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Let G be a connected algebraic group and V a homogeneous space for G,
which are defined over a finite field .. We denote by G, the subgroup of G
consisting of all the rational points over k and also by V, the subset of V'
consisting of all the rational points over k. Then the operation of G to V
induces an operation of G, to V, and so V, is considered as a transformation
space for G, in the abstract sense.

The purpose of this paper is to calculate the number of the G,-orbits in:
V., and the number of points in each G,-orbit, under an assumption on £,
which will be referred to by (x)». The main results are as follows (under the
assumption (x)):

1) Let P, be a point in V¥V, and H the isotropy group of P, in G. Let s
be the number of conjugate classes of the finite group H/H,». Then V, is
decomposed into the disjoint union of s G,-orbits (Theorem 1l). This fact is a
consequence of ‘ Galois cohomology theory’ (cf. [7]), but we shall give here
an elementary proof of it. On the other hand, we can give an example, which
shows that the number of points of each G,-orbit is not necessarily same to
each other.

2) We restrict ourselves to the case where V is complete. Then it is
proved that H/H, is commutative and the normalizer N(H) of H in G is con-
nected (Proposition 1). From these facts, we can show that the number of
Gy-orbits in V, is equal to the index (H:H, and the numbers of points in
any G,orbits are all same (Theorem 2). Moreover, if G operates effectively
on V, it is also proved that H is connected (Proposition 2). Hence, in this
case, we see that V, is a homogeneous space for G, in the abstract sense
(Theorem 2).

3) Let g be a finite subgroup of G,. Then, we shall prove that the num-

1) Cf. the beginning of the section 2.
2) For an algebraic group H, we denote by H, the connected component containing
the identity element.
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ber of points in (V/g),® is equal to the number of points in V, .

1. In this section, we prove two propositions on algebraic groups without
any assumption on the ground fields.

Let G be a connected algebraic group; let L be the maximal connected
linear normal algebraic subgroup of G and D the smallest normal algebraic
subgroup of G giving rise to a linear factor group (cf. [5]).

PROPOSITION 1. Let H be an algebraic subgroup of G, which contains a
Borel subgroup B of L. Then (1) H/H, is commutative and (ii) the normalizer
N(H) of H in G is connected and coincides with D -(Hn L).

ProoOF. In the case where G =L, it is known that such an algebraic sub-
group H (i.e. a parabolic subgroup of L) is connected and coincides with its
normalizer. In fact, we have N(H)D HD H,D B and so, for any element y in
N(H), Hy=yH,y*DyBy-'. Then there exists an element %, in H, such that
h,Bh;y!=yBy~1, which implies that A;'y € B i.e. y= H and so we have N(H)=H
(cf. [2]. Applying this fact to the parabolic subgroup H, of L, we have
H,= N(H,)DH and so H= H,. In this case, we have D= {e} and so all the
assertions of Proposition are proved. We return to the general case. Then
H~ L is a parabolic subgroup of L and so H~ L is connected and coincides
with its normalizer N (H L) in L. Moreover, as HDOH L, we have H,D
(HNLy,=H~NLDH,nL and so HjnL=H L. Since L contains the com-
mutator of any two elements of G, we see that H L= H, L contains the
commutator subgroup of H, which proves the commutativity of H/H, Now
it is also known that D is a central subgroup of G and we have G=D - L (cf.
[56]). Then, for any element g of N(H), we have g=d! with de D and [ L.
From dIHI[*d"'= H, it follows that [H/-*= H and so I[(H L)I"*= H L, which
implies that e Ny (H~ L)=H L. Hence we have N(H)c D -(H~ L). While
it is clear that, as D is a central subgroup, we have N(H)D D -(HnL). So
we have N(H)=D -(H~ L) and, as D and H~ L are connected, N(H) is also
connected.

PROPOSITION 2. Let V be a complete homogeneous space for G. We sup-
pose that G operates effectively on V. Then, the isotropy group H of a point
on V in G is connected and linear.

Proor. If G operates effectively on V, we have H~ D= {e} and so there
exists a bijective rational homomorphism of H to an algebraic subgroup
HD/D of the linear group G/D. Hence H is linear and H,C L. Since V is
complete, H and H, contain a Borel subgroup of L (cf. [1]). Then we have
Ny(H)DHNLDH, and so H~ L= H,, which implies that NM(H)=D -(H~ L)

3) For an algebraic set X defined over a field £, we denote by X, the subset of X
consisting of all the rational points over k.
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=DH,DH by [Proposition 1. Hence any element 4 of H can be written in
the form h=dh, with d= D and h,= H,, However h—=dh, means that we

have d = hhs! is in D~ H. On the other hand, the effectiveness of the opera-
tion of G on V implies that we have D H={¢}. So h=h, is in H, and we
have H= H,.

2. In this and the following sections of this paper, we suppose that the
ground fields are finite fields.

Let V be a homogeneous space for a connected algebraic group G, defined
over a finite fleld £ with ¢ elements. We denote by V, and G, the sets of
all the rational points of V and G over k respectively. Then G, is a subgroup
of G and it is known that V, is not empty (cf. [4].

The operation of G to V induces naturally an operation of G, to V,.
Since V, is a finite set, V, is decomposed into a disjoint union of a finite
number of G,-orbits and each G,-orbit consists of a finite number of points.

For a point P, in V,, let H(P,) be the isotropy group of P, in G. Then
H(P,) and H(P,), are algebraic subgroups, defined over %, of G. By replacing
k by its finite extension if necessary, we assume that the ground field % satisfies
the following condition :

(*) There exists a point P, in V, such that H(P,) has a representative
system modulo H(P,), consisting of k-rational elements, i.e. we have H(P,)

— ) H(P),hs (disjoint) with hye H, (i=1, -, n).
=1

It is clear that if % satisfies (x) then any finite extension of k& also satisfies
the condition (x).

In the following, we always suppose that k satisfies the condition (x). Let
P, be a point in V, and H= H(P,) the isotropy group of P, in G such that
we have

H=\JHh, (disjoint) with h,, ---, h, & H,.
=1

We fix P, and h,, ---, h, once for all.

LEMMA 1. We fix an index i (1 =<1=n). Then, for any element hj in H,,
there exists an element h, in H, such that we have h{= hi'h;h{@h;1 2.

ProoOF (cf. [4] and [6]). For a generic point x of H, over K = k(h}), ¢(x)
= xthxPhit and ¢(x) = x"1hjh,x?h;* are generic points of H, over K; so ¢
and ¢ are generically surjective and everywhere defined rational mapping of
H, to H,. Then the images ¢(H,) and ¢(H,) contain open sets of H, respec-
tively and so we have @o(Hy) N ¢(H,)+ ¢. Let t be an element of this inter-

4) (g) means the rational transformation induced by the automorphism of the
universal domain: &-£4.



Rational points of homogeneous spaces 125

section. Then we have u lhuPh;!=1t=v"*hh,vPh;* with u, v H, and so we
have h{=hith,hl®h;! with hy=uv1.
Now we can find n elements g, ---, g, of G such that

@ hy=g7'g®

(cf. [4]). Then, as (g;Py)?=g@®P,= g;h;Py= g;P,, the point g,P, is in V;. On
the other hand, let gP, with g< G be any point in V,. Then, as g@P,= gP,,
we have g'g® = njh; with some hje H, and 1=1<n. By and (1),
there exists an element %, in H, such that we have g 'g® = hythh{®h; h,=
hitgi'g@h{® and so ghy'g;! is in G, and the given point gP,=(gh,g:)g;P, 1s.
in the G,-orbit G,(g;P,) of g;P,. Hence we have

Vi= L=U1 Gu(giPy)

which of course is not necessarily a disjoint union. Next, for 1 <1, j<n, we
suppose that G,(g;P)) N Gi(g;P,) is not empty i.e. Gy(g:Py)=Gi(g;P,). Then
g;P, is in G,(g;P,) and so we have g;=g,g;h with some g,eG, and heH,
which implies that we have h;=g7'¢® =h"1g;'g®h® =h"'h;h°. Denoting by
7w the canonical homomorphism of H onto H/H, and writing h = h,h, with
h,H, and 1<t<n, we have h9=hh, and so we see that =(h;)=
n(hy‘w(h)=(h,) is conjugate to =(h;) in H/H, Conversely, for 1=<1, j<n, we
suppose that z(h;) is conjugate to =(h;) in H/H,. Then we can write hjh;=
hhihit with some hj< H, and 1<t<n. By[Lemma 1, we have h}= h;'h;h®h;!
with some h,e H, and so hi'h;h{® = hh;h;* ie. hy'gi'g Ph® =h,gi'g®hyt. So
gihohgit is in Gy and g;P,=(g;hn,g79g:P, is in the orbit G,(g,P,).

Therefore we have the following

THEOREM 1. Let V be a homogeneous space for G defined over a finite
field k with q elements and P, a point in V,. Let H be the isotropy group of
P, in G and let s be the number of conjugate classes of H/H, We suppose
that Hyh,, ---, Hyh, are the representatives of all the conjugate classes and h; = H,.
G=1, ---,s). Then, writing h;=g7'g® with g, G (=1, ---, ), we have

) Vo= JGyg:P)  (disjoint union).
i=1
REMARK. The number s and the representatives Hh; (=1, :--, s) are not

dependent on the ground field but the elements g; (i=1, ---, s) are dependent.
on the ground field i.e. on the number ¢ of the elements of k.

In the rest of this section, we consider the case where H is a finite sub--
group of G, i.e. H, consists of a single element ¢. As in [Theorem 1, we sup-
pose that H is contained in G,. Let gP, be any point in V,; so g-lg@ =1/ is.
in H. The isotropy group of gP, in G is clearly gHg™'. Then an element.
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gh’g~! with h’ € H= H, belongs to (gHg™"), if and only if g@h/g®@-1=gh/g™?
i.e. h’ is in the normalizer Ny(h) of h in H. Since the number of points in
G (gP,) is equal to the index of (gHg )N G,=(gHg V); in G, we have

3) $G(gPo) = $G/ENu(R)”,
where h=g-'g@ Then, by [Theorem 1, we have

#G/H)= V.= T §Ge/4Nu(hy)

= GG,/4H) - 33 (H: Nuh)),

where hy, -+, h; are the representatives of all the conjugate classes of H. As
SV(H: Ny(h) = $H=%H,, we have

=1

&) #G/H)=4Gy,

which is a result of Lang (cf. [4).

The formula (3) implies that the number of points in each G,-orbit in Vy
is not necessarily same (cf. [Theorem 2). For example, let £ be the universal
domain containing %k and G=GL(3, £2), which is a connected algebraic group
defined over k. Then there exists a subgroup H of G such that we have H=S,
(the symmetric group of 3 letters) and HC G,. In this case, by
and (3), we see that (G/H), consists of three disjoint G,-orbits G,P,, G,P, and
G,P; such that £GP, =#G./2, #G,P,=#%G,/3 and ¥G.P,=#G,;/6. So the num-
bers of points in Gg-orbits in (G/H), are distinct to each other. Moreover
this example shows the following fact: even if G operates effectively on V,
the operation of G, on V, is not necessarily transitive (cf. [Theorem 2). In
fact, from the elementary properties of S,, we see that, for any element h=e
in H=S,, there exists an element A’ of H such that h’h==hh’. Writing
h=gg@-1 with ge G, we see that g @ 1hg@® £ g-thg i.e. g~thg is not rational
over k. Hence g-'hg does not belong to H=H, i.e. h e gHg™*, which implies
that we have gongg"I: {e}. So G operates effectively on G/H, but G, does

not operate transitively on (G/H),.

3. Now we consider the case where V is a complete homogeneous space
for G (defined over % with the property (x)). Then, using the notations of
Theorem 1, H contains a Borel subgroup of the maximal connected linear
normal algebraic subgroup L of G (cf. and so, by [Proposition 1, we see

that H/H, is commutative and the normalizer N(H) of H is connected. Hence,

5) For a finite set S, we denote by #S the number of elements in S.
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in [Theorem 1, we have s=(H:H,). Moreover, also using the notations of
[Theorem 1, the isotropy group g;Hg;! of g;P, in G is defined over k. Then
the set g,N(H) = {g = G|gHg *=g;Hg;'} is not empty and is a homogeneous
space for a connected algebraic group N(H), defined over k. So g;N(H)
has a rational point g{® over %k (cf. and so g;Hg;'=g®Hg®-1, which im-
plies that we have #(gHg;i),=#(g®Hg®Y),=4#H,. Hence the number of
points in the orbit G,(g;P,) is equal to #G,/#(g;Hg;Y), = #G,/4H,, which is inde-
pendent of the index i.

Therefore we have the following

THEOREM 2. Let V be a complete homogeneous space for G defined over a
finite field k. Let H be the isotropy group of a point Py in Vi in G. Then the
number of distinct Gyg-orbits in V, is equal to the index (H: H,) and each G-
orbit consists of the same number £G,/4H, of points.

COROLLARY. We have

ﬁ Vi = #Gk/#(Ho)k .

PROOF. We have H,=\J(H)h; and so £H, = (#(H),) - (H: H). Hence we
i=1

have, by Theorem 2, $V,=(H: H,) - G./$H,) = #G ./ #(H ).
THEOREM 2/. In Theorem 2, we suppose that G operates effectively on V.
Then we have

©) V=GP,

i.e. G, operates transitively on V,.

Proor. By Proposition 2, we have (H: H,)=1. Then the assertion follows
from Theorem 2.

COROLLARY 1. In Theorem 2, let N be a normal algebraic subgroup of G
defined over k. Then, for any points P, and P} in V,, we have

@ #(NPo)=#NPy) -

PrOOF. Let M be the intersection of the isotropy groups of all the points
on V, which is a normal algebraic subgroup of G defined over k. Let f be
the canonical homomorphism of G onto G’=G/M. Then G’ operates transi-
tively and effectively on V by f(g)P=gP for g G and P< V. Clearly f(N)
=N’ is a normal algebraic subgroup of G’ and we have N'P,= NP, and
N'Py=NPj. By Theorem 2/, there exists an element g} in Gj; such that we
have giP,= P). Then the mapping of NP, to N’'P} defined by n'P,— gin’P,
{n’ & N’) induces a bijective mapping of (N'P,),=(NP,);, onto (NP, =(NP}).

COROLLARY 2. [n Theorem 2, let A be an Albanese variety of V, defined over
k. Then, for any point P, in V,, we have

(®) AVie=4%Ac- 8(LP); -
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Proor (cf. [3]). It is clear that, denoting by « the canonical mapping of
V into A, we have

#V}c == 2 ﬁa_l(a)k )

ac Ay

where the sum ranges over all a = 4,. Moreover we have a~!(a)= LP} with
some P{e V,;. Then the assertion follows from Corollary 1.

4. Finally, we prove a generalization of the result of Lang stated in the
end of 2, which asserts that, for a connected algebraic group G defined over
a finite field %, if ¢ is a finite subgroup of G, then we have #(G/q),=#G, (cf.
.

LEMMA 2. Let G be a connected algebraic group, which operates regularly
on an irreducible variety V, all defined over a finite field k. Let g be a finite
subgroup of G, such that the quotient variety V/g exists. Then we have

) $V/e=4V5-

PrROOF. Let ¢ be the number of elements in 2 and n the order of g:g=
{hy, .-+, h,}. We put, for each h; =g, F;={P< V|P@=h;P}. Then it is easily
verified that we have

(10) BV /h=(1/n)- ZHF:.

Since h,; is an element of a connected algebraic group G defined over k, there
exists an element g; of G such that h;,=g@g; (cf. [4]). Then we have a
bijective mapping ¢; of F; to V, by ¢, (P)=g;P. In fact, (gP)?=g@P®=
g:hi!P9=g;P i.e. g;P= V,. The injectiveness of ¢, is trivial and, for any
point P, in V, (gi'P)® =g@'Py=h;g;'P, i.e. gi'P, € F; and @i(g;IPo):Po-‘

Hence, by (10), we have £(V/q), = (1/n) - _:Zlﬂ:Fi:(l/n)-ié#Vk:#Vk.

THEOREM 3. Let V be a homogeneous space for G defined over a finite
field k. If g is a finite subgroup of Gy, then we have

(1) #V/Qr=#Ve-

Proor. By Lemma 2, we have only to show that there exists the quotient
variety V/g. This is a consequence of the fact that ¥V has a projective em-
bedding (cf. [67]).

Tokyo Metropolitan University
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