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Let $l$ denote a prime number which we fix throughout the present paper.
Let $F_{0}$ be an algebraic number field of finite degree, and let $F/F_{0}$ be a $\Gamma-$

extension over $F_{0}$ . Namely $F/F_{0}$ is a Galois extension whose Galois group is
isomorphic to the additive group of l-adic integers. In the following we shall
consider a $\Gamma$ -module $A(K/F)$ , attached to $F/F_{0}$ , which will be defined analo-
gously to the cyclotomic case considered by Iwasawa [8]. After the pre-
liminaries in \S 1 we shall give in \S 2 a necessary and sufficient condition for
the regularity of $A(K/F)$ (as $\Gamma$ -module) in terms of characters of id\‘ele groups
of intermediate fields of $F$ and $F_{0}$ (Theorems 1 and 2). The $\Gamma$ -module $ A(K/F\lambda$

is intimately related to l-adic behaviour of global unit groups of algebraic
number fields (Theorem 3 in \S 2).

Now let in particular the ground field $F_{0}$ be an imaginary quadratic exten-
sion of the rational number field. In such a case there exist, in a fixed alge-
braic closure of $F_{0}$ , two independent $\Gamma$ -extensions over $F_{0}$ (with respect to our
fixed prime number 1). Under additional conditions on $F_{0}$ the regularity of
$A(K/F)$ will be obtained in \S 3 (Theorem 4 in \S 3).

General notations. We denote by 1 a prime number which we fix through-
out the present paperi). $Z$ and $Q$ stand for the ring of rational integers and
the rational number field, respectively. We denote by $Z_{l}$ and $Q_{l}$ the ring of
l-adic integers and the l-adic completion of $Q$ , respectively. $Z/(d)Z$ means the
additive group of integers modulo $d$ , where $d\in Z$.

\S 1. Preliminaries.

1.1 Now let in general $E$ be a field and $K/E$ a Galois extension. Then
the Galois group of $K/E$ equipped with the Krull topology will be denoted by
$G(K/E)$ . Let $F$ be an intermediate field of $K$ and $E$ which is also a Galois
extension over $E$ . Then the Galois group $G(F/E)$ is canonically isomorphic to

1) We reserve the notations $p,$ $p$ , etc. for general prime numbers or prime divisors.
2) Cf. Iwasawa [8], \S 1. The purpose of the descriptions in \S 1.1 and \S 1.2 is to

introduce notations.
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the factor group $G(K/E)/G(K/F),$ $G(K/F)$ being of course a closed normal
subgroup of $G(K/E)$ . Furthermore if $K/F$ is abelian then every inner auto-
morphism $x\rightarrow s^{-1}xs$ of $G(K/E)$ induces a topological automorphism of $G(K/F)$

which depends only upon the coset $\sigma$ of $smod G(K/F)$ . $G(K/F)$ is thus made
into a $G(F/E)$ -group on which $G(F/E)$ acts unitarily $(i. e. 1\cdot x=x)$ and con-
tinuously. The discrete character group of the compact abelian group $G(K/F)$

will be denoted by $A(K/F)$ . The action of $G(F/E)$ on $A(K/F)$ is defined by
setting

(1) $a^{\sigma}(x)=a(x^{\sigma})=a(s^{-1}xs)$ , $x\in G(K/F)$ ,

where $a\in A(K/F)$ and $s$ is any element of $G(F/E)$ such that $\sigma$ is the coset of
$smod G(K/F)$ . We notice that $G(F/E)$ acts on $G(K/F)$ from the right, and
$G(F/E)$ acts on $A(K/F)$ from the left: $e$ . $g$ . $(a^{\sigma})^{\tau}=a^{\tau\sigma}$ .

Let $a$ be an element in $A(K/F)$ , and let $K_{a}$ denote provisionally the fixed
field of the kernel of $a$ . If $G(F/E)$ is cyclic or contains a dense cyclic sub-
group, then $K./E$ is abelian if and only if $a^{\sigma}=a$ for every $\sigma$ in $G(F/E)$ .

1.2. Let $\Gamma$ denote a multiplicative topological group isomorphic to the
additive group of $Z_{\iota}$ . For an integer $m\geqq 0$ we denote by $\Gamma_{m}$ the unique open
subgroup with index lm in $\Gamma$ . Let $F_{0}$ be a finite algebraic extension over $Q$ ,

and let $F/F_{0}$ be a $\Gamma$ -extension. Namely $F/F_{0}$ is a Galois extension whose
Galois group is isomorphic to $\Gamma^{3)}$ . We identify the Galois group $G(F/F_{0})$ with
$\Gamma$ , and we denote by $F_{m}$ the fixed field of $\Gamma_{m}$ . $F$ is the union of the increas-
ing sequence of all $F_{m}(m\geqq 0)$ . We denote by $S$ the set of all prime divisors
of $F$ which divide the rational prime divisor $l$ . If $K^{\prime}$ and $K^{\gamma\gamma}$ are two algebraic
extensions of $F$ in which no prime divisor of $F$ outside $S$ is ramified, then the
same holds good for the composite field $K^{\prime}\cdot K^{\prime\prime}$ . Thus there exists the unique
maximal l-primary abelian extension $K$ over $F$ in which no prime divisor of
$F$ outside $S$ is ramified4). Furthermore if I is an element in $S$ then the prime
divisors conjugate to I with respect to $F/F_{0}$ are also contained in $S$ . Thus
$K/F_{0}$ is a Galois extension, and we are in the situation described in \S 1.1 with
$E=F_{0}$ . In particular the Galois group $\Gamma$ of $F/F_{0}$ acts on $A(K/F)$ , the dual of
the Galois group $G(K/F)$ , as described in \S 1.1.

A discrete group $A$ is said to be l-primary if $A$ is the direct limit of a
family of finite l-groups, and a compact group $G$ is said to be l-primary if $G$

is the inverse limit of a family of finite l-groups. A discrete l-primary (addi-
tive) abelian group $A$ is said to be a discrete $\Gamma$-module if $\Gamma$ acts on $A$ uni-
tarily and continuously. Similarly a compact l-primary (additive) abelian group

3) Cf. Iwasawa [6], where the fixed prime number is denoted by $p$ .
4) ’ l-primary abelian ’ means here that the Galois group $G(K/F)$ is an inverse

limit of a family of finite l-abelian groups. Cf. also Remark at the end of \S 2.3.
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$G$ is said to be a compact $\Gamma$ -module if $\Gamma$ acts on $G$ unitarily and continuously5).
Thus $G(K/F)$ and $A(K/F)$ mentioned above are compact and discrete $\Gamma-$

modules, respectively.
1.3. Let in general $A$ be a discrete $\Gamma$ -module. Then, as usual, we denote

by $A_{m}$ the submodule of $A$ which consists of all the elements $a$ in $A$ such that
$a^{\sigma}=a$ for every $\sigma\in\Gamma_{m}$ . Let $m$ and $n$ be integers such that $m\geqq n\geqq 0$ . Then
$A_{m}$ is naturally made into a $\Gamma_{n}/\Gamma_{?n}$-module. It is known by Iwasawa [7] that
a discrete $\Gamma$ -module $A$ is regular (as $\Gamma$ -module) if and only if we have

$H^{i}(\Gamma_{n}/\Gamma_{m}, A_{m})\cong(0)$ , $i=1,2$ ,

for every $m\geqq n\geqq 0$ . It is also known that $A$ is regular if only we have

$H^{1}(\Gamma_{n}/\Gamma_{m}, A_{m})\cong(0)$ , $m\geqq n$ ,

whenever both $m$ and $n$ are sufficiently large.
We shall make use of the following
LEMMA 1. Let $A$ be a discrete $\Gamma$ -module. Then $A$ is regular if we have

$H^{i}(\Gamma/\Gamma_{m}, A_{m})\cong(0)$ , $i=1,2$ ,

for every sufficiently large integer $m$ .
PROOF. We choose $m$ so large that the assumption in Lemma 1 is satisfied.

Since the order of $\Gamma/\Gamma_{m}$ is a power of a prime number $l$ , and since the coho-
mology groups of $\Gamma/\Gamma_{m}$ in $A_{m}$ vanish for two consecutive dimensions $i=1,2$ ,

we get, by Nakayama’s theorem on cohomological triviality6), $H^{i}(G, A_{m})\cong(0)$

for every dimension $i$ and for every subgroup $G$ of $\Gamma/\Gamma_{m}$ . Thus all the coho-
mology groups of $\Gamma_{n}/\Gamma_{m}$ in $A_{m}$ vanish for every $m$ and $n$ such that $m\geqq n\geqq 0$

and that $m$ is sufficiently large, which together with the above referred facts
proves Lemma 1.

1.4. REMARK. For an integer $m(\geqq 0)$ let $\zeta_{m}$ denote a primitive $l^{m}$-th root
of unity, and let $F_{m}=Q(\zeta_{m+1})$ for $m\geqq 0$ . Let $F$ denote the union of the in-
creasing sequence of all $F_{m}(m\geqq 0)$ . If $l$ is an odd prime number then $F/F_{0}$

is a $\Gamma$ -extension. In such a case the $\Gamma$ -module $A(K/F)$ has already been con-
sidered by Iwasawa [8], and it is known that $A(K/F)$ is regular if and only
if the group of principal units7) of the local cyclotomic field $\Phi_{m}=Q_{\iota}(\zeta_{m+1})$ con-
tains $l^{m}(l-1)/2-1$ global units in $F_{m}$ which are independent over $Z_{l}$ for every
$m\geqq 0$ . The regularity of $A(K/F)$ is known to be the case when the class

5) The structure theorems on $\Gamma$ -modules are given by Iwasawa [6] and [7]. For
the definition of the regularity of $\Gamma$ -modules, see [6], p. 187.

6) Cf. $e$ . $g$ . Serre [13], p. 152.
7) A local unit $u$ in $\Phi_{m}$ is said to be principal if $u=1(I_{m})$ , where $l_{m}$ stands for

the valuation ideal of $\Phi_{m}$ .
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number of $F_{0}$ is prime to $l^{8)}$ .

\S 2. Formulation in terms of characters of id\‘eles.

2.1. Let $F/F_{0}$ be, as in \S 1.2, a $\Gamma$ -extension over an algebraic number field
$F_{0}$ of finite degree, and let $A(K/F),$ $F_{m}$ etc. be as in \S 1.2. In this section we
give a necessary and sufficient condition for the regularity of $A(K/F)$ in terms
of characters of id\‘ele group of $F_{m}$ . We denote the id\‘ele group and the prin-
cipal id\‘ele group of $F_{m}$ by $I_{m}$ and $P_{m}$ , respectively. Let $C_{m}=I_{m}/P_{m}$ , and let
$D_{m}$ denote the connected component of the identity of the id\‘ele class group
$!C_{m}$ of $F_{m}$ . We denote by $9_{m}$ the group of all continuous characters of $I_{m}$

with finite orders which are trivial ( $i$ . $e$ . take the value 1) on $P_{m}$ . Then $9_{m}$

may be naturally regarded as the dual of the compact abelian group $C_{m}/D_{m}$ .
Now let $\mathfrak{P}$ be a prime divisor of $F_{m}$ , and let $\chi$ be an element in $9_{m}$ . Then
the local component $\chi_{\mathfrak{P}}$ of $\chi$ at $\mathfrak{P}$ is defined by means of the local component
of id\‘eles. $\chi$ is said to be unramified at $\mathfrak{P}$ if $\chi_{\mathfrak{P}}$ is trivial on the unit group
of the $\tilde{\mathfrak{P}}$ -completion of $F_{m^{9)}}$ , and, if otherwise, said to be ramified at $\dot{\mathfrak{P}}$ . $\chi$ is
ramified at 8 if and only if as is ramified by the cyclic extension over $F_{m}$

with which $\chi$ is associated in the sense of class field $theory^{i)}$ .
We define the action of the Galois group $\Gamma_{n}/\Gamma_{m}$ of $F_{m}/F_{n}$ on $\mathscr{D}_{m}$ by setting

(2) $\chi^{\sigma}((\sim:)=\chi(\iota\sim\iota^{\sigma}),$ $\sigma\in\Gamma_{n}/\Gamma_{m}$ ,

where $\mathfrak{a}\sim\in I_{m}$ and $\mathfrak{a}^{\sigma}\sim$ is an id\‘ele conjugate to $\mathfrak{a}\sim$ by $\sigma^{11)}$ .
Let $d_{m}$ denote the subgroup of $\mathscr{D}_{m}$ which consists of all the elements in

$9_{m}$ whose orders are powers of 1. We denote by $S_{m}$ the set of all prime divi-
sors of $F_{m}$ which divide the rational prime divisor $l$ . Now we define two sub-
groups of $4_{m}$ by setting

$ l_{m}^{\prime}=\{\chi\in d_{m}|\chi$ is unramified at every prime divisor
of $F_{m}$ outside $S_{m}$ } ,

and
$\llcorner A_{m}^{\Gamma}=\{\chi\in\leftrightarrow 4_{m}|\exists m^{\prime}\geqq m:ker\chi=P_{m}\cdot\Lambda^{\gamma\prime}(I_{m^{\prime}})\}$ ,

where $N^{\prime}$ stands here for the norm mapping from $I_{m}$ , to $I_{m}$ . Namely elements
of $d_{m}^{F}$ are associated with sub-extensions of $F/F_{m}$ in the sense of class field

8) Cf. also Ax [2], Iwasawa and Sims [9], Jehne [10], where other results on this
subject are found.

9) In the present paper no sign condition is imposed on real infinite components
of id\‘eles.

10) For the class field theory used in the present paper without references, see
Chevalley [3], Weil [14], \S 1 and Whaples [15], Theorem 3. As is well-known, the dif-
tferentials of $F_{m}$ defined by Chevalley loc. cit. are nothing but elements of $g)_{m}$ .

11) The Galois group acts on id\‘eles from the right.
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theory, and therefore $l_{m}^{F}$ is isomorphic to the dual of the Galois group $G(F/F_{m})$ .
Now, since no prime divisors of $F_{m}$ outside $S_{m}$ are ramified by $F/F_{m^{12)}}$ , we
have $d_{m}^{F}\subset \mathcal{A}_{m}^{\prime}$ . It is easy to observe that $cfl_{m}^{F}$ and $d_{m}^{\prime}$ are $\Gamma_{n}/\Gamma_{m}$-subgroups
of $\llcorner fl_{m}$ .

2.2. Let $M$ denote the maximal abelian extension over $F_{m}$ . For a while
we put $\mathfrak{g}=G(M/F_{m})$ and $A=A(M/F_{m})$ , the dual of $\mathfrak{g}$ . By class field theory
the dual of $C_{m}/D_{m}$ is canonically isomorphic to $A$ . Namely $9_{m}$ is canonically
isomorphic to $A$ . Let $m$ and $n$ be integers such that $m\geqq n\geqq 0$ . Then, by our
convention, the Galois group of $F_{m}/F_{n}$ is $\Gamma_{n}/\Gamma_{m}$ . The above mentioned cano-
nical isomorphism gives a canonical $\Gamma_{n}/\Gamma_{m}$-isomorphism of $9_{m}$ and $A$ by (2)
and by a well-known property of the reciprocity map18).

Let $\mathscr{D}$ be a $\Gamma_{n}/\Gamma_{m}$-subgroup of $\mathscr{D}_{m}$ , and let $B$ denote the canonical image
of $\mathscr{D}$ in $A$ . We denote by $\Phi(\mathfrak{g}, B)$ the annihilator of $B$ in $\mathfrak{g}$ , which is a $\Gamma_{n}/\Gamma_{m^{-}}$

subgroup of $\mathfrak{g}$ . Then $B$ is the dual of $\mathfrak{g}/\Phi(\mathfrak{g}, B)$ , and thus $\mathscr{D}$ is canonically
$\Gamma_{n}/\Gamma_{m}$-isomorphic to the dual of $\mathfrak{g}/\Phi(\mathfrak{g}, B)$ .

2.3. Now let $K_{m}$ denote the unique maximal l-primary abelian extension
over $F_{m}$ in which no prime divisor of $F_{m}$ outside $S_{m}$ is ramified. Then, put-
ting $\mathscr{D}=\mathcal{A}_{m}^{\prime}$ , we have, by \S 2.2,

$A(K_{m}/F_{m})\cong A_{m}^{\prime}$ , ($\Gamma_{n}/\Gamma_{m}$-isomorphism) ,

$A(F/F_{m})\cong cA_{m}^{F}$ , ($\Gamma_{n}/\Gamma_{m}$-isomorphism).

These isomorphisms may be regarded as $\Gamma$ -isomorphisms in which the action
of $\Gamma_{m}$ is trivial. On the other hand we have a canonical $\Gamma$ -isomorphism
$A(K_{m}/F)\cong A(K_{m}/F_{m})/A(F/F_{m})$ . Hence we have a canonical $\Gamma$-isomorphism
$A(K_{m}/F)\cong d_{m}^{\prime}/\mathcal{A}_{m^{\prime}}^{\Gamma}$ . Since, by the remark at the end of \S 1.1, we have $ A(K_{m}/F\rangle$

$=A(K/F)_{m}$ , the following lemma is obtained.
LEMMA 2. $A(K/F)_{m}$ is $\Gamma_{n}/\Gamma_{m}$-isomorphic to $A_{m}^{\prime}/l_{m}^{F}$ for every $m\geqq n\geqq 0$ .
REMARK. 1. The meaning of the suffix $m$ of $A(K/F)$ is described at the $\cdot$

beginning of \S 1.3.
2. As far as the extension $K/F$ is concerned, only Lemma 2 and the

formula (9) in \S 2.7 will be necessary for our later argument. Thus we $may^{-}$

rather define $K$ as the union of the increasing sequence of all $K_{m}(m\geqq 0)$ .
2.4. The following Proposition will be proved in the next \S 2.5.
PROPOSITION. We have

(3) $H^{i}(\Gamma_{n}/\Gamma_{m}, d_{m}^{\prime}/d_{m}^{F})\cong(0)$

12) Cf. Iwasawa [6], p. 218.
13) Cf. $e$ . $g$ . the last formula in Chap. XI, 3 of Serre [13], in which the Galois group

$G$ acts on the G-modules (in ‘ class formation) from the left, contrary to our conven-.
tion.
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if and only if the natural homomorphism

(4) $H^{i}(\Gamma_{n}/\Gamma_{m}, d_{m}^{\prime})\rightarrow H^{i}(\Gamma_{n}/\Gamma_{m}, a_{m})$

is injective.
Combining Lemmas 1, 2 and Proposition, we get immediately the following
THEOREM 1. Let $F/F_{0}$ be a $\Gamma$ -extension over an algebraic number field $F_{0}$

of finite degree. Then the $\Gamma$ -module $A(K/F)$ is regular if and only if the
natural homomorphisms

$H^{i}(\Gamma/\Gamma_{m}, d_{m}^{\prime})\rightarrow H^{i}(\Gamma/\Gamma_{m}, d_{m})$ , $i=1,2$ ,

are both injective for every sufficiently large integer $m$ , where $\Gamma/\Gamma_{m}$ stands for
the Galois group of $F_{m}/F_{0}$ .

2.5. For the proof of Proposition we prepare some lemmas.
LEMMA 3. We have $H^{1}(\Gamma_{n}/\Gamma_{m}, d_{m})\cong Z/(l^{m- n})Z$ and $H^{2}(\Gamma_{n}/\Gamma_{m}, d_{m})\cong(0)$

for every $m\geqq n\geqq 0$ .
PROOF. Let $D_{m}$ denote the connected component of the identity in the

id\‘ele class group $C_{m}$ of $F_{m}$ . Then we have14)

(5) $\left\{\begin{array}{l}H^{l}(\Gamma_{n}/\Gamma_{m},C_{m})\cong(0), H^{2}(\Gamma_{n}/\Gamma_{m},C_{m})\cong Z/(l^{m- n})Z,\\H^{1}(\Gamma_{n}/\Gamma_{m},D_{m})\cong(0),\end{array}\right.$

$H^{2}(\Gamma_{n}/\Gamma_{m}, D_{m})\cong(0)$ ,

the first three of which are of general character, and we have the last, because
no infinite prime divisor of $F_{n}$ is ramified by $F_{m}/F_{n}$ . From the exact sequence
(1) $\rightarrow D_{m}\rightarrow C_{m}\rightarrow C_{m}/D_{m}\rightarrow(1)$ , we get the exact sequence

$H^{1}(\Gamma_{n}/\Gamma_{m}, D_{m})\rightarrow H^{1}(\Gamma_{n}/\Gamma_{m}, C_{m})\rightarrow H^{1}(\Gamma_{n}/l^{\urcorner}{}_{m}C_{m}/D_{m})$

$H^{2}(\Gamma_{n}/\Gamma_{m}, C_{m}/D_{m})-H^{2}(\Gamma_{n}/\Gamma_{m}, C_{m})-H^{2}(\Gamma/\Gamma_{m}, D_{m})|\downarrow_{n}$

,

because $\Gamma_{n}/\Gamma_{m}$ is cyclic. Then we get by (5) $H^{1}(\Gamma_{n}/\Gamma_{m}, C_{m}/D_{m})\cong(0)$ and
$H^{2}(\Gamma_{n}/\Gamma_{m}, C_{m}/D_{m})\cong Z/(l^{m-n})Z$. Since $9_{m}$ is dual to the compact abelian group
$C_{m}/D_{m}$ , and since $\Gamma_{n}/\Gamma_{m}$ is cyclic, $H^{1}(\Gamma_{n}/\Gamma_{m}, 9_{m})$ is dual to $H^{2}(\Gamma_{n}/\Gamma_{m}, C_{m}/D_{m})$ ,
and $H^{2}(\Gamma_{n}/\Gamma_{m}, 9_{m})$ is dual to $H^{1}(\Gamma_{n}/\Gamma_{m}, C_{m}/D_{m})$ . On the other hand we have
$H^{i}(\Gamma_{n}/\Gamma_{m}, 9_{m})\cong H^{i}(\Gamma_{n}/\Gamma_{m}, d_{m})$ , because the order of $\Gamma_{n}/\Gamma_{rn}$ is a power of a
prime number $l$ . Now Lemma 3 follows from the above mentioned duality.

Now we prepare some notations. Let the element $\nu$ in the group ring
$Z[\Gamma_{n}/\Gamma_{m}]$ be defined by $\nu=1+\sigma+$ $+\sigma l^{m-n_{-1}}$ , where $\sigma$ is a generator of
$\Gamma_{n}/\Gamma_{m}$ . Let in general $M$ be a multiplicative abelian $\Gamma_{n}/\Gamma_{m}$-group. Then we
put

$B^{1}(M)=\{a^{1-\sigma}|a\in M\}$ , $C^{1}(M)=\{a\in M|a^{\nu}=1\}$ ,

$B^{2}(M)=\{a^{\nu}|a\in M\}$ , $C^{2}(M)=\{a\in M|a^{\sigma}=a\}$ .
14) Cf. Artin and Tate [1], Chevalley [4], Hochschild and Nakayama [5], Weil [14].
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These notations will be retained in the following. Moreover we identify
$H^{i}(\Gamma_{n}/\Gamma_{m}, M)$ with $C^{i}(M)/B^{i}(M)$ , where $i=1,2$ .

LEMMA 4. $H^{i}(\Gamma_{n}/\Gamma_{m}, A_{m}^{F})$ and $H^{i}(\Gamma_{n}/\Gamma_{m}, d_{m})$ are canonically isomorphic

for every $m\geqq n\geqq 0$ .
PROOF. Since $F/F_{n}$ is abelian, every element in $d_{m}^{F}$ is invariant under the

action of the Galois group $\Gamma_{n}/\Gamma_{m}$ . Let $\chi_{m,2m-n}$ be an element in $i_{m}^{F}$ whose
order is equal to $l^{m- n}$ . Then $\chi_{m.2m-n}$ generates $C^{1}(d_{m}^{F})$ . Put now $\chi_{m,m+1}=$

$(\chi_{m,2m-n})^{\iota^{m-n\rightarrow 1}}$ . Then $\chi_{m,m+1}$ is associated with the class field $F_{m\dashv\cdot 1}/F_{m}$ . Namely
$F_{m+1}/F_{m}$ is the class field defined over the kernel of $\chi_{m,m+1}$ . Let $\chi_{n,m+1}$ be an
element in $l_{n}^{F}$ which is associated with $F_{m+1}/F_{n}$ . Then by the translation
theorem in class field theory we have

$ker\chi_{m,m+1}=\{tI\sim\in I_{m}|N(\alpha\sim)\in ker\chi_{n,m+1}\}$ ,

where $N$ stands here for the norm mapping from $I_{m}$ to $I_{n}$ . The factor group
$I_{n}/ker\chi_{n,m+1}$ is cyclic and of order $l^{m- n+1}$ . We denote by $f$ the natural injec-

tive homomorphism of $I_{n}$ into $J_{m}$ , and let 5 be an id\‘ele of $F_{n}$ which belongs to
a generating coset of $I_{n}/ker\chi_{n,m+1}$ Then $N(’(\mathfrak{b}))\sim=^{\sim}\mathfrak{b}^{\iota^{m\rightarrow n}}\not\in ker\chi_{n,m+1}$ ; namely
we have

(6) $\chi_{m,m+1}(c(\mathfrak{b}))\neq 1\sim$ .
If there exists an element $\chi$ in $d_{m}$ such that $\chi_{m,m+1}=\chi^{1-\sigma}$ , then we have, by
(2), $\chi_{m,m+1}(c(\mathfrak{b}))=\chi(1)\sim=1$ , which contradicts (6). Thus we get $B^{1}(cA_{m})\cap l_{m}^{\Gamma}$

$=B^{1}(d_{m}^{F})=(1)$ , which together with Lemma 3 proves the assertion in Lemma
4 for $i=1$ (and also for odd $i$ by the periodicity of cyclic cohomologies). For
$i=2$ it is easily observed that $t_{m}^{F}=C^{2}(d_{m}^{F})=B^{2}(\llcorner it_{m}^{F})$ , which together with
Lemma 3 proves the assertion for $i=2$ . Lemma 4 is proved.

We notice in particular that the natural homomorphism

(7) $H^{1}(\Gamma_{n}/\Gamma_{m}, d_{m}^{F})\rightarrow H^{1}(\Gamma_{n}/\Gamma_{m}, A_{m}^{\prime})$

is injective.
Now we prove Proposition stated in \S 2.4. Assume that the natural homo-

morphism for $i=1$ in Proposition is injective. Then it follows from the injec-
tiveness of (7) and Lemmas 3, 4, that $H^{1}(\Gamma_{n}/\Gamma_{m}, A_{m}^{\prime})$ and $H^{1}(\Gamma_{n}/\Gamma_{m}, A_{m})$ are
canonically isomorphic. From the exact sequence

$H^{1}(\Gamma_{n}/\Gamma_{m}, \llcorner fl_{m}^{F})\rightarrow H^{1}(\Gamma_{n}/\Gamma_{m}, A_{m}^{\prime})i_{1}\rightarrow H^{1}(\Gamma_{n}/\Gamma_{m}, A_{m}^{\prime}/A_{m}^{F})$

(8)
$ H^{2}(\Gamma_{n}/\Gamma_{m}, cfl_{m}^{\prime}/d_{m}^{F})-H^{2}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}^{\prime})-H^{2}(\Gamma_{n}/\Gamma_{m}, A_{m}^{F})|\downarrow$

it then follows that $i_{1}$ in the above sequence is a surjective isomorphism. Then
the isomorphism (3) in Proposition for $i=1$ follows from the fact that
$H^{2}(\Gamma_{n}/\Gamma_{m}, A_{m}^{F})\cong(0)$ . Conversely assume now (3) for $i=1$ , then by the above
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sequence we get $H^{1}(\Gamma_{n}/\Gamma_{m}, d_{m}^{\prime})\cong Z/(l^{?n-n})Z$, which means by Lemmas 3 and
4 that the natural homomorphism for $i=1$ in Proposition is injective. For
$i=1$ this completes the proof of Proposition. Our proposition for $i=2$ follows
similarly from Lemmas 3 and 4 and the above sequence (8).

By the above and by the fact referred from [7] in \S 1.3 we observe also
the following

THEOREM 2. Let the notation be as in Theorem 1. Then the natural homo-
morphisms

$H^{i}(\Gamma_{n}/\Gamma_{m}, A_{m}^{\prime})\rightarrow H^{i}(\Gamma_{n}/\Gamma_{m}, d_{m})$ , $i=1,2$ ,

are both bijective for every $m\geqq n\geqq 0$ if and only if the $\Gamma$ -module $A(K/F)$ is
regular.

2.6 To introduce the next theorem we first prepare some notations
concerning infinite abelian groups. Let $Z(l, \infty)$ denote the group of all the
roots of unity whose orders are powers of $l$ . An abelian group $M$ is said to
be a torsion l-abelian group if every element of $M$ is of order a power of 1.
Let $M^{(0)}$ be the subgroup of $M$ which consists of all the elements $x$ of $M$

with $x^{\iota}=1$ . Then $M^{(0)}$ may be regarded as a vector space over the prime
field of characteristic 1, of which dimension we shall call the rank of the tor-
sion l-abelian group $M$. A subgroup $N$ of $M$ is said to be divisible if, for any
element $x$ of $N$ and any power lr of $l$ , there exists an element $y$ in $N$ such
that $x=y^{\iota^{r}}$ . The torsion l-abelian group $M$ contains a unique largest divisible
subgroup $M_{\infty}$ , and $M_{\infty}$ is isomorphic to the direct product of finite or infinite
number of $Z(l, \infty)$ . If the rank of $M$ is finite, then $M$ is the direct product
of $M_{\infty}$ by a finite subgroup of $M$. After the terminology of Kubota [12] we
shall call the rank of $M_{\infty}$ the dimension of $M$, and we denote it by $\dim M$.

Let $M$ and $M^{\prime}$ be torsion l-abelian groups, and let there be given a homo-
morphism of $M$ onto $M^{\prime}$ whose kernel is finite. Then we have $\dim M=\dim M^{\prime 16)}$ .

2.7. We next consider the ring $R_{m}=F_{m}\otimes Q_{\iota}$ . Let $R_{m}^{*}$ denote the multi-
plicative group of all the regular elements in $R_{m}$ . Then $R_{m}^{*}$ is canonically
identified with the direct product

$\prod_{\{\in s_{m}}F_{m^{*}.1}$ where $F$: stands for the multipli-

cative group of the I-completion of $F_{m}$ for $I\in S_{m}$ . $S_{m}$ denotes, as before, the
set of all prime divisors of $F_{m}$ which divide the rational prime divisor 1. The
elements in $R^{\star}$ which are congruent 1 modulo $l$ form a multiplicative group
$H_{Rm}$ , and the power $u^{\alpha}$ is defined for every $u\in H_{Rm}$ and $\alpha\in Z_{\iota}$ . The dimen-
sion over $Z_{\iota}$ of $H_{Rm}$ (modulo the finite torsion subgroup if $l=2$) is equal to
the degree $d_{m}$ of $F_{m}$ over $Q$ , as observed from the well-known structure theo-

15) Cf. Kaplansky [11].
16) Notice that any divisible subgroup of a torsion l-abelian group is a direct sum-

mand, cf. Kaplansky, loc. cit. p. 8.
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rem of the local unit groups. Let $r_{\iota}(m)$ denote the dimension of $Z_{\iota}$ -subspace
of $H_{R_{m}}$ spanned by units $\epsilon(=\epsilon\otimes 1)$ of $F_{m}$ contained in $R_{Rm}$ . Then the equality
$\dim A_{m}=\dim d_{m}^{\prime}=d_{m}-r_{\iota}(m)$ is known by Kubota [12], Theorem 5, where
$\dim A_{m}$ etc. are defined in \S 2.6. Then Lemma 2 entails

(9) $\dim A(K/F)_{m}=\dim \mathcal{A}_{m}^{\prime}-1=d_{m}-r_{\iota}(m)-1$ ,

where $d_{m}=[F_{m} : Q]$ . Furthermore the $\Gamma$ -module $A(K/F)$ is $\Gamma- finite$ ; namely
the rank of $A(K/F)_{m}$ is finite for every $m\geqq 0$ .

THEOREM 3. Let $F/F_{0}$ be a $\Gamma$ -extension over an algebraic number field $F_{0}$

of finite degree. Let $A(K/F)$ be the $\Gamma$ -module described in \S 1.1, and let $r_{\iota}(m)$

be as above. Assume that the $\Gamma$ -module $A(K/F)$ is regular. Then we have

(10) $r_{\iota}(m)=l^{m}(r_{\iota}(0)+1)-1$

for every $m\geqq 0$ .
REMARK. Let $r_{\infty}(m)$ denote the usual rank of the unit group of $F_{m}$ . If

we assume moreover $r_{\iota}(O)=r_{\infty}(O)$ in Theorem 3, then (10) implies $r_{\iota}(m)=r_{\infty}(m)$

for every $m\geqq 0$ , because no infinite prime divisor is ramified by $F/F_{0}$ . The
proof of Theorem 3 given below shows that the equality (10) follows if we
assume only the regularity of the maximal divisible submodule of $A(K/F)$ .

Theorem 3 is a direct consequence of (9) and the following
LEMMA 5. Let $A$ be a discrete $\Gamma- finite\Gamma$ -module. If $A$ is regular, then

$\dim A_{n}=l^{n}\dim A_{0}$ for every $n\geqq 0^{17)}$ .
PROOF. If $A$ is $\Gamma- finite$ and regular, then $A$ is a sum of a divisible regular

submodule $B^{\prime}$ of finite rank and a characteristic submodule $C$ such that
$C\cong E(m_{1}$ , $\cdot$ .. , $m_{s})/D$ for some $ 0\leqq m_{i}\leqq\infty$ and for a finite submodule $D$ of
$E(m_{1}, \cdots , m_{s})$ . The intersection $B^{\prime}\cap C$ is finite18). We have then the surjective
homomorphisms $f$ and $g$ such that

$\overline{A}=B\oplus E(m_{1}, \cdots , m_{s})\rightarrow^{J}B\oplus C\rightarrow^{g}A=B+C$

(where $\oplus stands$ for the direct sum), and that the kernel $f\partial$ of $g\circ f$ is finite.
Let $\sigma$ denote here a generator of $\Gamma/\Gamma_{n}$ , and put $(\overline{A}_{n})‘=\{a\in A|(1-\sigma)a\in\beta\S\}$ ,
the inverse image of $A_{n}$ by $g\circ f$. Then we have $(\overline{A}_{n})^{\prime}/f\S=A_{n}$ . Since $li$ is
finite, we have $((\overline{A}_{n})^{\prime} : \overline{A}_{n})<\infty$ . Thus we get $\dim(\overline{A}_{n})^{\prime}=\dim A_{n}$ and $\dim(\overline{A}_{n})^{\prime}$

$=\dim A_{n}$ , and consequently $\dim A_{n}=\dim A_{n}$ . Thus the proof is reduced to the
cases where $A=B$ (divisible, regular and of finite rank) or $A=E(m_{1}, \cdots , m_{s})$

$=E(m_{1})\oplus\cdots\oplus E(m_{s})$ . Lemma 5 is then a direct consequence of the fact that

17) In the proof of Lemma 5 notations and terminologies are in accordance with
those of lwasawa [6]; cf. in particular Theorems 1 and 2 of [6]. Submodule, homo-
morphism etc. mean $\Gamma$ -submodule, $\Gamma$ -homomorphism, etc.

18) Because we have $B\supset B$ ‘, where $B$ is the submodule appearing in loc. cit. Theo.
rem 1, and $B\cap C$ is finite. Moreover in our case we have $B=B^{J}$ .
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$B_{n}$ and $E(m_{i})_{n}$ for $ m_{i}<\infty$ are finite modules for every $n\geqq 0$ , and that $\dim E(\infty)_{n}$

$=l^{n}$ for every $n^{19)}$ .

\S 3. $\Gamma$-extensions over imaginary quadratic fields.

3.1. In this section we shall prove the following
THEOREM 4. Let $F_{0}$ be an imaginary quadratic extension over $Q$ in which

the fixed prime number 1 is not fully decomposed: namely $S_{0}$ consists of a single
element I. Furthermore we assume that the class number of $F_{0}$ is prime to 1
and that the I-completion of $F_{0}$ contains no primitive l-th root of unity (this last
assumption being always the case if $1>3$). Let $F/F_{0}$ be a $\Gamma$ -extension over $F_{0^{20)}}$ .
Then the $\Gamma$ -module $A(K/F)$ is regular, and the natural homomorphisms

$H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}^{\prime})-\rightarrow H^{i}(\Gamma_{n}/\Gamma_{m}, cA_{m})$ , $i=1,2$ ,

are both injective for every $m\geqq n\geqq 0$ .
Let $F/F_{0}$ be as in Theorem 4. Since $r_{\iota}(0)=r_{\infty}(0)=0$ , we get, by Theorems

3 and 4, $r_{\iota}(m)=r_{\infty}(m)$ for every finite intermediate field $F_{m}$ of $F/F_{0^{21)}}$ .
For the proof of Theorem 4 it suffices, by \S 2, to show the following Lem-

mas 6 and 7.
LEMMA 6. If the ground field $F_{0}$ of a $\Gamma$-extension $F/F_{0}$ is an imaginary

quadratic extension over $Q$ , then the natural homomorphism

$H^{1}(\Gamma/\Gamma_{m}, A_{m}^{\prime})\rightarrow H^{1}(\Gamma/\Gamma_{m}, \llcorner A_{m})$

is injective for every $m\geqq 0$ .
LEMMA 7. Under the same assumptions in Theorem 4 the natural homo-

morphism
$H^{2}(\Gamma/\Gamma_{m}, d_{m}^{\prime})\rightarrow H^{2}(\Gamma/\Gamma_{m}, d_{m})$

is injective for every $m\geqq 0$ .
3.2. PROOF OF LEMMA 6. In the proofs of Lemmas 6 and 7 the Galois

group $\Gamma/\Gamma_{m}$ of $F_{m}/F_{0}$ is simply denoted by $G$ , and $\sigma$ stands for a generator of
$G$ . Let the element $\nu$ in the group ring $Z[G]$ be defined as in \S 2.5. $S_{m}(resp. S_{0})$

is, as before, the set of all prime divisors of $F_{m}$ (resp. $F_{0}$) which divide 1. Let
$p$ be any prime divisor of $F_{0}$ outside $S_{0}$ . We put $U_{m}^{\mathfrak{p}}=\prod_{\mathfrak{P}1)}U_{m}^{\mathfrak{P}}$

, where $U_{m}^{\mathfrak{P}}$

stands for the unit group of the $\mathfrak{P}^{\prime}$ -completion of $F_{m}$ for a prime divisor $\mathfrak{P}$ of

19) Cf. loc. cit. in particular Lemma 5.1.
20) There exist two independent $\Gamma$ -extensions over $F_{0}$ (with respect to the fixed

prime number l) ; cf. Kubota [12], Theorem 5. Thus our $F/F_{0}$ is not necessarily ’ cyclo-
tomic ’. Here we note also that our argument in the proof of this theorem is also ap-
plicable for $\Gamma$ -extentions over $Q$ .

21) The corresponding fact for $\Gamma$ -extensions over $Q$ is known by Jehne [10] as ‘ o-th
stability’ of $l$ .
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$F_{m}$ such that $\mathfrak{P}|\mathfrak{p}$ . Since $\mathfrak{p}\not\in S_{0},$ $\mathfrak{p}$ is unramified by $F_{m}/F_{0}$ , and we have22)

(11) $H^{i}(G, U_{m}^{\mathfrak{v}})\cong(0)$ , for $i=1,2$ .
Now let $\chi_{0}$ be an element in $d_{m}^{\prime}\cap B^{1}(d_{m})$ , where the notation $ B^{l}(d_{m}\rangle$

$=\{\chi^{1-\sigma}|\chi\in A_{m}\}$ is defined in \S 2.5. Then there exists an element $\chi_{1}$ in $d_{m}$

for which

(12) $\chi_{0}=\chi_{1}^{1-\sigma}$ , $\chi_{1}\in A_{m}$ .
We consider $\chi_{1}$ on $U_{m}^{\mathfrak{p}},$ $U_{m}^{\mathfrak{v}}$ being regarded as imbedded in the id\‘ele group $I_{m}$

of $F_{m}$ . Since $\chi_{1}^{1-\sigma}$ is unramified at $\mathfrak{P}|\mathfrak{p}$ , it follows from (2) and (11) for $i=1$

that $\chi_{1}$ is trivial on $C^{1}(U_{m}^{p})$ . $Ti_{1}us$ we can define a character $\varphi_{p}^{\prime}$ of $B^{2}(U_{m}^{\mathfrak{v}})$ by
setting

(13) $\varphi_{\mathfrak{p}}^{\prime}(\mathfrak{a}^{\nu}\sim)=\chi_{1}(t\sim 1)$ , $\sim tI\in U_{m}^{\mathfrak{p}}$ .
Then $\varphi_{\mathfrak{p}}^{\prime}$ is defined on $C^{2}(U_{m}^{\mathfrak{p}})$ by virtue of (11) for $i=2$ . Let now $N$ denote
the norm mapping from $I_{m}$ to $I_{0}$ . We put

(14) $\varphi_{\mathfrak{p}}(N((\sim x))=\varphi_{\mathfrak{p}}^{\prime}((\sim I\nu),$ $\sigma\sim\in U_{m}^{\eta}$ .
Then $\varphi_{\mathfrak{p}}$ is a character defined on the unit group $U_{0}^{1\gamma}$ of the p-completion of
$F_{0}$ for $\mathfrak{p}\in ES_{0}$ . Since $\varphi_{\mathfrak{p}}$ is of finite order, $\varphi_{\mathfrak{p}}$ is continuous on $U_{0}^{\mathfrak{v}}$ .

For a non-zero element $\alpha$ of $F_{0}$ we denote by a the element in the prin-
cipal id\‘ele group $P_{0}$ corresponding to $\alpha$ , and let $\tau_{0}$ denote the endomorphism
of $I_{0}$ given by

( $\tau_{0}((\sim 1))_{I}=(\sim_{I_{I}}$ , for $I\in S_{0}$ ,

$(\tau_{0}(\mathfrak{a}\sim))_{\mathfrak{p}}=1$ , for $\mathfrak{p}\not\in S_{0}$ ,

where ($x\sim\in I_{0}$ . Let $E_{0}$ denote the unit group of $F_{0}$ . We define a character $\varphi_{s_{0}}$,

on $\tau_{0}(\tilde{E}_{0})$ by setting

(15)
$\varphi_{So}(\tau_{0}(\epsilon\sim))=\prod_{1\oplusS_{0}}\varphi_{1}^{-1}((\epsilon\sim\tau_{0}(\epsilon\sim)^{-1})_{\mathfrak{p}})$

, $\epsilon\in E_{0}$ .

Since $\tau_{0}(\epsilon\sim)\rightarrow\sim\epsilon\tau_{0}(\epsilon\sim)^{-1}$ is an isomorphism, and since the right hand side of $(15_{J}^{\backslash }$

is a character on $\prod_{0\oplus S_{0}}U_{0}^{b},$
$\varphi_{s_{0}}$ is an (algebraic) character defined on $\tau_{0}(\tilde{E}_{0})$ .

Moreover, since $\tau_{0}(\tilde{E}_{0})$ is a finite group, $\varphi_{So}$ is continuous on $\tau_{0}(\tilde{E}_{0})$ with respect
to the topology induced by that of $U_{s_{0}}=\prod_{I\Leftarrow S_{0}}U_{0}^{(}$

, where $U_{0}^{I}$ is the unit group

of the I-adic completion of $F_{0}$ . Since $\tau_{0}(\tilde{E}_{0})$ is closed in $U_{s_{0}}$ , and since $\varphi_{s_{0}}$ is.
of order a power of $l$ , we can extend $\varphi_{s_{0}}$ onto $U_{s_{0}}$ as a continuous character
of order a power of 1, which we shall denote by the same notation $\varphi_{So^{23)}}$ . We
denote by $U_{0}$ the unit id\‘ele group of $F_{0}$ , and we define $\varphi$ on $U_{0}$ by setting

22) Cf. $e$ . $g$ . Chevalley [4], Theorem 12.1.
23) We note that every continuous character on $U_{S_{0}}$ is of finite order.
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$\varphi=\varphi_{s_{0}}\cdot\prod_{\mathfrak{p}\oplus s_{0}}\varphi_{\mathfrak{p}}$
. Then $\varphi$ is a continuous character on $U_{0}$ with order a power

of $l$ . $\varphi$ is trivial on $U_{0}\cap P_{0}$ because of $U_{0}\cap P_{0}=\tilde{E}_{0}$ and (15). Thus we can
extend $\varphi$ onto $P_{0}\cdot U_{0}$ by putting $\varphi(\tilde{\alpha})=1$ for every $\tilde{\alpha}\in P_{0}$ . The continuous.
character $\varphi$ thus defined on $P_{0}\cdot U_{0}$ extends now onto $I_{0}$ , preserving the pro-
perty that the order of $\varphi$ is a power of $l$ , because the closed subgroup $P_{0}\cdot U_{0}$

of $I_{0}$ is of finite index. Namely there exists an element $\varphi$ in $d_{0}$ whose $\mathfrak{p}-$

component on $U_{0}^{\mathfrak{y}}$ is given by (14). Then there exists an element $\tilde{\varphi}$ in $A_{m}$

such that

(16) $\tilde{\varphi}((\sim x)=\varphi(N(\mathfrak{a}\sim))$ , for $\sim(\mathfrak{a}\in I_{m}$ .
By virtue of (13) and (14), $\chi_{1}\cdot\tilde{\varphi}^{-1}$ is unramified at every prime divisor of $F_{m}$

outside $S_{m}$ ; namely $\chi_{1}\cdot\tilde{\varphi}^{-1}\in d_{m}^{\prime}$ . Moreover it is observed by (16) that $\tilde{\varphi}$ be-
longs to $C^{2}(d_{m})$ . We have thus $(\chi_{1}\cdot\tilde{\varphi}^{-1})^{1-\sigma}=\chi_{1}^{1-\sigma}=\chi_{0}$ . The existence of such
$\chi_{1}\cdot\tilde{\varphi}^{-1}$ in $t_{m}^{\prime}$ is nothing but the assertion in Lemma 6.

REMARK. In the above proof the assumption that $F_{0}$ is an imaginary
quadratic field is essentially used only in the form $r_{l}(0)=r_{\infty}(0)$ .

3.3. PROOF OF LEMMA 7. By the assumption in Theorem 4, $F/F_{0}$ con-
tains no non-trivial unramified extension, and it follows further that $S_{m}$ con-
sists of a single element $\mathfrak{L}$ : $S_{m}=\{\mathfrak{L}\}$ . We denote by $\Phi_{m}$ the $\mathfrak{L}$ -completion of
$F_{m}$ and by $\Phi_{0}$ the I-completion of $F_{0}$ , where $S_{0}=\{I\}$ . Then in our case the
Galois group of $\Phi_{m}/\Phi_{0}$ can be identified with that of $F_{m}/F_{0}$ . Moreover, since
the class number of $F_{0}$ is assumed to be prime to $l$ , it follows in particular
that no non-principal ideal of $F_{0}$ becomes principal in $F_{m}$ .

Let $U_{m}$ denote the unit id\‘ele group of $F_{m}$ and $U_{m}^{\prime}$ the group of unit id\‘eles
of $F_{m}$ whose $\mathfrak{L}$ -components are 1. We denote by $\tau_{\mathfrak{L}}$ the endomorphism of $I_{m}$

given by
$(\tau_{\mathfrak{L}}(\mathfrak{a}\sim))_{\mathfrak{L}}=\mathfrak{a}\sim_{\mathfrak{L}}$ , for $\mathfrak{L}\in S_{m}$ ,

$(\tau_{\mathfrak{L}}(t\sim 1))_{\mathfrak{P}}=1$ , for $\mathfrak{P}\not\in S_{m}$ ,

where $\mathfrak{U}\sim\in I_{m}$ . We put $U_{\mathfrak{L}}=\tau_{\mathfrak{L}}(U_{m})$ . We denote by $E_{m}$ the unit group of $F_{m}$ .
Now let $\chi_{0}$ be an element in $d_{m}^{\prime}\cap B^{2}(d_{m})$ . Then there exists an element

$\chi_{1}$ in $cA_{m}$ for which

(17) $\chi_{0}=\chi_{1}^{\nu}$ , $\chi_{1}\in d_{m}$ .
We define a character $\chi_{2}$ on $U_{m}^{f}$ by setting

(18) $\chi_{2}((1\sim)=\chi_{1}^{-1}((\sim_{I})$ , for $\overline{tI}\in U_{m}^{\prime}$ .

Since $P_{m}\cap U_{m}^{\prime}=(1),$
$\chi_{2}$ extends onto $P_{m}\cdot U_{m}^{\prime}$ by setting

(19) $\chi_{2}(\tilde{\alpha})=1$ , for $\tilde{\alpha}\in P_{m}$ .
Now let ($ 1\sim$ be an element in $P_{m}\cdot U_{m}^{\prime}\cap I_{m}^{\nu}$ , and let $tI\sim=\tilde{\alpha}\mathfrak{b}\sim$, where $\tilde{\alpha}\in P_{m}$ and
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$\sim b\in U_{m}^{\prime}$ . We get $a\in F_{0}$ , because $\mathfrak{a}\sim$ , and thus in particular the $\mathfrak{L}$ -component of
$ tJ\sim$ , is invariant under the action of the Galois group $G$ . Let $(\mathfrak{a}\sim)$ denote the
ideal of $F_{m}$ corresponding to the id\‘ele $\sim(l$ . Then we have $(\alpha\sim)=(\alpha),$ $\alpha\in F_{0}$ . The
principal ideal $(\alpha)$ is a norm of an ideal of $F_{m}$ . Since there exists only one
prime divisor which is ramified by $F_{m}/F_{0}$ , it follows that $\alpha$ is a norm of an
element in $F_{m^{24)}}$ . Thus $\tilde{\alpha}$ is an element in $B^{2}(I_{m})=I_{m}^{\nu}$ . We get then $\sim \mathfrak{b}\in I_{m}^{\nu}$ ,

because $\sim tI=\tilde{\alpha}\mathfrak{b}\sim\in I_{m}^{\nu}$ . From (11) it follows further that $\sim \mathfrak{b}\in U_{m}^{\prime\nu}$ . Hence $P_{m}\cdot U_{m}^{f}$

$\cap I_{m}^{\nu}=(P_{m}\cdot U_{m}^{\prime})^{\nu}$ . This enables us to extend $\chi_{2}$ on $P_{m}\cdot U_{m}^{\prime}$ . $I_{m}^{\nu}$ by setting

(20) $\chi_{2}((\sim 1^{\nu})=1$ , for $\sim \mathfrak{a}\in I_{m}$ ,

because $\chi_{2}$ previously defined on $P_{m}\cdot U_{m}^{\prime}$ is trivial on $(P_{m}\cdot U_{m}^{\prime})^{\nu}$ .
We next consider the continuity of $\chi_{2}$ defined on $P_{m}\cdot U_{m}^{\prime}$ . $I_{m}^{\nu}$ by (18), (19)

and (20). For this purpose it suffices to consider $\chi_{2}$ only on $P_{m}\cdot U_{m}^{\prime}\cdot I_{m}^{\nu}\cap U_{m}$,
which is the direct product of $D=P_{m}\cdot U_{m}^{\prime}\cdot I_{m}^{\nu}\cap U_{L}$ and $U_{m}^{\prime}$ (as topological
group). That $\chi_{2}$ is continuous on $U_{m}^{\prime}$ is clear by (18). Thus we have only to
consider $\chi_{2}$ on $D$ . Let $\sim \mathfrak{a}\in D$ and $tI\sim=\tilde{\alpha}\mathfrak{b}c^{\nu}\sim_{\sim}$ , where $\tilde{\alpha}\in P_{m},$

$\sim \mathfrak{b}\in U_{m}^{\prime}$

$,$

$\sim c\in I_{m}$ . Then
the ideal $(\alpha)$ corresponding to the principal id\‘ele $\tilde{\alpha}$ is an image by $\nu$ of an
ideal of $F_{m}$ . Then, by the remark at the beginning of this \S 3.3, there exists
an element $a^{\prime}$ in $F_{0}$ and a unit $\epsilon$ of $F_{m}$ for which we have $\alpha=\alpha^{\prime}\cdot\epsilon$ . Then
there exists $\beta\in F_{m}$ such that $\alpha^{\prime}=\beta^{\nu_{24)}}$ . Thus we have $\mathfrak{a}\sim=\beta\cdot\epsilon\sim\cdot \mathfrak{b}c^{\nu}\sim_{\nu\sim}\sim\cdot$ , where
$\beta\in F_{m}^{*},$ $\epsilon\in E_{m},$ $\mathfrak{b}\in U_{m}^{\prime}$ and $\sim c\in I_{m}$ . Hence the $\mathfrak{L}$ -component of $\sim \mathfrak{a}$ is of the
form $\epsilon\cdot a^{\nu}$ , where $\epsilon\in E_{m}$ and $\alpha\in U_{\mathfrak{L}}$ . Conversely an id\‘ele of $F_{m}$ whose $\mathfrak{L}-$

component is of the form $\epsilon\cdot\alpha^{\nu}(\in U_{\mathfrak{L}})$ and all other local components are 1
is clearly contained in $D$ .

We now consider $U_{\mathfrak{L}}$ as contained in the multiplicative group $\Phi_{m}^{*}$ of the
non-zero elements of $\Phi_{m}$ . The structure of $U_{\mathfrak{L}}$ is as follows. Let $V$ denote
the group of all the roots of unity contained in $\Phi_{m}$ whose orders are prime to
1. Then the order $v$ of $V$ is equal to the absolute norm of $\mathfrak{L}$ minus 1. Let
$H$ denote the subgroup of $U_{\mathfrak{L}}$ which consists of all the elements $\alpha$ in $U_{\mathfrak{L}}$ such
that $\alpha\equiv 1(mod \mathfrak{L})$ . As topological group, $U_{\mathfrak{L}}$ is the direct product of the sub-
groups $V$ and $H$. Now, by our assumption, $\Phi_{0}$ contains no primitive l-th root
of unity. This immediately implies that $\Phi_{m}$ also contains no primitive l-th
root of unity, because $[\Phi_{m} : \Phi_{0}]=l^{m}$ in our case. In such a case $H$ is, as topo-
logical group, isomorphic to the direct product of $[\Phi_{m} : Q_{l}]$ groups all isomor-
phic to the additive group of $Z_{l}$ . In particular $H$ is torsion free. If we put
$H^{(1)}=C^{1}(H)$ and $H^{(2)}=C^{2}(H)$ , then we have $H^{(1)}\cap H^{(2)}=(1)$ . Moreover it is
easily observed by local class field theory that the direct product $H^{(1)}\cdot H^{(2)}$ is
an open subgroup of finite index in $H$. Therefore, if $\alpha_{1}\in H^{(1)},$ $a_{2}\in H^{(2)}$ and

24) Cf. Iwasawa [8], p. 550.
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$\alpha_{1}\cdot\alpha_{2}\equiv 1(mod \mathfrak{L}^{c})$ for a sufficiently large integer $c$ , then there exists an integer
$d$ independent of $c$ such that $\alpha_{1}\equiv\alpha_{2}\equiv 1(mod \mathfrak{L}^{c- a})$ .

Since $\chi_{2}$ is of order a power of 1 on $D,$ $\chi_{2}$ is continuous on $D$ if and only
if $\chi_{2}^{v}$ is continuous on $D$ . Then $\chi_{2}$ is continuous on $D$ if $\chi_{2}$ is continuous on
$D^{\prime}$ , where $D^{\prime}=\{\epsilon\alpha^{\nu}|\epsilon\in\tau_{\mathfrak{L}}(\tilde{E}_{m})\cap H, \alpha^{\nu}\in H\}$ . Since the assumptions in Theo-
rem 4 implies that 1 is odd, we have $\epsilon^{\nu}=1$ if $\epsilon\in H$ : namely we have $\tau_{\mathfrak{L}}(\tilde{E}_{m})$

$\cap H\subset H^{(1)}$ . Thus, if $\epsilon a^{\nu}\equiv 1(mod \mathfrak{L}^{c})$ for a sufficiently large integer $c$ , where
$\epsilon\in\tau_{\mathfrak{L}}(\tilde{E}_{m})\cap H$ and $\alpha^{\nu}\in H^{(2)}$ , then we have $\epsilon\equiv 1(mod \mathfrak{L}^{c- a})$ . On the other
hand we have $\chi_{2}(\epsilon\alpha^{\nu})=\chi_{2}(\epsilon)=\chi_{1}^{-I}(\epsilon)$ locally at $\mathfrak{L}$ . Since $\chi_{1}$ is continuous, $\chi_{2}$ is
also continuous on $D^{\prime}$ . Therefore, as noticed above, it follows that $\chi_{2}$ is con-
tinuous on $P_{m}\cdot U_{m}^{\prime}\cdot I_{m}^{\nu}$ .

Now, as a continuous character, $\chi_{2}$ extends uniquely onto the closure of
$P_{m}\cdot U_{m}^{\prime}\cdot I_{m}^{\nu}$ . By this procedure the value group of $\chi_{2}$ remains unchanged, be-
cause the order of the original $\chi_{2}$ is finite. The closure of $P_{m}\cdot U_{m}^{\prime}$ . $I_{m}^{\nu}$ is a
closed subgroup of the locally compact abelian group $I_{m}$ , and therefore $\chi_{2}$ now
extends onto the whole group $I_{m}$ . The restriction of $\chi_{2}$ thus defind on $I_{m}$ to
the unit id\‘ele group $U_{m}$ is of finite order. Hence $\chi_{2}$ thus extended onto $I_{m}$ is
of finite order, because $I_{m}/P_{m}\cdot U_{m}$ is of finite order and $\chi_{2}(P_{m})=1$ . Then we
can take $\chi_{2}$ extended on $I_{m}$ so as to be of order a power of $l$ . $\chi_{2}$ is then an
element of $d_{m}$ , and moreover we have, by (18), $\chi_{1}\cdot\chi_{2}\in d_{m}^{\prime}$ . It follows finally
from (17), (20) and (2) that $(\chi_{1}\cdot\chi_{2})^{\nu}=\chi_{1}^{\nu}=\chi_{0}$ . The existence of such $\chi_{1}\cdot\chi_{2}$ in
$d_{m}^{\prime}$ completes the proof of Lemma 7.
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[REMARK added in proof 6 Feb. 1968 at the ‘ Goethe Institut ’ in Brannen-
burg] I have heard in Japan that A. Brumer has proved the $p$-adic analogue
of Dirichlet’s unit theorem (cf. \S 1.4 and \S 2.7) for absolutely abelian fields and
that his paper will appear in a forthcoming issue of Mathematika, to which I
am not yet accessible.
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