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The purpose of the present paper is to introduce a very simple idea which
leads to a special kind of zeta-function satisfying a functional equation of the
usual form. At least according to the knowledge of the author, the zeta-func-
tion has never been investigated at any place, although the function lies en-
tirely in the frame of the classical theory of number fields. For this purpose,
we use two tools. One is the Eisenstein series in the sense of [6], [7], con-
taining a character of a discontinuous group, and the other is a special kind
of character, as studied in [3], of a discontinuous group of Hilbert’s type. If
a character of this kind, which has an intimate connection with non-congruence
normal subgroups of arithmetically defined discontinuous groups, is used in the
construction of an Eisenstein series, then we obtain Dirichlet series of a rather
unfamiliar fashion from non-constant terms in the Fourier expansion of the
Eisenstein series, and the functional equation of the zeta-function determined
by the Dirichlet series follows immediately from the functional equation of
the Eisenstein series. The coefficients of the Dirichlet series, $i$ . $e$ . numerators
of individual terms in the usual notation, are in fact Gauss sums containing
congruence characters that are not quadratic.

The space on which the Eisenstein series of our present interest are con-
sidered is, in general, a finite direct product of real, three dimensional hyper-
bolic space. On such a space we have a nice discontinuous operation of a
modular group of Hilbert’s type made up from a totally imaginary number
field $F$ . Since we need non-quadratic power residue symbols of the ground
field $F$ in the definition of the character $\chi$ , the field $F$ must contain at least
four roots of unity. Hence, it is enough to observe only totally imaginary fields.

Since, however, we intend in this paper a rapid explanation of the idea.
we shall treat here only the simplest case of $F=Q(\sqrt{-1})$ . As discontinuous
groups, we take subgroups of $SL(2,0)$ where $0$ is the ring of integers of $F$ .
The space, on which such groups operate, is the three dimensional hyperbolic
space $H=SL(2, C)/SU(2)$ , so that all results, for example in [5], about discon-
tinuous groups of Picard’s type are applicable.
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In \S 1, we construct a discontinuous group $\Gamma$ which is most adequate for
our purpose, together with a character $\chi$ of $\Gamma$ containing the fourth power
residue symbol of $F$. In \S 2, we define six Eisenstein series $E_{i}(u, s, \chi),$ $(i=1$ ,

2, $\cdots$ , 6), corresponding to cusps of $\Gamma$ , and we explicitly write down the func-
tional equation of $E_{i}(u, s, \chi)$ in a vectorial form. Our main results containing
the functional equations of the functions $\zeta_{i}(s, \chi, m)$ which come from non-
constant terms in the Fourier expansion of $E_{i}(u, s, \chi)$ are stated in \S 3. The
functional equation, which takes a vectorial form in the beginning, can easily be
reduced to an usual form, namely to a symmetry of one function with gamma-
factors, if we use some linear combinations of $\zeta_{i}(s, \chi, m)$ .

The regularity of $\zeta_{i}(s, \chi, m)$ at $s=5/4$ is one of the unsolved problems,
while it is not difficult to show that $\zeta_{i}(s, \chi, m)$ is holomorphic for ${\rm Re} s>5/4$ .
The behavior of $\zeta_{i}(s, \chi, m)$ at $s=5/4$ is resemble to that of ordinary zeta- and
L-functions at $s=1$ . So far, however, the author did not obtain satisfactory
results for $\zeta_{i}(s, \chi m)$ at $s=5/4$, although many analytic properties of $\zeta_{i}(s, \chi m)$

can be deduced from those of $E_{i}(u, s, \chi)$ . Including this point, several further
remarks and indications of some other results for which detailed reports will
appear separately are stated in \S 4.

Throughout this paper, the terminologies of [5] will be used without
repeating definitions.

\S 1. The group $\Gamma$ and the character $\chi$ .
Let $F=Q(\sqrt{-1})$ be the Gauss’ number field, and let $0$ be the ring of

integers in $F$ . We denote then by $\Gamma$ once for all the group generated by $\left(1 & -1\right)$

and by all the elements $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL(2, \mathfrak{o})$ with

$((1) a\equiv d\equiv 1(mod \lambda^{3}) , b\equiv c\equiv 0(mod 4)$ ,

where $\lambda$ is defined by

$\lambda=1-i$ , $(i=\sqrt{-1})$ .

If we identity the hyperbolic space $H=SL(2, C)/SU(2)$ with the space of all

matrices of the form $u=\left(\begin{array}{ll}z & -v\\v & \overline{z}\end{array}\right),$ $(z=x+iy\in C, R\ni v>0)$ , then $H$ can be

considered as an upper half space in $R^{8}$ , and the natural operation of $\sigma\in G$

$=SL(2, C)$ on $H$ takes the form

$u\rightarrow(\tilde{a}u+\tilde{b})(\tilde{c}u+\tilde{d})^{-1}$ ,

where $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ , and we write $\tilde{w}=(^{w}\overline{w})$ for any $w\in C$.
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Throughout the paper the elements to and $-\omega\in G$ will be identified, so
that a matrix $\omega$ can be regarded as an abbreviation of $\omega mod \{\pm 1\},$ $i$ . $e$ . the
transformation of $H$ raised by $\omega$ . The group $\Gamma$ , for example, should also be
understood to denote a transformation group.

$\Gamma$ has a fundamental domain, whose volume with respect to the invariant
measure

$d\mu(u)=\frac{dxdydv}{v^{3}}$

of $H$ is finite.

Denote now by $(\frac{c}{d})$ the power residue symbol of degree four in $F^{1)}$ , and
put

$\chi(\sigma)=\left\{\begin{array}{l}(\frac{c}{d}) (c\neq 0,d\equiv 1(mod4)),\\(\frac{c}{d})i, (c\neq 0,d\equiv 1+\lambda^{3}(mod4)),\\1, (c=0),\end{array}\right.$

for $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma$ with (1). Then we have $\chi(\sigma\sigma^{\prime})=\chi(\sigma)\chi(\sigma^{\prime})$ for two such

transformations $\sigma,$
$\sigma^{\prime}$ . This assertion is slightly different from the theorem of

[3], but the proof is the same. Since

$\chi(\left(-1 & 1\right)\sigma\left(1 & -1\right))=\chi(\left(\begin{array}{ll}d & -c\\-b & a\end{array}\right))=\chi(\left(\begin{array}{ll}a & c\\b & d\end{array}\right))^{-I}=\chi(\sigma)$ ,

we can uniquely extend the character $\chi$ to $\Gamma$ by the condition $\chi(\left(1 & -1\right))=1$ .

We fix the character $\chi$ of $\Gamma$ once for all. For $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ with

$c\equiv-b\equiv 1(mod \lambda^{3})$ , $a\equiv d\equiv 0(mod 4)$ ,

the value of $\chi$ is given by

$\chi(\sigma)=\left\{\begin{array}{l}(\frac{-d}{c}) (c\equiv 1(mod4),d\neq 0),\\(\frac{-d}{c})i, (c\equiv 1+\lambda^{3}(mod4),d\neq 0),\\1, (d=0).\end{array}\right.$

An important thing which we have to do next is the determination of all
the essential cusps, in the sense of [5], of $\Gamma$ with respect to $\chi$ . If the z-plane
determined by $v=0$ in $R^{3}$ is identified with $C$, then every cusp of $\Gamma$ is either
$\infty$ or a number in $F$, and it is clear that such cusps are all equivalent with

1) For the definition and for all properties of power residue symbols, see [1].
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respect to $SL(2,0)$ . Therefore, if we denote by $\hat{\Gamma}_{\infty}$ the group of all $\sigma=\left(\begin{array}{ll}a & b\\ & d\end{array}\right)\not\in$

$\in SL(2,0)$ , then the equivalence classes are in one to one correspondence with
double cosets of the form $\Gamma\sigma\hat{\Gamma}_{\infty},$

$(\sigma\in SL(2, \mathfrak{o}))$ . It is easy to see that we can
take representatives for the double cosets always from the finite set of matrices.

of the form $\left(\begin{array}{ll}1 & \\X & 1\end{array}\right),$ $0\ni xmod 4$ . Let $\kappa$ be a cusp of $\Gamma$ , let $\Gamma_{\kappa}$ be the group

of all $\gamma\in\Gamma$ with $\gamma\kappa=\kappa$ , and let $B$ be the subgroup of $G$ consisting of all.

$\left(\begin{array}{ll}X_{11} & x_{12}\\ & X_{22}\end{array}\right)\in G$ . Then

$\Gamma_{\kappa}=\left(\begin{array}{ll}1 & \\x & 1\end{array}\right)B\left(\begin{array}{ll}1 & \\-x & 1\end{array}\right)\cap\Gamma$

for $\kappa=1/x$ , and we see that the elements of $\Gamma_{\kappa}$ are all of the form

$\left(\begin{array}{ll}1 & \\X & 1\end{array}\right)$ ( $\epsilon$

$\frac{n}{\epsilon}$) $\left(\begin{array}{ll}1 & \\-X & 1\end{array}\right)=(\epsilon x-\overline{\epsilon}x-nx^{2}\epsilon-nx,$
$\overline{\epsilon}+^{n}nx)$

with $x\in 0$ , $n\in 0,$ $\epsilon^{4}=1$ . If here $(n, 2)=1$ , then $\epsilon-nx\equiv\overline{\epsilon}-nx\equiv 0(mod 4)$ ;
hence $\epsilon-\overline{\epsilon}\equiv 2nx(mod 4)$ . This means $\epsilon=\pm i$ , and $x\equiv i(mod 2)$ . So, $n$ must
be divisible by 4, and $\epsilon=\pm 1$ , whenever $x\not\equiv i(mod 2)$ . Thus we have verified
that

$\Gamma_{\kappa}=\left(\begin{array}{ll}1 & \\x & 1\end{array}\right)\Gamma_{\infty}\left(\begin{array}{ll}1 & \\-X & 1\end{array}\right)$ , $(x\not\equiv i(mod 2))$ ,

and that all such $\Gamma_{\kappa}$ are isomorphic to $\Gamma_{\infty},$ $i$ . $e$ . the group, isomorphic to $Z\times Z,$ ,

of all $\left(\begin{array}{ll}1 & n\\ & 1\end{array}\right)$ with $\mathfrak{o}\ni n\equiv 0(mod 4)$ . In order that a cusp $1/x$ is essential, it

is necessary that

$(\frac{-nx^{2}}{1+nx})=(\frac{X}{1+nx})=1$

holds for all $n\equiv 0(mod 4)$ . If one cheques all 16 representatives $mod 4$ making
use of the properties of the power residue symbol, then there will remain the
following six values of $x$ corresponding to non-equivalent essential cusps $1/x$

of $\Gamma$ with respect to $\chi$ :
$X_{1}=1$ , $x_{2}=1+\lambda^{3}$ , $x_{3}=\lambda^{2}$ , $x_{4}=2$ , $x_{6}=\lambda^{3}$ , $x_{6}=0$ .

We denote the cusp $1/x_{i}$ by $\kappa_{i}$ , and $\Gamma_{\kappa_{i}}$ by $\Gamma_{i}$ .

\S 2. Eisenstein series $E_{i}(u, s, \chi)$ .
For each $i=1,2,$ $\cdots$ , 6, put

$\sigma_{i}=\left(\begin{array}{ll}1 & \\x_{i} & 1\end{array}\right)\left(2 & 2^{-1}\right)$ .
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Then we see $\sigma_{i}\infty=\kappa_{i}$ , and that $\sigma_{i}^{-1}\Gamma_{i}\sigma_{i}$ is isomorphic to $0$ by $\left(\begin{array}{ll}1 & b\\ & 1\end{array}\right)\leftrightarrow b$ .
Hence, the euclidean measure of a period parallelogram $\sigma_{i}^{-1}\Gamma_{i}\sigma_{i}\backslash C$ is 1 for all
$i$ . Now we define as in (18) of [5] the Eisenstein series $E_{i}(u, s, \chi)$ by

$E_{i}(u, s, \chi)=\sum_{\sigma\subset-\Gamma_{i}\backslash \Gamma}\overline{\chi}(\sigma)v(\sigma_{i}^{-1}\sigma u)^{s}$
, $({\rm Re} s>2)$ ,

where $v(u)$ stands for $v$ for $u=\left(\begin{array}{ll}z & -v\\v & \overline{z}\end{array}\right)\in H$. Since the different of $F$ is 1/2,

the module $\Gamma_{J^{\infty}}^{*}$. in (19) of [5] is $\frac{1}{2}\mathfrak{o}$ . Hence $E_{i}(\sigma_{j}u, s, \chi)$ has a Fourier ex-
pansion of the form2)

\langle 2) $ E_{i}(\sigma_{\dot{f}}u, s, \chi)=\sum_{m\overline{-}0}a_{ij,m}(v, s, \chi)e^{\pi itr\tilde{m}z}\sim$

with

$ a_{ij,m}(v, s, \chi)=\int_{0^{1}}\int_{0^{1}}E_{i}(\sigma_{j}u, s, \chi)e^{-\pi itrmz}dxdy\sim\sim$ .

In particular, it follows form (24), (25) of [5] that $a_{ij,0}(v, s, \chi)$ is given by

(3) $a_{ij,0}(v, s, \chi)=\left\{\begin{array}{l}v^{s}+\varphi_{ii}(s,\chi)v^{2-s},\\\varphi_{ij}(s,\chi)v^{2-s},\end{array}\right.$ $(i=j)(i\neq j)$

,

with

(4) $\varphi_{ij}(s, \chi)=\frac{\pi}{s-1}$ . $\frac{1}{2}\sum_{c\neq 0}\frac{1}{|c|^{2s}}(\sum_{camod}\overline{\chi}_{ij}(c, d))$ ,

$(c* *d)\in\sigma_{i}^{-1}\Gamma\sigma_{j}$

,and with
$\chi_{ij}(c, d)=\chi(\sigma_{i}\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\sigma_{j}^{-1})$ ,

where the summation is extended over all pairs $(c, d)$ of numbers in $\mathfrak{d}$ such

that there exists in $\sigma_{i}^{-1}\Gamma\sigma_{j}$ an element of the form $\pm\left(\begin{array}{ll}* & *\\c & d\end{array}\right),$ $d$ being counted
$mod c$ .

We now propose to observe the matrix $\Phi(s, \chi)=(\varphi_{ij}(s, \chi))$ more closely,
and to write down the functional equation for $E_{i}(u, s, \chi)$ in a explicit form.
Put for the sake of simplicity

$\sigma_{i}=\left(\begin{array}{ll}1 & \\x & 1\end{array}\right)\left(2 & 2^{-1}\right)$ , $\sigma_{j}=\left(\begin{array}{ll}1 & \\y & 1\end{array}\right)\left(2 & 2^{-1}\right)$ ,

and assume

2) As far as no confusion is possible, we use the letter $i$ both for suffix and for
$\sqrt{}--1$ in this paper.
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$\sigma_{i}$ ( $ca$ $db$) $\sigma_{j}^{-1}=(_{c}^{a^{\prime}},$ $ d^{\prime}b)\in\Gamma$ .

Then $a,$ $b,$ $c,$
$d$ must satisfy either the condition

$a\equiv\eta(mod 4)$ , $b\in 0$ ,

$\frac{c}{4}\equiv\eta(-x+y)(mod 4)$ , $d\equiv\eta(mod 4)$ ,

or the condition
$a\equiv-\eta y(mod 4)$ . $4b\equiv-\eta(mod 4)$ ,

$\frac{c}{4}\equiv\eta(1+xy)(mod 4)$ , $d\equiv\eta x(mod 4)$ ,

according to $d^{\prime}\equiv 1(mod \lambda^{3})$ or $c^{\prime}\equiv 1(mod \lambda^{3})$ , where $\eta$ stands for 1 or $1+\lambda^{s}$

in both cases. Conversely, if these conditions are satisfied, and if moreover

ad–bc $=1$ , then $\sigma_{i}\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\sigma_{j}^{-1}$ belongs to $\Gamma$ .
On the other hand, the value of $\chi_{ij}(c, d)$ can be expressed by $c$ and $d$

because of

( $b^{\gamma})=($
$a-4by$ $4b$

$)$ .
$c^{\prime}$ $d^{\prime}$ $ax+\frac{1}{4}c-4bxy-dy$ , $4bx+d$

For example3), if $d^{\prime}\equiv 1(mod \lambda^{3})$ , then we have

(5) $\chi_{ij}(c, d)=(\frac{c/4}{d})i^{t(d)}$ ,

if $c’\equiv 1(mod \lambda^{3}),$ $(x, 2)=1$ , then we have

(6) $\chi_{ij}(c, d)=(\frac{c/4}{d})[(\frac{-1}{x})i]^{t(c/4-dy)}$

and if $c^{\prime}\equiv 1(mod \lambda^{3}),$ $(x, 2)=1,$ $(y, 2)=1$ , then we have

(7) $\chi_{ij}(c, d)=\left\{\begin{array}{l}(\frac{d}{c/4})-(\\(\frac{d}{c/4})(-i)^{t(c,4-dy)},\end{array}\right.$ $(x\neq 0),(x=0)$

,

where $t(m),$ $(0\ni m\equiv 1(mod \lambda^{3}))$ is defined by

$t(m)=\{01$

,

for $m\equiv 1(m_{3}od4)m\equiv 1+\lambda(mod 4)$

,

3) Every result stated here is proved by a direct, elementary calculation similar
to the proof of the theorem in [3].
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and in all cases $c\neq 0$ and $d\neq 0$ are assumed. Thus, the sum $\sum_{dmod c}$ in (4) is,

up to an elementary factor, reduced to a sum of the form

$\sum_{amod c}(\frac{c}{d})$ $(c\equiv d\equiv 1(mod \lambda^{3}))$ ,

which is $0$ unless $c$ is a fourth power, and is equal to $\varphi(c_{0}^{4})=Nc_{0}^{3}\cdot\varphi(c_{0})$ , if
$c=c_{0}^{4}$ . Here, $N$ means the norm with respect to $F/Q$ , and $\varphi$ is so-called Euler’s
function. Since

$\sum_{c_{0}\equiv 1(\lambda^{3})}\frac{\varphi(c_{0}^{4})}{Nc_{0}^{4s}}=(1-\frac{1}{2^{4s}})\frac{\zeta(4s-4)}{\zeta(4s-3)}$

holds with Dedekind’s zeta-function $\zeta(s)$ of $F$, the Dirichlet series in (4) coin-
cides with $\zeta(4s-4)/\zeta(4s-3)$ up to an elementary factor. An explicit form of
the matrix $\Phi(s)=(\varphi_{ij}(s, \chi))$ , which the author obtained by a direct computation
was as follows:

(8) $\Phi(s, \chi)=(-I\frac{2^{2-4s}}{1-2^{4s-3}}+M\frac{2^{1-4s}(1-2^{4s-4})}{1-2^{4s-3}})\frac{\pi}{s-1}\frac{\zeta(4s-4)}{\zeta(4s-3)}$ ,

where $I$ is the unit matrix, and

$M=($

$22$

$-1+i1-i1-i1-i$

$1+_{1}-1-11^{i}$

$-1-i-1-1211$

$1+_{1}-1^{i}-11$

$1+_{1}^{2_{i}}111$ $)^{4)}$

It follows from the general theory of Eisenstein series that every $E_{i}(u, s, \chi)$

has an analytic continuation in the whole s-plane, and is a single valued, mero-
morphic function. Furthermore, if we put

$\left(\begin{array}{lll}E_{1}(u, & s, & \chi)\\E_{6}(u & s & \chi)\end{array}\right)=\mathcal{E}(u, s, \chi)$ ,

then, again by the general theory, we have the functional equation

(9) $\mathcal{E}(u, s, \chi)=\Phi(s, \chi)\mathcal{E}(u, 2-s, \chi)$

for our Eisenstein series5).

4) That this matrix must be $hermitian_{A}^{-}is$ a consequence of (4).
5) For all of these results, see the literature of [5]. In our case, the proofs of the

analytic continuation, of the single-valuedness, and of the functional equation can be
simplified, because the constant terms in the Fourier expansion of Eisenstein series are
known functions.
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\S 3. Main results.

We now observe non-constant terms $a_{ij,m}(v, s, \chi),$ $(m\neq 0)$ , in the Fourier
expansion (2) of Eisenstein series. Without any loss of generality, we may
restrict ourselves to the case of $j=6$ . The formula (35) of [5] then implies
that (9) turns out a functional equation

(10) $(\pi|m|)^{s}\Gamma(s)^{-1}\left(\begin{array}{lll}\varphi_{1}(s,\chi,m) & & \\\varphi_{6}(s & \chi & m)\end{array}\right)=\Phi(s, \chi)(\pi|m|)^{2-s}\Gamma(2-s)^{-1}\left(\begin{array}{ll}\varphi_{1}(2-s,\chi,m) & \\\vdots & \\\varphi_{6}(2-s\chi & m)\end{array}\right)$

where $\varphi_{i}(s, \chi, m)$ is given by

(11) $\varphi_{i}(s, \chi, m)=\sum_{c\neq 0}\frac{\tau_{i,m}(c)}{Nc^{s}}$

according to (31) of [5] with

$\langle 12)$

$\tau_{i,m}(c)=_{d_{*}}\frac{1}{(_{c}^{*}2}\Sigma\overline{\chi}_{i6}(c, d)e^{\pi itrmd/c}a^{mod_{-}c_{1}})\in\sigma_{i}\Gamma\sigma_{6}$

Here, the trace means the ordinary trace with respect to $F/Q$ . From these
facts one can already recognize that the functions $\varphi_{1},$ $\cdots,$ $\varphi_{6}$ including Gauss
sums satisfy a functional equation of a vectorial form.

To make the situation more clear, we shall show several precise formulas.
First of all, we intend to give a more concrete expression for $\tau_{i,m}(c)$ in (11).

Let $ord_{\lambda}c,$ $(c\in 0)$ , denote the natural number $l$ such that $c\equiv 0(mod \lambda^{\iota})$ , c$O
$(mod \lambda^{\iota+1})$ , and put

$\tau_{m}(c, \delta)=\sum_{dmod c}(\frac{c/4}{d})^{-1}e^{\pi ttrmd/c}$

for $ord_{\lambda}c\geqq 4,$ $\neq 5,$ $ord_{\lambda}\delta=0,$ $c/4\neq\pm i$, and

$\tau_{m}^{\prime}(c, \delta)=\sum_{dmod c}(\frac{d}{c/4})^{-1}e^{\pi itrma/c}$

for $ord_{\lambda}c=0^{6)}$ . Then a direct calculation using (5), (6), (7), and (12) shows
that

$\tau_{1,m}(c)=\tau_{m}(c, 1)-i\tau_{m}(c, 1+\lambda^{3})$

$+(-i)^{t(-c/4)}\{\tau_{m}(-c, 1)+\tau_{m}(-c, 1+\lambda^{3})\}$

for $c/4\equiv-1(mod \lambda^{s})$ ,

6) If $(c/4, d)=1$ , then the residue symbol in these two sums must be understood
to represent $0$ as usual.
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$\tau_{2,m}(c)=\tau_{m}(c, 1)-i\tau_{m}(c, 1+\lambda^{3})$

$+i^{t(-c/4)}\{\tau_{m}(-c, 1)+\tau_{m}(-c, 1+\text{\‘{A}}^{3})\}$

for $c/4\equiv-1(mod \lambda^{3})$ , that $\tau_{3,m}(c)$ for $c/8\equiv i(mod 2),$ $\tau_{4,m}(c)$ for $c/8\equiv 1(mod 2)$ ,

$\tau_{5,m}(c)$ for $ord_{\lambda}c=7$ , and $\tau_{6,m}(c)$ for $ord_{\lambda}c\geqq 8$ are all equal to $\tau_{m}\sim(c)+\tilde{\tau}_{m}(-c)$

with $\tau_{m}\sim(c)=\tau_{m}(c, 1)-i\tau_{m}(c, 1+\lambda^{3})$ , and that, whenever $c/4\equiv 1(mod \lambda^{3}),$ $\tau_{i,m}(c)$

$=i^{t(c/4)}\tau_{m}^{\prime}(c, x_{i})$ for $i=3,4,5,6$ . On the other hand, we have always a trivial
relation $\tau_{i,m}(c)=\tau_{i,m}(-c)$ . All other values of $\tau_{i,m}(c)$ which were not listed
above are $0$ . Thus we have seen that the numerator $\tau_{i,m}(c)$ on the right hand
side of (12) is a linear combination of ordinary Gauss sums containing congru-
ence characters of order 4.

What we have to do next is to bring the functional equation (10) into a
usual form. Making use of the functional equation

(13) $\pi^{1-2s}\frac{\Gamma(s)}{\Gamma(1-s)}\zeta(s)=\zeta(1-s)$

of Dedekind’s zeta-function, one gets

$\frac{\zeta(4s-4)}{\zeta(4s-3)}=\frac{\zeta(4(2-s)-3)}{\zeta(4s-3)}\pi^{-9+8s}(4-4s)\frac{\Gamma(4-4s)}{\Gamma(4s-4)}$ .

So, if we put

(14) $\zeta_{i}(s, \chi, m)=\zeta(4s-3)\varphi_{i}(s, \chi, m)$ ,

then (10) is transformed into

\langle 15) $\pi^{-3s}|m|^{s}\frac{4(s-1))}{(s-1)}\tau_{\Gamma^{\underline{(}}}\left(\begin{array}{llll}\zeta_{l}(s, & \vdots & \chi, & m)\\\zeta_{6}(s, & \vdots & \chi & m)\end{array}\right)$

$=M(s)\pi^{-3(2-s)}|m|^{2-s}\frac{\Gamma(4(1-s))}{\Gamma(1-s)}\left(\begin{array}{ll}\zeta_{1}(2-s,\chi,m) & \\\vdots & \\\zeta_{6}(2-s\chi & m)\end{array}\right)$

with

(16) $M(s)=4(-I\frac{2^{2-4s}}{1-2^{4s-3}}+M\frac{2^{1-4s}(1-2^{4s-4})}{1-2^{4s-8}})$ .

Since the Eisenstein series is single valued and meromorphic, so is $\zeta_{i}(s, \chi, m)$ ,

too. Moreover, the coefficients in the Dirichlet series expansion of $\zeta_{i}(s, \chi, m)$

are, by definition (14), again linear combinations of Gauss sums, and (15) is
already a functional equation in a vectorial form of our zeta-functions $\zeta_{i}(s, \chi, m)$ .

At the end of this \S , we propose to observe what happens after the
diagonalization of the matrix $M(s)$ . Let $q$ be a characteristic root of the
hermitian matrix $M$, and put
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$g(s, q)=4(-\frac{2^{2-4s}}{1-2^{4s-3}}+q\frac{2^{\iota-4s}(1-2^{4s-4})}{1-2^{4s-3}})$ .
Then, (15) entails

(17) $M(s)M(2-s)=I$ ,

and consequently
$g(s, q)g(2-s, q)=1$ .

Hence, $q$ is either 4 or $-2$ . This means that the characteristic roots of $M$

consist of two 4 and four $-2$ . Since

$g(s, 4)=2^{4-4s}$ , $g(s, -2)=-\frac{2^{3-4s}(1-2^{5-4s})}{1-2^{3-4s}}$ ,

and since
$g(s, q)=(1+g(s, q))(1+g(2-s, q))^{-1}$ ,

the diagonalization of $M(s)$ by a unitary matrix gives rise to six functional
equations of the form

(18) $\xi(s)=\xi(2-s)$

with

$\xi(s)=\pi^{-3s}|m|^{s}\frac{\Gamma(4(s-1))}{\Gamma(s-1)}Z(s, \chi, m)$ ,

where we put either
$Z(s, \chi, m)=(1+2^{4-4s})^{-1}\zeta_{i}^{*}(s, \chi, m)$

or
$Z(s, \chi, m)=(1-\frac{2^{3-4s}(1-2^{6-4s})}{1-2^{3-4s}})^{-1}\zeta_{i}^{*}(s, \chi, m)$ ,

$\zeta_{l}^{*}(s, \chi, m)$ being a linear combination of $\zeta_{i}(s, \chi, m)$ , corresponding to the diago-
nalization of $M$ or $M(s)$ in (15), (16) by a constant unitary matrix. The func-
tion $Z(s, \chi, m)$ is also meromorphic and single valued on the whole s-plane, and
can be expressed by a Dirichlet series whose coefficients are linear combinations
of Gauss sums containing the fourth power residue symbol. Besides, the
functional equation (18) has an usual form, except that the gamma factor

$\frac{\Gamma(4(s-1))}{\Gamma(s-1)}=(2^{5}\pi^{3})^{\frac{1}{2_{\lrcorner^{}}}}2^{8(s-1)}\Gamma(s-\frac{3}{4})\Gamma(s-\frac{1}{2})\Gamma(s-\frac{1}{4})$

is somewhat eccentric.

\S 4. Further remarks.

1. All of our previous arguments can be transfered to the case of general
algebraic groups at least in principle. A comparatively easy example of the
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higher dimensional cases, which is nevertheless of considerable number theo-
retical importance, is the one where a direct product of finite copies of $SL(2,$ $ C\rangle$

and a discontinuous group of Hilbert’s type with respect to a totally imaginary
number field $F$ are treated. Of course, each component of the direct product
must correspond to an infinite place of $F$. In this case, all results of this
paper hold quite similarly. The explicit form, like (8), of the matrix $M(s)$ is,
however, rather difficult to obtain, and it may not be possible to diagonalize
the matrix $M(s)$ by a constant unitary matrix. Same situations occur even in
the case as was carried out in this paper, whenever one uses smaller subgroups
of $\Gamma$ instead of itself. But, such a situation causes no essential difficulty. For,

even in the general case, one can prove the formula (17) first, to get $I+M(s)$

$=M(s)(I+M(2-s))$ , and then one can deduce from (15) the invariance of

$(I+M(s))^{-1}\pi^{-3s}|m|^{s}\frac{\Gamma(}{\Gamma}\frac{4(s-1))}{(s-1)}\left(\begin{array}{lll}\zeta_{1}(s, & \vdots & \chi,m)\\\zeta_{6}(s & \vdots & m\chi)\end{array}\right)$

under $s\rightarrow 2-s$ , which furnishes a set of functional equations of a usual form7).

2. The Dirichlet series in (11) are absolutely convergent for ${\rm Re} s>3/2$ ,

because it is easy to see that $\tau_{i,m}(c)$ is $O(\sqrt{Nc})$ as $|c|\rightarrow\infty$ . On the: other
hand, put $E(u, s, \chi)=E_{6}(\sigma_{6}u, s, \chi),$ $\varphi_{66}(s, \chi)=\varphi(s, \chi)$ , and define $\tilde{E}(u, s, \chi)$ by

$\tilde{E}(u, s, \chi)=\{E(u,s,\chi)E(u, s,\chi)-v^{s}$

,

for $v>Yv\leqq Y$

,

for a sufficiently large positive number $Y$. Furthermore, let 9 be a funda-
mental domain of $\Gamma$ that has a similar form to the domain by (7) of [5].
Then, we have

$\int_{\Omega}|\tilde{E}(u, s, \chi)|^{2}d\mu(u)=\frac{Y^{2S^{-2}}}{2S-2}+\frac{\varphi(\overline{s},\overline{\chi})Y^{2it}-\varphi(s,\chi)Y^{-2it}}{2it}$

for $s=S+it,$ $S>1$ ; this is an important evalution formula related to the
analytic continuation of Eisenstein series. It follows from the formula that

$\int_{9}|\tilde{E}(u, s, \chi)|^{2}d\mu(u)$ is finite at $s=s_{0}$ with ${\rm Re} s_{0}>1$ whenever $\varphi(s, \chi)$ is regular

at $s=s_{0}$ , and that
$\int_{\Phi}|\frac{\tilde{E}(u,s,\chi)}{\varphi(s,\chi)}|^{2}d\mu(u)$

is finite at $s=s_{0},$ $({\rm Re} s_{0}>1)$ , even if $s=s_{0}$ is a pole of $\varphi(s, \chi)$ . The same
assertion holds for all other $E_{i}(u, s, \chi)$ , too. Hence, we can conclude by using

7) Not vectorial form.
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(30) of [5] that $\varphi_{i}(s, \chi, m)$ is holomorphic in the half plane determined by
${\rm Re} s>5/4$ , and that $\varphi_{i}(s, \chi, m)$ has possibly a simple pole at $s=5/4$ . Thus, the
meaning of $s=5/4$ for our $\varphi_{i}(s, \chi, m)$ or $\zeta_{i}(s, \chi, m)$ is similar to that of $s=1$

for ordinary zeta- and L-functions. But, it should be noted that $\varphi_{i}(s, \chi, m)$ is
absolutely convergent only for ${\rm Re} s>3/2$ . To explain the nature of functions
as $\zeta_{i}(s, \chi, m)$ satisfactorily, it might be necessary to discover some kind of
modular forms, or theta series, and something like Mellin’s transformation
which supplies, for example, a nice integral representation of our functions.

3. The fact that $\varphi_{i}(s, \chi, m)$ is regular at $s=3/2$ has some basic meanings
for the distribution of arguments of Gauss sums. Namely, we can apply the
property of the function to a problem such as so called Kummer’s conjecture*)
explained in [2]. Although the author did not try to obtain the final result
yet, it is sure that we can attack the problem by means of $\varphi_{i}(s, \chi, m)$ in a
similar, standard way as in the theory of prime numbers. For example, put
$\tau(c)=\tau_{6,1}(4c)$ , so especially

(19) $\tau(c)=(-i)^{t(c)}\sum_{cdmod}(\frac{d}{c})^{-1}e^{\pi itrd/c}$

for $c\equiv 1(mod \lambda^{3})$ . Then, by virtue of ordinary Tauberian theorems, the regu-
larity of $\varphi_{6}(s, \chi, 1)$ at $s=3/2$ yields

$\sum_{Nc<Y}\frac{\tau(c)}{\prime Nc}=o(Y)$ ,

which is a necessary condition for the distribution of the arguments of Gauss
sums to be uniform. A same kind of result can be obtained also for Gauss
sums containing congruence characters of arbitrary orders defined in a number
field involving correspondingly many roots of unity.

4. The behavior of $\zeta_{i}^{*}(s, \chi, m)$ at $s=3/4$ has an important connection with

the reciprocity law, because the factor $\frac{\pi}{s-1}\frac{\zeta(4s-4)}{\zeta(4s-3)}$ of $\Phi(s, \chi)$ becomes $0$ at

$s=3/4^{8)}$ . For example, if the functional equation (18) is satisfied by $\xi(s)$ such
that $Z(s, \chi, m)=(1+2^{4-4s})^{-1}\zeta_{i}^{*}(s, \chi, m)$ , and if $E^{*}(u, s, \chi)$ is the corresponding linear
combination of $E_{i}(u, s, \chi)$ , then the function

(20) $\Theta(u, \chi)=E^{*}(u,$ $\frac{3}{4},$
$\chi)$

has the property

(21) $\Theta(\sigma u, \chi)=\chi(\sigma)\Theta(u, \chi)$ ,

$*)$ This problem itself was recently solved by A. I. Vinogradov, IZV. Akad. Nauk
SSSR, Ser. Math., 31 (1967), 123-148. The author was told about that by G. Beyer after
having prepared the manuscript.

8) This is the only real zero, and the only zero in ${\rm Re} s\leqq 1$ of the factor.
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for every $\sigma\in\Gamma$ , and has simple constant terms in the Fourier expansion at

cusps. In fact, all such constant terms are constant multiples of $v^{\frac{8}{4}}$ . On the
other hand, if all what we have done in this paper are repeated using the
quadratic residue symbol instead of biquadratic, then the function correspond-
ing to $\zeta_{i}^{*}(s, \chi, m)$ becomes essentially Hecke’s L-function with the congruence
character determined by $F(\sqrt{m})/F$ , and the latter has a simple pole at $s=3/2$

if and only if $m$ is a square. Therefore, the function corresponding to $0$ in
(20) becomes an ordinary theta function in this case. More precisely speaking,
we get the function induced on $H$ by a theta function on SiegePs upper half
space of degree two, under the embedding

$\left(\begin{array}{ll}z & -v\\v & \overline{z}\end{array}\right)\rightarrow\left(\begin{array}{lll}x+iv & \prime & -y\\-y, & & -x+iv\end{array}\right)$ $(z=x+iy)$ ,

of $H$ into the Siegel space. A similar, related fact can be found in the equality
between a classical theta function $\sum e^{\pi im^{2}z}$ and an Eisenstein series defined on
the upper half plane9). Thus, the function $\Theta$ in (20) is regarded as a generali-
zation of theta functions.

Because of the functional equation, the value concerning (20) of $\zeta_{i}^{*}(s, \chi, m)$

at $s=3/4$ is essentially the residue of $\zeta_{\iota}^{*}(s, \chi, m)$ at $s=5/4$ if 5/4 is a simple
pole, and is $0$ if 5/4 is no pole. The possibility for $\zeta_{i}^{*}(s, \chi, m)$ to have a
multiple pole at 5/4 is excluded by the arguments in 2. of this \S . In this way,
we face to an important problem to investigate the regularity of our functions
at $s=5/4$ , and $s=5/4$ may well be compared with $s=1$ in the case of classical
zeta- and L-functions. Since, however, the Dirichlet series which define our
functions are absolutely convergent only for ${\rm Re} s>3/2$ , we must find some new
way to get the behavior of the function at $s=5/4$ . This seems rather difficult.
In all the cases, concerning quadratic residue symbols, the both values like 3/2
and 5/4 above, the former being related to Gauss sums and the latter related
to the reciprocity law, are the same.

Any way, if we could know more about $\zeta_{i}^{*}(s, \chi, m)$ at $s=3/4$ , and could
construct $\Theta(u, \chi)$ in such a form that (21) is directly to verify, then we have
$\chi(\sigma)\chi(\sigma^{\prime})=\chi(\sigma\sigma^{\prime})$ for $\sigma,$

$\sigma^{\prime}\in\Gamma$ , and can in turn prove the reciprocity law of
the biquadratic residue symbol. This kind of knowledge would also supply a
possibility to generalize the theory of unitary operators, as was done in [9],
in such a direction where the topological covering groups constructed in [4]
of some $p$-adic matric groups may play a similar role to the metaplectic group
in [9].

5. At the very end, some miscellaneous facts should be mentioned. Our

9) This is stated in [8] as a result of Maass. Maass’ original work is in Abh-
Math. Sem. Hamburg, 12 (1938), 133-162.
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functions as $\zeta_{i}(s, \chi, m)$ has no Euler product. But, if $(c, c^{\prime})=1$ and $c\equiv C^{\prime}\equiv 1$

$(mod \lambda^{3})$ , then the multiplicative relation

$\tau(c)\tau(c^{\prime})=(\div)(\frac{c^{\prime}}{c})(\frac{c,c^{\prime}}{\lambda})\tau(cc^{\prime})$

holds for quantities defined by (19), where $(\frac{c,c^{\prime}}{\lambda})$ is the norm residue $symbo1^{1)}$

of degree 4 in $Q(\sqrt{-1})$ . Therefore we can expect that there still exists an
analogy of the Euler product, which may probably be made clear if we observe
Hecke operators attached to a global covering group as mentioned in [4] of the
adele group of $SL(2, F)$ . The Gauss sums then will give rise to quantities
concerning the representation of the group.

If $(m, c)=1,$ $c\equiv 1(mod 4)$ , then we have a well-known, elementary relation

$\sum_{amod c}(\frac{d}{c})^{-1}e^{\pi itrmd/c}=(\frac{m}{c})$ . $\sum_{mod e}(\frac{d}{c})^{-1}e^{\pi itrd/c}$ ,

which means that the coefficients of the Dirichlet series $\varphi_{i}(s, \chi, m)$ are obtained

essentially by multiplying the congruence character $\chi_{m}(c)=(\frac{m}{c})$ of $c$ to cor-
responding coefficients of $\varphi_{i}(s, \chi, 1)$ . Hence, our Dirichlet series are similar in
nature also to those Dirichlet series which were investigated in [10] in con-
nection with modular forms.

By a similar argument as in 2. of this \S , it is not hard to show that every
$Z(s, \chi, m)$ is meromorphic in the whole s-plane, and possible singularities are
simple poles at $s=5/4$ and 1. The distribution of the zeros of $Z(s, \chi, m)$ is,
however, a little unnatural. From the functional equation (18), we see at once
that $Z(s, \chi, m)$ has zeros at $s=1/2,1/4$, and at $\frac{1}{4}(3-4n),$ $\frac{1}{4}(2-4n),$ $\frac{1}{4}(1-4n)$

for all integers $n\geqq 1$ . At $s=1,$ $Z(s, \chi, m)$ may have a pole, and 3/4 is a zero
if and only if $s=5/4$ is not a pole. It is impossible that $Z$ ( $\frac{3}{4}$ , $\chi,$ $m)=0$ for all

$m$ and $i$ , because $E^{*}(u,$ $\frac{3}{4}$ , $\chi$) as in (20) then becomes a function like $v^{\frac{3}{4}}$

, and

cannot be an automorphic function. By a similar reason, it cannot happen that
$Z(-n, \chi, m)$ with a given integer $n\geqq 0$ are $0$ for all $m$ and $i$ . Thus, for a
reasonable distribution of zeros, it may be preferable to multiply $Z(s, \chi, m)$ by
a suitable function with zeros at 1, $0,$ $-1,$ $-2,$ $\cdots$ .

Mathematical Institute, Nagoya University
and

Mathematisches Institut der Technischen
Hochschule Karlsruhe

10) See [1].
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