(y+\Delta y)|}{|\Delta y|^{\gamma}}|j(x, y)|\}$

$\leqq\sup_{y,|\Delta y|\leqq 1}\Vert f\Vert_{\delta},\{|j(x, y)|+\frac{|j(x,y)-j(x,y+\Delta y)|}{|\Delta y|^{\gamma\prime}}\}$

$\leqq(1+|x|)^{-\delta}\Vert f\Vert_{\delta;,\gamma!}\Vert j\Vert_{\mathfrak{M}_{\delta,\Upsilon}}$ .

These prove the first inequality of (2.2). The second inequality can be proved
similarly if we notice the inequality

$|\varphi(x, y)-\varphi(x+\Delta x, y)-\varphi(x, y+\Delta y)+\varphi(x+\Delta x, y+\Delta y)|$

$\leqq(1+|x|)^{-\delta}(1+|y|)^{-\delta\prime}\Vert j\Vert_{\mathfrak{M}_{\delta,T}}\Vert f||_{\delta^{\prime},\tau\prime}|\Delta x|^{\epsilon\gamma}|\Delta y|^{(1-6)T^{\prime}}$

The lemma is proved.
Making use of this lemma, we can prove the
LEMMA 2.2. The following estimate holds for any $\delta$ such that $0<\delta<\delta_{0}$ .

(2.3) $|v_{1}(x, y ; z)-v_{1}(x, y ; z+\Delta z)|$

$\leqq const(1+|x|)^{-\delta}(1+|y|)^{-\delta_{0+}\delta}(1+|z|)^{-\delta_{0}^{\prime}}|\Delta z|^{\gamma_{1}}$ .
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$\delta^{\prime}(<\delta)$ and $\gamma_{1}(<\gamma_{\mathfrak{g}})$ can be chosen as close to $\delta$ and $\gamma_{0^{\text{E}}}$ as we wish.
REMARK. By the same reasoning as (1.26) was proved, (2.3) can be re-

written with an arbitrary constant $\delta_{1}$ such that $0<\delta_{1}<\delta_{0}$ as follows:

$\lambda^{2.3)^{\prime}}$ $|v_{1}(x, y;z)-v_{1}(x, y;z+\Delta z)|\leqq const(1+|x|+|y|)^{-\delta_{1}}|\Delta z|^{\gamma_{1}}$ .

PROOF. For any $\alpha\in\Omega,$ $ v_{1}(x, y;z)\alpha$ satisfies the equation

$v_{1}(x, y;z)\alpha=v(x, y)\alpha-[T(z)v_{1}(\cdot, y;z)\alpha](x)$ .
So we have

$[\{I+T(z+\Delta z)\}\{v_{1}(\cdot, y;z)-v_{1}(\cdot, y;z+\Delta z\}\alpha](x)$

$=[\{T(z)-T(z+\Delta z)\}v_{1}(\cdot, y;z)\alpha](x)$ .
Namely

\langle 2.4) $ v_{1}(x, y;z)\alpha-v_{1}(x, y;z+\Delta z)\alpha$

$=[\{I+B(z+\Delta z)\}\{T(z)-T(z+\Delta z)\}v_{1}(\cdot, y;z)\alpha](x)$ .
We put

$\varphi(x, u)=v(x, u)v_{1}(u, y;z)\alpha$ .
Then, since $v_{1}(\cdot, y;z)\alpha\in \mathfrak{B}_{\delta,r}(0<\delta<\delta_{0},0<\gamma<\gamma_{0})$ and

$\Vert v_{1}(\cdot, y;z)\alpha\Vert_{\delta,\gamma}\leqq const(1+|y|)^{-\delta_{0}+\delta}|\alpha|$ ,

we find by Lemma 2.1 that

$\Vert\varphi(x, )\Vert_{\delta,\gamma}\leqq const(1+|x|)^{-\delta_{0}}(1+|y|)^{-\delta 0+\delta}|\alpha|$ ,

$\Vert\varphi(x, )-\varphi(x+\Delta x, )\Vert_{\delta,(1-\epsilon)\mathcal{T}}$

$\leqq const(1+|x|)^{-\delta_{0}}(1+|y|)^{-\delta_{0}+\delta}|\Delta x|^{\epsilon\gamma_{0}}|\alpha|$ .
This shows that $||\varphi(x, )\Vert_{\delta,\gamma}$ belongs to $\mathfrak{B}_{\delta_{0,\epsilon}\gamma_{0}}$ . Now we put

$\Phi(x, z)=[T(\cdot)v_{1}(\cdot, y;z)\alpha](x, z)\equiv\int\frac{\varphi(x,u)}{u-z}du$ .

Then we can apply the second estimate of $(^{*})$ in the foot-note 4) to get

$|\Phi(x, z)-\Phi(x, z+\Delta z)|\leqq const(1+|z|)^{-\delta^{\prime}}\Vert\varphi(x, )\Vert_{\delta,7}|\Delta z|^{\gamma}|\alpha|$ ,

$|\Phi(x, z)-\Phi(x+\Delta x, z)-\Phi(x, z+\Delta z)+\Phi(x+\Delta x, z+\Delta z)|$

$\leqq const(1+|z|)^{-\delta^{J}}\Vert\varphi(x, )-\varphi(x+\Delta x, )\Vert_{\delta,(1-\epsilon)\mathcal{T}}|\Delta z|^{(1-6)\gamma}|\alpha|$ .

Thus, $\Phi(x, z)-\Phi(x, z+\Delta z)$ belongs to $\mathfrak{B}_{\delta_{0,6}\gamma_{0}}$ as a function of $x$ and

$||\Phi(\cdot, z)-\Phi(\cdot, z+\Delta z)\Vert_{\delta_{0},\epsilon 7_{0}}\leqq const(1+|z|)^{-\delta\prime}(1+|y|)^{-\delta_{0}+\delta}|\Delta z|^{(1-6)\gamma}|\alpha|$ .

Hence we find finally from (2.4) that
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$|v_{1}(x, y;z)\alpha-v_{1}(x, y;z+\Delta z)\alpha|$

$\leqq const\{1+\Vert B(z+\Delta z)\Vert_{\delta_{6}\gamma}\}\Vert\Phi(\cdot, z)-\Phi(\cdot, z+\Delta z)\Vert_{\delta_{6}\gamma}(1+|x|)^{-\delta}$

$\leqq const(1+|x|)^{-\delta}(1+|y|)^{-\delta_{0}+\delta}(1+|z|)^{-\delta!}|\Delta z|^{(1-S)\gamma}|\alpha|$ .
Since $\epsilon>0$ can be chosen as small as we wish, this proves (2.3). The proof
is thus complete.

Let $\Delta=(\alpha, \beta)$ be a (possibly infinite) subinterval of $[a, b]$ such that its
closure is disjoint from a neighborhood of the set $\sigma(T)$ (from Lemma 1.3, we
see that it is also disjoint from a neighborhood of $\sigma(T^{*}))$ . Let $d$ be the
minimal distance of $\Delta$ from $\sigma(T)$ , and let $\tau(x)$ be a scalar valued $C^{\infty}$-function,
identically equal to 1 for $x\in\Delta=(\alpha, \beta)$ and identically equal to zero for
$x\not\in(\alpha-\frac{d}{2}$ , $\beta+\frac{d}{2}$ ) if $\alpha$ or $\beta$ is finite. Put

(2.5) $u(x, y;\epsilon)=\tau(x)v_{1}(x, y;x+i\epsilon)$ ,

(2.6) $w(x, y;\epsilon)=\tau(y)v_{1}(x, y;y-i\epsilon)$ .
Then it is readily seen from estimates (1.26) and (2.3) that these kernels be-

long to the class $\mathfrak{M}_{\delta_{1},\gamma_{1}}$ , where we fix $\delta_{1}$ and $\gamma_{1}$ such that $\frac{1}{2}<\delta_{1}<\delta_{0}$ and

$\frac{1}{2}<\gamma_{1}<\gamma_{0}$ . Moreover the norms $\Vert u(\epsilon)\Vert_{\mathfrak{M}_{\delta_{1},\mathcal{T}_{1}}}$ and $\Vert w(\epsilon)||_{\mathfrak{M}_{\delta_{1}}\gamma_{1}}$ are uniformly

bounded in $\epsilon$ such that $|\epsilon|<1$ is sufficiently small, and

(2.7) $\Vert u(\epsilon)-u(\epsilon^{\prime})\Vert_{\mathfrak{M}_{\delta_{1}}\gamma_{1}}\leqq const|\epsilon-\epsilon^{\prime}|^{\nu}$

(2.8) $\Vert w(\epsilon)-w(\epsilon^{\prime})\Vert_{\mathfrak{M}_{\delta_{1},\mathcal{T}_{1}}}\leqq const|\epsilon-\epsilon^{\prime}|^{\nu}$ ,

where $\nu$ is a constant such that $0<\nu<\underline{\gamma_{1}(\gamma_{0}-\gamma_{1})}$ .
$\gamma_{0}$

Now we define the following operators acting in $\mathfrak{H}$ .

(2.9) $[\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)=\int\frac{u(x,y;\epsilon_{1})f(y)}{y-(x+i\epsilon_{2})}dy$ ,

(2.10) $[\tilde{K}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)=\int\frac{w(x,y;\epsilon_{1})f(y)}{x-(y-i\epsilon_{2})}dy$ ,

where $\epsilon_{k}\neq 0(k=1,2)$ are chosen sufficiently small. We will show that the
strong limits of these operators exist and are bounded operators in $\mathfrak{H}$ . For
this aim we use the following lemma.

LEMMA 2.3. Let $j(x, y)$ be a kernel belonging to $\mathfrak{M}_{\delta,\mathcal{T}}$ for some $\delta>0ana$

$\gamma>0$ . Then

(2.11) $[J_{\text{\’{e}}}f](x)=\int\frac{j(x,y)f(y)}{y-x+i\epsilon}dy$ $(\epsilon\neq 0)$

defines a bounded mapping of $\mathfrak{H}$ into itself. Moreover there exists a positive
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constant $M$ independent of $\epsilon$ such that $\Vert J_{e}f\Vert\leqq M\Vert f||\cdot\Vert j\Vert_{\mathfrak{M}_{\delta,T}}$ .
PROOF. Let $\rho(x)$ be a scalar valued $C^{\infty}$-function, identically equal to zero

for $|x|\geqq 1$ and identically equal to 1 for $|x|\leqq\frac{1}{2}$ . Then the integral defining

[J\’e $f$ ] $(x)$ can be written as

$\int\frac{j(x,y)f(y)}{y-x+i\epsilon}dy=j(x, x)\int\frac{\rho(x-y)f(y)}{y-x+i\epsilon}dy$

$+\int\frac{\{j(x,y)-j(x,x)\rho(x-y)\}f(y)}{y-x+i\epsilon}dy$ .

Since $|j(x, x)|\leqq\Vert j\Vert_{\mathfrak{M}_{\delta,\mathcal{T}}}$ , the uniform boundedness (with respect to $\epsilon$) of the
mapping defined by the first term follows immediately from the Prancherel
theorem9). On the other hand, if we note $(1+|x|+|y|)^{-\delta}\leqq(1+|x-y|)^{-\delta}$ , it fol-
lows from (A) and (B) of Definition that

$|\frac{\{j(x,y)-j(x,x)\rho(x-y)\}f(y)}{y-x+i\epsilon}|$

$\leqq const\{|\rho(x-y)|\cdot|x-y|^{\mathcal{T}-1}+(1+|x-y|)^{-1-\delta}\}|f(y)|\cdot|\Vert j\Vert_{\mathfrak{M}_{\delta}\gamma}$ ,

where the constant does not depend on $\epsilon$ . Since

$\int\{|\rho(x)|\cdot|x|^{\gamma-1}+(1+|x|)^{-1-\delta}\}dx=K<+\infty$ ,

we have

$\int dx(\int|\frac{\{j(x,y)-j(x,x)\rho(x-y)\}f(y)}{y-x+i\epsilon}|dy)^{2}\leqq constK^{2}\Vert f\Vert^{2}\Vert j\Vert_{\mathfrak{M}_{\delta,\gamma}}^{2}$ .

The lemma is proved.
As we have remarked, $\Vert u(\epsilon_{1})\Vert_{\mathfrak{M}_{\delta_{1}}\gamma_{1}}$ and $\Vert w(\epsilon_{1})\Vert_{\mathfrak{M}_{\delta_{1},\gamma_{1}}}$ are bounded in $\epsilon_{1}$ . So, it

follows easily from the above lemma that the operator norms $\Vert\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2})||$

and $\Vert\tilde{K}(\Delta, \epsilon_{1}, \epsilon_{2})\Vert$ in $\mathfrak{H}$ are bounded uniformly with respect to $\epsilon_{1}$ and $\epsilon_{2}$ .
Next let us prove that these operators converge as $\epsilon_{1},$

$\epsilon_{2}\rightarrow\pm O$ at each
point of a certain dense subset of $\mathfrak{H}$ . Suppose $f(x)\in \mathfrak{B}_{\delta,\gamma}(0<\delta\leqq\delta_{1},0<\gamma\leqq\gamma_{1})$ .
Then by Lemma 2.1 $u(x, y;\epsilon_{1})f(y)\in \mathfrak{B}_{\delta,\gamma}$ for each fixed $x$ and $\epsilon_{1}$ , and we have
by using estimates (2.2) and $(^{*})$ in the foot-note 4)

$|[\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)|\leqq const(1+|x+i\epsilon_{2}|)^{-\delta;}\Vert u(x, \cdot ; \epsilon_{1})f(\cdot)\Vert_{\delta,\gamma}$

$\leqq const(1+|x|)^{-\delta!-\delta_{1}}\Vert u(\epsilon_{1})\Vert_{\mathfrak{M}_{\delta_{1},\gamma_{1}}}\Vert f\Vert_{\delta,\gamma}$ ,

9) In fact, denoting the Fourier transformation by $\mathfrak{F}$ , we have

$\mathfrak{F}[\int\frac{\rho(x-y)f(y)}{y-x+i_{S}}d_{\mathcal{Y}}]=\frac{-1}{\sqrt{2\pi}}\int\frac{\rho(x)e^{-i\xi x}}{x-i\epsilon}dx\hat{f}(\xi),\hat{f}=\mathfrak{F}f$ .

We see easily $|\int\frac{\rho(x)e-i\xi x}{x-i_{S}}dx|\leqq$ const, where the constant is independent of $\epsilon$ and $\xi$ .
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$|[\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)-[\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2}^{\prime})f](x)|$

$\leqq const(1+|x|)^{-\delta-\delta_{1}}’\Vert u(\epsilon_{1})\Vert_{\mathfrak{M}_{\delta_{1},\gamma_{1}}}\Vert f\Vert_{\delta,\mathcal{T}}|\epsilon_{2}-\epsilon_{2}^{\prime}|^{\gamma}$ ,

where $\delta^{\prime}(<\delta)$ can be chosen as close to $\delta$ as we wish. The constants in the
inequalities are independent of $\epsilon_{1}$ and $\epsilon_{2}$ . Moreover, applying (2.7), we have
similarly

$|[\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)-[\tilde{H}(\Delta, \epsilon_{1}^{\prime}, \epsilon_{2})f](x)|$

$\leqq const(1+|x|)^{-\delta-\delta_{1}}’\Vert f\Vert_{\delta,\mathcal{T}}\Vert u(\epsilon_{1})-u(\epsilon_{1}^{\prime})\Vert_{\mathfrak{M}_{\delta_{1}}\gamma_{1}}$

$\leqq const(1+|x|)^{-\delta-\delta_{1}}’\Vert f\Vert_{\delta,T}|\epsilon_{1}-\epsilon_{1}^{\prime}|^{\nu}$ .
These inequalities show that $(1+|x|)^{\delta+\delta_{1}}’[\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)$ converges as $\epsilon_{1}$ ,

$\epsilon_{2}\rightarrow\pm 0$ uniformly in $x$ . Since $\delta^{\gamma}+\delta_{1}>\frac{1}{2}$, we can now say that $[\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)$

converges with respect to the norm of $\mathfrak{H}$, whenever $f(x)\in \mathfrak{B}_{\delta,T}$ . By the same
reasoning, $[\tilde{K}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)$ converges strongly in $\mathfrak{H}$ We denote the limit
operators from $\mathfrak{B}_{\delta,T}$ into $\mathfrak{H}$ by $\tilde{H}(\Delta, \pm 0, \pm 0)$ and $\tilde{K}(\Delta, \pm 0, \pm 0)$ , respectively.

Here we choose $\delta$ such that $\frac{1}{2}<\delta<\delta_{1}$ . Then, since the set $\mathfrak{B}_{\delta,T}$ is dense

in $\mathfrak{H}$, we see taking account of the uniform boundedness of $\tilde{H}(\Delta, \epsilon_{1}, \epsilon_{2})$ and
$\tilde{K}(\Delta, \epsilon_{1}, \epsilon_{2})$ that their limits $\tilde{H}(\Delta, \pm 0, \pm 0)$ and $\tilde{K}(\Delta, \pm 0, \pm 0)$ are also bounded
operators defined on the whole space $\mathfrak{H}$

Now we shall consider the operators

(2.12) $[H(\Delta, \epsilon_{1}, \epsilon_{2})f](x)=\left\{\begin{array}{l}\int\frac{v_{1}(x,y.\cdot x+i\epsilon_{1})f(y)}{y-(x+i\epsilon_{2})}dy, x\in\Delta\\ 0, x\not\in\Delta,\end{array}\right.$

(2.13) $[K(\Delta, \epsilon_{1}, \epsilon_{2})f](x)=\int_{\Delta}\frac{v_{1}(x,y;y-i\epsilon_{1})f(y)}{x-(y-i\epsilon_{2})}dy$ .
Let $E_{0}(\Delta)$ be the resolution of the identity of $L_{0}$ :

(2.14) $\langle E_{0}(\Delta)f, g\rangle=\lim_{e\rightarrow+0}\frac{1}{2\pi i}\int_{\Delta}\langle\{R_{0}(\lambda+i\epsilon)-R_{0}(\lambda-i\epsilon)\}f, g\rangle d\lambda$

$=\int_{\Delta}f(\lambda)\cdot\overline{g(\lambda)}d\lambda$ .
Namely

$[E_{0}(\Delta)f](\lambda)=\left\{\begin{array}{l}f(\lambda), \lambda\in\Delta\\ O, \lambda\not\in\Delta.\end{array}\right.$

Then, by the definitions of $H$ and $\tilde{H}$, we get $H(\Delta, \epsilon_{1}, \epsilon_{2})=E_{0}(\Delta)H(\Delta, \epsilon_{1}, \epsilon_{2})$ .
Hence, letting $\epsilon_{1},$

$\epsilon_{2}\rightarrow\pm 0$ , we have

(2.15) $H(\Delta, \epsilon_{1}, \epsilon_{2})f\rightarrow E_{0}(\Delta)\tilde{H}(\Delta, \pm 0, \pm O)f\equiv H(\Delta, \pm 0, \pm 0)f$ (in $\mathfrak{H}$).
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Similarly we get $K(\Delta, \epsilon_{1}, \epsilon_{2})=\tilde{K}(\Delta, \epsilon_{1}, \epsilon_{2})E_{0}(\Delta)$ and

(2.16) $K(\Delta, \epsilon_{1}, \epsilon_{2})f\rightarrow\tilde{K}(\Delta, \pm 0, \pm 0)E_{0}(\Delta)f\equiv K(\Delta, \pm 0, \pm 0)f$ (in $\mathfrak{H}$).

We shall next consider the starred operators. Analogously to (2.12) and
\langle 2.13) we put

$(2.12)^{*}$ $[H^{*}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)=\left\{\begin{array}{l}\int\frac{v_{1^{\backslash }}^{*}(x,y.\cdot x+i\epsilon_{1})f(y)}{y-(x+i\epsilon_{2})}dy, x\in\Delta\\ 0, x\not\in\Delta,\end{array}\right.$

$\langle 2.13)^{*}$ $[K^{*}(\Delta, \epsilon_{1}, \epsilon_{2})f](x)=\int_{\Delta}\frac{v_{1}^{*}(x,y;y-i\epsilon_{1})f(y)}{x-(y-i\epsilon_{2})}dy$ .

Then we can follow exactly the same line of argument to obtain the analogous
results. Moreover, taking relation (1.27) into account, we find

(2.17) $H(\Delta, \epsilon_{1}, \epsilon_{2})^{*}=K^{*}(\Delta, \epsilon_{1}, \epsilon_{2})$ , $K(\Delta, \epsilon_{1}, \epsilon_{2})^{*}=H^{*}(\Delta, \epsilon_{1}, \epsilon_{2})$ .
In order to express these results in simple terms we set

(2.18) $Y^{(\pm)}(\Delta)=E_{0}(\Delta)\tilde{H}(\Delta, \pm 0, \pm 0)$ , $X^{(\pm)}(\Delta)=\tilde{K}(\Delta, \pm 0, \pm 0)E_{0}(\Delta)$ ,

$\langle 2.18)^{*}$ $Y^{*(\pm)}(\Delta)=E_{0}(\Delta)\tilde{H}^{*}(\Delta, \pm 0, \pm 0)$ , $X^{*(\pm)}(\Delta)=\tilde{K}^{*}(\Delta, \pm 0, \pm 0)E_{0}(\Delta)$ .
Here we take either the upper signs or the lower signs throughout. Then
what we have proved is the

LEMMA 2.4. $Y^{\mathfrak{c}\pm)}(\Delta),$ $X^{(\pm)}(\Delta),$ $Y^{*\mathfrak{c}\pm)}(\Delta)$ and $X^{*(\pm)}(\Delta)$ are all bounded opera-
tors acting in $\mathfrak{H}$, and for any $f(x)\in \mathfrak{H}$

(2.19) $H(\Delta, \epsilon_{1}, \epsilon_{2})f\rightarrow Y^{(\pm)}(\Delta)f$, $K(\Delta, \epsilon_{1}, \epsilon_{2})f\rightarrow X^{(\pm)}(\Delta)f$ ,

$(2.19)^{*}$ $H^{*}(\Delta, \epsilon_{1}, \epsilon_{2})f\rightarrow Y^{*(\pm)}(\Delta)f$, $K^{*}(\Delta, \epsilon_{1}, \epsilon_{2})f\rightarrow X^{*(\pm)}(\Delta)f$

strongly in $\mathfrak{H}$ as $\epsilon_{1},$
$\epsilon_{2}\rightarrow\pm 0$ . Moreover we have

\langle 2.20) $Y^{(\pm)}(\Delta)^{*}=X^{*(\pm)}(\Delta)$ , $X^{(\pm)}(\Delta)^{*}=Y^{*\mathfrak{c}\pm)}(\Delta)$ ,

(2.21) $Y^{\mathfrak{c}\pm)}(\Delta)=E_{\theta}(\Delta)Y^{(\pm)}(\Delta)$ , $X^{(\pm)}(\Delta)=X^{(\pm)}(\Delta)E_{0}(\Delta)$ .
Now, we define the operators $Z^{(\pm)}(\Delta)$ and $W^{(\pm)}(\Delta)$ by setting

$((2.22) Z^{\mathfrak{c}\pm)}(\Delta)=E_{0}(\Delta)-Y^{(\pm)}(\Delta), W^{(\pm)}(\Delta)=E_{\emptyset}(\Delta)-X^{(\pm)}(\Delta)$ .
Then in analogy to selfadjoint operators, we can expect that they establish
the similarity of $L_{1}$ to $L_{0}$ . The remainder of this section is devoted to the
verification of this assertion.

We first prove the following lemma:
LEMMA 2.5. $Z^{\mathfrak{c}\pm)}(\Delta)$ are the left inverses of $W^{(\pm)}(\Delta)$ :

\langle 2.23) $Z^{(\pm)}(\Delta_{1})W^{(\pm)}(\Delta_{2})=E_{0}(\Delta_{1}\cap\Delta_{2})$ ,

where $\Delta_{1},$ $\Delta_{2}$ are arbitrarily given two subintervals of $[a, b]$ such that they are
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both disjoint from a neighborhood of $\sigma(T)$ .
PROOF. It follows from (2.22) that

$Z^{(\pm)}(\Delta_{1})W^{(\pm)}(\Delta_{2})-E_{0}(\Delta_{1}\cap\Delta_{2})$

$=Y^{(\pm)}(\Delta_{1})X^{(\pm)}(\Delta_{2})-Y^{(\pm)}(\Delta_{1})E_{0}(\Delta_{2})-E_{0}(\Delta_{1})X^{(\pm)}(\Delta_{2})$ .
So, we will show that the right side is equal to zero. For the first term, we
have

$\langle Y^{(\pm)}(\Delta_{1})X^{(\pm)}(\Delta_{2})f, g\rangle=\langle Y^{(\pm)}(\Delta_{1})X^{(\pm)}(\Delta_{2})E_{0}(\Delta_{2})f, E_{0}(\Delta_{1})g\rangle$

$=\lim_{\epsilon.e\rightarrow\pm 0}\langle H(\Delta_{1}, \epsilon, \epsilon)K(\Delta_{2}, \epsilon^{\prime}, \epsilon^{\prime})E_{0}(\Delta_{2})f, E_{0}(\Delta_{1})g\rangle$ .

On the other hand, we see easily that

$V_{1}(z)R_{0}(z)R_{0}(z^{\prime})V_{1}(z^{\prime})=(z^{\prime}-z)^{-1}V_{1}(z)+(z-z^{\prime})^{-1}V_{1}(z^{\prime})^{10)}$ .
Fixing $x$ and $y$ arbitrarily in $\Delta_{1}$ and $\Delta_{2}$ , respectively, and putting $ z=x+i\epsilon$

and $z^{\prime}=y-i\epsilon^{\prime}$ , we now compare the value at $(x, y)$ of the kernels of both
sides of the above relation. Then, since the kernel of $H(\Delta_{1}, \epsilon, \epsilon)K(\Delta_{2}, \epsilon^{\prime}, \epsilon^{\prime})$ is
represented by

$\int\frac{v_{1}(x,u;x+i\epsilon)}{u-(x+i\epsilon)}\frac{v_{1}(u,y;y-i\epsilon^{\prime})}{u-(y-i\epsilon^{\prime})}du$ , $x\in\Delta_{1},$ $y\in\Delta_{2}$ ,

we have
$E_{0}(\Delta_{1})H(\Delta_{1}, \epsilon, \epsilon)K(\Delta_{2}, \epsilon^{\prime}, \epsilon^{\prime})E_{0}(\Delta_{2})$

$=E_{0}(\Delta_{1})\{H(\Delta_{1}, \epsilon, \epsilon+\epsilon^{\prime})+K(\Delta_{2}, \epsilon^{\prime}, \epsilon+\epsilon^{\prime})\}E_{0}(\Delta_{2})$ .
Thus

$\langle Y^{(\pm)}(\Delta_{1})X^{(\pm)}(\Delta_{2})f, g\rangle$

$=\lim_{\epsilon.e\rightarrow\pm 0}\langle H(\Delta_{1}, \epsilon, \epsilon+\epsilon^{\prime})E_{0}(\Delta_{2})f, E_{0}(\Delta_{1})g\rangle$

$+\lim_{e,e\rightarrow\pm 0}\langle K(\Delta_{2}, \epsilon^{\prime}, \epsilon+\epsilon^{\prime})E_{0}(\Delta_{2})f, E_{0}(\Delta_{1})g\rangle$

$=\langle Y^{(\pm)}(\Delta_{1})E_{0}(\Delta_{2})f, g\rangle+\langle X^{(\pm)}(\Delta_{2})f, E_{0}(\Delta_{1})g\rangle$ .
Namely we have

$Y^{(\pm)}(\Delta_{1})X^{(\pm)}(\Delta_{2})=Y^{(\pm)}(\Delta_{1})E_{0}(\Delta_{2})+E_{0}(\Delta_{1})X^{(\pm)}(\Delta_{2})$ .

The lemma is thus proved.
Next, let us define the operator

10) In fact by (1.6), (1.9) and (1.10)

$(z-Z^{\prime})V_{1}(z)R_{0}(z)R_{0}(z^{\gamma})V_{1}(Z^{\prime})=(z-z^{\prime})VR_{1}(z)R_{1}(z^{\prime})V$

$=V\{R_{1}(z)-R_{1}(z^{\prime})\}V=-\{V-VR_{1}(z)V\}+\{V-VR_{1}(z^{\prime})V\}$

$=-V_{\iota}(z)+V_{1}(z^{J})$ .
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$(2.24)^{+}$ $E_{1}(\Delta)=W^{(+)}(\Delta)Z^{(+)}(\Delta)$ .
Then we can prove the

LEMMA 2.6. Let $f,$ $g\in \mathfrak{B}_{\delta,\mathcal{T}}$ ( $\delta>\frac{1}{2}$ , $\gamma>0$). Then

(2.25) $\langle E_{1}(\Delta)f, g\rangle=\lim_{\text{\’{e}}\rightarrow+0}\frac{1}{2\pi i}\int_{\Delta}\langle\{R_{1}(\lambda+i\epsilon)-R_{1}(\lambda-i\epsilon)\}f, g\rangle d\lambda$ .

Moreover we have

$(2.24)^{-}$ $E_{1}(\Delta)=W^{(-)}(\Delta)Z^{(-)}(\Delta)$ .
PROOF. We wish to show

(2.26) $ J\equiv\lim_{e\rightarrow+0}\frac{1}{2\pi i}\int_{\Delta}\langle\{R_{1}(\lambda+i\epsilon)-R_{1}(\lambda-i\epsilon)\}f, g\rangle d\lambda$

$=\lim_{\epsilon\rightarrow+0}\int_{\Delta}\{f(x)-[H(\Delta, \pm\epsilon, \pm\epsilon)f](x)\}\cdot\overline{\{g(x)-[H^{*}(\Delta,\pm\epsilon,\pm\epsilon)g](x)\}}dx$ .

For this aim, we start from the relation

$R_{1}(\lambda+i\epsilon)-R_{1}(\lambda-i\epsilon)=2i\epsilon R_{1}(\lambda\mp i\epsilon)R_{1}(\lambda\pm i\epsilon)$ .
Taking (1.7) and (1.8) into account, we see that the right side is equal to

$2i\epsilon\{I-R_{1}(\lambda\mp i\epsilon)V\}R_{0}(\lambda\mp i\epsilon)R_{0}(\lambda\pm i\epsilon)\{I-VR_{1}(\lambda\pm i\epsilon)\}$

$=\{I-R_{1}(\lambda\mp i\epsilon)V\}\{R_{0}(\lambda-i\epsilon)-R_{0}(\lambda-i\epsilon)\}\{I-VR_{1}(\lambda\pm i\epsilon)\}$ .
Thus

(2.26a) $J=\lim_{\epsilon\rightarrow+0}\frac{1}{2\pi i}\int_{\Delta}\langle\{R_{0}(\lambda+i\epsilon)-R_{0}(\lambda-i\epsilon)\}\{I-VR_{1}(\lambda\pm i\epsilon)\}f$ ,

$\{I-V^{*}R_{1}(\lambda\mp i\epsilon)^{*}\}g\rangle d\lambda$ .
It follows from (1.10) and (1.13) that

$[VR_{1}(\lambda+i\epsilon)f](x)=\int\frac{v_{1}(x,y;\lambda+i\epsilon)f(y)}{y-(\lambda+i\epsilon)}dy\equiv f_{\epsilon}(x, \lambda)$ ,

$[V^{*}R_{1}(\lambda-i\epsilon)^{*}g](x)=\int\frac{v_{1}^{*}(x,y;\lambda+i\epsilon)g(y)}{y-(\lambda+i\epsilon)}dy\equiv g_{\epsilon}(x, \lambda)$ .

Without loss of generality we can assume that $\frac{1}{2}<\delta<\delta_{0}$ and $0<\gamma<\gamma_{0}$ .
Then, since $v_{1}(x, y;\lambda+i\epsilon)$ and $v_{1}^{*}(x, y;\lambda+i\epsilon)$ belong to the class $\mathfrak{M}_{\delta_{1},\gamma_{1}}(\delta<\delta_{1}$

$<\delta_{0},$ $\gamma<\gamma_{1}<\gamma_{0}$) for each fixed $\lambda\in\Delta$ and sufficiently small $\epsilon$ , the same reason-
ing as we used in \S 1 when we get (1.18) shows that $bothf_{\epsilon}(x, \lambda)$ and $g_{\epsilon}(x, \lambda)$

belong to $\mathfrak{B}_{\delta_{1},\gamma_{1}^{\prime}}$ and satisfy

$\Vert f_{\epsilon}(\cdot, \lambda)\Vert_{\delta,\mathcal{T}}\leqq const(1+|\lambda|)^{-\delta^{\prime}}\Vert f\Vert_{\delta,\mathcal{T}}$

$(\frac{1}{2}<\delta^{\prime}<\min(\delta, 1))$ ,
$\Vert g_{\epsilon}(\cdot, \lambda)\Vert_{\delta,\gamma}\leqq const(1+|\lambda|)^{-\delta;}\Vert g||_{\delta,\gamma}$
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where the constants are independent of $\epsilon$ . For brevity we put

$\sigma_{\epsilon}(\lambda, f, g)=\langle\{R_{0}(\lambda+i\epsilon)-R_{0}(\lambda-i\epsilon)\}f, g\rangle-2\pi if(\lambda)\cdot\overline{g(\lambda)}$ ,

and prove on the basis of the above inequalities and estimate $(^{*})$ in the foot-
note 4) that

$|\sigma_{\epsilon}(\lambda,f, g_{\pm\epsilon})|\leqq const(1+|\lambda|)^{-2}\epsilon^{\gamma}$ ,

$|\sigma_{\epsilon}(\lambda, f_{\pm\epsilon}, g)|\leqq const(1+|\lambda|)^{-z\delta^{\prime}}\epsilon^{\gamma\prime}$ $(0<\gamma^{\prime}\leqq\gamma)$ .
$|\sigma_{\epsilon}(\lambda, f_{\pm\epsilon}, g_{\pm\epsilon})|\leqq const(1+|\lambda|)^{-2}\delta’\epsilon^{\gamma\prime}$

Let us consider for example $\sigma_{\epsilon}(\lambda, f, g_{+\epsilon})$ . By the definition of $\sigma_{\epsilon}$ , we get

$\sigma_{\epsilon}(\lambda,f, g_{+\epsilon})=\langle\{R_{0}(\lambda+i\epsilon)-R_{0}(\lambda-i\epsilon)\}f(x), g_{+s}(x, \lambda)\rangle_{x}-2\pi if(\lambda)\cdot\overline{g_{+\epsilon}(\lambda,\lambda)}$

$=\lim_{\epsilon^{\prime}\rightarrow+0}\langle\{R_{0}(\lambda+i\epsilon)-R_{0}(\lambda+i\epsilon^{\prime})\}f(x), g_{+\epsilon}(x, \lambda)\rangle_{x}$

$-\lim_{\epsilon\rightarrow+0}\langle\{R_{0}(\lambda-i\epsilon)-R_{0}(\lambda-i\epsilon^{\prime})\}f(x), g_{+\epsilon}(x, \lambda)\rangle_{x}$ .
Since

$\Vert f(\cdot)g_{+\epsilon}\overline{(\cdot,\lambda)\Vert}_{2\delta,\gamma}\leqq const(1+|\lambda|)^{-\delta}$ ,
clearly we have

$|\sigma_{\epsilon}(\lambda, f, g_{+\epsilon})|\leqq const(1+|\lambda|)^{-\theta}\Vert f(\cdot)\overline{g_{+e}(\cdot,\lambda)}\Vert_{2\delta,\gamma 6^{\gamma}}$ ,

where $0<\theta<\min(1,2\delta)=1$ , and hence $\theta$ can be chosen as close to 1 as we
wish. Thus we can choose $\theta=\delta^{\prime}$ and then obtain

(2.26b) $|\sigma_{\epsilon}(\lambda, f, g_{+\epsilon})|\leqq const(1+|\lambda|)^{-2}\epsilon$

On the other hand, noting that for $\lambda\in\Delta$

$f_{\pm e}(\lambda, \lambda)=[H(\Delta, \pm\epsilon, \pm\epsilon)f](\lambda)$ , $g_{\pm\epsilon}(\lambda, \lambda)=[H^{*}(\Delta, \pm\epsilon, \pm\epsilon)g](\lambda)$ ,

and remembering the relation

$\lim_{\epsilon\rightarrow+0}\frac{1}{2\pi i}\int_{\Delta}\langle\{R_{0}(\lambda+i\epsilon)-R_{0}(\lambda-i\epsilon)\}f, g\rangle d\lambda=\int_{\Delta}f(\lambda)\cdot\overline{g(\lambda)}d\lambda$ ,

we see from (2.26a) that

$ J=\lim_{e\rightarrow+0}\frac{1}{2\pi i}\int_{\Delta}\{f(\lambda)-[H(\Delta, \pm\epsilon, \pm\epsilon)f](\lambda)\}\cdot\overline{\{g(\lambda)-[H^{*}(\Delta,\pm\epsilon,\pm\epsilon)g](\lambda)\}}d\lambda$

$+\lim_{e\rightarrow+0}\frac{1}{2\pi i}\int_{\Delta}\{-\sigma_{e}(\lambda, f, g_{\pm e})-\sigma_{\epsilon}(\lambda, f_{\pm e}, g)+\sigma_{e}(\lambda, f_{\pm e}, g_{\pm}\vee\cdot)\}d\lambda$ .

By the Lebesgue theorem, however, inequality (2.26b) shows that the second
term on the right side is zero. Thus (2.26) is proved.

If we recall finally that, as $\epsilon\rightarrow+O$,
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$H(\Delta, \pm\epsilon, \pm\epsilon)f\rightarrow Y^{(\pm)}(\Delta)f$

(in $\mathfrak{H}$),
$H^{*}(\Delta, \pm\epsilon, \pm\epsilon)g\rightarrow Y^{*(\pm)}(\Delta)g=X^{(\pm)}(\Delta)^{*}g$

then we conclude from (2.26) simultaneously relations (2.25) and $(2.24)^{-}$ , and
the proof is complete.

REMARK. In the case when $V$ is symmetric, we know from the beginning
the existence of the resolution of the identity $E_{1}(\Delta)$ of $L_{1}$ satisfying relation
(2.25). So, taking $V^{*}R_{1}(\lambda\mp i\epsilon)^{*}=VR_{1}(\lambda\pm i\epsilon)$ into account, we see that $Z^{(\pm)}(\Delta)$

$=E_{0}(\Delta)-Y^{(\pm)}(\Delta)$ are the isometric operators from $E_{1}(\Delta)\mathfrak{H}$ onto $E_{0}(\Delta)\mathfrak{H}$ , and
$Z^{(\pm)}(\Delta)^{*}=W^{(\pm)}(\Delta)$ . However, they are not always true in our case, since $E_{1}(\Delta)$

defined by $(2.24)^{+}$ does not give the orthogonal projection.
With the aid of the above two lemmas, we can now derive some funda-

mental properties of $E_{1}(\Delta)$ .
THEOREM 2.1. The operator $E_{1}(\Delta)$ defined by $(2.24)^{+}$ is a projection (not

necessarily orthogonal) which is permutable with $L_{1}$ . Namely

(2.27) $E_{1}(\Delta)^{2}=E_{1}(\Delta)$ ,

(2.28) $E_{1}(\Delta)L_{1}\subseteqq L_{1}E_{1}(\Delta)$ .

Moreover, if $\Delta_{1}$ and $\Delta_{2}$ are two subintervals of $[a, b]$ such that they neither
intersect a neighborhood of $\sigma(T)$ , nor overlap each other, then

(2.29) $E_{1}(\Delta_{1})E_{1}(\Delta_{2})=0$ ,

(2.30) $E_{1}(\Delta_{1}+\Delta_{2})=E_{1}(\Delta_{1})+E_{1}(\Delta_{2})$ .
PROOF. It follows from (2.23) that

$E_{1}(\Delta)^{2}=W^{(+)}(\Delta)Z^{(+)}(\Delta)W^{(+)}(\Delta)Z^{(+)}(\Delta)=W^{(+)}(\Delta)E_{0}(\Delta)Z^{(+)}(\Delta)$ .
Since $W^{(+)}(\Delta)E_{0}(\Delta)=W^{(+)}(\Delta)$ , this implies (2.27). In order to verify (2.28) it
suffices to show $E_{1}(\Delta)R_{1}(z)=R_{1}(z)E_{1}(\Delta)$ . This follows immediately from (2.25).
(2.29) follows from the relation $Z^{(+)}(\Delta_{1})W^{(+)}(\Delta_{2})=0$ , which is evident by (2.23).
Finally (2.30) is obtained by the additivities of $W^{(+)}(\Delta)$ and $Z^{(+)}(\Delta)$ for $\Delta$ ; that
is,

$W^{(+)}(\Delta_{1}+\Delta_{2})=W^{(+)}(\Delta_{1})+W^{(+)}(\Delta_{2})$ ,
(2.31)

$Z^{(+)}(\Delta_{1}+\Delta_{2})=Z^{(+)}(\Delta_{1})+Z^{(+)}(\Delta_{2})$ .
The theorem is proved.
We are now ready to show the similarity of $L_{1}$ to $L_{0}$ . First we prove the

following lemma:
LEMMA 2.7. The following relations hold.

(2.32) $W^{(\pm)}(\Delta)L_{0}\subseteqq L_{1}W^{(\pm)}(\Delta)$ , $L_{0}Z^{(\pm)}(\Delta)\supseteqq Z^{(\pm)}(\Delta)L_{1}$ .
PROOF. We have only to show that
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(2.33) $W^{(\pm)}(\Delta)R_{0}(z)=R_{1}(z)W^{(\pm)}(\Delta)^{11)}$ .
Since $X^{(\pm)}(\Delta)^{*}=Y^{*(\pm)}(\Delta)$ , we have

$\{R_{1}(z)W^{(\pm)}(\Delta)\}^{*}=\{E_{0}(\Delta)-Y^{*(\pm)}(\Delta)\}R_{1}(z)^{*}$

$=E_{0}(\Delta)R_{1}(z)^{*}-s-\lim_{\epsilon\rightarrow\pm 0}H^{*}(\Delta, \epsilon, \epsilon)R_{1}(z)^{*}$ .

By $(2.12)^{*}$ and the relation $R_{1}(z)^{*}=R_{1}^{*}(\overline{z})$ it follows that

$[H^{*}(\Delta, \epsilon, \epsilon)R_{1}(z)^{*}f](x)$

$=[E_{0}(\Delta)V^{*}R_{1}^{*}(\lambda+i\epsilon)R_{1}^{*}(\overline{z})f](x)|_{\lambda=x}$

$=[(\lambda+i\epsilon-\overline{z})^{-1}E_{0}(\Delta)V^{*}\{R_{1}^{*}(\lambda+i\epsilon)-R_{1}^{*}(\overline{z})\}f](x)|_{\lambda=x}$

$=[R_{0}(z+i\epsilon)^{*}H^{*}(\Delta, \epsilon, \epsilon)f](x)-[R_{0}(z+i\epsilon)^{*}E_{0}(\Delta)V^{*}R_{1}(z)^{*}f](x)$ .
Thus, by passing to the limit as $\epsilon\rightarrow\pm 0$ , we have

$\{R_{1}(z)W^{(\pm)}(\Delta)\}^{*}$

$=E_{0}(\Delta)R_{1}(z)^{*}+R_{0}(z)^{*}E_{0}(\Delta)V^{*}R_{1}(z)^{*}-R_{0}(z)^{*}Y^{*(\pm)}(\Delta)$

$=E_{0}(\Delta)\{R_{1}(z)+R_{1}(z)VR_{0}(z)\}^{*}-R_{0}(z)^{*}Y^{*(\pm)}(\Delta)$

$=E_{0}(\Delta)R_{0}(z)^{*}-R_{0}(z)^{*}Y^{*(\pm)}(\Delta)$

$=R_{0}(z)^{*}\{E_{0}(\Delta)-Y^{*(\pm)}(\Delta)\}$

$=\{W^{(\pm)}(\Delta)R_{0}(z)\}^{*}$ .
This implies (2.33) and the lemma is proved.

Now, (2.28) shows that $E_{1}(\Delta)\mathfrak{H}$ is an invariant subspace of $L_{1}$ . So, we can
consider $L_{0}$ and $L_{1}$ as the operators acting on $E_{0}(\Delta)\mathfrak{H}$ and $E_{1}(\Delta)\mathfrak{H}$ , respectively.
Moreover, we see easily from (2.23) and $(2.24)^{+}$ that $W^{(\pm)}(\Delta)$ are 1–1 bounded
mappings of $E_{0}(\Delta)\mathfrak{H}$ onto $E_{1}(\Delta)\mathfrak{H}$ , and

(2.34) $Z^{(\pm)}(\Delta)=W^{(\pm)}(\Delta)^{-1}$ .
Hence we have the following theorem.
THEOREM 2.2. Let $\Delta$ be an arbitrary (possibly infinite) subinterval of $[a, b]$ ,

which does not intersect with a neighborhood of $\sigma(T)$ . If we restrict $L_{0}$ and $L_{1}$

to $E_{0}(\Delta)\mathfrak{H}$ and $E_{1}(\Delta)\mathfrak{H}$ , respectively, then they are similar to each other. The
similarity is established by the operators $W^{(\pm)}(\Delta)$ ; that is,

(2.35) $L_{1}=W^{(\pm)}(\Delta)L_{0}W^{(\pm)}(\Delta)^{-1}$ .
In concluding this section we remark that $L_{1}$ is partly diagonalizable.

Namely, let $f\in \mathfrak{D}\cap E_{1}(\Delta)\mathfrak{H}$ , then for any $g\in \mathfrak{H}$

11) In order to deduce $R_{0}(z)Z^{(\pm)}(\Delta)=Z^{(\pm)}(\Delta)R_{1}(z)$ from (2.33), multiply (2.33) by
$Z^{(\pm)}(\Delta)$ from the left and the right and note that $Z^{(\pm)}(\Delta)E_{1}(\Delta)=Z^{(\pm)}(\Delta)$ .
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(2.36) $\langle L_{1}f, g\rangle=\int_{\Delta}\lambda d\langle E_{1}(\text{\‘{A}})f, g\rangle$ , $\Delta=(\alpha, \beta)$ ,

where $E_{1}(\lambda)=E_{1}((\alpha, \lambda))$ . In fact, by (2.35), we have

$\langle L_{1}f, g\rangle=\langle W^{(\pm)}(\Delta)L_{0}Z^{(\pm)}(\Delta)f, g\rangle$

$=\int_{\Delta}\lambda d\langle E_{0}(\lambda)Z^{(\pm)}(\Delta)f, W^{(\pm)}(\Delta)^{*}g\rangle,$ $E_{0}(\lambda)=E_{0}((\alpha, \lambda))$ .

By virtue of (2.31), however, it is easy to see that

$W^{(\pm)}(\Delta)E_{0}(\lambda)Z^{(\pm)}(\Delta)=W^{(\pm)}((\alpha, \lambda))Z^{(\pm)}((\alpha, \lambda))=E_{1}(\lambda)$ .

This implies (2.36).

3. Scattering theory

From the point of view of physical application, it is interesting to Investi-
gate the asymptotic behavior for $ t\rightarrow\pm\infty$ of the solution $u(t)$ to the Schrodinger
equation

(3.1) $i-\frac{\partial}{t}u(t)\partial=L_{1}u(t)$ , $u(O)=u_{0}$ $(u_{0}\in \mathfrak{H})$ .

In this section we wish to develop the time-dependent scattering theory, re-
stricting the initial data $u_{0}$ to the space $E_{1}(\Delta)\mathfrak{H}$ which was studied in the pre-
vious section.

In order to discuss the solution $u(t)$ to (3.1), it will be required that there
exists always a unique solution for any initial data $u_{0}\in \mathfrak{D}$ . For this purpose
only, we assume in this section the following additional conditioni2).

CONDITION. $-iL_{1}$ is an infinitesimal generator of the group $\exp\{-iL_{1}t\}$

$(-\infty<t<+\infty)$ .
We remark that, in the case where $V-V^{*}$ is a bounded operator in $\mathfrak{H}$ ,

the above condition is satisfied.
Now the solution $u(t)$ is obtained by

(3.2) $u(t)=\exp\{-iL_{1}t\}u_{0}$ , $u_{0}\in \mathfrak{D}$ .
It is easily seen from (2.28) that $E_{1}(\Delta)\mathfrak{H}\cap \mathfrak{D}=E_{1}(\Delta)\mathfrak{D}$ . Let

(3.3) $u_{0}\in E_{1}(\Delta)\mathfrak{D}$ .

12) If we restrict $u(t)$ to a class of solutions $u(t)$ such that $\Vert u(t)\Vert\leqq\exp\{\theta|t|\}$

( $\theta>0$ may depend on $u$), then the uniqueness of the solution to (3.1) can be verified
directly by using the Laplace transforms. Therefore, in this case, it is not necessary
to impose the above condition. On the other hand, if we restrict from the beginning
the operator $L_{1}$ to $E_{1}(\Delta)\mathfrak{H}$ , then the uniqueness of the solution $u(t)\in E_{1}(\Delta)\mathfrak{H}$ follows
easily from (2.36).
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Then, as a simple computation shows, we can represent $u(t)$ in the form

(3.4) $u(t)=W^{(\pm)}(\Delta)\exp\{-iL_{0}t\}Z^{(\pm)}(\Delta)u_{0}$

$=\exp\{-iL_{0}t\}Z^{(\pm)}(\Delta)u_{0}-X^{(\pm)}(\Delta)\exp\{-iL_{0}t\}Z^{(\pm)}(\Delta)u_{0}$ .
We wish to show that, as $t$ tends to $\pm\infty$ , the last term tends to $0$ strongly in

$\mathfrak{H}$ , where we take either the upper signs or the lower signs throughout.
More precise formulation is given in the following lemma.
LEMMA 3.1. Let $f(x)$ be any element of $E_{0}(\Delta)\mathfrak{H}$ , then

(3.5) $\lim_{t\rightarrow\pm\infty}X^{(\pm)}(\Delta)\exp\{-iL_{0}t\}f=0$ (in $\mathfrak{H}$).

Before proving this lemma, let us notice the following fact.
LEMMA 3.2. (1) For any $f\in \mathfrak{H}$ ,

(3.6) $\lim_{t\rightarrow\pm\infty}\int_{iO}^{y\}}\frac{\exp\{-i}{x-(y}\frac{t}{\mp}\frac{f(y)}{)}dy=0$ (in $\mathfrak{H}$).

(2) Let $h(y)$ be an $\mathfrak{H}$-valued summable function of $y$ . Then

(3.7) $\lim_{t\rightarrow\pm\infty}\int h(y)\exp\{-iyt\}dy=0$ (in $\mathfrak{H}$).

PROOF. The integral in (3.6) is nothing but

$[v.p.\frac{1}{x\pm i0}]*\exp\{-ixt\}f(x)$ .

We consider the Fourier transform of this expression. As is well-known

$\mathfrak{F}[v$ . $p.\frac{1}{x\pm i0}]=\mp 2\pi iY(\pm\xi)$ ,

where $Y(\xi)$ is the Heaviside function, and

$\mathfrak{F}[\exp\{-ixt\}f(x)]=f(\xi+\frac{t}{2\pi})$ .

Since $\lim_{t\rightarrow\pm\infty}\Vert Y(\pm\xi)\hat{f}(\xi+\frac{t}{2\pi})\Vert=0,$ $(3.6)$ is proved by applying the Plancherel

theorem. (3.7) is a generalization of the Riemann-Lebesgue theorem.
PROOF OF LEMMA 3.1. Since $\Vert X^{(\pm)}(\Delta)\exp\{-iL_{0}t\}\Vert=\Vert X^{(\pm)}(\Delta)\Vert$ , it suffices

to prove the lemma under the assumption that $f(x)$ is continuous and has a
compact support contained entirely in $\Delta$ . From the argument given in \S 2, it
is easily seen that

$[X^{(\pm)}(\Delta)f](x)=s-\lim_{\epsilon\rightarrow+0}\int\frac{v_{1}(x,y;y\mp iO)f(y)}{x-(y\mp i\epsilon)}dy$ .

Since $\exp\{-iL_{0}t\}f(x)=\exp\{-ixt\}f(x)$ , we take a smooth function $\alpha(x)$ which
takes the value 1 on the support of $f(x)$ and whose support is compact and



Large perturbation by a class of non-selfadjoint operators 149

contained entirely in $\Delta$ . Then, putting

$\alpha(y)v_{1}(x, y;y\mp i0)=\varphi(x, y)$ ,

we see that

$[X^{(\pm)}(\Delta)\exp\{-iL_{0}t\}f](x)=\int\frac{\varphi(x,y)f(y)}{x-(y\mp iO)}\exp\{-iyt\}dy$ .

We remark that the kernel $\varphi(x, y)$ generates an integral operator which belongs

to the class $\mathfrak{M}_{\delta_{1},\gamma_{1}}$ , where $\delta_{1}>\frac{1}{2}$ , $\gamma_{1}>\frac{1}{2}$

Now the above integral can be decomposed as

$\varphi(x, x)\int\frac{\exp\{-iyt}{x-(y\mp i}\}_{0}\frac{f(y)}{)}dy+\int\frac{\{\varphi(x,y)-\varphi(x,x)\}f(y)}{x-y}\exp\{-iyt\}dy$ .

As to the first integral, we apply (1) of Lemma 3.2 with the result

$\Vert\varphi(x, x)\int\frac{\exp\{-iyt\}f(y)}{x-(y\mp i0)}dy\Vert$

$\leqq\sup_{x}|\varphi(x, x)|\cdot\Vert\int\frac{\exp\{-iyt\}}{x-(y\mp i}O\frac{f(y)}{)}dy\Vert\rightarrow 0$ $(t\rightarrow\pm\infty)$ .

To the second integral we can apply (2) of Lemma 3.2. To see this, put

$h(x, y)=\frac{\{\varphi(x,y)-\varphi(x,x)\}f(y)}{x-y}$ .

As an $\mathfrak{H}$-valued function of $y,$ $h(\cdot, y)$ is continuous and has a compact support.
In fact, let us decompose this into two parts:

$h(x, y)=(\frac{\{\varphi(x,y)-\varphi(x,x)\}f(y)}{x-y})_{|x-y|\leqq\text{\’{e}}^{+(}}$ , $)_{|x-y|\geqq\epsilon}$ .

The second term is, for fixed $\epsilon$ , an $\mathfrak{H}$-valued continuous function of $y$ . On the
other hand, using the inequality

$|\varphi(x, y)-\varphi(x, x)|\leqq const(1+|y|)^{-\delta_{1}}|x-y|^{\gamma_{1}}$ $(|x-y|\leqq 1)$ ,

one can obtain the $\mathfrak{H}$-norm of the first term is estimated by

const $(\int_{|x|\leqq e}|x|^{2(\gamma_{1}-1)}dx)^{1/2}(1+|y|)^{-\delta_{1}}|f(y)|$ .

Since $\gamma_{1}>\frac{1}{2}$ , this can be made arbitrarily small by making $\epsilon$ sufficiently

small. The lemma is proved.
We have thus proved the following:
THEOREM 3.1. For any $u_{0}\in E_{1}(\Delta)\mathfrak{H}$ , put

(3.8) $f^{(\pm)}=Z^{(\pm)}(\Delta)u_{0}$ $(\in E_{0}(\Delta)\mathfrak{H})$ .
Then the solution $u(t)$ to equatian (3.1) with the initial value $u_{0}$ satisfies the
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following asymptotic conditions.

(3.9) $\lim_{t\rightarrow\pm\infty}\Vert u(t)-\exp\{-iL_{0}t\}f^{(\pm)}\Vert=0$ .

Finally, if we define the operator

(3.10) $S(\Delta)=Z^{(+)}(\Delta)W^{(-)}(\Delta)$ ,

then we see from (3.8) and (3.9) that $S(\Delta)$ gives the so-called scattering opera-
tor. Actually, the relation

(3.11) $f^{(+)}=S(\Delta)f^{(-)}$

follows immediately from relation $(2.24)^{+}$ . Moreover we have from (2.32)

(3.12) $S(\Delta)L_{0}\subseteqq L_{0}S(\Delta)$ .
We can verify that $S(\Delta)$ is a multiplicative operator

(3.13) $[S(\Delta)f](x)=\{1-2\pi iv_{1}(x, x;x+iO)\}f(x)$ , $ x\in\Delta$ .
In order to show this we use the relation

$Z^{(+)}(\Delta)W^{(-)}(\Delta)=\{E_{0}(\Delta)-Y^{(+)}(\Delta)\}\{E_{0}(\Delta)-X^{(-)}(\Delta)\}$

$=E_{0}(\Delta)-Y^{(+)}(\Delta)E_{0}(\Delta)-E_{0}(\Delta)X^{(-)}(\Delta)+Y^{(+)}(\Delta)X^{(-)}(\Delta)$ ,

where $Y^{(+)}(\Delta)=H(\Delta, +0, +0)$ and $X^{(-)}(\Delta)=K(\Delta, -0, -0)$ . Since we have

$Y^{(+)}(\Delta)X^{(-)}(\Delta)=E_{0}(\Delta)Y^{(+)}(\Delta)X^{(-)}(\Delta)E_{0}(\Delta)$

$=H(\Delta, +0, +0)E_{0}(\Delta)+E_{0}(\Delta)K(\Delta, -0, +0)$

by using the same method as we proved Lemma 2.5, it follows that

$S(\Delta)=E_{0}(\Delta)\{I+K(\Delta, -0, +0)-K(\Delta, -0, -0)\}$ .
Namely, if $f(x)$ is a smooth function with a compact support contained in $\Delta$ ,

we have
$[S(\Delta)f](x)-[E_{0}(\Delta)f](x)$

$=\lim_{\epsilon\rightarrow+\infty}\int\{\frac{v_{1}(x,y;y+i0)v_{1}(x,y;y+i0)}{x-(y-i\epsilon)x-(y+i\epsilon)}\}f(y)dy$

$=-2\pi iv_{1}(x, x;x+iO)f(x)$ .

This proves (3.13). Analogously to (3.10) we put

$(3.10)^{*}$ $S^{*}(\Delta)=Z^{*(+)}(\Delta)W^{*(-)}(\Delta)$ .
Then we see similarly

$(3.13)^{*}$ $[S^{*}(\Delta)f](x)=\{1-2\pi iv_{1}^{*}(x, x;x+iO)\}f(x)$ . $ x\in\Delta$ .
Applying (2.20), we see easily that as an operator defined in $E_{0}(\Delta)\mathfrak{H}S^{*}(\Delta)^{*}$ is
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the bounded inverse of $S(\Delta)$ , namely

(3.14) $S(\Delta)S^{*}(\Delta)^{*}=S^{*}(\Delta)^{*}S(\Delta)=E_{0}(\Delta)$ .

4. Perturbation by a product operator

In this section we wish to show the completeness of the spectral resolu-
tion $E_{1}(\Delta)$ obtained in \S 2. For this aim we require some additional assump-
tions on $V$ . We suppose that $V$ is a product operator of the form

(4.1) $V=B^{*}A$ ,

where $A$ and $B$ are both integral operators belonging to the class $\mathfrak{M}_{\delta_{2},\mathcal{T}_{2}}$

$(\frac{3}{4}<\delta_{2}<1,0<\gamma_{2}<1)$ introduced in Definition of \S 2. We denote the kernels

of $A$ and $B$ by $a(x, y)$ and $b(x, y)$ , respectively.
Let us notice that $V=B^{*}A$ is a special case of the operator which was

investigated in the previous sections. In fact, since the domain $\mathfrak{D}(A)$ of $A$ , for
example, includes the set

$\{f\in \mathfrak{H};\int(1+|x|)^{-1/4}|f(x)|dx<+\infty\}\supset\{f\in \mathfrak{H};\int|f(x)|dx<+\infty\}$ ,

it follows from the inequality

$\int|f(x)|dx\leqq\{\int(1+|x|)^{-2}dx\int(1+|x|)^{2}|f(x)|^{2}dx\}^{1/2}$

that $\mathfrak{D}\subset \mathfrak{D}(A)$ . The image $A\mathfrak{D}$ also belongs to $\mathfrak{D}(A)$ . For, if we set $g(x)$

$=\int a(x, y)f(y)dy$ . then we have $g\in \mathfrak{H}$ and

$|g(x)|\leqq const(1+|x|)^{-\delta_{2}}\int|f(y)|dy$ ,

and therefore $(1+|x|)^{-1/4}g(x)$ is summable. The above argument equally applies
to $B^{*}$ , and hence $B^{*}A$ becomes an integral operator, defined on $\mathfrak{D}$, generated
by the kernel

$v(x, y)=\int b^{*}(x, u)a(u, y)du$ , $b^{*}(x, u)=\overline{b}(u, x)$ .

We see easily $V\in \mathfrak{M}_{\delta_{3},\gamma_{3}}$ , where $\frac{1}{2}<\delta_{3}<2\delta_{2}-1$ and $0<\gamma_{3}\leqq\gamma_{2}$ .

Following several authorsi3) we now consider the operator $Q(z)$ defined by

13) We denote by $[R_{0}(z)B^{*}]$ the adjoint operator of $BR_{0}(z)^{*}$ , which is bounded
uniformly for $z\in\Pi^{\sim}$ as we have shown by Lemma 2.3. The operator $Q(z)$ was initially
considered in [8] under similar conditions on $A$ and $B$ . Kato [6] developed his inter-
esting method investigating carefully the property of the operator $Q(z)$ .
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(4.2) $Q(z)=A[R_{0}(z)B^{*}]$ .
Once we prove that $Q(z),$ $ z\in\Pi$ , is everywhere defined bounded operator such
that $I+Q(z)$ has the everywhere defined bounded inverse, then it can be easily
shown that

(4.3) $R_{1}(z)=R_{0}(z)-[R_{0}(z)B^{*}]\{I+Q(z)\}^{-1}AR_{0}(z)$ , $ z\in\Pi$ .
In fact, as we see easily (cf. Lemma 4.1), the invertibility (in $\mathfrak{H}$) of the opera-
tors $I+B^{*}AR_{0}(z)$ and $I+AR_{0}(z)B^{*}$ is equivalent. Since the trivial identity $\{I+$

$B^{*}AR_{0}(z)\}B^{*}=B^{*}\{I+AR_{0}(z)B^{*}\}$ implies $B^{*}\{I+AR_{0}(z)B^{*}\}^{-1}\supseteqq\{I+B^{*}AR_{0}(z)\}^{-1}B^{*}$ ,

we have $V_{1}(z)=\{I+B^{*}AR_{0}(z)\}^{-1}B^{*}A=B^{*}\{I+AR_{0}(z)B^{*}\}^{-1}A$ . Now (4.3) is noth-
ing but (1.5).

We next verify the above mentioned property of $Q(z)$ . It is easy to see
that $Q(z)$ is an integral operator with the kernel

$q(x, y;z)=\int\frac{a(x,u)b^{*}(u,y)}{u-z}du$ .

By the use of inequality (1.17), $q(x, y;z)$ is estimated as follows:

$|q(x, y;z)|\leqq const(1+|x|)^{-\delta_{3}}(1+|y|)^{-\delta_{3}}(1+|z|)^{-\alpha_{3}}$ ,
(4.4)

$|q(x, y;z)-q(x+\Delta x, y+\Delta y;z+\Delta z)|$

$\leqq const(1+|x|)^{-\delta_{3}}(1+|y|)^{-\delta_{3}}(1+|z|)^{-\alpha_{8}}(|\Delta x|^{\gamma_{3}}+|\Delta y|^{\gamma_{3}}+|\Delta z|^{\gamma_{3}})$ ,

where $0<\alpha_{3}<2(\delta_{2}-\delta_{3})$ . The first inequality shows that

$\int\int|q(x, y;z)|^{2}dxdy\leqq const(1+|z|)^{-2\alpha}@$ .

This implies that $Q(z)$ is a completely continuous operator in $\mathfrak{H}$ for any $ z\in\Pi$ .
Moreover it follows from (4.4) that

$\Vert Q(z)\Vert\leqq const(1+|z|)^{-\alpha_{3}}$ ,
\langle 4.5)

$\Vert Q(z)-Q(z+\Delta z)\Vert\leqq const(1+|z|)^{-\alpha_{3}}|\Delta z|^{\gamma_{\$}}$ .
By the second inequality, we see that there exist the uniform limits $Q(\lambda\pm iO)$ ,
$\lambda\in[a, b]$ . They are also completely continuous and satisfy the inequalities
\langle 4.5) with the same constants.

We call a value $z\in\tilde{\Pi}$ , for which the homogeneous equation

(4.6) $\tilde{\varphi}+Q(z)\tilde{\varphi}=0$ $(\tilde{\varphi}\in \mathfrak{H})$

has a non-trivial solution, a singular point of $Q(z)$ . Then we have the
LEMMA 4.1. $z\in\tilde{\Pi}$ is a singular point of $Q(z)$ if and only if it is a singular

point of $T(z),$ $i$ . $e.,$ $z\in\sigma(T)$ .
PROOF. Let $z\in\sigma(T)$ , and $\varphi(x)$ be a corresponding non-trivial solution of
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(1.20): $\varphi+T(z)\varphi=\varphi+B^{*}AR_{0}(z)\varphi=0$ . Applying $AR_{0}(z)$ from the left and putt-
ing $\tilde{\varphi}\equiv AR_{0}(z)\varphi$ , we have formally $\tilde{\varphi}+Q(z)\tilde{\varphi}=0$ . Clearly $\tilde{\varphi}\in \mathfrak{H}$ and $\tilde{\varphi}\neq 0$ . For
$\tilde{\varphi}=0$ yields $\varphi=-B^{*}AR_{0}(z)\varphi=-B^{*}\tilde{\varphi}=0$ , which contradicts our assumption.

Convesely if $\tilde{\varphi}\in \mathfrak{H}$ satisfies (4.6), then $\varphi\equiv B^{*}\tilde{\varphi}\in \mathfrak{B}_{\delta,\gamma_{2}}(0<\delta<\delta_{2}-\frac{1}{2})$ and
$\varphi\neq 0$ . Moreover, $\varphi=-B^{*}Q(z)\tilde{\varphi}=-B^{*}AR_{0}(z)\varphi=-VR_{0}(z)\varphi$ . This implies that
$\varphi+T(z)\varphi=0$ . Thus $z\in\sigma(T)$ , and this finishes the proof of the lemma.

Thus we see that $I+Q(z)$ has a bounded inverse for any $z\in\Pi^{\sim}$ except
the singular points of $T(z)$ . Moreover, there exists a positive constant $M$

independent of $z$ such that $\Vert\{I+Q(z)\}^{-1}\Vert\leqq M$, when $z$ runs over any domain
(in $\tilde{\Pi}$) which is disjoint from a neighborhood of $\sigma(T)$ . In fact, $I+Q(z)$ is
holomorphic in such a domain, and if $|z|$ is large, then $\{I+Q(z)\}^{-1}$ is obtained
by the Neumann series in view of (4.5). We then define the operator

(4.7) $A_{\iota}(z)=\{I+Q(z)\}^{-1}A$ $(z\in\tilde{\Pi})$ ,

which has $\mathfrak{D}(A)$ as its domain. Then we see from (4.3) that

(4.8) $AR_{1}(z)=A_{1}(z)R_{0}(z)$ .
$A_{1}(z)$ is represented by a kernel $a_{1}(x, y;z)$ which can be estimated in a way
similar to $q(x, y;z)$ in (4.4) if we replace the constants $\delta_{3},$

$\gamma_{3}$ and $\alpha_{3}$ by $\delta(<\delta_{3})$ ,
$r(<r_{3})$ and $\alpha(<\gamma_{3})$ , respectively, where $\delta,$

$\gamma$ and $\alpha$ can be chosen as close to
the respective constants $\delta_{3},$

$\gamma_{3}$ and $\gamma_{3}$ as we wish.
We can now give a sufficient condition for the completeness of the spectral

resolution $E_{1}(\Delta)$ . We denote the eigenvalues of $L_{1}$ by $\lambda_{\nu}(\nu=1, 2, )$ , and denote
by $P_{\nu}(\nu=1, 2, )$ the projections on the corresponding root subspaces. If $\lambda_{\nu}$

is isolated, then $P_{\nu}$ is represented as follows (see, $e$ . $g.,$ $[5]$):

(4.9) $P_{\nu}=-\frac{1}{2\pi i}\oint_{\Gamma(\lambda_{\nu})}R_{1}(z)dz$ ,

where $\Gamma(\lambda_{\nu})$ is a small circle with centre $\lambda_{\nu}$ . Suppose that there exists no
singular point of $Q(z)$ on either edge of $(a, b)$ . Moreover we suppose that $a$

and $b$ are not singular points of $Q(z)$ if $a$ or $b$ is finite. Then $E_{1}(\Delta)$ is defined
for any subinterval $\Delta$ of $(a, b)$ . We can verify that $L_{1}$ has at most a finite
number of discrete eigenvalues. In fact, we know from (2) of Theorem 1.1
that the accumulation points of discrete eigenvalues are on the edges of $[a, b]$ .
It follows from Lemma 4.1 that they are singular points of $Q(z)$ . Hence, the
above assumption implies the finiteness of the discrete eigenvalues of $L_{1}$ . By
virtue of Lemma 1.4 we see similarly that there exists no eigenvalue of $L_{1}$ in
$[a, b]$ . Let $P_{0}=\Sigma {}_{0}P_{\nu}$ be the sum of the projections corresponding to the real
eigenvalues lying outside $[a, b]$ , and let $P_{+}=\Sigma_{+}P_{\nu}$ and $P_{-}=\Sigma_{-}P_{\nu}$ be the sums
of the projections corresponding to the non-real eigenvalues with positive and
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negative imaginary parts, respectively.
THEOREM 4.1. Suppose that
(1) $V=B^{*}A$ , where $A,$ $B\in \mathfrak{M}_{\delta_{2},\mathcal{T}_{2}}(\frac{3}{4}<\delta_{2}<1,0<\gamma_{2}<1)$ ;

(2) there exist no singular points of $Q(z)$ on either edge of $(a, b)$ and the
points $a$ and $b$ are also non-singular points of $Q(z)$ .

Then the spectral resolution $E_{1}(\Delta)$ is complete. Namely,

(4.10) $E_{1}((a, b))=I-\sum_{\nu=1}^{N}P_{\nu}$ ,

where $P_{\nu}$ is the pro.jection given by (4.9), and $N$ is the number of the discrete
eigenvalues of $L_{1}$ .

PROOF. For the sake of simplicity we prove (4.10) in the case where $a$ is
finite and $ b=+\infty$ . The same reasoning can be applied to the other cases.
We start from the following relation

(4.11) $\langle\{R_{0}(\lambda+i\epsilon)-R_{0}(\lambda-i\epsilon)\}f, g\rangle-\langle\{R_{1}(\lambda+i\epsilon)-R_{1}(\lambda-i\epsilon)\}f, g\rangle$

$=\langle R_{0}(\lambda+i\epsilon)VR_{1}(\lambda+i\epsilon)f, g\rangle-\langle R_{0}(\lambda-i\epsilon)VR_{1}(\lambda-i\epsilon)f, g\rangle$ ,

which follows from the second resolvent equation. We choose $f$ and $g$ in the
class $\mathfrak{B}_{\delta_{3},r_{S}}$ . Let $r>|a|$ be a large constant such that all the eigenvalues of
$L_{1}$ lie in the disk $\{z:|z|<r\}$ , and let us take the integral of both sides of
(4.11) over $(-r, r)$ .

It follows immediately from (2.14) that

$\lim_{\text{\’{e}}\rightarrow+0}\int;_{r}\langle\{R_{0}(\lambda+i\epsilon)-R_{0}(\lambda-i\epsilon)\}f, g\rangle d\lambda=2\pi i\langle E_{0}((a, r))f, g\rangle$ .

For dealing with the second term on the left side of (4.11), we suppose that
$\epsilon$ is sufficiently small so that the imaginary parts of all non-real eigenvalues
are greater than $\epsilon$ . Then by means of the Cauchy integral formula, we have

$\int_{-r}^{r}\langle\{R_{1}(\lambda+i\epsilon)-R_{1}(\lambda-i\epsilon)\}f, g\rangle d\lambda=\int_{-r}^{a-s}+\int_{a^{\gamma}-s}$

$=2\pi i\Sigma_{0}\langle P_{\nu}f, g\rangle+\int_{a^{r}-s}\langle\{R_{1}(\lambda+i\epsilon)-R_{1}(\lambda-i\epsilon)\}f, g\rangle d\lambda$

$+(\int_{a-s-i}^{a-s\neq i_{8}e}-\int_{-r-i\epsilon}^{-r+ie})\langle R_{1}(z)f, g\rangle dz$ ,

where $s>0$ is a small constant such that there exists no eigenvalue of $L_{1}$ in
$[a-s, a]$ . It is easy to see that the last term converges to zero as $\epsilon\rightarrow+0$ .
Hence it follows that

$\lim_{\epsilon\rightarrow+0}\int;_{r}\langle\{R_{1}(\lambda+i\epsilon)-R_{1}(\lambda-i\epsilon)\}f, g\rangle d\lambda$

$=2\pi i\Sigma_{0}\langle P_{\nu}f, g\rangle+2\pi i\langle E_{1}((a, r))f, g\rangle$
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if one takes relation (2.25) into account.
Next let us consider the right-hand side of (4.11). Using again the Cauchy

integral formula, we have

$\int_{-r}^{\gamma}\langle R_{0}(\lambda+i\epsilon)VR_{1}(\lambda+i\epsilon)f, g\rangle d\lambda$

$=\Sigma_{+}\oint_{\Gamma(\lambda_{\nu})}\langle R_{0}(z)VR_{1}(z)f, g\rangle dz-\theta_{+}(r, \epsilon)$ ,

$\int_{-r}^{r}\langle R_{0}(\lambda-i\epsilon)VR_{1}(\lambda-i\epsilon)f, g\rangle d\lambda$

$=-\Sigma_{-}\oint_{\Gamma(\text{{\it \‘{A}}}_{\nu})}\langle R_{0}(z)VR_{1}(z)f, g\rangle dz+\theta_{-}(r, \epsilon)$ ,

where

$\theta_{+}(r, \epsilon)=\oint_{-}\}z_{I^{1=}m^{\sqrt{r^{2+\text{\’{e}} 2}}}[z]\leqq-\epsilon}\langle R_{0}(z)VR_{1}(z)f, g\rangle dz$ ,

$\theta_{-}(r, \epsilon)=\oint_{|z|^{\sqrt{r2+\epsilon 2}}}{\rm Im}^{=}[z]\leqq-e\langle R_{0}(z)VR_{1}(z)f, g\rangle dz$ .

Since $R_{0}(z)VR_{1}(z)=R_{0}(z)-R_{1}(z)$ , and $R_{0}(z)$ is holomorphic at $z=\lambda_{\nu}$ , we see

$\Sigma_{+}\oint_{\Gamma(\lambda_{v})}\langle R_{0}(z)VR_{1}(z)f, g\rangle dz=2\pi i\Sigma_{+}\langle P_{\nu}f, g\rangle$ ,

$\Sigma_{-}\oint_{\Gamma(\lambda_{\nu})}\langle R_{0}(z)VR_{1}(z)f, g\rangle dz=2\pi i\Sigma_{-}\langle P_{\nu}f, g\rangle$ .

On the other hand, by the assumption on $B$ , it follows that

$\Vert BR_{0}(z)^{*}g\Vert\leqq const(1+|z|)^{-\delta}\Vert g\Vert_{\delta_{3}\gamma_{3}},$ $\frac{1}{2}<\delta<\delta_{3}$ .

If we notice that $\{I+Q(z)\}^{-1}$ is uniformly bounded, we see from (4.7) that
$AR_{1}(z)f=A_{1}(z)R_{0}(z)f$ is also estimated by similar inequalities. Hence we have

$|\theta_{+}(r, \epsilon)+\theta_{-}(r, \epsilon)|=\oint_{1z1^{\sqrt{r^{2}+e^{2}}}}|I=m[z]|\geq\epsilon\langle A_{1}(z)R_{0}(z)f, BR_{0}(z)^{*}g\rangle dz|=$

$\leqq const(1+r)^{-2\delta+1}\Vert f\Vert_{\delta_{3}\gamma_{8}}\Vert g\Vert_{\delta_{3}\gamma_{3}}$ .
By the passage to the limit, $\theta(r)=\lim_{e\rightarrow+0}\{\theta_{+}(r, \epsilon)+\theta_{-}(r, \epsilon)\}$ exists, and is estimated

for sufficiently large $r$ by $|\theta(r)|\leqq const(1+r)^{-2\delta+1}$ . Thus

$\lim_{\text{\’{e}}\rightarrow+0}\int_{-r}^{r}\{\langle R_{0}(\lambda+i\epsilon)VR_{1}(\lambda+i\epsilon)f, g\rangle-\langle R_{0}(\lambda-i\epsilon)VR_{1}(\lambda-i\epsilon)f, g\rangle\}d\lambda$

$=2\pi i\{\Sigma_{+}\langle P_{\nu}f, g\rangle+\Sigma_{-}\langle P_{\nu}f, g\rangle\}+O(r^{-2\delta+1})$ .

Summarizing these results, we can finally get
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$\langle E_{1}((a, r))f, g\rangle=\langle E_{0}((a, r))f, g\rangle-\sum_{\nu=1}^{N}\langle P_{\nu}f, g\rangle+0(r^{-2\delta+1})$ .
Let $r$ tend to $+\infty$ . Then, since $\langle E_{0}((a, r))f, g\rangle\rightarrow\langle f, g\rangle$ and $\langle E_{1}((a, r))f, g\rangle\rightarrow$

$\langle E_{1}((a, b))f, g\rangle$ , it follows from $\delta>\frac{1}{2}$ that’4)

$\langle E_{1}((a, b))f, g\rangle=\langle f, g\rangle-\sum_{\nu=1}^{N}\langle P_{\nu}f, g\rangle$ .
Since $\mathfrak{B}_{\delta_{s},\gamma_{3}}$ is dense in $\mathfrak{H}$, this yields (4.10), and the theorem is proved.

5. Final remark

In this section we consider the case when $V$ is dissipative. Namely, let

(5.1) $V=V_{1}+iV_{2}$ .
where the operator $V_{1}$ is symmetric and the operator $V_{z}$ is positive definite,

$i.e.,$ $V_{2}=A^{*}A$ . We assume that $V_{1},$ $A\in \mathfrak{M}_{\delta_{2},\mathcal{T}_{2}}$ , where $\delta_{2}>\frac{3}{4}$ and $0<\gamma_{2}<1$ .
For the sake of simplicity, we assume moreover that $V_{1}$ is a small perturba-
tion. Then we know by [4] that there exists a unitary operator $U$ such that

(5.2) $U^{*}(L_{0}+V_{1})U=L_{0}$ .
We see more: $U$ is a bounded operator acting on $\mathfrak{B}_{\delta_{2}.T^{\prime}}2$ where $\delta_{2}^{\prime}(<\delta_{2})$ and
$\gamma_{2}^{\prime}(<\gamma_{2})$ can be chosen as close to $\delta_{2}$ and $\gamma_{z}$ as we wish. So the operator $AU$

belongs again to the class $\mathfrak{M}_{\delta_{2},\mathcal{T}_{2}},$ . Thus from the beginning, we can set $L_{1}$

as follows:

(5.3) $L_{1}=L_{0}+V=L_{0}+iA^{*}A$ , $A\in \mathfrak{M}_{\delta_{2},\mathcal{T}_{2}}$ .
In this case we have the following lemma.
LEMMA 5.1. There exists no singular point of $Q(z)$ on the lower edge of

$(a, b)$ . The points $a$ and $b$ are also non-singular points of $Q(z)$]

PROOF. Let $\tilde{\varphi}+Q(\lambda-i0)\tilde{\varphi}=0$ , where $Q(z)=iA[R_{0}(z)A^{*}]$ . Then it follows
that

$ 0=\Vert\tilde{\varphi}\Vert^{2}+\lim_{\epsilon\rightarrow+0}\langle iAR_{0}(\lambda-i\epsilon)A^{*}\tilde{\varphi},\tilde{\varphi}\rangle$

$=\Vert\tilde{\varphi}\Vert^{2}+\lim_{\epsilon\rightarrow+0}i\int\frac{|[A^{*}\tilde{\varphi}](x)|^{2}}{x-(\lambda-i\epsilon)}dx$

$=\Vert\tilde{\varphi}\Vert^{2}+\pi|[A^{*}\tilde{\varphi}](\lambda)|^{2}+iP\int\frac{|[A^{*}\tilde{\varphi}](x)|^{2}}{x-\lambda}dx$ .

14) To factor $V$ as $B^{*}A$ is only needed to get the above estimate of $\theta_{\pm}$ . Other.
wise, we could only get the factor $(1+r)^{-\delta+1}$ which would not work for the present
purpose.
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Since $P\int\frac{|[A^{*}\tilde{\varphi}](x)|^{2}}{x-\lambda}dx$ is real, it follows that

$\Vert\tilde{\varphi}\Vert^{2}+\pi|[A^{*}\tilde{\varphi}](\lambda)|^{2}=0$ .
This implies $\tilde{\varphi}(x)\equiv 0$, which is to be proved. The lemma is proved.

Thus, by Lemma 1.4, both $L_{1}$ and $L_{1}^{*}$ have no eigenvalue on the real seg-
ment $[a, b]$ . Moreover we see that $Y^{(-)}(\Delta),$ $X^{(+)}(\Delta),$ $Y^{*(i\cdot)}(\Delta)$ and $X^{*(-)}(\Delta)$ exist
even for $\Delta=(a, b)$ . Put

\langle 5.4) $W^{(+)}=I-X^{\mathfrak{c}+)}((a, b))$ , $Z^{(-)}=I-Y^{(-)}((a, b))$ .
$(5.4)^{*}$ $W^{*(-)}=I-X^{*(-)}((a, b))$ , $Z^{*\mathfrak{c}+)}=I-Y^{*(+)}((a, b))$ .
Since $W^{(+)*}=Z^{*(+)}$ , the range of $W^{(+)}$ is orthogonal to the null space of $Z^{*(+)}$,

which includes all the root subspaces of $L_{1}^{*}$ corresponding to the discrete
eigenvalues. It might be expected that the null space of $z*(+)$ coincides with
the direct sum of the root subspaces of $L_{1}^{*}$ , and the range of $W^{(+)}$ is the
orthogonal complement of the null space of $z*(+)$ However we do not have
now any affirmative answers.

In conclusion, let us consider again equation (3.1). As we see easily, $-iL_{1}$

$=-iL_{0}+A^{*}A$ is the infinitesimal generator of the semi-group $\exp\{-iL_{1}t\}(t\leqq 0)$ .
Consequently, for any initial data $u_{0}\in \mathfrak{D}$, the solution $u(t)$ is obtained by

(5.5) $u(t)=\exp\{-iL_{1}t\}u_{0}$ $(t\leqq 0)$ .
Here, if we assume $u_{0}$ belongs to the range of $W^{(+)}$ , i. e., $u_{0}=W^{(+)}f_{0}(f_{0}\in \mathfrak{D})$ ,
then $u(t)$ is represented by

\langle 5.6) $u(t)=W^{(+)}\exp\{-iL_{0}t\}f_{0}$ $(t\leqq 0)$ .
Let us consider the function $\exp\{iL_{0}t\}W^{(+)}\exp\{-iL_{0}t\}f_{0}$ . We have from (5.4)

$[\exp\{iL_{0}t\}W^{\mathfrak{c}+)}\exp\{-iL_{0}t\}f_{0}](x)-f_{0}(x)$

$=-\lim_{\epsilon\rightarrow+0}\int\frac{v_{1}(x,y;y-i0)}{x-(y-i\epsilon)}\exp\{i(x-y)t\}f_{0}(y)dy$

$=-P\int\frac{v_{1}(x,y;y-iO)}{x-y}\exp\{i(x-y)t\}f_{0}(y)dy+\pi iv_{1}(x, x;x-i0)f_{0}(x)$ .
On the other hand it is easily verified that

$\lim_{-t\rightarrow\infty}P\int\frac{\exp\{i(x-y)t\}}{x-y}dy=-\pi i$ .
Hence we get

$s-\lim_{t\rightarrow-\infty}[\exp\{iL_{0}t\}W^{e+)}\exp\{-iL_{0}t\}f_{0}](x)-\{1+2\pi iv_{1}(x, x;x-\dot{\tau}0)\}f_{0}(x)$

$=s-\lim_{t\rightarrow-\infty}P\int\frac{\{v_{1}(x,y;y-i0)-v_{1}(x,x;x-i0)\}f_{0}(y)}{y-x}\exp\{i(x-y)t\}dy$ .
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Applying Lemma 3.2 (2), we see that the right side is equal to zero. This
shows that

$s-\lim_{t\rightarrow-\infty}[u(x, t)-\exp\{-ixt\}\{1+2\pi iv_{1}(x, xjx-iO)\}f_{0}(x)]=0$ .

Analogously to (3.13) it is not difficult to see
(5.7) $\{1+2\pi iv_{1}(x, x;x-i0)\}f_{0}(x)=[Z^{\mathfrak{c}-)}W^{(+)}f_{0}](x)$ .

Hence we conclude that the solution $u(t)$ to equation (3.1) with the initial con-
dition $u(O)=W^{(+)}f_{0}(f_{0}\in \mathfrak{D})$ has the following asymptotic behavior

(5.8) $\lim_{t\rightarrow-\infty}\Vert u(t)-\exp\{-iL_{0}t\}Z^{(-)}W^{(+)}f_{0}\Vert=0$ .

Let us remark that, since we cannot say anything about the uniqueness of
the solution for $t\geqq 0$ (see foot-note 12)), we have no information, in this case,
about the asymptotic behavior of the solution $u(t)$ for $ t\rightarrow+\infty$ .

Kyoto University

Bibliography

[1] L. D. Faddeev, Mathematical problems for three-body system in quantum theory
of scattering, Trudy Math. Inst. Steklov, 49 (1963), 1-122 (Russian).

[2] L. D. Faddeev, On the Friedrichs model in the perturbation theory of continuous
spectrum, Trudy Math. Inst. Steklov, 73 (1964), 292-313 (Russian).

[3] K. O. Fridrichs, Uber die Spektralzerlegung eines Integral-operators, Math. Ann..
115 (1938), 249-272.

[4] K. O. Friedrichs, On the perturbation of continuous spectra, Comm. Pure Appl.
Math., 1 (1948), 361-406.

[5] I. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root
mumbers and indices of linear operators, Uspehi Mat. Nauk, 12 (1957), 43-118=
Amer. Math. Soc. Trans., (2) 13 (1960), 185-264.

[6] T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math.
Ann., 162 (1966), 258-279.

[7] K. Mochizuki, On the perturbation of the continuous spectrum of the Dirac
operator, Proc. Japan Acad., 40 (1964), 707-712.

[8] J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math., 13 (1960),
609-639.


	On the large perturbation ...
	Introduction
	1. Preliminaries
	THEOREM 1.1. ...

	2. The similarity of $L_{1}$ ...
	THEOREM 2.1. ...
	THEOREM 2.2. ...

	3. Scattering theory
	THEOREM 3.1. ...

	4. Perturbation by a product ...
	THEOREM 4.1. ...

	5. Final remark
	Bibliography


