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\S 1. Introduction and summary.

In his book [1], J. L. Doob proved that every stochastic process continuous
in probability has a standard separable measurable modification. This theorem
plays a fundamental role in the sample path approach of stochastic processes.
The aim of our paper is to give a more concrete formulation to this important
fact to make it easier to visualize the probability law of the sample path.

In Section 2 we shall introduce the space $M\equiv M(T)$ of canonical measurable
functions on the time interval $T$. The space $\tilde{M}\equiv\tilde{M}(T)$ contains bad functions
such as the Dirichlet function that takes 1 on rationals and $0$ elsewhere. Since
we have a good function $f\equiv 0$ equivalent to the Dirichlet function, this can
be discarded from $\tilde{M}$ without any essential loss. We shall pick up at least
one good function, called canonical measurable function here, from among each
equivalent class in $\tilde{M}$ and consider the space $M\equiv M(T)$ of all canonical func-
tions in behalf of $\tilde{M}$ . By definition a canonical function takes one of its
general approximate limits at each point. All continuous functions are in $M$

and if a function in $M$ is equal to a continuous function almost everywhere on
$T$, they are equal everywhere on $T$. A similar fact holds for functions with
no discontinuities of the second kind. These facts suggest that $M$ is suitable
for the function space in which the path of a reasonable stochastic process is
ranging.

In Section 3 we shall define a a-algebra $\mathscr{D}=\mathscr{D}(M)$ of subsets of $M$ which
will determine a measurable structure in M. $\mathscr{D}$ is generated by all sets of the
following types

(i) $\{f\in M:f(t)<a\}$ ,

(iii) { $f\in M:\int_{I}$ arctan $f(t)dt<a$ }.

where $a$ ranges over reals, $t$ over $T$ and $I$ over all compact intervals in $T$.
The scaling “ arctan “ was used in the integral to make it converge. We shall
write $\mathscr{D}_{K}\equiv \mathscr{D}_{K}(M)$ and $B_{\rho}\equiv \mathscr{D}_{\rho}(M)$ , respectively, for the $\sigma$ -algebra generated
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by the sets (i) only and that generated by the sets (ii) only. The space
$C\equiv C(T)$ of all continuous functions, the space $D\equiv D(T)$ of all functions with
no discontinuities of the second kind and the space $L^{p}\equiv L^{p}(T)$ of all canonical
functions with finite p-th norm are $\mathscr{D}_{\rho}$ -measurable and so $\mathscr{D}$ -measurable.

In Section 4 we shall discuss canonical stochastic processes. Let $\{X_{t}(\omega)$ ,
$t\in T\}$ be a stochastic process defined on $(\Omega, 9, P)$ . The sample path $X.(\omega)$

is a function of $\omega$ ranging in the function space $\overline{R}^{T}$ in general. $\{X_{t}\}$ is called
canonical if $X.(\omega)\in M$ for every $\omega$ and if the map: $\omega\rightarrow X.(\omega)$ from $\Omega$ into
$M$ is measurable $(9, \mathscr{D})$ . In other words, the sample path $X.(\omega)$ is an $(M, \mathscr{D})-$

valued random variable. We shall prove that every canonical process con-
tinuous in probability is measurable in the pair $(t, \omega)$ with respect to the pro-
duct measure $dtdP$ and also separable relative to closed sets with respect to
every countable dense subset of $T$. The (standard) canonical modification is
defined in the same way as Doob’s separable measurable modification, but our
meaning of ” standard is more strict than Doob’s. It will be proved that
every stochastic process continuous in probability has one and only one (in a
reasonable sense) canonical modification.

In Section 5 we shall discuss probability measures on $M$. Let $\{X_{t}(\omega)\}$ be
a canonical process continuous in probability. Then the sample path $X.(\omega)$

is an $(M, \mathscr{D})$-valued random variable on $(\Omega, q, P)$ . The probability law of
$X.(\omega)$ defined as usual will be a complete $\mathscr{D}$ -regular probability measure $\mu$ on
$M$ which satisfies

$(\Gamma. 1)$ $\mu\{f\in M:|f(t)|<\infty\}=1$ $t\in T$ ,

$(\Gamma. 2)$ $\lim_{\rightarrow t}\mu\{f\in M:|f(s)-f(t)|>\epsilon\}=0$
$\epsilon>0$ , $t\in T$ .

The finite-dimensional marginal distribution $m_{t_{1},\cdots,\iota_{n}}$ of over $\{t_{1}, \cdots , t_{n}\}$ is de-
fined by

$m_{c_{1},\ldots,\iota_{n}}(E)=\mu\{f\in M:(f(t_{1}), \cdots , f(t_{n}))\in E\}$ .
The system of all such marginal distributions will satisfy

$(m. 1)$ $m_{t}\{(-\infty, \infty)\}=1$ $t\in T$

$(m. 2)$ $\lim_{s\rightarrow t}m_{st}\{(x, y):|x-y|>\epsilon\}=0$
$\epsilon>0$ , $t\in T$

in addition to Kolmogorov’s consistency condition. Conversely, if we are given
such a system of finite dimensional probability measures $\{m_{\iota_{1},\ldots,\iota_{n}}\}$ , we can
construct one and only one $\mu$ with $(\Gamma. 1)$ and $(\Gamma. 2)$ whose marginal distribu-
tions are the given $\{m_{c_{1},\cdots,\iota_{n}}\}$ . It is to be noted that the finite-dimensional
marginal distributions determine the probability measure $\mu$ not only on $\mathscr{D}_{R}$

out also on $\mathscr{D}$ , provided the conditions $(m. 1)$ and $(m. 2)$ are satisfied.
REMARKS. We shall list some notations and definitions which will be used
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repeatedly in this paper.
$T$ stands for a real interval, bounded or unbounded and open, closed or

semi-closed. It indicates the time interval. The a-algebra of all Borel subsets,

of $T$ is denoted by $\mathscr{D}(T)$ .
An open subset of $T$ means a subset of $T$ open in $T$, not in $(-\infty, \infty)$ .

Similarly for a closed subset.
$R$ and $\overline{R}$ stand respectively for the open real line $(-\infty, \infty)$ and the closed

one $[-\infty, \infty]$ . $\mathscr{D}(R)$ denotes the system of all Borel subsets of $R$ . Similarly
for $\mathscr{D}(\overline{R})$ and $\mathscr{D}(R^{n})$ .

A subset $E$ of $T$ is always assumed to be measurable and $|E|$ denotes the
Lebesgue measure of $E$ .

$I,$ $I_{n}$ etc. stand for bounded subintervals of $T$.
$cg_{rat}$ stand for the system of all compact subintervals of $T$ expressible as

the intersection of $T$ with a rational interval $\subset R$ , and $g_{rat}$ fer the system of
all non-empty sets expressible as a finite sum of compact intervals in $3_{ra\dagger\sim}$

Both are countable systems. Every $E$ with $|E|<\infty$ can be approximated in
measure by sets in $\mathscr{Z}_{rat}$ .

A function $f$ is always assumed to be a real measurable function defined
on T. $f$ may take $\pm\infty$ on a null set.

$\{f<c\}$ denotes the set $\{t\in T:f(t)<c\}$ .
“ arctan ” is abbreviated as “ atn ’ This gives a homeomorphism from $\overline{R}$

onto $[-\pi/2, \pi/2]$ .
(X, $\mathscr{D}$) stands for a measurable space.
Let (X, $\mathscr{D}$) and $(Y, C)$ be measurable spaces. A map $f:X\rightarrow Y$ (into) is said $\cdot$

to be measurable $(9, C)$ if $f^{-1}(c)\supset \mathscr{D}$ i. e. if $f^{-1}(C)\in 9$ for every $C\in C$ . $f$ is
said to be measurable $(\mathscr{D})$ or $\mathscr{D}$ -measurable in case $Y=R$ or $\overline{R}$ and $c=\mathscr{D}(R))$

or $\mathscr{D}(\overline{R})$ .
The basic probability space is denoted by $(\Omega, g, P)$ . $S^{i}$ is always assumed

to be P-complete. In other words, every subset of a set with P-measure $0$

belongs to $g$ . The generic element in $\Omega$ is denoted by $\omega$ .
Let $\mathscr{Z}_{1}$ be a $\sigma$ -subalgebra of $g$ . The P-completion of $\mathscr{Z}_{1}$ , denoted by $5_{1}^{P}$

‘

is defined to be the $\sigma$ -algebra that consists of all $A\in g$ with the property:

$\exists A_{1},$ $A_{2}\in \mathscr{Z}_{1}$ such that $A_{1}\subset A\subset A_{2},$ $P(A_{2}-A_{1})=0$ .
Notice that not every P-null set belongs to $S^{\overline{7}_{1}^{P}}$ .

An (X, $\mathscr{D}$)-valued random variable $X$ is a function of $\omega$ such that the map
$\omega\rightarrow X(\omega)$ is $(\mathscr{Z}, \mathscr{D})$-measurable. The probability law of $X$, denoted by $P_{X}$, is
defined by

$P_{X}(B)=P\{\omega:X(\omega)\in B\}=P(X^{-1}(B))$ if $X^{-1}(B)\in\overline{X^{-1}(\mathscr{D})}^{P}$ .
$P_{X}$ is a complete $\mathscr{D}$ -regular probability measure on $X$. The $P_{X}$-completion of $\mathscr{D}$

’
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is denoted by $\overline{\mathscr{D}}^{P_{X}}$ . $P\{\omega:X\in B\}$ may be meaningful for a set $B\in\overline{B}^{P_{X}}$ , but
we do not define $P_{X}$ for such $B$ .

An $(\overline{R}, \mathscr{D}(\overline{R}))$-valued random variable $X(\omega)$ is called a real random variable
if $P(X\in R)=1$ . $X_{t}(\omega)$ is written as $X(t, \omega)$ without explanation. The $\sigma$ -algebra
generated by the sets $\{\omega:X_{t}(\omega)<a, t\in T, a\in R\}$ is denoted by $\mathscr{D}[X_{t}, t\in T]$

or $\mathscr{D}[X]$ .

\S 2. Canonical measurable function.

Let $\tilde{M}\equiv\tilde{M}(T)$ stand for the space of all real measurable functions defined
on $T$. We shall introduce some notions following Saks [2]. The parameter
of regularity of $E$ , denoted by $\alpha(E)$ , is defined to be the supremum of $|E|/|I|$ ,
$I$ ranging over all $intervals\supset E$ . We shall write $E_{n}\rightarrow tr$ ($E_{n}$ tends to $t$ regularly),

if $t\in E_{n}$ for every $n$ , if the diameter of $E$ tends to $0$ and if $\inf_{n}\alpha(E_{n})>0$ .
$a\in\overline{R}$ is called a general approximate limit of $f\in\tilde{M}$ at $t$ if for every neigh-
borhood $U$ of $a$ , we have $E_{n}\rightarrow tr$ such that

$\lim_{n}\frac{|\{f\in U\}\cap E_{n}|}{|E_{n}|}>0$ .

The set of all general approximate limits of $f$ at $t$ is denoted by $L(f, t)$ . The
approximate upper limit of $f$ at $t$, denoted here by $f\overline{(}t$), is defined to be the
infimum of $b\in\overline{R}$ such that for every $E_{n_{r}^{\rightarrow}}t$ we have

we set $\overline{f}(t)=-\infty$ , if there is no such $b$ . The approximate lower limit $\underline{f}(t)$ is
defined similarly. It is a well-known important fact [2] that $\overline{f}(t)=\underline{f}(t)a$ . $e$ . on
$T$. It is easy to see

PROPOSITION (2.1). $\overline{f}(t)(\underline{f}(t))$ is the largest (least) element in $L(f, t)$ and so
$L(f, t)$ is non-empty. $L(f, t)$ consists of a single point for almost every $t\in T$.

Let $\mathcal{E}_{mn}(t)$ denote the class of all sets $E\subset T$ such that $E\subset(t-1/m, t+1/m)$

and that $\alpha(E)>1/n$ and $q_{mn}(I)$ the class of all sets in $\mathscr{Z}_{rat}$ with the same
property. The following proposition that will be useful later can be proved
by a routine.

PROPOSITION (2.2).
(i) $a\in L(f, t)$ if and only if for every $\epsilon>0$ , we can find $E_{n_{r}^{\rightarrow}}t$ such that

$|\overline{E}_{n}^{1}\overline{|}\int_{E_{l}}|atnf(s)-$ atn $ a|ds<\epsilon$ , $n=1,2,$ $\cdots$

(ii) atn $f\overline{(}t$) $=\sup_{n}\inf_{mF_{\lrcorner}\in}\sup_{e_{mn(t)}}\frac{1}{|E|}\int_{E}atnf(s)ds$
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$\mathcal{E}_{mn}(t)$ can be replaced $b\gamma q_{mn}(t)$ . $atn\underline{f}(t)$ is also expressed $ similarl\gamma$ .
DEFINITION. $f\in\tilde{M}$ is called a canonical measurable function, if $f(t)\in L(f,$ $ t\rangle$ }

for every $t\in T$. $M\equiv M(T)$ denotes the space of all canonical functions.
We shall use $M$ in behalf of $\tilde{M}$ . This is justified by the following
PROPOSITION (2.3). For every $f\in M$ we have at least one $g\in M$ equal to $f$

$a$ . $e$ . on T. All such $g’ s$ can be obtained by taking any point in $L(f, t)$ for the
value of $g$ at each $t$ .

“ $f=ga$ . $e$ . ” is a strong condition in $M$ as is seen in the following pro-
positions (2.4), (2.5) and (2.6).

PROPOSITION (2.4). The following conditions on $f,$ $g\in M$ are equivalent,.
where $U$ is an open subset of $T$.

(i) $f=ga$ . $e$ . on $U$,
(ii) $L(f, t)=L(g, t)$ for every $t\in U$,

(iii) $\overline{f}=\overline{g}$ on $U$,

(iv) $\underline{f}=\underline{g}$ on $U$.
Let $C=C(T)$ denote the space of all continuous functions. Then it is.

obvious that $C\subset M$.
PROPOSITION (2.5). Suppose $f\in C,$ $g\in M$ and $U$ is open in T. Then we’

have
(i) $\overline{f}=\underline{f}=f$ : $L(f, t)$ is a single point for every $t\in U$,

(ii) $g\leqq(\geqq)fa$ . $e$ . on $U\Rightarrow g\leqq(\geqq)f$ everywhere on $U$,
(iii) $g=fa$ . $e$ . on $U\Rightarrow g=f$ everywhere on $U$.

The case $f\equiv const$ in (ii) will be useful later.
Let $D\equiv D(T)$ denote the space of all functions having no discontinuities.

of the second kind. We assume $f\in D$ to be right or left continuous at every
jump point and continuous at the end points (if any). It is clear that $D\subset M_{\infty}$

PROPOSITION (2.6). Suppose $f\in D$ and $g\in M$. If $f=ga$ . $e$ . on $T$, then
(i) $g\in D$ ,

(ii) The set of continuity points of $g$ is the same as that for $f:g=f$ on
that set and $g(t)=f(t+)$ or $f(t-)$ elsewhere.

\S 3. The $\sigma$ -algebras $\mathscr{B}_{\rho},$ $\mathscr{B}_{K}$ and $\mathscr{B}$ .

The space $M$ of all canonical functions on $T$ is topologized by the follow-
ing pseudo-metric:

$\rho(f, g)=\int_{T}|atnf(t)-$ atn $g(t)|1+t^{2}$ (atn $=$ arc $\tan$);
$dt$

$\rho(f, g)=0$ does not always imply ] $=g$ but only $f=ga$ . $e$ . (see Propositions
(2.4), (2.5) and (2.6)). The $\rho$ -convergence is equivalent to the convergence in
measure on every compact subset of $T$. The space $C$ of all continuous func-
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tions is $\rho$ -dense in $M$. It is easy to see that the pseudo-metric space $M(\rho)$ is
complete and separable. Referring to the $\rho$ -topology, we can define $\rho$ -open sets.
$\rho$ -Borel sets, $\rho$ -continuous functions, lower semi-continuous $(\rho)$ functions etc.

Let $\mathscr{D}_{\rho}\equiv 9_{\rho}(M)$ denote the $\sigma$ -algebra of all $\rho$ -Borel sets in $M$. Another
characterization for $\mathscr{D}_{\rho}$ will be given in Theorem (3.11).

A second $\sigma$ -algebra $9_{K}\equiv \mathscr{D}_{K}(M)$ is defined to be the $\sigma$ -algebra generated
by

$\{f\in M:f(t)<a\}$ , $t\in T$ , $a\in R$ .
There is no inclusion relation between these two $\sigma$ -algebras, as we can see

in Theorems (3.12) and (3.13). Therefore we shall introduce a third $\sigma$ -algebra
$\mathscr{D}\equiv \mathscr{D}(M)$ . It is the join $g_{\rho}\vee \mathscr{D}_{K}$ , the least $\sigma$ -algebra containing both, so that
every $B_{\rho^{-}}$ or $9_{I\zeta}$ -measurable set or function is $\mathscr{D}$ -measurable. $\mathscr{D}$ is the $\sigma-$

algebra we refer to in discussing probability measures on $M$.
The following notations will be used in this section.

$A(E, f)=\int_{E}atnf(s)ds$ $E$ bounded

$S(E, f)=\sup f(s)$ , $s\in E$

$L(E, f)=\inf f(s)$ , $s\in E$

$a(E)=\sup(1+s^{2})$ , $s\in E$ $E$ bounded.

PROPOSITION (3.1). $A(E, f)$ is $\rho$ -continuous in $f$ for $E$ fixed.
PROOF. $|A(E, f)-A(E, g)|\leqq a(E)\rho(f, g)$ .
THEOREM (3.2). Let $U$ be a non-empty open subset of $T,$ $\Gamma$ the class of all’

$E\subset U$ with $|E|<\infty$ and $\Gamma^{\prime}=\Gamma\cap j_{rat}$ . Then we have

and a similar identity for $L(U, f)$ . $S(U, f)(L(U, f))$ is lower (upper) semi-con–
tinuous $(\rho)$ and so $\mathscr{D}$ -measurable in $f$ for $U$ fixed.

PROOF. We shall discuss $S(U, f)$ only. First we shall prove that the fol-
lowing conditions are equivalent, where $c$ is a constant.

(a) atn $f\leqq c$ on $U$,

(b) $A(E, f)\leqq c|E|$ for every $ E\in\Gamma$ ,

(c) $A(I, f)\leqq c|I|$ for every $I\in\Gamma^{\prime}$ .
$(a)\Rightarrow(b)\ni(c)$ is obvious. Assuming (c), we have $f\leqq ca$ . $e$ . on $U$ by the density
theorem and so $f\leqq c$ on $U$ by Proposition (2.5) (ii). Hence (c) implies (a).
Thus (a), (b) and (c) are equivalent. This proves the identity in the theorem.
As $A(I, f)$ is $\rho$ -continuous in $f$ by (3.1), $S(U, f)$ is lower semi-continuous $(\rho)$ .

COROLLARY (3.3). Let $U$ be a non-empty open subset of T. Then { $f\in M$ :
$f\leqq c$ on $U$ } and { $f\in M:f\geqq c$ on $U$ } are $\rho$ -closed and so $\mathscr{D}$ -measurable.
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THEOREM (3.4). $C\in \mathscr{D}_{\rho}$ .
PROOF. We shall discuss the case $T=[0,1]$ only. Let $U_{ni}$ be the inter-

section of the interval $((i-1)/n, (i+1)/n)$ with $T$, where $i$ ranges over $-1<i$

$<n+1$ so that $U_{ni}$ is non-empty. As each $f\in C$ is bounded and uniformly
continuous on $T$, we have

$C=\bigcap_{m}\bigcup_{n}\bigcap_{ik}\bigcup_{=-m^{2}}^{m^{2}}\{f\in M:S(U_{ni}, f)\leqq\underline{k}+1m$ $L(U_{ni}f)\geqq\frac{k-1}{m}\}$ .

The set in the bracket is $\rho$ -closed by (3.3) and so $C\in \mathscr{D}_{\rho}$ .
THEOREM (3.5). $D\in g_{\rho}$ .
PROOF. We shall discuss the case $T=[0,1]$ only. As every $f\in D$ is

bounded on $T$, we have

$D\subset\bigcup_{n}B_{n}$ , $B_{n}=$ { $f\in M:|f|\leqq n$ on $T$ }.

$B_{n}$ is $\rho$ -closed by (3.3). If we can prove that the set $\Gamma_{h}(r, r^{\prime})$ defined by the
condition on $f\in M$ :

(c) $\exists t_{1}<t_{2}<\ldots<t_{2k}$ $\forall i$ $f(t_{2i- 1})<r$ , $f(t_{2i})>r^{f}$

is $\rho$ -open for $r<r^{\prime}$ , then we have

$B_{n}-D=B_{n}\cap U\bigcap_{k7<7}\Gamma_{k}(r, r^{\prime})$ $r,$
$r^{\prime}$ rational

and so
$D=\bigcup_{n}B_{n}\cap D=\bigcup_{n}[B_{n}-(B_{n}-D)]\in \mathscr{D}_{p}$ .

It remains only to prove that $\Gamma_{k}(r, r^{\prime})$ is $\rho$ -open. Consider the following con-
dition on $f\in M$ :

$(c^{\prime})$ $\exists E_{1},$ $E_{2},$ $\cdots$ , $E_{2k}\subset T$ such that

(i) $|E_{i}|>0$ $i=1,2,$ $\cdots$ , $2k$

(ii) $A(E_{2i-1}, f)<atnr\cdot|E_{2i-1}|$ , $A(E_{2i}, f)>atnr\cdot|E_{2i}|$ $i=1,2,$ $\cdots$ , $k$

(iii) $E_{1}<E_{2}<\ldots<E_{2k}$ , namely

$a_{1}<a_{2}<\cdots<a_{2k}$ for every $a_{i}\in E_{i},$ $1<i<2k$ .

As $A(E, f)$ is continuous in $f\in M$ by (3.1), $(c^{\prime})$ determines a $\rho$ -open set as a
union of $\rho$ -open sets. To prove that $\Gamma_{k}(r, r^{\prime})$ is open, it suffices to show the
equivalence of (c) and $(c^{\prime})$ . As $A(f, E)\gtrless atnr\cdot|E|$ implies the existence of
$t\in E$ with $f(t)\gtrless r,$ $(c^{\prime})$ implies (c). Suppose (c) holds. Recalling $f(t_{i})\in L(f, t_{i})$

for $f\in M$, we have a neighborhood $U_{i}$ of $t_{i}$ for each $i$ such that

$|\{f<r\}\cap U_{2i-1}|>0,$ $|\{f>r^{\prime}\}\cap U_{2i}|>0$ $i=1,2,$ $\cdots$ , $k$ .
Write $E_{2i- 1}$ and $E_{2i}$ for these t-sets. Then the sets $\{E_{i}\}$ satisfy. (i) and (ii)



The canonical modification of stochastic processes 137

in $(c^{\prime})$ . By taking all $U_{i}$ small enough, we can assume $U_{1}<U_{2}<\ldots<U_{2k}$ .
Therefore $E_{i},$ $i=1,$ $\cdots$ , $2k$ satisfy (iii) in $(c^{\prime})$ . Thus (c) implies $(c^{\prime})$ . This com-
pletes the proof.

THEOREM (3.6). The p-th norm $\Vert f\Vert_{p}(1\leqq p\leqq\infty)$ is lower semi-continuous
$(\rho)$ in $f\in M$.

PROOF. The set $\{f\in M:\Vert f\Vert_{\infty}\leqq c\}$ is { $f\in M:-c\leqq f\leqq c$ on $T$ } and so $\rho-$

closed by (3.3). Hence $\Vert f\Vert_{\infty}$ is lower-semi-continuous $(\rho)$ in $f$. Suppose $ p<\infty$ .
Consider first the functions

$F_{n}(f)=\int_{T\wedge[-n,n]}\min(|f(t)|^{p}, n)dt$ $n=1,2,$ $\cdots$

Since the $\rho$ -convergence is equivalent to the convergence in measure on every
compact subset of $T,$ $F_{n}(f)$ is $\rho$ -continuous in $f$ for each $n$ . But $F_{n}(f)\uparrow\Vert f\Vert_{p}$

as $ n\rightarrow\infty$ and so $\Vert f\Vert_{p}$ is lower semi-continuous $(\rho)$ .
COROLLARY (3.7). $L^{p}\equiv\{f\in M:\Vert f\Vert_{p}<\infty\}\in \mathscr{Q}_{\rho}$ .
THEOREM (3.8). For $t$ fixed, $\overline{f}(t)$ and $\underline{f}(t)$ are $\mathscr{D}_{\rho}$ -measurable in $f\in M$.
PROOF. This follows at once from Propositions (2.2) (ii) and (3.1).

Now we shall discuss the measurability of $\overline{f}(t)$ and $\underline{f}(t)$ in the pair $(t, f)$

$\in T\times M$. Let $\mathscr{D}(T)\otimes \mathscr{D}_{\rho}$ denote the product $\sigma$ -algebra. It is the same as the
$\sigma$-algebra $9(T\times M)$ of all Borel subsets of $T\times M$ with respect to the product
topology.

PROPOSITION (3.9). Suppose $I\equiv[u-\epsilon, v+\epsilon]\subset T$ and $E\subset(-\epsilon, \epsilon)$ . Then $E_{\iota}$

$\equiv\{s+t:s\in E\}\subset Ifort\in[u, v]$ and $A(E_{t}, f)$ is continuous in $(t, f)\in[u, v]\times M$.
PROOF.

$|A(E_{t}, f)-A(E_{s}, g)|$

$\leqq|A(E_{t}, f)-A(E_{s}, f)|+|A(E_{s}, f)-A(E_{s}, g)|$

$\leqq\int_{E_{t^{\underline{\wedge}E}z}}|$ atn $f(\theta)|d\theta+\int_{I}|atnf(\theta)-$ atn $ g(\theta)|d\theta$

$\leqq\frac{\pi}{2}|E_{t}\triangle E_{s}|+a(I)\rho(f, g)$

$=\frac{\pi}{2}|E_{t- s}\triangle E|+a(I)\rho(f, g)$

$\rightarrow 0$ , as $|t-s|+\rho(f, g)\rightarrow 0$ .
THEOREM (3.10). Both $\overline{f}(t)$ and $\underline{f}(t)$ are measurable $(\mathscr{D}(T)\otimes \mathscr{D}_{\rho})$ in the pair

$(t, f)\in T\times M$.
PROOF. We shall discuss the case $T=[u, v$) only. Let $\{I_{p}\equiv[u_{p}, ?_{p}^{f}]\}$ be

a sequence of intervals such that

$u_{1}>u_{2}>$ $\rightarrow u$ , $v_{1}<v_{2}<$ $\rightarrow v$ .
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It suffices to show that

$\{(t, f)\in T\times M:\overline{f}(t)<c\}\in \mathscr{D}(T)\otimes 9_{\rho}$ .

This set is the union of the following sets

$\{u\}\times\{f\in M:\overline{f}(u)<c\}$ , $\{(t, f)\in I_{p}\times M:\overline{f}(t)<c\}$ , $p=1,2,$ $\cdots$

The first set is measurable $(\mathscr{D}(T)\otimes \mathscr{D}_{p})$ by (3.8). It is therefore enough to
prove that $\overline{f}(t)$ is measurable $(\mathscr{D}(I_{p})\otimes \mathscr{D}_{p})$ in $(t, f)\in I_{p}\times M$ for each $p$ . Notic-
ing that $[u_{p}-1/m_{0}, v_{p}+1/m_{0}]\subset T$ for some big $m_{0}$ , we have

atn $\overline{f}(t)=\sup_{nm}\inf_{<m_{0}}\sup_{E\in \mathscr{D}_{nm(0)}}A(E_{t}, f)/|E|$
$t\in I_{p},$ $f\in M$

by Proposition (2.2) (ii). As $A(E_{t}, f)$ is continuous in $(t, f)\in I_{p}\times M$ by (3.9).
$\overline{f}(t)$ is measurable $(\mathscr{D}(I_{p})\otimes \mathscr{D}_{p})$ in $(t, f)\in I_{p}\times M$.

Now we shall prove some facts that will show the difference between $\mathscr{D}_{\rho}$.
and $\mathscr{D}_{K}$ . First we shall prove

THEOREM (3.11). $\mathscr{D}_{p}$ is generated by the sets

$\{f\in M:\int_{I}atnf(t)dt<a\}$

where I ranges over all compact intervals $\subset T$ and a ranges over $R$ .
PROOF. Let $\mathscr{D}^{\prime}$ denote the $\sigma$-algebra generated by the sets above. It is

obvious by (3.1) that $\mathscr{D}^{\prime}\subset \mathscr{D}_{\rho}$ . To prove the opposite inclusion relation, it is
enough to prove that $\rho(f, g)$ is $\mathscr{D}^{\prime}$ -measurable in $f$ for $g$ fixed. For this pur-
pose it suffices to show that

$F(f)\equiv\int_{I}|atnf(t)-$ atn $g(t)|-1^{2}\frac{dt}{+t}-$

is $\mathscr{D}^{\prime}$ -measurable for every compact interval $I\subset T$, because $\rho(f, g)$ is the limit
of a sequence of functions of this form. Let $I=I_{n1}UI_{n2}$ U... $UI_{nn}$ be a non-
overlapping decomposition of $I$ into $n$ compact intervals with equal length
and set

$\varphi_{n}(t)=\neg^{1}|I_{ni}\int_{I_{ni}}$ atn $f(s)ds$ ,

$\psi_{n}(t)=-|I_{ni}^{1}T^{-\int_{I_{ni}}}$ atn $g(s)ds$ , $t\in I_{ni}$ , $i=1,2,$ $\cdots$ , $n$ .

By the density theorem we have, as $ n\rightarrow\infty$ ,

$\varphi_{n}(t)\rightarrow atnf(t)$ , $\psi_{n}(t)\rightarrow atng(t)$ $a$ . $e$ . on $I$ .

$F_{n}(f)\equiv\int_{I}|\varphi_{n}(s)-\psi_{n}(s)|\frac{ds}{1+s^{2}}\rightarrow F(f)$ as $ n\rightarrow\infty$ .
Observing
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$F_{n}(f)=\sum_{i}|_{\overline{|}I_{ni}^{1}\overline{|}}\int_{I_{ni}}$ atn $f(s)ds$

$-\overline{|I}\frac{1}{ni1}\int_{t_{ni}}atng(s)ds|\int_{I_{ni}}\frac{dt}{1+t^{2}}$ ,

we can see that $F_{n}(f)$ is $\mathscr{D}^{\prime}$ -measurable, so that $F(f)$ is also $\mathscr{D}^{\prime}$ -measurable.
THEOREM (3.12). $\mathscr{D}_{K}-\mathscr{D}_{p}$ is not empty.
PROOF. Take a point $t_{0}$ strictly inside of $T$ and consider the set

$A=\{f\in M:f(t_{0})=1\}$ .
$A\in \mathscr{D}_{K}$ is clear. We shall prove $A\in\in \mathscr{D}_{\beta}$ . Consider two functions $f_{1},$ $f_{2}\in M$

$f_{1}(t)=1$ for $t\leqq t_{0}$ , $=0$ for $t>t_{0}$

$f_{2}(t)=1$ for $t<t_{0}$ , $=0$ for $t\geqq t_{0}$ .

As $\rho(f_{1}, f_{2})=0$ , either both of $f_{1},$ $f_{2}$ are in $A$ or none of $f_{1},$ $f_{2}$ is in $A$ , if $A\in \mathscr{D}_{\rho}$ .
But $f_{1}\in A$ and $f_{2}\not\in A$ . Therefore $A\not\in \mathscr{Q}_{\rho}$ .

THEOREM (3.13). $\mathscr{D}_{\rho}-\mathscr{D}_{K}$ is not empty.
PROOF. Take a compact interval $I\subset T$ and consider the set

$A=$ { $f\in M:\int_{I}$ atn $f(s)ds=|I|$ }.

It is obvious by (3.11) that $A\in 9_{\rho}$ . We shall prove $A\not\in \mathscr{D}_{K}$ . Suppose $A\in \mathscr{D}_{K}$ .
Then we have a countable subset $Q$ of $T$ with the following property

(3.14) $g\in M$, $f\in A$ , $g=f$ on $Q\Rightarrow g\in A$ .
Since $|Q|=0$ , we have an open $neighborhood_{x}^{g;}U$ of $Q$ with $|U|<|I|/2$ . Con-
sider two functions $f_{1},$ $f_{2}\in M$

$ f_{1}(t)=\alpha$ on $T$ $(\alpha=\tan 1)$

$ f_{3}(t)=\alpha$ on $U$, $=0$ elsewhere.

$f_{1}\in A$ is clear. Since $f_{2}\in\tilde{M}$ , we have $f_{3}\in M$ such that $f_{a}=f_{1}$ a. e. Since
$f_{3}=f_{1}=\alpha a$ . $e$ . on $U,$ $ f_{8}=\alpha$ on $U$ by Proposition (2.5) (iii). Therefore $ f_{1}=f_{8}=\alpha$

on $Q$ . But $f_{1}\in A$ . Therefore $f_{2}\in A$ by (3.14). This is a contradiction, because

$\int_{I}$ atn $f_{3}(s)ds=\int_{I}atnf_{2}(s)ds=|U\cap I|\leqq|U|<|I|/2$ .

\S 4. Canonical stochastic process.

A stochastic process $\{X_{f}(\omega), t\in T, \omega\in\Omega, \mathscr{Z}, P)\}$ is defined to be a family
of real random variables indexed by the time parameter $t$ ranging over $T$.
Fixing $\omega$ and changing $t$ in $X_{t}(\omega)$ , we have a function of $t\in T$ which is an
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element of $\overline{R}^{T}$ . This is denoted by $X.(\omega)$ and is called the sample path of
the process corresponding to $\omega$ . $X.(\omega)$ is considered a function of $\omega$ ranging
in $\overline{R}^{T}$ in general. Let $\mathscr{D}[X]$ be the $\sigma$ -algebra (of subsets of $\Omega$) that is gener-
ated by the sets

$\{\omega:X_{t}\omega)<a\}$ , $t\in T$, $a\in R$ .
$\mathscr{D}[X]\subset g$ is obvious.

$\{X_{t}\}$ is said to be continuous in probability if

$\lim_{s\rightarrow t}P\{|X_{s}-X_{t}|>\epsilon\}=0$
$\epsilon>0,$ $t\in T$ ,

or equivalently if

$\lim_{\tau\rightarrow t}E$ { $|atnX_{s}-$ atn $X_{t}|$ } $=0$ $t\in T$ ,

where $E(Y)=\int_{\Omega}Y(\omega)P(d\omega)$ . This can also be stated as follows:

atn $X_{t}$ is continuous in $t$ with respect to the norm in $L^{1}(\Omega, q, P)$ .
If this condition is satisfied, then atn $X_{t}$ is uniformly continuous on every

compact $E\subset T$ with respect to this norm. Therefore we have $\delta=\delta(E, \epsilon)$ for
$\epsilon>0$ such that

(4.1) $|t-s|<\delta$ , $t,$ $s\in E\Rightarrow E$ { $|atnX_{s}$–atn $X_{t}|$ } $<\epsilon$ .
DEFINITION (4.2). A stochastic process $\{X_{t}(\omega), t\in T\}$ is called canonical, if

the following two conditions are satisfied:
(C. 1) $X.(\omega)\in M$ for every $\omega\in\Omega$

(C. 2) The map $\omega\rightarrow X.(\omega)$ from $\Omega$ into $M$ is measurable $(\mathcal{G}, \mathscr{D})$ , i. e. X. $- 1(\mathscr{D})\subset S^{7}$ .
($M$ and $\mathscr{D}$ were defined in the previous sections.) In other words, $X.(\omega)$ is an
$(M, \mathscr{D})$-valued random variable, so that we can define the probability law of
$X.(\omega)$ which is a complete $\mathscr{D}$ -regular probability measure on $M$ (see Remarks
in Section 1). As it is easy to see

$X^{-1}(\mathscr{D}_{K})=\mathscr{D}[X_{t}, t\in T]$ ,

(C. 2) can be replaced by a weaker condition:

(C. $2^{\prime}$ ) $X^{-1}(g_{\rho})\subset q$ .

THEOREM (4.3). (Measurability of canonical processes). Let $\{X_{\iota}(\omega)\}$ be a
canonical process and $m$ the product (complete) measure of the Lebesgue measure
on $T$ and the measure $P$ on $\Omega$ . Then $X_{t}(\omega)$ is measurable $(\overline{\mathscr{D}(T)\otimes \mathscr{Z}}^{m})$ in the
pair $(t, \omega)\in T\times\Omega$ .

PROOF. First we shall prove the measurability of $\overline{X.(\omega)}(t)$ , where the top
bar means the approximate upper limit introduced in Section 2. As the map
$\omega\rightarrow X.(\omega)$ is measurable $(g, g)$ by (C. 2), the map $(t, \omega)\rightarrow(t, X.(\omega))$ is measur-
able $(\mathscr{D}(T)\otimes \mathscr{Z}, \mathscr{D}(T)\times 9)$ . By Theorem (3.10), the map $(t, f)\rightarrow\overline{f}(t)$ is measur-
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able $(\mathscr{D}(T)\otimes \mathscr{D}_{\rho})$ and so measurable $(\mathscr{D}(T)\otimes \mathscr{D})$ . Composing these two maps,
we can see that $(t, \omega)\rightarrow\overline{X.(\omega)}(t)$ is measurable $(\mathscr{D}(T)\otimes \mathscr{Z})$ and so measurable
$(\overline{\mathscr{D}(T)\otimes g}^{m})$ , namely that $\overline{X.(\omega)}(t)$ is measurable $(\overline{9(T)\otimes 9^{i^{m}}})$ in the pair $(t, \omega)$ .
Similarly for $\underline{X.(\omega}$) $(t)$ . As it is obvious that $\underline{X.(\omega)}(t)\leqq X_{t}(\omega)\leqq\overline{X.(\omega)}(t)$ for every
pair $(t, \omega)$ , we get the measurability $(\overline{\mathscr{D}(T)\otimes g}^{m})$ of $X_{t}(\omega)$ in the pair $(t, \omega)$ ,
observing

$m\{(t, \omega):\underline{X.(\omega})(t)<\overline{X.(\omega)}(t)\}$

$=\int_{\Omega}|\{t\in T:\underline{X.(\omega})(t)<\overline{X.(\omega)}(t)\}|P(d\omega)$

by Fubini’s theorem
$=0$ by $X.(\omega)\in M$ .

THEOREM (4.4). ($S$eparability of canonical processes continuous in probability).
Every canonical process $\{X_{t}(\omega)\}$ continuous in probability is separable relative
to closed sets with respect to every countable dense subset $Q$ of $T$.

PROOF. Let us write $Y_{t}(\omega)$ for atn $X_{t}(\omega)$ . Let $\mathscr{Z}_{rat}$ be the set system
introduced in Remarks in Section 1 and $\Theta$ a countable dense subset of $[-\pi/2$ ,
$\pi/2]$ .

First we shall find, for each pair $(E, \theta)\in g^{\gamma_{rat}}\times\Theta$ , a sequence of non-over-
lapping decompositions of $E$ into intervals

$E=I_{n1}UI_{n2}U\cdots UI_{np^{(n})}$ , $n=1,2,$ $\cdots$ ,

and a system of points

$r_{ni}\in I_{ni}\cap Q$ , $i=1,$ 2, $p(n)$ ,

with the following property:

(4.5) $\int_{E}|Y_{S}(\omega)-\theta|dt=\lim_{n}\sum_{i}|Y(r_{ni}, \omega)-\theta||I_{ni}|$ $a$ . $e$ . on $\Omega$ .

Since $E$ is compact, we can take $\delta(\epsilon)=\delta(E, \epsilon)$ in (4.1) to get

(4.1) $|t-s|<\delta(\epsilon),$ $t,$ $ s\in E\Rightarrow E(|Y_{\iota}-Y_{s}|)<\epsilon$ .

As $E$ is a finite sum of compact intervals, $E$ can be decomposed into non-
overlapping intervals with length $<\delta(\epsilon)$ , say

$E=I_{1}UI_{2}U\cdots UI_{p}$ .

Since $Q$ is dense in $T,$ $Q\cap I_{i}$ is non-empty. Take a point $r_{\dot{t}}$ from $Q\cap I_{i^{\sim}}$

Then we have
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$E[|\int_{E}|Y_{t}\sim-\theta|ds-\sum_{\dot{t}})|Y(r_{i})-\theta|I_{i}||]$

$\leqq\sum_{i})E[\int_{I_{i}}||Y_{s}-\theta|-|Y(r_{i})-\theta||ds]$

$\leqq\sum_{?}E[\int_{I_{i}}|Y_{s}-X(r_{i})|ds]$ .

As $Y_{s}(\omega)$ is measurable $(\mathscr{D}(T)\otimes g^{m})$ in $(s, \omega)$ by Theorem (4.3), we can exchange
the order of $E$ and $\int$ . Using (4.1), we get

$E[|\int_{\Gamma_{\lrcorner}}|Y_{s}-\theta|ds-\sum_{i}|Y(r_{i})-\theta||I_{i}||]<\epsilon|E|$ .

-Writing $I_{i}$ and $r_{i}$ for $\epsilon=2^{-n}$ as $I_{ni}$ and $r_{ni}$ respectively, we have

$ E[\sum_{7l}|\int_{E}|Y_{s}-\theta|ds-\sum_{i}|Y(r_{ni})-\theta||I_{ni}||]<\infty$ ,

which implies (4.5).
Writing $\Omega(E, \theta)$ for the set of all $\omega$ for which (4.5) holds and setting

$\Omega_{1}=\cap\Omega(E, \theta)$ , $E\in 9_{rat},$ $\theta\in\Theta$

we have $P(\Omega_{1})=1$ , because $ q_{rat}\times\Theta$ is countable. To prove our theorem, it
suffices to show that for every to $\in\Omega_{1}$ , every closed $F\subset[-\pi/2, \pi/2]$ , every
open $U\subset T$ and every $t\in U$, if $Y_{r}(\omega)\in F$ for $r\in Q\cap UthenY_{t}(\omega)\in F$ ; notice
here that atn gives a homeomorphism from $[-\infty, \infty]$ onto $[-\pi/2, \pi/2]$ . For
this purpose it is enough to find, for every $\epsilon>0,$ $r\in Q\cap U$ such that

$|Y_{r}(\omega)-Y_{t}(\omega)|<\epsilon$ ,

because $F$ is closed. As $X.(\omega)\in M$, we have $X_{t}(\omega)\in L(X., t)$ and so we can
find $E\in q_{rat}$ such that $t\in E\subset U$ and that

$T^{1}E|^{-\int_{E}|Y_{s}(\omega)-Y_{t}(\omega)|ds<\epsilon/3}$

by virtue of Proposition (2.2) (i). Since $Y_{t}(\omega)\in[-\pi/2, \pi/2]$ and $0$ is dense in
this interval, we can find $\theta\in\Theta$ such that

(4.6) $|Y_{t}(\omega)-\theta|<\epsilon/3$ .

These two inequalities will imply

$\overline{|}E|1\int_{E}|Y_{s}(\omega)-\theta|ds<2\epsilon/3$ .
As $\omega\in\Omega_{1}$ and $E\in gr_{rat}$ we can use (4.5) to get $n$ such that

$\overline{|}E\ulcorner^{\sum_{p}|Y(r_{ni},\omega)-\theta||I_{ni}|<2\epsilon/3}1$ .
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As $|E|=\sum_{i}|I_{ni}|$ , we can find $i$ such that

$|Y(r_{ni}, \omega)-\theta|<2\epsilon/3$ ,

which, combined with (4.6), implies

$|Y(r_{ni}, \omega)-Y_{t}(\omega)|<\epsilon$ .
As $r_{ni}\in Q\cap I_{ni}\subset Q\cap E\subset Q\cap U,$ $r=r_{ni}$ is what we wanted to find out. This
completes the proof.

Let $\{X_{t}(\omega)\}$ be a stochastic process. A canonical stochastic process $\{S_{t}(\omega)\}$

(defined on the some probability space) is called a canonical modification of
$\{X_{t}(\omega)\}$ if

$P\{X_{t}=S_{t}\}=1$ for every $t\in T$ .
CANONICAL MODIFICATION THEOREM (4.7). EVery StoChaStiC prOCeSS $\{X_{t}(\omega)\}$

continuous in probability has a canonical modification. If we have two such
modifications $\{S_{t}\}$ and $\{S_{t^{\prime}}\}$ for the same process, then we have

$P$ { $S_{t}=S_{t^{\prime}}$ for almost every $t$ } $=1$

in addition to the automatic property:

$P\{S_{t}=S_{t}^{\prime}\}=1$ for every $t\in T$ .
PROOF. We shall discuss the case $T=[0,1]$ only, because a small change

in the proof will take care of the other cases. The metric $\rho$ in $M=M(T)$
can now be replaced by a simpler one

$\rho(f, g)=\int_{T}|atnf(t)-atng(t)|dt$ ,

which induces the same topology and therefore the same $\sigma$-algebras $\mathscr{D}_{\rho}$ and
$\mathscr{D}(\equiv \mathscr{D}_{\rho}\vee \mathscr{D}_{K})$ . Let us write $Y_{t},$ $Y_{\iota^{n}}$ and $V_{t}$ respectively for atn $X_{t}$ , atn $X_{t}^{n}$

and atn $U_{t}$ . By (4.1) we can take $\delta=\delta(\epsilon)$ for $\epsilon>0$ such that

$(4.1^{\prime\prime})$ $|s-t|<\delta$ , $s,$ $ t\in T\Rightarrow E(|Y_{s}-Y_{t}|)<\epsilon$ .
It is harmless to assume that $\delta(\epsilon)\downarrow 0$ as $\epsilon\downarrow 0$ .

Let us consider for each $n=1,2,$ $\cdots$ , a finite decomposition of $I$ into non-
overlapping compact intervals:

$ I=I_{n1}\vee I_{n2}\vee$ – V $I_{np^{(n})},$ $|I_{ni}|<\delta(2^{-n})$

and a corresponding step processes

$X_{t^{n}}(\omega)=X(t_{ni}, \omega)$ $f$or $I_{ni},$ $i=1,2,$ $\cdots$ , $p(n)$ ,

where $t_{ni}$ is a point in $I_{ni}$ , say the left end point.
$\rho(X^{n}(\omega), X^{n+1}(\omega)$ is a Borel measurable function of $X(t_{nt}, \omega),$ $i=1,2,$ $\cdots$ , $p(n)$

and $X$( $t_{nj}$ , to), $j=1,2$ , $\cdot$ .. , $p(n+1)$ and so measurable $(S^{i})$ . $X_{c^{n}}(\omega)$ is also mea-
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surable $(\mathscr{D}(T)\otimes \mathscr{D}[X])$ in $(t, \omega)$ and

$E[\rho(X^{n}, X^{n+1})]$

$\leqq\int_{E}E[|Y_{c^{n}}-Y_{t^{n+1}}|]dt<2^{-n}$ .
Therefore we have

$ E[\sum_{n}\rho(X^{n}, X^{n+1})]<\infty$ ,

It follows from this that there exists an R-valued function $W_{t}(\omega)$ measurable
in $(t, \omega)\in T\times\Omega$ such that

(i) $\int_{T}|arc\tan X_{r^{n}}(\omega)-$ arc $\tan W_{t}(\omega)|dt\rightarrow 0$

for almost every $\omega\in\Omega$ ,

(ii) $X_{t^{n}}(\omega)\rightarrow W_{t}(\omega)$ for almost every $(t, \omega)\in T\times\Omega$ .
Since $X_{6}(\omega)$ is continuous in probability, it follows from (ii) that
(iii) for almost every $t$ fixed, we have

$W_{t}(\omega)=X_{t}(\omega)$ for almost every $\omega\in\Omega$ .

By Fubini’s theorem we get

$\int_{\Omega}|\{t:|W_{t}(\omega)|=\infty\}|P(d\omega)$

$=\int_{T}P\{\omega:|W_{t}(\omega)|=\infty\}dt$

$=\int_{T}P\{\omega;|X_{t}(\omega)|=\infty\}dt$

$=0$ .

Therefore $W.(\omega)\in\tilde{M}$ for almost every $\omega$ . Let

$U_{t}(\omega)=\overline{W}_{t}(\omega)$ ($=the$ approximate upper
limit of $W.(\omega)$ at $t$).

Then $U.(\omega)\in M$ for almost every $\omega$ and (i) implies that

$P(\Omega^{\prime})=1$ for $\Omega^{\gamma}=\{\omega:U.(\omega)\in M, \rho(X^{n}(\omega), U.(\omega))\rightarrow 0\}$ .
As $\rho(X^{n}(\omega), f)$ is equal to a Borel measurable function of $X(t_{ni}, \omega),$ $i=1,2$ ,

... , $p(n)$ for each $f\in M$, it is measurable $(g)$ in $\omega$ . Therefore $\rho(U.(\omega), f)$ is
also measurable $(\mathscr{Z})$ in $\omega$ , because

$\rho(U.(\omega), f)=\lim_{n}\rho(X^{n}(\omega), f)$ for $\omega\in\Omega^{\gamma}$

$\Omega^{\prime}\in q$ , $P(\Omega^{\prime})=1$ .
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This shows that the set $\{\omega : U.(\omega)\in N_{\rho}(f, r)\}(N_{\rho}(f, r)=\{g\in M:\rho(g, f)<r\})$ is
measurable $(g)$ . As $9_{p}$ is generated by the sets $N_{\rho}(f, r),$ $r>0,$ $f\in M,$ $\{\omega:U.(\omega)$

$\in B\}$ is measurable $(\mathscr{Z})$ for $B\in \mathscr{Q}_{\rho}$ .
We shall modify $\{U_{t}(\omega)\}$ at each point $t$ to get a canonical modification

$\{S_{t}(\omega)\}$ . Fix the time point $t$ for the moment. Observing

$\int_{I}|V_{s}(\omega)-Y_{t}(\omega)|ds\geqq\leqq\int_{I}|Y_{s^{n}}(\omega)-Y_{t}(\omega)|ds\pm\rho(U.(\omega), X^{n}(\omega))$ ,

we have

$\int_{I}|V_{s}(\omega)-Y_{t}(\omega)|ds=\lim_{n}\int_{I}|Y_{s^{n}}(\omega)-Y_{t}(\omega)|ds$ for $\omega\in\Omega^{\gamma}$ ,

where $I$ is a compact interval $\subset T$. This shows that the left side is measur-
able $(q)$ . Noticing $P(\Omega^{\prime})=1$ , we have

$E[\overline{|}I^{1}\overline{|}\int_{I}|V_{s}-Y_{t}|ds]=\lim_{n}E[\neg^{1}\int_{I}|Y_{s}^{n}-Y_{t}|ds]$ .

Since $X_{s^{n}}(\omega)$ (and so $Y_{s^{n}}(\omega)$) is measurable $(\mathscr{D}(T)\otimes 9)$ in $(s, \omega)$ and $X_{t}(\omega)$ (and
so $Y_{t}(\omega))$ is measurable $(g)$ in $\omega$ and so measurable $(\mathscr{D}(T)\otimes q)$ in $(s, \omega)$ , we
can use Fubini’s theorem to get

$ E[\frac{1}{|I|}\int_{I}|V_{s}-Y_{t}|ds]=\frac{1}{|I|}\int_{I}E[|V_{s}-V_{t}|]ds<\epsilon$ , if $|I|<\delta(\epsilon)$ .

Taking a sequence $\{I_{n}\}$ with $t\in I_{n}$ and $|I_{n}|<\delta(2^{-n})$ , we have

$ E[\sum_{n}-|I_{n}1|-\int_{I_{n}}|V_{s}-Y_{t}|ds]<\sum_{n}2^{-n}<\infty$ .

Write $\Omega_{t}$ for the set of all $\omega$ for which the infinite series converges. Since
each term is measurable (g) as we mentioned above, $\Omega_{t}$ is measurable $(q)$

and $P(\Omega_{t})=1$ . It is easy to see by Proposition (2.2) (i) that

$X_{t}(\omega)\in L(U., t)$ for ru $\in\Omega_{t}$ .
Set

$X_{t}(\omega)$ for $\omega\in\Omega_{t}$

$S_{t}(\omega)=U_{t}(\omega)$

for $\omega\in\Omega-\Omega_{t}$ .
Define $S_{t}(\omega)$ at each point $t\in T$ in such a way.

Now fix $\omega$ . By our construction we have

$U.(\omega)\in M$ and $S_{t}(\omega)\in L(U., t)$ for every $t\in T$ .
By Proposition (2.3) we have

$S.(\omega)\in M$ and $S_{t}(\omega)=U_{t}(\omega)$ for almost all $t$ .
This implies $\rho(S.(\omega), U.(\omega))=0$ . Since that is true for every $\omega$ , we have
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$\{\omega:S.(\omega)\in B\}=\{\omega:U.(\omega)\in B\}$ for $B\in B_{\rho}$ .
But the right side belongs to $g$ as we mentioned above. Therefore we have

$S.-1(9_{\rho})\subset S^{7}$ .
Since $\Omega_{t}\in S^{i},$ $S_{t}(\omega)$ is measurable $(g)$ for each $t$ fixed by the definition.

This shows
{to: $S$ . $\in B_{t,a}$ } $\in g$ for $B_{t,a}=\{f:f(t)<a\}$ .

As $\mathscr{D}_{B}$ is generated by $B_{t,a},$ $t\in T,$ $a\in R$ , we have
$\{\omega:S$ . $\in B\}\in S^{7}$ , $B\in 9_{K}$

namely
$S.-1(B_{K})\subset\ddagger F$ .

Therefore
$ S.-1(\mathscr{D})=S^{-1}(\mathscr{D}_{p})\vee$ S. $- 1(\mathscr{D}_{K})\subset q$ .

Thus we have proved that $\{S_{t}(\omega)\}$ is a canonical process. It is obvious by the
construction that $P(S_{t}=X_{t})=1$ for each $t$ . Therefore $\{S_{t}\}$ is a canonical modi-
fication of $\{X_{t}\}$ .

Now we shall prove the uniqueness. Take any arbitrary canonical modi-
fication $\{\tilde{S_{t}}(\omega)\}$ . $\{X_{\iota^{n}}(\omega)\}$ is measurable $(B(T)\otimes \mathscr{Z})$ in $(t, \omega)$ by the definition.
$\{\tilde{S_{t}}(\omega)\}$ is measurable $(\mathscr{D}(T)\otimes S^{i})$ in $(t, \omega)$ by Theorem (4.3). Therefore we can
use Fubini’s theorem to get

$E[\rho(S., X^{n})]=\int_{T}E$ [ $|$ atn $S_{t}-atnX_{t^{n}}|$ ] $dt$

$=\int_{T}E[|atnX_{t}-atnX_{\iota^{n}}|]dt$

$<2^{-n}\rightarrow 0$ as $ n\rightarrow\infty$ .
Since $\rho(X^{n}(\omega), U.(\omega))\rightarrow 0a$ . $e$ . on $\Omega$ , we can use the bounded convergence
theorem to get

$E[\rho(X^{n}, U.(\omega))]\rightarrow 0$ as $ n\rightarrow\infty$ .
Therefore

$E[\rho(\tilde{S}., U.)]=0$ .
But $\rho(S., U.)=0$ for every to. Thus we get

$E[\rho(S., s.)]=0$

$i.e$ . $P$ [$S_{t}(\omega)=S_{t}(\omega)f$or almost every $t$] $=1$ . This completes the proof.
A canonical modification $\{S_{t}\}$ of $\{X_{t}\}$ is called standard if

$S.-1(B)\subset\overline{B[X_{t}t\in T]}^{P}$

where $\mathscr{D}[X_{t}, t\in T]$ is the $\sigma$-algebra of subsets of $\Omega$ generated by the sets



The canonical modification of stochastic processes 147

$\{\omega:X_{t}<a\},$ $a\in R,$ $t\in T$.
STANDARD CANONICAL MODIFICATION THEOREM (4.8). Every stochastic pro-

cess $X_{t}(\omega)$ continuous in probability has a standard canonical modification. $It$

is unique in the same sense as in Theorem (4.7).

PROOF. Let $g_{1}$ denote $\overline{\mathscr{D}[X_{t},t\in T]}^{P}$. Then $\{X_{t}\}$ is considered a stochastic
process continuous in probability on $(\Omega, g_{1}, P)$ . Therefore we have a canonical
process $\{S_{t}(\omega)\}$ on $(\Omega, g_{1}, P)$ such that $P(S_{t}=X_{t})=1$ for each $t$ . $\{S_{t}(\omega)\}$ can
be considered a canonical process on $(\Omega, g, P)$ . $S.-1(\mathscr{D})\subset \mathscr{Z}_{1}=\overline{\mathscr{D}[X_{t},t\in T]}^{P}$ is
now obvious, namely $\{S_{t}\}$ is a standard canonical modification of $\{X_{t}\}$ . The
uniqueness part is contained in theorem (4.7).

REMARK. Doob’s definition of the standard property is

$\{\omega:S_{t}\neq X_{t}\}\in\overline{\mathscr{D}[X_{t},t\in T]}^{P}$ for every $t$ .
This means

S. $- 1(B_{R})\subset\overline{\mathscr{D}[X_{t},t\in T]}^{P}$

in our case. We required more than this.

\S 5. Probability measure on $M$.
Let { $X_{t}(\omega),$ $t\in T$, to $\in\Omega,$ $g,$ $P)$ } be a canonical process. Then the probability

law of the sample path $X.(\omega)$ viewed as an $(M, \mathscr{D})$-valued random variable
(see Remarks in Section 1), is a complete $\mathscr{D}$ -regular probability measure on $M$

satisfying

$\langle\Gamma.1)$ $\mu\{f:f(t)\in R\}=1$ , $t\in T$ .
Conversely, if we have such a probability measure $\mu$ on $M$, then $\{\xi_{t}(f)\equiv f(t)$ ,
$t\in T,$ $f\in M,\overline{\mathscr{D}}^{;z},$

$\mu$)} is a canonical process for which the probability law of
the sample path is the measure $\mu$

If $\{X_{t}\}$ is continuous in probability, then the probability law of the sample
path satisfies

$(\Gamma.2)$
$\lim_{s\rightarrow t}\mu\{f : |f(s)-f(t)|>\epsilon\}=0$ , $\epsilon>0,$ $t\in T$ .

It is obvious that $\{\xi_{\iota}(f)\}$ is also continuous in probability under the condition
$((\Gamma.2)$ .

Let $m_{\iota_{1}\cdots\iota_{n}}$ be the marginal distribution of $\mu$ over the time points $t_{1}\cdots t_{n}$ ,
namely

\langle 5.1) $m_{c_{1}\cdots\iota_{n}}(E)=\mu\{f:(f(t_{1}), f(t_{n}))\in E\}$ , $E\in \mathscr{D}[\overline{R}^{n}]$ .
This is the joint distribution of the process $\{\xi_{t}\}$ (or $\{X_{t}\}$ ) over $(t_{1}\cdots t_{n})$ . Let

$\prime \mathscr{R}$ denote the system of all marginal distributions. It is obvious that
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$(m.O)$ .SZ satisfies Kolmogorov’s consistency condition.

$(\Gamma.1)$ and $(\Gamma.2)$ are formulated in terms of $\mathscr{R}$ as follows.

$(m.1)$ $m_{t}(R)=1$ , $t\in T$ ,

$(m.2)$ $\lim_{s\rightarrow t}m_{st}\{(x, y):|x-y|>\epsilon\}=0$ , $\epsilon>0$ , $t\in T$ .

Our problem is to determine $\mu$ from $\ovalbox{\tt\small REJECT}$ .
THEOREM (5.2). For every $\ovalbox{\tt\small REJECT}$ with $(m.O),$ $(m.1)$ and $(m.2)$ , there exists one

and only one complete $\mathscr{D}$ -regular probability measure $\mu$ with (5.1).
PROOF OF EXISTENCE. Let $\Omega$ be $\overline{R}^{T}$ and $B(\overline{R}^{T})$ the $\sigma$ -algebra generated

by the sets $\{\omega\in\overline{R}^{T} : \omega(t)<a\},$ $t\in T,$ $a\in R$ . Since $(m.O)$ is assumed, we can
construct a complete regular $(\mathscr{D}(\overline{R}^{T}))$ probability measure $P$ on $\Omega$ such that

$P\{\omega;(\omega(t_{1})\cdots\omega(t_{n})\}\in E\}=m_{c_{1}\cdots\iota_{n}}(E)$

by Kolmogorov’s theorem. Then $\{X_{t}(\omega)\equiv\omega(t), t\in T, \omega\in(\Omega, g, P)\}(\mathscr{Z}=\overline{9(\overline{R}^{T})}^{P})$ ,

is a stochastic process continuous in probability by $(m.1)$ and $(m.2)$ . By the
canonical modification theorem (4.7) we have a canonical process $\{S_{t}(\omega)\}$ such
that $P\{S_{t}=X_{t}\}=1,$ $t\in T$.

Then the probability law $P_{s}$ . of the sample path $S.(\omega)$ is a complete $\mathscr{D}-$

regular probability measure on $M$ such that

$P_{s}.\{f:(f(t_{1}), f(t_{n}))\in E\}$

$=P\{\omega:(S(t_{1}, \omega)\cdots S(t_{n}, \omega))\in E\}$

$=P\{\omega:(X(t_{1}, \omega)\cdots X(t_{n}, \omega))\in E\}$

$=m_{t_{1}\cdots t_{n}}(E)$ .

PROOF OF UNIQUENESS. We shall consider the case $T=[0,1]$ only; the
other cases can be treated similarly. Suppose that two complete B-regular $\cdot\cdot$

measures on $M$ (say $\mu$ and 1)) satisfy

(5.3) $\mu\{f:(f(t_{1}), f(t_{n}))\in E\}=\iota)\{f:(f(t_{1}), f(t_{n}))\in E\}$

$=m_{r_{1}\cdots\iota_{n}}(E)$ .
This is equivalent to

(5.3’) $\int_{M}F(f(t_{1}), f(t_{n}))\mu(df)=\int_{M}F(f(t_{1}), f(t_{n}))\nu(df)$

where $F$ ranges over all continuous functions on $\overline{R}^{n}$ .
Let us write $\hat{f}(I)f$or $\int_{I}atnf(t)dt$ . Then $\mathscr{D}_{\rho}$ is generated by $\{f:\hat{f}(I)<a\},$ .

$a\in R,$ $I$ being a compact interval, by virtue of theorem (3.11). $\mathscr{D}_{K}$ is gener-
ated by $\{f:f(t)<a\},$ $a\in R,$ $t\in T$. Therefore $\mathscr{D}(=\mathscr{D}_{p}\vee \mathscr{D}_{K})$ is generated by
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all such sets. (5.3) or $(5.3^{f})$ shows that $\mu$ and )$.1$ are equal on $9_{K}$ . To prove
that they are equal on $\mathscr{D}$ , it is enough to prove that

$\}(5.4)$ $\int_{M}G[\hat{f}(I_{1}), \hat{f}(I_{p}), f(t_{1}), f(t_{q})]\mu(df)$

$=\int_{M}G[\hat{f}(I_{1}), \hat{f}(I_{p}), f(t_{1}), f(t_{q})]\nu(df)$

where $p,$ $q=1,2,$ $\cdots$ , $\{I_{i}\}$ range over all compact intervals, $\{t_{i}\}$ range over $T$

and $F$ ranges over all continuous functions on $\overline{R}^{p+q}$ . The stochastic processes

$X_{t}(f)=f(t)$ , $f\in(M, \mathscr{D}^{ft}, \mu)$

$Y_{t}(f)=f(t)$ , $f\in(M, B^{\nu}, \nu)$

are canonical processes continuous in probability. Therefore we have $\delta(\epsilon)>0$

for every $\epsilon>0$ such that

.(5.5) $|t-s|<\delta(\epsilon)$

$\Rightarrow\int_{1I}|atnf(t)-atnf(s)|\mu(df)<\epsilon$

$\Rightarrow\int_{M}|atnf(t)-atnf(s)|\nu(df)<\epsilon$ by (5.3).

Fix a compact interval $I$, consider its decomposition into non-overlapping
intervals

$I=I_{n1}UI_{n2}$ V... V $I_{np(n)}$ $|I_{ni}|<\delta(2^{-n})$

for each $n$ and let $t_{ni}$ be the left and points of $I_{ni}$ . Using the measurability
of $X_{t}(f)$ in $(t, f)$ (Theorem (4.3)), we can get

$\int\sum_{Mn}||f(I)-\sum_{i}$ atn $ f(t_{ni})|I_{ni}||\mu(df)<\sum_{n}2^{- n}|I|<\infty$ .

Therefore

$\mu$ { $f:\hat{f}(I)=\lim_{n}\sum_{i}$latn $f(t_{ni})|I_{ni}|$ } $=1$ .

Applying this to $I=I_{1},$ $I_{2},$ $\cdots$ , $I_{p}$ we have

$\mu$ { $f:\hat{f}(I_{k})=\lim_{n}\sum_{i}$ atn $f(t_{ni}^{k})|I_{ni}^{k}|$ } $=1$ .

We have the same result for $\nu,$
$i$ . $e$ .

$\nu$ { $f:\hat{f}(I_{k})=\lim_{n}\sum_{i}$ atn $f(t_{ni}^{k})|I_{ni}^{k}|$ } $=1$ .
Notice here that we can take the same $t^{tc_{ni}}$ and $I^{k_{ni}}$ for $\mu$ and $v$ by virtue of
\langle 5.5). By $(5.3^{\prime})$ we have
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$\int_{M}G$[
$\sum_{i}$ atn $f(t_{ni}^{k})|I_{ni}^{k}|,$ $f(t_{h}),$ $k=1,$ $\cdots$ , $p,$ $h=1,$ $\cdots$ , $q$] $\mu(df)$

$=\int_{M}G[\sum_{i}$ atn $f(t_{ni}^{k})|I^{k_{ni}}|,$ $f(t_{h}),$ $k=1,$ $\cdots$ , $p,$ $h=1,$ $\cdots$ , $q]_{1)}(df)$

Letting $ n\rightarrow\infty$ , we have (5.4). This completes the proof.

Aarhus University, Denmark
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