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Let $R$ be a locality over a field $k$ , i. e., $R$ is a quotient ring of an affine
domain $A$ over a field $k$ with respect to a prime ideal. We have then two
types of differential theoretic characterization for $R$ to be a regular local ring.
One is given by the author in [3] and another one is given by E. Kunz [2].

It says as follows: $R$ is a regular local ring if and only if $D_{k}(R)$ is a free R-
module, modulo some assumptions. Kunz’s criterion asserts that $R$ is regular
if and only if $D(R)$ (absolute differential module) is free. The first criterion
is essentially equivalent to the Jacobian criterion of simple loci and the second
one to the mixed Jacobian criterion, initiated by Zariski [4]. This fact about
the first one was discussed in [3], but not in a satisfactory way and the fact
about the second one has not been noticed, to the best of the authors’ knowledge,
in any literature yet. In this paper we shall make clear precise relations
which exist among these criterions. This gives also an improvement of the
theorems in [3].

1. Let $S$ and $R$ be commutative rings with 1, and assume that $S$ is an
R-algebra. We denote by $D_{R}(S)$ the module of R-differentials of $S$ . Any ring
$S$ is an algebra over a prime ring $\Pi$ . So we denote $D_{\Pi}(S)$ simply by $D(S)$ .
This is canonically isomorphic to $D_{s^{p}}(S)$ if the characteristic of $S$ is a positive
prime number $p$ . For these notations and fundamental properties of $D_{R}(S)$

we refer to [3].

For the sake of convenience we list fundamental results which are neces-
sary in the sequel.

PROPOSITION 1 (Theorem 1 of [3]). Let $S$ be an R-algebra and let $T$ be
an S-algebra. Then any R-derivation of $S$ into a T-module $V$ can be extended
to an R-derivation of $T$ into $V$ if and only if we have the following split exact
sequence

$\varphi_{R,S.T}$

$0\rightarrow T\otimes D_{R}(S)\rightarrow D_{R}(T)\rightarrow D_{S}(T)\rightarrow 0$
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PROPOSITION 2 $($Proposition 3 of Expos\’e 13 $[1])^{1)}$ . Let $L$ be a field finitely
generated over a field $K$ and $R$ a subring of K. Let $N$ be the kernel of the
homomorphism $\varphi_{RiR,L}$ . Then if $R$ is contained in $K^{p}(p$ is the characteristic of
K. If $p=0$ we understand $R$ is a prime ring $Z$ ) we have the equality

$\dim_{L}D_{K}(L)-\dim_{L}N=tr.d.KL$ .

PROPOSITION 3 (Theorem 5 of Expos\’e 17 [1]). Let $R$ be a local ring con-
taing a field $K$ and let $M$ be the maximal ideal of R. Assume that the residue
field $R/M$ is a separable extension of K. Then we have the exact sequence

$0\rightarrow M/M^{2}\rightarrow(R/M)\otimes D_{K}(R)\rightarrow D_{K}(R/M)\rightarrow 0$ .
PROPOSITION 4. Let $S$ be a local integral domain with the quotient field $K$,

and $R$ a subring of S. Assume that $D_{R}(S)$ is a finite S-module. Then $D_{R}(S)$ is
a free module if and only if the rank of $D_{R}(S)$ is equal to the rank of $D_{R}(K)$ .

Proof is easy and is omitted.

2. THEOREM 1. Let $\mathfrak{P}$ be a prime ideal of the polynomial ring $k[X_{1},$ $\cdots$ ,
$X_{n}]$ and let $A=k[X_{1}, \cdots , X_{n}]/\mathfrak{P}$ . We assume that transcendence degree of the
quotient field $K$ of $A$ over $k$ is $r$ (hence rank $\mathfrak{P}=n-r$). Let $\mathfrak{Q}$ be any prime
ideal of $k[X_{1}$ , $\cdot$ .. , $X_{n}]$ containing $\mathfrak{P}$ and set $q=\mathfrak{Q}/\mathfrak{P}$ . We set $R=A_{q}$ and let $M$

be the maximal ideal of R. Then the following conditions (1) and (2) are equi-
valent.

(1) $D_{k}(R)$ is a free R-module and the quotient field $K$ of $R$ is a separable
extension of $k$ .

(2) There exist $n-r$ polynomials $f_{1}(X),$ $\cdots$ , $f_{n- r}(X)$ such that the rank of
the matrix $(\partial f_{i}(X)/\partial X_{j})$ ($i=1,$ $\cdots$ , $n-r;j=1,$ $\cdots$ , n) is $n-r$ modulo Q.

If $R$ satisfies one of the above conditions, then
(3) $R$ is a regular local ring.
Conversely if $R$ is a regular local ring and
(4) the residue field $R/M$ is a separable extension of $k$ ,

then $R$ satisfies the above conditions (1) and (2). Moreover any regular system of
parameters of $R$ form a part of a separating transcendence basis of $K$ over $k$ .

First we give some remarks.
REMARKS 1. $D_{k}(R)$ can be a free module without $R$ being a regular local

ring if $K$ is not separable over $k$ . (See Example 1 of [3].)

2. $R$ can be a regular local ring without $D_{k}(R)$ being a free module if
$R/M$ is not separable over $k$ . (See Example 2 of [3].)

3. (2) implies (3) but not necessarily (4) as we can see easily.

1) Strictly speaking this is a slight generalization of the quoted Proposition. But
the same proof is applicable.
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4. If a regular local ring $R$ has the separable residue class field over $k$ ,
then the quotient field $K$ is a separable extension of $k$ . Hence if $K$ is not
separable over $k$ and $R$ is regular, the residue field cannot be a separable ex-
tension of $k$ . This fact is sometimes useful to know that a ring is not a
regular local ring.

PROOF OF THEOREM 4. It is proved in [4] that (2) implies (3) and (3), (4)
implies (2) . We shall give here the equivalence of (1) and (2).

Assume the condition (2). Without loss of generalities we can suppose
that $\det|\partial f_{t}/\partial X_{j}|\underline{\neq}0$ modulo $\mathfrak{Q}$ $(j=r+1, \cdot.. , n)$ . We shall denote by $\chi_{i}$ the
class of $X_{i}$ modulo $\mathfrak{P}$ . If we denote by $d$ the differential operator $d_{k}^{A}$ in $D_{k}(A)$ ,

then

$0=df_{i}(x)=\sum_{j=1}^{n}(\partial f_{i}/\partial x_{j})dx_{j}$ .

By our assumption $\det|\partial f_{i}/\partial x_{j}|(j=r+1, n)$ is not contained in $q$ . Hence
the above linear equations are solvable in $dx_{\gamma+1},$ $\cdots$ , $dx_{n}$ in $D_{k}(R)=R\bigotimes_{A}D_{k}(A)$

and we see that
$D_{k}(R)=Rdx_{1}+$ $+Rdx_{r}$ .

It remains to prove that $dx_{1},$ $\cdots$ , $dx_{r}$ are linearly independent over $R$ and $K$ is
separably algebraic over $k(x_{1}, \cdots , x_{r})$ . Since the quotient field $K$ is a finitely
generated extension of transcendence degree $r$ and $D_{k}(K)=K\bigotimes_{R}D_{k}(R)$ is gen-

erated by $1\otimes dx_{1}$ , $\cdot$ .. , $1\otimes dx_{r}$ , they are a free base of $D_{k}(K)$ over $K$. Hence $K$

is separably algebraic over $k(x_{1}, \cdots , x_{r})$ by Th. 2 of Expos\’e 13 [1], and $dx_{1},$ $\cdots$ ,
$dx_{r}$ are linearly independent over $R$ .

Now assume the condition (1). Then $D_{k}(R)$ is a free module of rank, say,
$s$ , with the basis $dx_{1},$ $\cdots$ , $dx_{s}$ . $D_{k}(K)=K\otimes D_{k}(R)$ is a vector space of dimen-
sion $r$ on account of the assumption on $K$. So $s$ must be equal to $r$ . Let us
set $S=k[X]_{\mathfrak{Q}}$ , and $\mathfrak{P}^{*}=\mathfrak{P}S$ . Then we have the exact sequence

$\mathfrak{P}^{*}/\mathfrak{P}^{*2}\succ\underline{\rho}(S/\mathfrak{P}^{*})\otimes D_{k}(S)-\succ D_{k}(S/\mathfrak{P}^{*})\rightarrow 0$

(cf. Proposition 9 of [3]). By definition $S/\mathfrak{P}^{*}=R$ and the third term is a free
module of rank $r$ over $R$ . Hence there exists an R-homomorphism $\varphi:D_{k}(R)$

$\rightarrow R\otimes D_{k}(S)$ such that

$R\otimes D_{k}(S)={\rm Im}(\rho)\oplus{\rm Im}(\varphi)$ .
From this we have

$(R/M)\otimes D_{k}(S)=(R/M)\otimes{\rm Im}(\rho)\oplus(R/M)\otimes{\rm Im}(\varphi)$ .
$D_{k}(S)$ is a free module of rank $n$ over $S$ and hence the left hand side is a

2) These results can also be proved without the help of [4].
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vector space of dimension $n$ and the second term of the right hand side has
dimension $r$ since $D_{k}(R)\cong{\rm Im}(\varphi)$ . Hence $(R/M)\otimes{\rm Im}(\rho)$ has dimension $n-r$ .
This implies the existence of $n-r$ polynomials $f_{1}^{*},$ $\cdots$ , $f_{n-r}^{*}$ in $\mathfrak{P}^{*}$ such that
$1\otimes\overline{d}f_{1}^{*},$ $\cdots$ , $1\otimes\overline{d}f_{n-r}^{*}$ are linearly independent, where $\overline{d}$ stands for $d_{k}^{s}$ . From
this we readily deduce the conclusion (2).

Now assume that $R$ is regular and has a separable residue field. Then
we have by proposition 3 the exact sequence

$0-M/M^{2}\rightarrow(R/M)\otimes D_{k}(R)\rightarrow D_{k}(R/M)\rightarrow 0$ .

Hence for any regular system $(u_{1}, \cdots , u_{s})$ of parameters of $R,$ $du_{1},$ $\cdots$ , $du_{s}$ form
a part of the free basis of $D_{k}(R)$ . Hence $u_{1},$ $\cdots$ , $u_{s}$ form a part of separating
transcendence basis of $K/k$ .

COROLLARY. If the ground field $k$ is perfect the following three conditions
are equivalent

(1) $R$ is a regular local ring.
(2) $D_{k}(R)$ is a free module.
(3) Jacobian criterion ((2) of Theorem 1) holds.

3. We shall retain the notations in the preceding paragraph and assume
$f$? is a non-perfect field of characteristic $p$ . Let $k^{\prime}$ be a field of definition for
$A$ such that (1) $k^{\gamma}\supset k^{p}$ and (2) $[k^{\prime} : k^{p}]<\infty$ , where we mean by ‘ a field of
definition for $A$ a field $k^{\gamma}$ such that $\mathfrak{P}$ is generated by elements in $k^{\prime}[X_{1},$ $\cdots$ ,
$X_{n}]$ . Let $(\alpha_{i}, i\in I)$ be a $p$-basis of $k$ over $k^{\gamma}$ and set $k_{0}=k^{p}(\alpha_{i}, i\in I)$ . Let
$\beta_{1},$ $\cdots$ , $\beta_{s}$ be a $p$-basis of $k^{\prime}$ over $k^{p}$ . Then $(\alpha_{i}, i\in I:\beta_{1}, \cdots , \beta_{s})$ form a $p$ -basis
of $k$ and $k^{\prime}$ and $k_{0}$ are linearly disjoint over $k^{p}$ . If we denote by $D(A)$ the
differential module $D_{k^{p}}(A)$ , we have the following split exact sequence by
Proposition 1.

$0\rightarrow A\otimes D(k_{0})\rightarrow D(A)\rightarrow D_{k_{0}}(A)\rightarrow 0$ .

Since $D(k_{0})$ is a free module we see easily that $D(A_{0})$ is a free module if and
only if $D_{k_{0}}(A_{\mathfrak{q}})$ is a free module for any prime ideal $q$ of $A$ .

E. Kunz proved in [2] that $D(A_{q})$ (hence $D_{k_{0}}(A_{q})$) is a free module if and
only if $A_{Q}$ is a regular local ring. We shall show that $D_{k_{0}}(A_{q})$ is a free
module if and only if the mixed Jacobian criterion of Zariski [4] holds for Q.

The key point of the proof is the following
LEMMA 1. Notations and assumptions being as before, the rank of $D_{k_{0}}(K)$

is equal to $r+s$ .
PROOF. We have the following commutative diagram of exact sequences
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$0$

$0\rightarrow K\otimes D(k_{0})\downarrow\rightarrow D(K)\rightarrow D_{k_{0}}(K)\rightarrow 0$

$\downarrow$ $\downarrow id$

$0\rightarrow N\rightarrow K\otimes D(k)\rightarrow D(K)\rightarrow D_{k}(K)\rightarrow 0$

$ K\otimes D(k^{\gamma})\downarrow$

$\downarrow$

$0$

From this diagram we can easily deduce the following exact sequence

$0\rightarrow N\rightarrow K\otimes D(k^{\gamma})\rightarrow D_{k_{0}}(K)\rightarrow D_{k}(K)\rightarrow 0$ .
All the factors in this sequence are of finite dimensional over $K$, hence we $\cdot$

have
$\dim D_{k_{0}}(K)=\dim(K\otimes D(k^{\prime}))+\dim D_{k}(K)-\dim N$

$=s+r$ .
(Cf. Proposition 2).

We shall consider the differential module $D_{k_{0}}(k[X])$ . It is easily seen $tha\epsilon$

this is a free module with the basis $dX_{1}$ , $\cdot$ .. , $dX_{n}$ ; $d\beta_{1}$ , $\cdot$ .. , $d\beta_{s}$ . Let $\partial_{i}$ and $\delta_{i}$

be derivation of $k[X]$ over $k_{0}$ such that

$\partial_{i}(X_{j})=\delta_{ij}$ , $\partial_{i}(\beta_{t})=0$

$\delta_{i}(X_{t})=0$ , $\delta_{i}(\beta_{j})=\delta_{ij}$ .
For a set of polynomials $f_{1}$ , $\cdot$ .. , $f_{t}$ in $k[X]$ , we denote by $J(f_{1}$ , $\cdot$ .., $f_{t}$ ; $X_{1}$ , $\cdot$ .., $X_{n}$ ;
$\beta_{1},$

$\cdots,$
$\beta_{6}$) the matrix

$\partial_{1}f_{1}:’$ $\partial_{n}f_{1}:’\delta_{1}f_{1}:’\ldots$ $\delta_{s,:}f_{1}$

$\partial_{1}\dot{f}_{t},$
$\cdots$

$\partial_{n}\dot{f}_{t},$ $\delta_{1}\dot{f}_{t},$
$\cdots$

$\delta_{\dot{s}}f_{t}$

This matrix will be called the mixed Jacobian matrix.
THEOREM 2. Retaining the notations as above $D(R)$ is a free module if and

only if there exist $n-r$ polynomials $f_{1},$ $\cdots$ , $f_{n- r}$ in $\mathfrak{P}$ such that the rank of the
matrix $J(f_{1}, \cdots , f_{n- r} ; X_{1}, \cdots , X_{n} ; \beta_{1}, \cdots , \beta_{s})$ is $n-r$ module Q.

PROOF. We shall express the ring $A=k[X_{1}, \cdots , X_{n}]/\mathfrak{P}$ as an affine ring
over $k_{0}$ . Let $(F_{1}, \cdots , F_{m})$ be a basis of $\mathfrak{P}$ in $k^{\prime}[X]$ . If we denote by $M_{\lambda}$ the
monomials in the indeterminates $X’ s$ we can represent $F’ s$ in the form

$F_{i}(X)=\sum_{\lambda}a_{i\lambda}M_{\lambda},$
$a_{i\lambda}\in k^{\prime}$

and
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$a_{i\lambda}=\sum\alpha_{\iota_{1}^{\lambda}}^{i}\cdots\zeta_{S}\beta_{1}^{t_{1}}\ldots\beta_{s}^{t_{S}}$

where $\alpha_{t_{1}\cdots t_{S}}^{i\lambda}\in k^{p}$ and $0\leqq t_{i}\leqq p-1$ . We set

$\overline{F}_{i}=\Sigma\alpha_{\iota_{1}\cdots\iota_{s}}^{i\lambda}Y_{1^{1}}^{t}\ldots Y_{s^{s}}^{t}M_{\lambda}$ .
Then we have

$A=k_{0}[X_{1}, \cdots , X_{m} ; Y_{1}, \cdots , Y_{s}]/(\overline{F}_{1},$ $\cdots$ , $\overline{F}_{m}$ ; $Y_{i}^{p}-\beta_{i}^{p}(i=1, \cdots , s)$ .

We denote by $\tilde{\mathfrak{P}}$ the ideal in $k_{0}[X;Y]$ generated by $\overline{F}^{\prime}s$ and $Y_{i}^{p}-\beta_{i}^{p}(i=1, \cdots, s)$ .
If we denote by $\psi$ the natural homomorphism $k_{0}[X, Y]\rightarrow k[X]$ such that
$\psi(X_{i})=X_{i},$ $\psi(Y_{i})=\beta_{i}$ and $\psi(a)=a$ for $a\in k_{0}$ , then we have $\tilde{\mathfrak{P}}=\psi^{-1}(\mathfrak{P})$ . Let
us set $\tilde{\mathfrak{Q}}=\psi^{-1}(\mathfrak{Q})$ . Then we have clearly $R=A_{q}=\tilde{S}/\tilde{\mathfrak{P}}\tilde{S}$ where $\tilde{S}=k_{0}[X;Y]_{\mathfrak{O}}^{\sim}$ .
If we set $\tilde{\mathfrak{P}}^{*}=\tilde{\mathfrak{P}}\tilde{S}$, we have the exact sequence

$\tilde{\mathfrak{P}}^{*}/\tilde{\mathfrak{P}}^{*2}\rightarrow^{\rho^{\tilde}}R\otimes D_{k_{0}}(\tilde{S})\rightarrow D_{k_{0}}(R)\rightarrow 0$ .
Now assume that $D_{k_{0}}(R)$ is a free module. Then the rank of $D_{k_{0}}(R)$ is equal
to the rank of $D_{k_{0}}(K)$ , and this is equal to $r+s$ by Proposition 1. Then we
have also

$R\otimes D_{k_{0}}(\tilde{S})={\rm Im}(\tilde{\rho})\oplus D_{k_{0}}(R)$ .
$R\otimes D_{k_{0}}(\tilde{S})$ is a free module of rank $n+s$ and hence ${\rm Im}(\tilde{\rho})$ is also a projective,
hence a free R-module and whose rank is exactly $n-r$ . By applying $\otimes(R/M)$

we get $(R/M)\otimes D_{k_{0}}(S)=(R/M)\otimes{\rm Im}(\tilde{\rho})\oplus D_{k_{0}}(R)$ . This implies the existence
of polynomials $\overline{f}_{1},$

$\cdots$ , $\overline{f}_{n-r}$ in as such that $1\otimes d^{*}\overline{f}_{1},$ $\cdots$ , $1\otimes d^{*}\overline{f}_{n- r}$ are linearly
independent in $R\otimes D_{k_{0}}(S)$ , where $d^{*}$ stands for $d_{k}^{s_{0}}$ . The equivalency of the
linear independency of $1\otimes d^{*}\overline{f}_{1},$ $\cdots$ , $1\otimes d^{*}\overline{f}_{n- r}$ to the statement that the mixed
Jacobian matrix $J(f_{1}$ , $\cdot$ .. , $f_{n-r}$ ; $X_{1}$ , $\cdot$

., , $X_{n}$ ; $\beta_{1}$ , $\cdot$ .. , $\beta_{s})$ has the rank $n-r$ where
$f_{i}=\psi(\overline{f}_{i})$ follows easily from the

LEMMA 2. (1) $\psi\cdot\frac{\partial}{\partial X_{i}}=\partial_{i}\cdot\psi$

(2) $\psi\cdot\frac{\partial}{\partial Y_{j}}=\delta_{j}\cdot\psi$

where $\frac{\partial}{\partial X_{i}}$ and $-\frac{\partial}{Y_{j}}\partial$ are derivations of $k_{0}[X;Y]$ over $k_{0}$ in the ordinary

esnse.
Now assume that the existence of $(n-r)$ -polynomials $f_{1},$ $\cdots$ , $f_{n- r}$ in $\mathfrak{P}$ such

that $J(f_{1}, f_{n- r} ; X_{1}, \cdots , X_{n} ; \beta_{1}, \cdots , \beta_{s})$ has the rank $n-r$ . Then the above
argument implies that we have the exact sequence

$j$

$(R/M)\otimes{\rm Im}(\tilde{\rho})-(R/M)\otimes D_{k_{0}}(S)\rightarrow(R/M)\otimes D_{k_{0}}(R)\rightarrow 0$ .
${\rm Im}(j)$ has at least of dimension $n-r$ , hence $(R/M)\otimes D_{k_{0}}(R)$ has at most of
imension $r+s$ and $D_{k_{0}}(R)$ is at most of rank $r+s$ . Since $D_{k_{0}}(K)$ has the rank



274 Y. NAKAI

$r+s$ this implies that $D_{k_{0}}(R)$ is also of rank $r+s$ and $D_{k_{0}}(R)$ is a free module
by Proposition 1.

Hiroshima University
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