Some results on Γ -extensions of algebraic number fields

Dedicated to Professor Iyanaga on his 60th birthday

By Sige-Nobu KURODA

(Received April 1, 1967)

Let l denote a prime number which we fix throughout the present paper. Let F_0 be an algebraic number field of finite degree, and let F/F_0 be a Γ extension over F_0 . Namely F/F_0 is a Galois extension whose Galois group is isomorphic to the additive group of l-adic integers. In the following we shall consider a Γ -module A(K/F), attached to F/F_0 , which will be defined analogously to the cyclotomic case considered by Iwasawa [8]. After the preliminaries in §1 we shall give in §2 a necessary and sufficient condition for the regularity of A(K/F) (as Γ -module) in terms of characters of idèle groups of intermediate fields of F and F_0 (Theorems 1 and 2). The Γ -module A(K/F)is intimately related to l-adic behaviour of global unit groups of algebraic number fields (Theorem 3 in §2).

Now let in particular the ground field F_0 be an imaginary quadratic extension of the rational number field. In such a case there exist, in a fixed algebraic closure of F_0 , two independent Γ -extensions over F_0 (with respect to our fixed prime number l). Under additional conditions on F_0 the regularity of A(K/F) will be obtained in §3 (Theorem 4 in §3).

General notations. We denote by l a prime number which we fix throughout the present paper¹). Z and Q stand for the ring of rational integers and the rational number field, respectively. We denote by Z_l and Q_l the ring of l-adic integers and the l-adic completion of Q, respectively. Z/(d)Z means the additive group of integers modulo d, where $d \in Z$.

§1. Preliminaries.

1.1.²⁾ Now let in general E be a field and K/E a Galois extension. Then the Galois group of K/E equipped with the Krull topology will be denoted by G(K/E). Let F be an intermediate field of K and E which is also a Galois extension over E. Then the Galois group G(F/E) is canonically isomorphic to

¹⁾ We reserve the notations p, p, etc. for general prime numbers or prime divisors.

²⁾ Cf. Iwasawa [8], §1. The purpose of the descriptions in §1.1 and §1.2 is to introduce notations.

the factor group G(K/E)/G(K/F), G(K/F) being of course a closed normal subgroup of G(K/E). Furthermore if K/F is abelian then every inner automorphism $x \to s^{-1}xs$ of G(K/E) induces a topological automorphism of G(K/F)which depends only upon the coset σ of $s \mod G(K/F)$. G(K/F) is thus made into a G(F/E)-group on which G(F/E) acts unitarily (i. e. $1 \cdot x = x$) and continuously. The discrete character group of the compact abelian group G(K/F)will be denoted by A(K/F). The action of G(F/E) on A(K/F) is defined by setting

(1)
$$a^{\sigma}(x) = a(x^{\sigma}) = a(s^{-1}xs), \qquad x \in G(K/F),$$

where $a \in A(K/F)$ and s is any element of G(F/E) such that σ is the coset of $s \mod G(K/F)$. We notice that G(F/E) acts on G(K/F) from the right, and G(F/E) acts on A(K/F) from the left: e.g. $(a^{\sigma})^{\tau} = a^{\tau\sigma}$.

Let a be an element in A(K/F), and let K_a denote provisionally the fixed field of the kernel of a. If G(F/E) is cyclic or contains a dense cyclic subgroup, then K_a/E is abelian if and only if $a^{\sigma} = a$ for every σ in G(F/E).

1.2. Let Γ denote a multiplicative topological group isomorphic to the additive group of Z_{l} . For an integer $m \ge 0$ we denote by Γ_{m} the unique open subgroup with index l^m in Γ . Let F_0 be a finite algebraic extension over Q, and let F/F_0 be a Γ -extension. Namely F/F_0 is a Galois extension whose Galois group is isomorphic to $\Gamma^{(3)}$. We identify the Galois group $G(F/F_0)$ with Γ , and we denote by F_m the fixed field of Γ_m . F is the union of the increasing sequence of all F_m ($m \ge 0$). We denote by S the set of all prime divisors of F which divide the rational prime divisor l. If K' and K'' are two algebraic extensions of F in which no prime divisor of F outside S is ramified, then the same holds good for the composite field $K' \cdot K''$. Thus there exists the unique maximal *l*-primary abelian extension K over F in which no prime divisor of F outside S is ramified⁴). Furthermore if l is an element in S then the prime divisors conjugate to I with respect to F/F_0 are also contained in S. Thus K/F_0 is a Galois extension, and we are in the situation described in § 1.1 with $E = F_0$. In particular the Galois group Γ of F/F_0 acts on A(K/F), the dual of the Galois group G(K/F), as described in § 1.1.

A discrete group A is said to be *l*-primary if A is the direct limit of a family of finite *l*-groups, and a compact group G is said to be *l*-primary if G is the inverse limit of a family of finite *l*-groups. A discrete *l*-primary (additive) abelian group A is said to be a discrete Γ -module if Γ acts on A unitarily and continuously. Similarly a compact *l*-primary (additive) abelian group

³⁾ Cf. Iwasawa [6], where the fixed prime number is denoted by p.

^{4) &#}x27;*l*-primary abelian' means here that the Galois group G(K/F) is an inverse: limit of a family of finite *l*-abelian groups. Cf. also Remark at the end of § 2.3.

G is said to be a compact Γ -module if Γ acts on G unitarily and continuously⁵⁾.

Thus G(K/F) and A(K/F) mentioned above are compact and discrete Γ -modules, respectively.

1.3. Let in general A be a discrete Γ -module. Then, as usual, we denote by A_m the submodule of A which consists of all the elements a in A such that $a^{\sigma} = a$ for every $\sigma \in \Gamma_m$. Let m and n be integers such that $m \ge n \ge 0$. Then A_m is naturally made into a Γ_n/Γ_m -module. It is known by Iwasawa [7] that a discrete Γ -module A is regular (as Γ -module) if and only if we have

$$H^i(\Gamma_n/\Gamma_m, A_m) \cong (0)$$
, $i = 1, 2$,

for every $m \ge n \ge 0$. It is also known that A is regular if only we have

$$H^{1}(\Gamma_{n}/\Gamma_{m}, A_{m}) \cong (0), \qquad m \ge n,$$

whenever both m and n are sufficiently large.

We shall make use of the following

LEMMA 1. Let A be a discrete Γ -module. Then A is regular if we have

$$H^i(\Gamma/\Gamma_m, A_m) \cong (0)$$
, $i = 1, 2$,

for every sufficiently large integer m.

PROOF. We choose m so large that the assumption in Lemma 1 is satisfied. Since the order of Γ/Γ_m is a power of a prime number l, and since the cohomology groups of Γ/Γ_m in A_m vanish for two consecutive dimensions i = 1, 2, we get, by Nakayama's theorem on cohomological triviality⁶⁾, $H^i(G, A_m) \cong (0)$ for every dimension i and for every subgroup G of Γ/Γ_m . Thus all the cohomology groups of Γ_n/Γ_m in A_m vanish for every m and n such that $m \ge n \ge 0$ and that m is sufficiently large, which together with the above referred facts proves Lemma 1.

1.4. REMARK. For an integer $m (\geq 0)$ let ζ_m denote a primitive l^m -th root of unity, and let $F_m = \mathbf{Q}(\zeta_{m+1})$ for $m \geq 0$. Let F denote the union of the increasing sequence of all F_m $(m \geq 0)$. If l is an odd prime number then F/F_0 is a Γ -extension. In such a case the Γ -module A(K/F) has already been considered by Iwasawa [8], and it is known that A(K/F) is regular if and only if the group of principal units⁷ of the local cyclotomic field $\Phi_m = \mathbf{Q}_l(\zeta_{m+1})$ contains $l^m(l-1)/2-1$ global units in F_m which are independent over Z_l for every $m \geq 0$. The regularity of A(K/F) is known to be the case when the class

210

⁵⁾ The structure theorems on Γ -modules are given by Iwasawa [6] and [7]. For the definition of the regularity of Γ -modules, see [6], p. 187.

⁶⁾ Cf. e. g. Serre [13], p. 152.

⁷⁾ A local unit u in Φ_m is said to be principal if $u \equiv 1$ (\mathfrak{l}_m), where \mathfrak{l}_m stands for the valuation ideal of Φ_m .

number of F_0 is prime to $l^{(8)}$.

$\S 2$. Formulation in terms of characters of idèles.

2.1. Let F/F_0 be, as in § 1.2, a Γ -extension over an algebraic number field F_0 of finite degree, and let A(K/F), F_m etc. be as in § 1.2. In this section we give a necessary and sufficient condition for the regularity of A(K/F) in terms of characters of idèle group of F_m . We denote the idèle group and the principal idèle group of F_m by I_m and P_m , respectively. Let $C_m = I_m/P_m$, and let D_m denote the connected component of the identity of the idèle class group C_m of F_m . We denote by \mathcal{D}_m the group of all continuous characters of I_m with finite orders which are trivial (i.e. take the value 1) on P_m . Then \mathcal{D}_m may be naturally regarded as the dual of the compact abelian group C_m/D_m . Now let \mathfrak{P} be a prime divisor of F_m , and let χ be an element in \mathcal{D}_m . Then the local component $\chi_{\mathfrak{P}}$ of χ at \mathfrak{P} is defined by means of the local component of the \mathfrak{P}_m is trivial on the unit group of the \mathfrak{P} -completion of $F_m^{\mathfrak{P}}$, and, if otherwise, said to be ramified at \mathfrak{P} . χ is ramified at \mathfrak{P} if and only if \mathfrak{P} is ramified by the cyclic extension over F_m with which χ is associated in the sense of class field theory¹⁰.

We define the action of the Galois group Γ_n/Γ_m of F_m/F_n on \mathcal{D}_m by setting

(2)
$$\chi^{\sigma}(\tilde{\mathfrak{a}}) = \chi(\tilde{\mathfrak{a}}^{\sigma}), \quad \sigma \in \Gamma_n/\Gamma_m,$$

where $\tilde{a} \in I_m$ and \tilde{a}^{σ} is an idèle conjugate to \tilde{a} by σ^{11} .

Let \mathcal{A}_m denote the subgroup of \mathcal{D}_m which consists of all the elements in \mathcal{D}_m whose orders are powers of l. We denote by S_m the set of all prime divisors of F_m which divide the rational prime divisor l. Now we define two subgroups of \mathcal{A}_m by setting

 $\mathcal{A}_m' = \{\chi \in \mathcal{A}_m \, | \, \chi \text{ is unramified at every prime divisor} \ ext{of } F_m \text{ outside } S_m \}$,

and

$$\mathcal{A}_m^F = \{ \chi \in \mathcal{A}_m \mid \exists m' \ge m : \ker \chi = P_m \cdot N'(I_{m'}) \}$$

where N' stands here for the norm mapping from I_m , to I_m . Namely elements of \mathcal{A}_m^F are associated with sub-extensions of F/F_m in the sense of class field

11) The Galois group acts on idèles from the right.

⁸⁾ Cf. also Ax [2], Iwasawa and Sims [9], Jehne [10], where other results on this subject are found.

⁹⁾ In the present paper no sign condition is imposed on real infinite components of idèles.

¹⁰⁾ For the class field theory used in the present paper without references, see Chevalley [3], Weil [14], § 1 and Whaples [15], Theorem 3. As is well-known, the differentials of F_m defined by Chevalley loc. cit. are nothing but elements of \mathcal{D}_m .

theory, and therefore \mathcal{A}_m^F is isomorphic to the dual of the Galois group $G(F/F_m)$. Now, since no prime divisors of F_m outside S_m are ramified by F/F_m^{12} , we have $\mathcal{A}_m^F \subset \mathcal{A}_m'$. It is easy to observe that \mathcal{A}_m^F and \mathcal{A}_m' are Γ_n/Γ_m -subgroups of \mathcal{A}_m .

2.2. Let M denote the maximal abelian extension over F_m . For a while we put $\mathfrak{g} = G(M/F_m)$ and $A = A(M/F_m)$, the dual of \mathfrak{g} . By class field theory the dual of C_m/D_m is canonically isomorphic to A. Namely \mathcal{D}_m is canonically isomorphic to A. Let m and n be integers such that $m \ge n \ge 0$. Then, by our convention, the Galois group of F_m/F_n is Γ_n/Γ_m . The above mentioned canonical isomorphism gives a canonical Γ_n/Γ_m -isomorphism of \mathcal{D}_m and A by (2) and by a well-known property of the reciprocity map¹⁸⁾.

Let \mathscr{B} be a Γ_n/Γ_m -subgroup of \mathscr{D}_m , and let B denote the canonical image of \mathscr{B} in A. We denote by $\varPhi(\mathfrak{g}, B)$ the annihilator of B in \mathfrak{g} , which is a Γ_n/Γ_m subgroup of \mathfrak{g} . Then B is the dual of $\mathfrak{g}/\varPhi(\mathfrak{g}, B)$, and thus \mathscr{B} is canonically Γ_n/Γ_m -isomorphic to the dual of $\mathfrak{g}/\varPhi(\mathfrak{g}, B)$.

2.3. Now let K_m denote the unique maximal *l*-primary abelian extension over F_m in which no prime divisor of F_m outside S_m is ramified. Then, putting $\mathcal{B} = \mathcal{A}'_m$, we have, by § 2.2,

$$A(K_m/F_m) \cong \mathcal{A}'_m$$
, $(\Gamma_n/\Gamma_m\text{-isomorphism})$,
 $A(F/F_m) \cong \mathcal{A}^F_m$, $(\Gamma_n/\Gamma_m\text{-isomorphism})$.

These isomorphisms may be regarded as Γ -isomorphisms in which the action of Γ_m is trivial. On the other hand we have a canonical Γ -isomorphism $A(K_m/F) \cong A(K_m/F_m)/A(F/F_m)$. Hence we have a canonical Γ -isomorphism $A(K_m/F) \cong \mathcal{A}'_m/\mathcal{A}^F_m$. Since, by the remark at the end of § 1.1, we have $A(K_m/F) = A(K/F)_m$, the following lemma is obtained.

LEMMA 2. $A(K/F)_m$ is Γ_n/Γ_m -isomorphic to $\mathcal{A}'_m/\mathcal{A}^F_m$ for every $m \ge n \ge 0$. REMARK. 1. The meaning of the suffix m of A(K/F) is described at the beginning of § 1.3.

2. As far as the extension K/F is concerned, only Lemma 2 and the formula (9) in § 2.7 will be necessary for our later argument. Thus we may rather define K as the union of the increasing sequence of all K_m $(m \ge 0)$.

2.4. The following Proposition will be proved in the next § 2.5.

PROPOSITION. We have

(3)
$$H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}^{F}) \cong (0)$$

¹²⁾ Cf. Iwasawa [6], p. 218.

¹³⁾ Cf. e. g. the last formula in Chap. XI, 3 of Serre [13], in which the Galois group G acts on the G-modules (in 'class formation') from the left, contrary to our convention.

if and only if the natural homomorphism

(4)
$$H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}'_{m}) \to H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m})$$

is injective.

Combining Lemmas 1, 2 and Proposition, we get immediately the following THEOREM 1. Let F/F_0 be a Γ -extension over an algebraic number field F_0 of finite degree. Then the Γ -module A(K/F) is regular if and only if the natural homomorphisms

$$H^i(\Gamma/\Gamma_m, \mathcal{A}'_m) \longrightarrow H^i(\Gamma/\Gamma_m, \mathcal{A}_m)$$
 , $i = 1, 2$,

are both injective for every sufficiently large integer m, where Γ/Γ_m stands for the Galois group of F_m/F_0 .

2.5. For the proof of Proposition we prepare some lemmas.

LEMMA 3. We have $H^{1}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}) \cong \mathbb{Z}/(l^{m-n})\mathbb{Z}$ and $H^{2}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}) \cong (0)$ for every $m \ge n \ge 0$.

PROOF. Let D_m denote the connected component of the identity in the idèle class group C_m of F_m . Then we have¹⁴⁾

(5)
$$\begin{cases} H^{1}(\Gamma_{n}/\Gamma_{m}, C_{m}) \cong (0), & H^{2}(\Gamma_{n}/\Gamma_{m}, C_{m}) \cong \mathbb{Z}/(l^{m-n})\mathbb{Z}, \\ H^{1}(\Gamma_{n}/\Gamma_{m}, D_{m}) \cong (0), & H^{2}(\Gamma_{n}/\Gamma_{m}, D_{m}) \cong (0), \end{cases}$$

the first three of which are of general character, and we have the last, because no infinite prime divisor of F_n is ramified by F_m/F_n . From the exact sequence $(1) \rightarrow D_m \rightarrow C_m \rightarrow C_m / D_m \rightarrow (1)$, we get the exact sequence

$$\begin{array}{cccc} H^{1}(\Gamma_{n}/\Gamma_{m}, D_{m}) \longrightarrow H^{1}(\Gamma_{n}/\Gamma_{m}, C_{m}) \longrightarrow H^{1}(\Gamma_{n}/\Gamma_{m}, C_{m}/D_{m}) \\ & & & & & \downarrow \\ & & & & \\ H^{2}(\Gamma_{n}/\Gamma_{m}, C_{m}/D_{m}) \longleftarrow H^{2}(\Gamma_{n}/\Gamma_{m}, C_{m}) \longleftarrow H^{2}(\Gamma_{n}/\Gamma_{m}, D_{m}) , \end{array}$$

because Γ_n/Γ_m is cyclic. Then we get by (5) $H^1(\Gamma_n/\Gamma_m, C_m/D_m) \cong (0)$ and $H^2(\Gamma_n/\Gamma_m, C_m/D_m) \cong \mathbb{Z}/(l^{m-n})\mathbb{Z}$. Since \mathcal{D}_m is dual to the compact abelian group C_m/D_m , and since Γ_n/Γ_m is cyclic, $H^1(\Gamma_n/\Gamma_m, \mathcal{D}_m)$ is dual to $H^2(\Gamma_n/\Gamma_m, C_m/D_m)$, and $H^2(\Gamma_n/\Gamma_m, \mathcal{D}_m)$ is dual to $H^1(\Gamma_n/\Gamma_m, C_m/D_m)$. On the other hand we have $H^i(\Gamma_n/\Gamma_m, \mathcal{D}_m) \cong H^i(\Gamma_n/\Gamma_m, \mathcal{A}_m)$, because the order of Γ_n/Γ_m is a power of a prime number l. Now Lemma 3 follows from the above mentioned duality.

Now we prepare some notations. Let the element ν in the group ring $Z[\Gamma_n/\Gamma_m]$ be defined by $\nu = 1 + \sigma + \dots + \sigma l^{m-n-1}$, where σ is a generator of Γ_n/Γ_m . Let in general M be a multiplicative abelian Γ_n/Γ_m -group. Then we put

$$B^{1}(M) = \{a^{1-\sigma} | a \in M\}, \qquad C^{1}(M) = \{a \in M | a^{\nu} = 1\},$$
$$B^{2}(M) = \{a^{\nu} | a \in M\}, \qquad C^{2}(M) = \{a \in M | a^{\sigma} = a\}.$$

14) Cf. Artin and Tate [1], Chevalley [4], Hochschild and Nakayama [5], Weil [14].

These notations will be retained in the following. Moreover we identify $H^{i}(\Gamma_{n}/\Gamma_{m}, M)$ with $C^{i}(M)/B^{i}(M)$, where i = 1, 2.

LEMMA 4. $H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}^{F})$ and $H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m})$ are canonically isomorphic for every $m \geq n \geq 0$.

PROOF. Since F/F_n is abelian, every element in \mathcal{A}_m^F is invariant under the action of the Galois group Γ_n/Γ_m . Let $\chi_{m,2m-n}$ be an element in \mathcal{A}_m^F whose order is equal to l^{m-n} . Then $\chi_{m,2m-n}$ generates $C^1(\mathcal{A}_m^F)$. Put now $\chi_{m,m+1} = (\chi_{m,2m-n})^{l^{m-n-1}}$. Then $\chi_{m,m+1}$ is associated with the class field F_{m+1}/F_m . Namely F_{m+1}/F_m is the class field defined over the kernel of $\chi_{m,m+1}$. Let $\chi_{n,m+1}$ be an element in \mathcal{A}_n^F which is associated with F_{m+1}/F_n . Then by the translation theorem in class field theory we have

$$\ker \chi_{m,m+1} = \{ \widetilde{\mathfrak{a}} \in I_m | N(\widetilde{\mathfrak{a}}) \in \ker \chi_{n,m+1} \},\$$

where N stands here for the norm mapping from I_m to I_n . The factor group $I_n/\ker \chi_{n,m+1}$ is cyclic and of order l^{m-n+1} . We denote by ι the natural injective homomorphism of I_n into I_m , and let $\tilde{\mathfrak{b}}$ be an idèle of F_n which belongs to a generating coset of $I_n/\ker \chi_{n,m+1}$. Then $N(\iota(\tilde{\mathfrak{b}})) = \tilde{\mathfrak{b}}^{l^m - n} \notin \ker \chi_{n,m+1}$; namely we have

(6)
$$\chi_{m,m+1}(\iota(\tilde{\mathfrak{b}})) \neq 1$$
.

If there exists an element χ in \mathcal{A}_m such that $\chi_{m,m+1} = \chi^{1-\sigma}$, then we have, by (2), $\chi_{m,m+1}(\iota(\tilde{\mathfrak{b}})) = \chi(1) = 1$, which contradicts (6). Thus we get $B^1(\mathcal{A}_m) \cap \mathcal{A}_m^F$ $= B^1(\mathcal{A}_m^F) = (1)$, which together with Lemma 3 proves the assertion in Lemma 4 for i=1 (and also for odd *i* by the periodicity of cyclic cohomologies). For i=2 it is easily observed that $\mathcal{A}_m^F = C^2(\mathcal{A}_m^F) = B^2(\mathcal{A}_m^F)$, which together with Lemma 3 proves the assertion for i=2. Lemma 4 is proved.

We notice in particular that the natural homomorphism

(7)
$$H^{1}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}^{F}) \longrightarrow H^{1}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}^{\prime})$$

is injective.

Now we prove Proposition stated in § 2.4. Assume that the natural homomorphism for i = 1 in Proposition is injective. Then it follows from the injectiveness of (7) and Lemmas 3, 4, that $H^1(\Gamma_n/\Gamma_m, \mathcal{A}'_m)$ and $H^1(\Gamma_n/\Gamma_m, \mathcal{A}_m)$ are canonically isomorphic. From the exact sequence

it then follows that i_1 in the above sequence is a surjective isomorphism. Then the isomorphism (3) in Proposition for i=1 follows from the fact that $H^2(\Gamma_n/\Gamma_m, \mathcal{A}_m^F) \cong (0)$. Conversely assume now (3) for i=1, then by the above sequence we get $H^{1}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}'_{m}) \cong \mathbb{Z}/(l^{m-n})\mathbb{Z}$, which means by Lemmas 3 and 4 that the natural homomorphism for i=1 in Proposition is injective. For i=1 this completes the proof of Proposition. Our proposition for i=2 follows similarly from Lemmas 3 and 4 and the above sequence (8).

By the above and by the fact referred from [7] in §1.3 we observe also the following

THEOREM 2. Let the notation be as in Theorem 1. Then the natural homomorphisms

$$H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}'_{m}) \longrightarrow H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}), \quad i = 1, 2,$$

are both bijective for every $m \ge n \ge 0$ if and only if the Γ -module A(K/F) is regular.

2.6.¹⁵⁾ To introduce the next theorem we first prepare some notations concerning infinite abelian groups. Let $Z(l, \infty)$ denote the group of all the roots of unity whose orders are powers of l. An abelian group M is said to be a torsion l-abelian group if every element of M is of order a power of l. Let $M^{(0)}$ be the subgroup of M which consists of all the elements x of M with $x^{l} = 1$. Then $M^{(0)}$ may be regarded as a vector space over the prime field of characteristic l, of which dimension we shall call the rank of the torsion l-abelian group M. A subgroup N of M is said to be divisible if, for any element x of N and any power l^{r} of l, there exists an element y in N such that $x = y^{l^{r}}$. The torsion l-abelian group M contains a unique largest divisible subgroup M_{∞} , and M_{∞} is isomorphic to the direct product of finite or infinite number of $Z(l, \infty)$. If the rank of M is finite, then M is the direct product of M_{∞} by a finite subgroup of M. After the terminology of Kubota [12] we shall call the rank of M_{∞} the dimension of M, and we denote it by dim M.

Let M and M' be torsion *l*-abelian groups, and let there be given a homomorphism of M onto M' whose kernel is finite. Then we have dim $M=\dim M'^{16}$.

2.7. We next consider the ring $R_m = F_m \otimes Q_l$. Let R_m^* denote the multiplicative group of all the regular elements in R_m . Then R_m^* is canonically identified with the direct product $\prod_{1 \in S_m} F_{m,1}^*$ where $F_{m,1}^*$ stands for the multiplicative group of the 1-completion of F_m for $1 \in S_m$. S_m denotes, as before, the set of all prime divisors of F_m which divide the rational prime divisor l. The elements in R^* which are congruent 1 modulo l form a multiplicative group H_{R_m} , and the power u^{α} is defined for every $u \in H_{R_m}$ and $\alpha \in \mathbb{Z}_l$. The dimension over \mathbb{Z}_l of H_{R_m} (modulo the finite torsion subgroup if l=2) is equal to the degree d_m of F_m over \mathbb{Q} , as observed from the well-known structure theo-

¹⁵⁾ Cf. Kaplansky [11].

¹⁶⁾ Notice that any divisible subgroup of a torsion l-abelian group is a direct summand, cf. Kaplansky, loc. cit. p. 8.

rem of the local unit groups. Let $r_l(m)$ denote the dimension of Z_l -subspace of H_{R_m} spanned by units $\varepsilon (= \varepsilon \otimes 1)$ of F_m contained in H_{R_m} . Then the equality dim $\mathcal{A}_m = \dim \mathcal{A}'_m = d_m - r_l(m)$ is known by Kubota [12], Theorem 5, where dim \mathcal{A}_m etc. are defined in § 2.6. Then Lemma 2 entails

(9)
$$\dim A(K/F)_m = \dim \mathcal{A}'_m - 1 = d_m - r_l(m) - 1,$$

where $d_m = [F_m; Q]$. Furthermore the Γ -module A(K/F) is Γ -finite; namely the rank of $A(K/F)_m$ is finite for every $m \ge 0$.

THEOREM 3. Let F/F_0 be a Γ -extension over an algebraic number field F_0 of finite degree. Let A(K/F) be the Γ -module described in § 1.1, and let $r_l(m)$ be as above. Assume that the Γ -module A(K/F) is regular. Then we have

(10)
$$r_l(m) = l^m(r_l(0)+1) - 1$$

for every $m \ge 0$.

REMARK. Let $r_{\infty}(m)$ denote the usual rank of the unit group of F_m . If we assume moreover $r_l(0) = r_{\infty}(0)$ in Theorem 3, then (10) implies $r_l(m) = r_{\infty}(m)$ for every $m \ge 0$, because no infinite prime divisor is ramified by F/F_0 . The proof of Theorem 3 given below shows that the equality (10) follows if we assume only the regularity of the maximal divisible submodule of A(K/F).

Theorem 3 is a direct consequence of (9) and the following

LEMMA 5. Let A be a discrete Γ -finite Γ -module. If A is regular, then dim $A_n = l^n \dim A_0$ for every $n \ge 0^{17}$.

PROOF. If A is Γ -finite and regular, then A is a sum of a divisible regular submodule B' of finite rank and a characteristic submodule C such that $C \cong E(m_1, \dots, m_s)/D$ for some $0 \le m_i \le \infty$ and for a finite submodule D of $E(m_1, \dots, m_s)$. The intersection $B' \cap C$ is finite¹⁸⁾. We have then the surjective homomorphisms f and g such that

$$\overline{A} = B \oplus E(m_1, \cdots, m_s) \xrightarrow{f} B \oplus C \xrightarrow{g} A = B + C$$

(where \oplus stands for the direct sum), and that the kernel \Re of $g \circ f$ is finite. Let σ denote here a generator of Γ/Γ_n , and put $(\overline{A}_n)' = \{a \in A \mid (1-\sigma)a \in \Re\}$, the inverse image of A_n by $g \circ f$. Then we have $(\overline{A}_n)'/\Re = A_n$. Since \Re is finite, we have $((\overline{A}_n)' : \overline{A}_n) < \infty$. Thus we get dim $(\overline{A}_n)' = \dim \overline{A}_n$ and dim $(\overline{A}_n)' = \dim A_n$, and consequently dim $\overline{A}_n = \dim A_n$. Thus the proof is reduced to the cases where A = B (divisible, regular and of finite rank) or $A = E(m_1, \dots, m_s) = E(m_1) \oplus \dots \oplus E(m_s)$. Lemma 5 is then a direct consequence of the fact that

¹⁷⁾ In the proof of Lemma 5 notations and terminologies are in accordance with those of Iwasawa [6]; cf. in particular Theorems 1 and 2 of [6]. Submodule, homomorphism etc. mean Γ -submodule, Γ -homomorphism, etc.

¹⁸⁾ Because we have $B \supset B'$, where B is the submodule appearing in loc. cit. Theorem 1, and $B \cap C$ is finite. Moreover in our case we have B=B'.

 B_n and $E(m_i)_n$ for $m_i < \infty$ are finite modules for every $n \ge 0$, and that dim $E(\infty)_n = l^n$ for every n^{19} .

§3. Γ -extensions over imaginary quadratic fields.

3.1. In this section we shall prove the following

THEOREM 4. Let F_0 be an imaginary quadratic extension over Q in which the fixed prime number l is not fully decomposed: namely S_0 consists of a single element 1. Furthermore we assume that the class number of F_0 is prime to land that the 1-completion of F_0 contains no primitive l-th root of unity (this last assumption being always the case if l > 3). Let F/F_0 be a Γ -extension over F_0^{20} . Then the Γ -module A(K/F) is regular, and the natural homomorphisms

$$H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}'_{m}) \longrightarrow H^{i}(\Gamma_{n}/\Gamma_{m}, \mathcal{A}_{m}), \quad i = 1, 2,$$

are both injective for every $m \ge n \ge 0$.

Let F/F_0 be as in Theorem 4. Since $r_l(0) = r_{\infty}(0) = 0$, we get, by Theorems 3 and 4, $r_l(m) = r_{\infty}(m)$ for every finite intermediate field F_m of F/F_0^{210} .

For the proof of Theorem 4 it suffices, by 2, to show the following Lemmas 6 and 7.

LEMMA 6. If the ground field F_0 of a Γ -extension F/F_0 is an imaginary quadratic extension over Q, then the natural homomorphism

$$H^{1}(\Gamma/\Gamma_{m}, \mathcal{A}'_{m}) \longrightarrow H^{1}(\Gamma/\Gamma_{m}, \mathcal{A}_{m})$$

is injective for every $m \ge 0$.

LEMMA 7. Under the same assumptions in Theorem 4 the natural homomorphism

$$H^{2}(\Gamma/\Gamma_{m}, \mathcal{A}'_{m}) \longrightarrow H^{2}(\Gamma/\Gamma_{m}, \mathcal{A}_{m})$$

is injective for every $m \ge 0$.

3.2. PROOF OF LEMMA 6. In the proofs of Lemmas 6 and 7 the Galois group Γ/Γ_m of F_m/F_0 is simply denoted by G, and σ stands for a generator of G. Let the element ν in the group ring $\mathbb{Z}[G]$ be defined as in § 2.5. $S_m(\text{resp. } S_0)$ is, as before, the set of all prime divisors of F_m (resp. F_0) which divide l. Let \mathfrak{p} be any prime divisor of F_0 outside S_0 . We put $U_m^{\mathfrak{p}} = \prod_{\mathfrak{P} \mid \mathcal{P}} U_m^{\mathfrak{P}}$, where $U_m^{\mathfrak{P}}$ stands for the unit group of the \mathfrak{P} -completion of F_m for a prime divisor \mathfrak{P} of

¹⁹⁾ Cf. loc. cit. in particular Lemma 5.1.

²⁰⁾ There exist two independent Γ -extensions over F_0 (with respect to the fixed prime number l); cf. Kubota [12], Theorem 5. Thus our F/F_0 is not necessarily 'cyclotomic'. Here we note also that our argument in the proof of this theorem is also applicable for Γ -extensions over Q.

²¹⁾ The corresponding fact for Γ -extensions over Q is known by Jehne [10] as 'o-th stability' of l.

S.-N. Kuroda

 F_m such that $\mathfrak{P}|\mathfrak{p}$. Since $\mathfrak{p} \in S_0$, \mathfrak{p} is unramified by F_m/F_0 , and we have²²⁾

(11)
$$H^{i}(G, U_{m}^{\upsilon}) \cong (0), \quad \text{for } i = 1, 2.$$

Now let χ_0 be an element in $\mathcal{A}'_m \cap B^1(\mathcal{A}_m)$, where the notation $B^1(\mathcal{A}_m) = \{\chi^{1-\sigma} | \chi \in \mathcal{A}_m\}$ is defined in § 2.5. Then there exists an element χ_1 in \mathcal{A}_m for which

(12)
$$\chi_0 = \chi_1^{1-\sigma}, \quad \chi_1 \in \mathcal{A}_m.$$

We consider χ_1 on $U_m^{\mathfrak{p}}$, $U_m^{\mathfrak{p}}$ being regarded as imbedded in the idèle group I_m of F_m . Since $\chi_1^{1-\sigma}$ is unramified at $\mathfrak{P}|\mathfrak{p}$, it follows from (2) and (11) for i=1that χ_1 is trivial on $C^1(U_m^{\mathfrak{p}})$. Thus we can define a character $\varphi_{\mathfrak{p}}'$ of $B^2(U_m^{\mathfrak{p}})$ by setting

(13)
$$\varphi_{\mathfrak{p}}'(\widetilde{\mathfrak{a}}^{\nu}) = \chi_{\mathfrak{l}}(\widetilde{\mathfrak{a}}), \qquad \widetilde{\mathfrak{a}} \in U_{\mathfrak{m}}^{\mathfrak{p}}.$$

Then φ_{ν}' is defined on $C^2(U_m^{\nu})$ by virtue of (11) for i=2. Let now N denote the norm mapping from I_m to I_0 . We put

(14)
$$\varphi_{\mathfrak{p}}(N(\tilde{\mathfrak{a}})) = \varphi'_{\mathfrak{p}}(\tilde{\mathfrak{a}}^{\nu}), \qquad \tilde{\mathfrak{a}} \in U_{\mathfrak{m}}^{\nu}.$$

Then $\varphi_{\mathfrak{p}}$ is a character defined on the unit group $U_0^{\mathfrak{p}}$ of the \mathfrak{p} -completion of F_0 for $\mathfrak{p} \notin S_0$. Since $\varphi_{\mathfrak{p}}$ is of finite order, $\varphi_{\mathfrak{p}}$ is continuous on $U_0^{\mathfrak{p}}$.

For a non-zero element α of F_0 we denote by $\tilde{\alpha}$ the element in the principal idèle group P_0 corresponding to α , and let τ_0 denote the endomorphism of I_0 given by

$$(au_0(\widetilde{\mathfrak{a}}))_{\mathfrak{l}} = \widetilde{\mathfrak{a}}_{\mathfrak{l}}, \quad \text{for } \mathfrak{l} \in S_0,$$

 $(au_0(\widetilde{\mathfrak{a}}))_{\mathfrak{p}} = 1, \quad \text{for } \mathfrak{p} \in S_0,$

where $\tilde{a} \in I_0$. Let E_0 denote the unit group of F_0 . We define a character φ_{S_0} , on $\tau_0(\tilde{E}_0)$ by setting

(15)
$$\varphi_{S_0}(\tau_0(\widetilde{\varepsilon})) = \prod_{1 \in S_0} \varphi_{\mathcal{I}}^{-1}((\widetilde{\varepsilon} \tau_0(\widetilde{\varepsilon})^{-1})_{\mathfrak{p}}), \qquad \varepsilon \in E_0.$$

Since $\tau_0(\tilde{\varepsilon}) \to \tilde{\varepsilon} \tau_0(\tilde{\varepsilon})^{-1}$ is an isomorphism, and since the right hand side of (15) is a character on $\prod_{\mathfrak{b} \in S_0} U_0^{\mathfrak{b}}, \varphi_{S_0}$ is an (algebraic) character defined on $\tau_0(\tilde{E}_0)$. Moreover, since $\tau_0(\tilde{E}_0)$ is a finite group, φ_{S_0} is continuous on $\tau_0(\tilde{E}_0)$ with respect to the topology induced by that of $U_{S_0} = \prod_{\mathfrak{l} \in S_0} U_0^{\mathfrak{l}}$, where $U_0^{\mathfrak{l}}$ is the unit group of the \mathfrak{l} -adic completion of F_0 . Since $\tau_0(\tilde{E}_0)$ is closed in U_{S_0} , and since φ_{S_0} is of order a power of l, we can extend φ_{S_0} onto U_{S_0} as a continuous character of order a power of l, which we shall denote by the same notation $\varphi_{S_0}^{\mathfrak{23}}$. We denote by U_0 the unit idèle group of F_0 , and we define φ on U_0 by setting

218

²²⁾ Cf. e. g. Chevalley $\lceil 4 \rceil$, Theorem 12.1.

²³⁾ We note that every continuous character on U_{S_0} is of finite order.

 $\varphi = \varphi_{S_0} \cdot \prod_{\varphi \in S_0} \varphi_{\mathfrak{p}}$. Then φ is a continuous character on U_0 with order a power of l. φ is trivial on $U_0 \cap P_0$ because of $U_0 \cap P_0 = \tilde{E}_0$ and (15). Thus we can extend φ onto $P_0 \cdot U_0$ by putting $\varphi(\tilde{\alpha}) = 1$ for every $\tilde{\alpha} \in P_0$. The continuous character φ thus defined on $P_0 \cdot U_0$ extends now onto I_0 , preserving the property that the order of φ is a power of l, because the closed subgroup $P_0 \cdot U_0$ of I_0 is of finite index. Namely there exists an element φ in \mathcal{A}_0 whose \mathfrak{p} component on U_0^{γ} is given by (14). Then there exists an element $\tilde{\varphi}$ in \mathcal{A}_m such that

(16)
$$\tilde{\varphi}(\tilde{\mathfrak{a}}) = \varphi(N(\tilde{\mathfrak{a}})), \quad \text{for } \tilde{\mathfrak{a}} \in I_m.$$

By virtue of (13) and (14), $\chi_1 \cdot \tilde{\varphi}^{-1}$ is unramified at every prime divisor of F_m outside S_m ; namely $\chi_1 \cdot \tilde{\varphi}^{-1} \in \mathcal{A}'_m$. Moreover it is observed by (16) that $\tilde{\varphi}$ belongs to $C^2(\mathcal{A}_m)$. We have thus $(\chi_1 \cdot \tilde{\varphi}^{-1})^{1-\sigma} = \chi_1^{1-\sigma} = \chi_0$. The existence of such $\chi_1 \cdot \tilde{\varphi}^{-1}$ in \mathcal{A}'_m is nothing but the assertion in Lemma 6.

REMARK. In the above proof the assumption that F_0 is an imaginary quadratic field is essentially used only in the form $r_l(0) = r_{\alpha}(0)$.

3.3. PROOF OF LEMMA 7. By the assumption in Theorem 4, F/F_0 contains no non-trivial unramified extension, and it follows further that S_m consists of a single element $\mathfrak{L}: S_m = {\mathfrak{L}}$. We denote by Φ_m the \mathfrak{L} -completion of F_m and by Φ_0 the \mathfrak{l} -completion of F_0 , where $S_0 = {\mathfrak{l}}$. Then in our case the Galois group of Φ_m/Φ_0 can be identified with that of F_m/F_0 . Moreover, since the class number of F_0 is assumed to be prime to l, it follows in particular that no non-principal ideal of F_0 becomes principal in F_m .

Let U_m denote the unit idèle group of F_m and U'_m the group of unit idèles of F_m whose 2-components are 1. We denote by τ_2 the endomorphism of I_m given by

$$(au_{\mathfrak{L}}(\widetilde{\mathfrak{a}}))_{\mathfrak{L}} = \widetilde{\mathfrak{a}}_{\mathfrak{L}}, \quad \text{for } \mathfrak{L} \in S_m,$$

 $(au_{\mathfrak{L}}(\widetilde{\mathfrak{a}}))_{\mathfrak{P}} = 1, \quad \text{for } \mathfrak{P} \oplus S_m,$

where $\tilde{\mathfrak{a}} \in I_m$. We put $U_{\mathfrak{L}} = \tau_{\mathfrak{L}}(U_m)$. We denote by E_m the unit group of F_m .

Now let χ_0 be an element in $\mathcal{A}'_m \cap B^2(\mathcal{A}_m)$. Then there exists an element χ_1 in \mathcal{A}_m for which

(17)
$$\chi_0 = \chi_1^{\nu}, \qquad \chi_1 \in \mathcal{A}_m.$$

We define a character χ_2 on U'_m by setting

(18)
$$\chi_2(\tilde{\mathfrak{a}}) = \chi_1^{-1}(\tilde{\mathfrak{a}}), \quad \text{for } \tilde{\mathfrak{a}} \in U'_m.$$

Since $P_m \cap U'_m = (1)$, χ_2 extends onto $P_m \cdot U'_m$ by setting

(19)
$$\chi_2(\tilde{\alpha}) = 1$$
, for $\tilde{\alpha} \in P_m$.

Now let $\tilde{\mathfrak{a}}$ be an element in $P_m \cdot U'_m \cap I^{\nu}_m$, and let $\tilde{\mathfrak{a}} = \tilde{\alpha}\tilde{\mathfrak{b}}$, where $\tilde{\alpha} \in P_m$ and

 $\tilde{\mathfrak{b}} \in U'_m$. We get $\alpha \in F_0$, because $\tilde{\mathfrak{a}}$, and thus in particular the \mathfrak{L} -component of $\tilde{\mathfrak{a}}$, is invariant under the action of the Galois group G. Let ($\tilde{\mathfrak{a}}$) denote the ideal of F_m corresponding to the ideal $\tilde{\mathfrak{a}}$. Then we have ($\tilde{\mathfrak{a}}$) = (α), $\alpha \in F_0$. The principal ideal (α) is a norm of an ideal of F_m . Since there exists only one prime divisor which is ramified by F_m/F_0 , it follows that α is a norm of an element in F_m^{24} . Thus $\tilde{\alpha}$ is an element in $B^2(I_m) = I_m^{\nu}$. We get then $\tilde{\mathfrak{b}} \in I_m^{\nu}$, because $\tilde{\mathfrak{a}} = \tilde{\alpha}\tilde{\mathfrak{b}} \in I_m^{\nu}$. From (11) it follows further that $\tilde{\mathfrak{b}} \in U'_m^{\nu}$. Hence $P_m \cdot U'_m \cap I_m^{\nu} = (P_m \cdot U'_m)^{\nu}$. This enables us to extend χ_2 on $P_m \cdot U'_m \cdot I_m^{\nu}$ by setting

(20)
$$\chi_2(\widetilde{\mathfrak{a}}^{\nu}) = 1$$
, for $\widetilde{\mathfrak{a}} \in I_m$,

because χ_2 previously defined on $P_m \cdot U'_m$ is trivial on $(P_m \cdot U'_m)^{\nu}$.

We next consider the continuity of χ_2 defined on $P_m \cdot U'_m \cdot I^m_m$ by (18), (19) and (20). For this purpose it suffices to consider χ_2 only on $P_m \cdot U'_m \cdot I^m_m \cap U_m$, which is the direct product of $D = P_m \cdot U'_m \cdot I^m_m \cap U_L$ and U'_m (as topological group). That χ_2 is continuous on U'_m is clear by (18). Thus we have only to consider χ_2 on D. Let $\tilde{a} \in D$ and $\tilde{a} = \tilde{a}\tilde{b}\tilde{c}^{\nu}$, where $\tilde{a} \in P_m$, $\tilde{b} \in U'_m$, $\tilde{c} \in I_m$. Then the ideal (α) corresponding to the principal idèle \tilde{a} is an image by ν of an ideal of F_m . Then, by the remark at the beginning of this § 3.3, there exists an element α' in F_0 and a unit ε of F_m for which we have $\alpha = \alpha' \cdot \varepsilon$. Then there exists $\beta \in F_m$ such that $\alpha' = \beta^{\nu_2 4}$. Thus we have $\tilde{a} = \tilde{\beta}^{\nu} \cdot \tilde{\varepsilon} \cdot \tilde{b} \cdot \tilde{c}^{\nu}$, where $\beta \in F^*_m$, $\varepsilon \in E_m$, $b \in U'_m$ and $\tilde{c} \in I_m$. Hence the \mathfrak{P} -component of \tilde{a} is of the form $\varepsilon \cdot \alpha^{\nu}$, where $\varepsilon \in E_m$ and $\alpha \in U_{\mathfrak{D}}$. Conversely an idèle of F_m whose \mathfrak{L} component is of the form $\varepsilon \cdot \alpha^{\nu}$ ($\in U_{\mathfrak{D}$) and all other local components are 1 is clearly contained in D.

We now consider $U_{\mathfrak{T}}$ as contained in the multiplicative group Φ_m^* of the non-zero elements of Φ_m . The structure of $U_{\mathfrak{T}}$ is as follows. Let V denote the group of all the roots of unity contained in Φ_m whose orders are prime to l. Then the order v of V is equal to the absolute norm of \mathfrak{T} minus 1. Let H denote the subgroup of $U_{\mathfrak{T}}$ which consists of all the elements α in $U_{\mathfrak{T}}$ such that $\alpha \equiv 1 \pmod{\mathfrak{T}}$. As topological group, $U_{\mathfrak{T}}$ is the direct product of the subgroups V and H. Now, by our assumption, Φ_0 contains no primitive l-th root of unity. This immediately implies that Φ_m also contains no primitive l-th root of unity, because $[\Phi_m: \Phi_0] = l^m$ in our case. In such a case H is, as topological group, isomorphic to the direct product of $[\Phi_m: Q_l]$ groups all isomorphic to the additive group of Z_l . In particular H is torsion free. If we put $H^{(1)} = C^1(H)$ and $H^{(2)} = C^2(H)$, then we have $H^{(1)} \cap H^{(2)} = (1)$. Moreover it is easily observed by local class field theory that the direct product $H^{(1)}$, $\alpha_2 \in H^{(2)}$ and

²⁴⁾ Cf. Iwasawa [8], p. 550.

 $\alpha_1 \cdot \alpha_2 \equiv 1 \pmod{2^c}$ for a sufficiently large integer *c*, then there exists an integer *d* independent of *c* such that $\alpha_1 \equiv \alpha_2 \equiv 1 \pmod{2^{c-d}}$.

Since χ_2 is of order a power of l on D, χ_2 is continuous on D if and only if χ_2^v is continuous on D. Then χ_2 is continuous on D if χ_2 is continuous on D', where $D' = \{\varepsilon \alpha^v | \varepsilon \in \tau_{\mathfrak{L}}(\tilde{E}_m) \cap H, \alpha^v \in H\}$. Since the assumptions in Theorem 4 implies that l is odd, we have $\varepsilon^v = 1$ if $\varepsilon \in H$: namely we have $\tau_{\mathfrak{L}}(\tilde{E}_m)$ $\cap H \subset H^{(1)}$. Thus, if $\varepsilon \alpha^v \equiv 1 \pmod{\mathfrak{L}^o}$ for a sufficiently large integer c, where $\varepsilon \in \tau_{\mathfrak{L}}(\tilde{E}_m) \cap H$ and $\alpha^v \in H^{(2)}$, then we have $\varepsilon \equiv 1 \pmod{\mathfrak{L}^{o-d}}$. On the other hand we have $\chi_2(\varepsilon \alpha^v) = \chi_2(\varepsilon) = \chi_1^{-1}(\varepsilon)$ locally at \mathfrak{L} . Since χ_1 is continuous, χ_2 is also continuous on D'. Therefore, as noticed above, it follows that χ_2 is continuous on $P_m \cdot U'_m \cdot I_m^v$.

Now, as a continuous character, χ_2 extends uniquely onto the closure of $P_m \cdot U'_m \cdot I^{\nu}_m$. By this procedure the value group of χ_2 remains unchanged, because the order of the original χ_2 is finite. The closure of $P_m \cdot U'_m \cdot I^{\nu}_m$ is a closed subgroup of the locally compact abelian group I_m , and therefore χ_2 now extends onto the whole group I_m . The restriction of χ_2 thus defind on I_m to the unit idèle group U_m is of finite order. Hence χ_2 thus extended onto I_m is of finite order, because $I_m/P_m \cdot U_m$ is of finite order and $\chi_2(P_m)=1$. Then we can take χ_2 extended on I_m so as to be of order a power of l. χ_2 is then an element of \mathcal{A}_m , and moreover we have, by (18), $\chi_1 \cdot \chi_2 \in \mathcal{A}'_m$. It follows finally from (17), (20) and (2) that $(\chi_1 \cdot \chi_2)^{\nu} = \chi_1^{\nu} = \chi_0$. The existence of such $\chi_1 \cdot \chi_2$ in \mathcal{A}'_m completes the proof of Lemma 7.

University of Tokyo

References

- [1] E. Artin and J. Tate, Class field theory, Princeton notes, 1951, distributed by Harvard University.
- [2] J. Ax, On the unit of an algebraic number field, Illinois J. Math., 9 (1965), 584-589.
- [3] C. Chevalley, La théorie du corps de classes, Ann. of Math., 41 (1940), 394-418.
- [4] C. Chevalley, Class field theory, Nagoya, 1954.
- [5] G. Hochschild and T. Nakayama, Cohomology in class field theory, Ann. of Math., 55 (1952), 348-366.
- [6] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65 (1959), 183-226.
- [7] K. Iwasawa, On some properties of Γ-finite modules, Ann. of Math., 70 (1959), 291-312.
- [8] K. Iwasawa, On the theory of cyclotomic fields, ibid., 531-561.
- [9] K. Iwasawa and C. C. Sims, Computation of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan, 18 (1966), 86-96.
- [10] W. Jehne, Zur Verschärfung des F.K. Schmidtschen Einheitensatzes, Math. Z., 77 (1961), 439-452.

S.-N. Kuroda

- [11] I. Kaplansky, Infinite abelian groups, University of Michigan Publ. in Math.. No. 2, 1954.
- [12] T. Kubota, Galois group of the maximal abelian extension over an algebraic number fields. Nagoya Math. J., 12 (1957), 177-189.
- [13] J.P. Serre, Corps locaux, Paris, 1962.
- [14] A. Weil, Sur la théorie du corps de classes, J. Math. Soc. Japan, 3 (1951), 1-35.
- [15] G. Whaples, Non-analytic class field theory and Grunwald's theorem, Duke Math. J. 3 (1942), 455-473.

[REMARK added in proof 6 Feb. 1968 at the 'Goethe Institut' in Brannenburg] I have heard in Japan that A. Brumer has proved the *p*-adic analogue of Dirichlet's unit theorem (cf. \S 1.4 and \S 2.7) for absolutely abelian fields and that his paper will appear in a forthcoming issue of Mathematika, to which I am not yet accessible.

222