On the algebraic theory of elliptic modular functions ${ }^{1)}$

Dedicated to S. Iyanaga on his 60 th birthday

By Jun-ichi IgusA
(Received Jan. 23, 1967)

Let k denote an algebraically closed field over a prime field $\boldsymbol{F}(=\boldsymbol{Q}$ or $\boldsymbol{Z} / p \boldsymbol{Z})$ and j a variable over k. Choose an elliptic curve A_{j} defined over $\boldsymbol{F}(j)$ with j as its absolute invariant. Two such elliptic curves are isomorphic, but the isomorphism is not necessarily defined over $\boldsymbol{F}(j)$. In order to avoid this difficulty, we introduce the Kummer morphism " $К u$ " defined over $\boldsymbol{F}(j)$. Then, for every positive integer n, the field $\boldsymbol{F}\left(j, K u\left({ }_{n} A_{j}\right)\right)$ is intrinsic in the sense that it is a uniquely determined finite normal extension of $\boldsymbol{F}(j)$ depending only on p and n. In the case when n is not divisible by p, the extension is separable and, taking k instead of \boldsymbol{F} as ground field, it is called the elliptic modular function field of level n in characteristic p. If we take \boldsymbol{C} as k, we get back to the classical case. One of the basic theorems in the algebraic theory of elliptic modular functions describes the Galois group and the ramification of $\boldsymbol{F}\left(j, K u\left(_{n} A_{j}\right)\right)$ relative to $\boldsymbol{F}(j)$ (5). The purpose of this paper is to give a similar description also in the case when $n=p^{e}$ for $p \neq 0$. It turns out that $\boldsymbol{F}\left(j, K u\left({ }_{n} A_{j}\right)\right)$ is a regular extension of \boldsymbol{F} (cf. 8) and a normal extension of degree $\frac{1}{2} \cdot p^{2 e-1}(p-1)$ of $\boldsymbol{F}(j)$. Furthermore, the separable part has the same Galois group as $\boldsymbol{Q}(\cos (2 \pi / n)$) relative to \boldsymbol{Q}. The ramification (of the separable part) takes place at supersingular invariants (cf. 2) and also at $j=0,12^{3}$ so that the genus g of $\boldsymbol{F}\left(j, K u\left({ }_{n} A_{j}\right)\right)$ is given by

$$
2 g-2=(1 / 24)(p-1)\left(p^{2 e-1}-12 p^{e-1}+1\right)-h,
$$

in which h is the number of supersingular invariants. The formula has to be adjusted by $-3 / 8$ and $-1 / 3$ respectively for $p=2$ and 3 . Also, in the special case when $p=2, e=1$, we have to take $g=0$. It seems possible to better understand this genus formula by the Kroneckerian geometry, i.e., by the geometry of a scheme over \boldsymbol{Z} constructed from $\boldsymbol{Q}\left(j, K u\left({ }_{n} A_{j}\right)\right)$.

1. Jacobi quartics. We shall assume that the characteristic p is different from 2. Consider a plane curve defined inhomogeneously by the following
1) This work was partially supported by the National Science Foundation.
equation

$$
Y^{2}=X^{4}-2 \rho \cdot X^{2}+1
$$

This curve is absolutely irreducible if and only if $\rho^{2} \neq 1$ (and $\rho \neq \infty$). Moreover, in this case, the point at infinity is the only singularity and the curve is of genus 1. Therefore, we can introduce a normal law of composition over $\boldsymbol{F}(\rho)$ taking the point $(0,1)$, say, as its neutral element. We call the curve with this normal law of composition the Jacobi quartic of modulus ρ and we shall denote it by J_{ρ}. We note that the law of composition transported to a non-singular model A, say, of J_{ρ} converts A into an elliptic curve ($=$ complete group variety of dimension 1). Moreover, under the morphism $A \rightarrow J_{\rho}$, two points of order 2 on A are mapped to the singular point of J_{ρ}. If u is a point of A, we shall denote the x-coordinate of the corresponding point of J_{ρ} by $x(u)$; similarly for $y(u)$. We shall sometimes identify u with the corresponding point of J_{ρ} as long as it is different from the singular point. Then, for instance, we have

$$
\pm u=(\pm x(u), y(u))
$$

Furthermore, if n is an odd positive integer and if we put $x=x(u)$ and $y=y(u)$, we have

$$
x(n u)=(-1)^{\frac{1}{2}(n-1)} \cdot x^{n 2} F_{n}\left(x^{-1}\right) F_{n}(x)^{-1}, \quad y(n u)=G_{n}(x) F_{n}(x)^{-2} \cdot y,
$$

in which $F_{n}(X)$ and $G_{n}(X)$ are even polynomials in X with coefficients in $\boldsymbol{F}[\rho]$. If we denote $X^{n 2} F_{n}\left(X^{-1}\right)$ by $T_{n}(X)$, we have

$$
T_{n}(X)=\prod_{n a=0}(X-x(a))^{p e},
$$

in which p^{e} is the inseparability degree of the endomorphism $n \delta$ of J_{ρ}. We call $T_{n}(X)$ the n-th division polynomial of J_{ρ}. It is of degree n^{2} and is relatively prime to $F_{n}(X)$. We note also that, if a is a point of J_{ρ} of order n, we have $\boldsymbol{F}(\rho, a)=\boldsymbol{F}(\rho, x(a))$. More precisely, we have

$$
y(a)=F_{n}(x(a))^{2} \cdot G_{n}(x(a))^{-1},
$$

in which $G_{n}(x(a)) \neq 0$. Therefore $y(a)$ is contained in $\boldsymbol{F}(\rho, x(a))$ and, in fact, in $\boldsymbol{F}\left(\rho, x^{2}(a)\right)$. In the special case when $n=p$ with $p \neq 0$ and when ρ is assumed, for a moment, to be a variable over \boldsymbol{F}, we have

$$
T_{p}(X)=X^{p}\left(\left(X^{p}\right)^{p-1}+\sum_{0<2 i<p-1} P(\rho) \gamma_{i}(\rho) \cdot\left(X^{p}\right)^{2 i}+(-1)^{\frac{1}{2}(p-1)} P(\rho)\right),
$$

in which $P(\rho)$ is the $\frac{1}{2}(p-1)$-th Legendre polynomial and $\gamma_{i}(\rho)$ are contained' in $\boldsymbol{F}[\rho]$. We know that $P(\rho)$ is a polynomial in ρ of degree $\frac{1}{2}(p-1)$ with simple roots, and they are different from ± 1. If we compare the two expressions for $T_{p}(X)$, we see that ${ }_{p} J_{\rho}$ is a cyclic group of order p and

$$
P(\rho)=(-1)^{\frac{1}{2}(p-1)}\left(\prod_{\substack{p a=0 \\ a \neq 0}} x(a)\right)^{p}
$$

Therefore, by specializing ρ to ρ^{\prime} different from ± 1 and ∞, we see that $P\left(\rho^{\prime}\right)=0$ if and only if ${ }_{p} J_{\rho}$, reduces to the neutral element. We refer to (4) for a systematic treatment, especially for the proofs of some non-trivial statements that we have made so far.

Now, we shall find all Jacobi quartics which are "isomorphic" to J_{ρ} and we shall also find the isomorphisms themselves. Suppose that we have σ : $J_{\rho} \simeq J_{\rho}$ for some ρ^{\prime}. Then σ gives rise to an isomorphism not only of the corresponding function-fields but also of their subfields of even functions. We observe that these subfields are generated over the universal domain by (x^{2}, y) and $\left(\left(x^{\prime}\right)^{2}, y^{\prime}\right)$ respectively if $\left(x^{\prime}, y^{\prime}\right)$ denote the coordinate functions on $J_{\rho^{\prime}}$. In this way, we get an isomorphism σ_{0}, say, of the non-singular conic C_{ρ} defined inhomogeneously by

$$
Y^{2}=X^{2}-2 \rho \cdot X+1
$$

to a similarly defined $C_{\rho \prime}$. All these conics (forming a linear pencil) pass through four points (the base points) with homogeneous coordinates ($0,1,1$), $(0,1,-1),(1,1,0),(1,-1,0)$. Since σ maps the neutral element of J_{ρ} to the neutral element of $J_{\rho^{\prime}}$, necessarily σ_{0} keeps the point $(0,1,1)$ fixed. We recall that every isomorphism between two non-singular conics is a projective transformation. Therefore σ_{0} determines an element S of $P L_{3}$ keeping ($0,1,1$) fixed. On the other hand, the Jacobi quartic J_{ρ}, or its non-singular model A, is ramified over C_{ρ} at the four points on C_{ρ} that we have mentioned above; similarly for $J_{\rho^{\prime}}$ and $C_{\rho^{\prime},}$. We know that S keeps $(0,1,1)$ fixed. Therefore S has to permute the three remaining points. In this way, we get the following 3! possibilities

$$
\begin{array}{ccc}
S=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & \left.\begin{array}{rrr}
1 & -1 & 1 \\
2 & 0 & -2 \\
-1 & -1 & -1
\end{array}\right] & (\rho-3)(\rho+1)^{-1} \\
\rho^{\prime}=\rho & \left.\begin{array}{rrr}
1 & 1 & -1 \\
-2 & 0 & -2 \\
1 & -1 & -1
\end{array}\right) \\
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
-\rho & & {\left[\begin{array}{rrr}
1 & -1 & 1 \\
-2 & 0 & 2 \\
1 & 1 & 1
\end{array}\right]}
\end{array}
$$

All these cases are possible. We note that σ determines σ_{0} uniquely and σ_{0} determines σ up to the sign of x. We have thus obtained the information that we shall use later.

We can consider those six values of moduli as defining a transformation
group on a projective straight line over \boldsymbol{F}. The orbits consist of six points in general except for the degenerate case $\{ \pm 1, \infty\}$, the harmonic case $\{0, \pm 3\}$ and the equianharmonic case $\left\{ \pm(-3)^{\frac{1}{2}}\right\}$ with respective multiplicities 2,2 and 3. We can identify these orbits to single points of another projective straight line over \boldsymbol{F}. Up to a projective transformation, the identification morphism is given by

$$
j=2^{6}\left(\rho^{2}+3\right)^{3}\left(\rho^{2}-1\right)^{-2} .
$$

This j is called the absolute invariant of J_{ρ} and also of any curve which is birationally equivalent to J_{ρ}. Actually, we know how to characterize j up to the Kroneckerian transformation $j \rightarrow \pm j+$ integer (cf. 5). We note that the three exceptional orbits are mapped respectively to $\infty, 12^{3}$ and 0 . We also note that the $\frac{1}{2}(p-1)$ simple roots of $P(\rho)$ are divided into orbits. These orbits are mapped to supersingular invariants on the j-line (cf. 2). For instance 0 is the only supersingular invariant for $p=3$. Using the Kronecker symbol, we can write down the number h of supersingular invariants in general, and it is as follows

$$
h=(1 / 12)(p-1)+(1 / 3)(1-(-3 / p))+(1 / 4)(1-(-4 / p)) .
$$

2. The field $\boldsymbol{F}\left(\rho, K u u_{n} J_{\rho}\right)$) for $n=p^{e}$. First of all, suppose that A is an elliptic curve defined over a field K of characteristic $p \neq 0$. Then, for $n=p^{e}$ we have

$$
\left[K\left(_{n} A\right): K\right]_{s} \leqq p^{e-1}(p-1), \quad\left[K\left({ }_{n} A\right): K\right]_{i} \leqq p^{e},
$$

provided that ${ }_{p} A$ is cyclic of order p for the second inequality. We leave the proof as an exercise to the reader. We say that an "irreducibility theorem" holds for A and n over K if we have equality signs. In this case, clearly the Galois group of the separable part of $K\left({ }_{n} A\right)$ over K is isomorphic to $G L_{1}(\boldsymbol{Z} / n \boldsymbol{Z})$, i. e., to the Galois group of $\boldsymbol{Q}\left(e^{2 \pi i / n}\right)$ over \boldsymbol{Q}.

Now, we take an algebraically closed field k containing \boldsymbol{F} for $p \neq 2$ and also a variable ρ over k. We shall show that the irreducibility theorem holds for J_{ρ} and $n=p^{e}$ over $k(\rho)$. We choose a sequence of points

$$
\cdots a_{m+1}, \quad a_{m}, \cdots, \quad a_{1} \neq 0, \quad a_{0}=0
$$

of J_{ρ} with the property $p a_{m+1}=a_{m}$ for $m=0,1,2, \cdots$. Then we have $\boldsymbol{F}\left(\rho,{ }_{n} J_{\rho}\right)$ $=\boldsymbol{F}\left(\rho, x\left(a_{e}\right)\right.$). In fact ${ }_{n} J_{\rho}$ is a cyclic group of order n and a_{e} is one of the generators. Since the law of composition of J_{ρ} is defined over $\boldsymbol{F}(\rho)$, we have $\boldsymbol{F}\left(\rho,{ }_{n} J_{\rho}\right)=\boldsymbol{F}\left(\rho, a_{e}\right)$, and, as we have seen, this coincides with $\boldsymbol{F}\left(\rho, x\left(a_{e}\right)\right)$. After this remark, we take a root ρ^{\prime} of the Legendre polynomial $P(\rho)$. We shall show that: (1) there exists only one point P_{e} in $K_{e}=k\left(\rho, x\left(a_{e}\right)\right)$ lying over ρ^{\prime};
(2) $x\left(a_{e}\right)$ is a local parameter of K_{e} at P_{e}; and (3) the order of $\rho-\rho^{\prime}$ at P_{e} is $p^{2 e-1}(p-1)$. We shall prove (1), (2), (3) by an induction on e.

We observe that $x\left(a_{1}\right)$ is a root of

$$
T_{p}(X) X^{-p}=\left(X^{p}\right)^{p-1}+P(\rho) \cdot U_{0}(\rho, X),
$$

in which

$$
U_{0}(\rho, X)=\sum_{0<2<p-1} \gamma_{i}(\rho) \cdot\left(X^{p}\right)^{2 i}+(-1)^{\frac{1}{2}(p-1)} .
$$

Let t_{1} denote a local parameter of a point of K_{1} lying over ρ^{\prime}. We shall compute orders of elements of K_{1} with respect to t_{1}. Since $U_{0}\left(\rho, x\left(a_{1}\right)\right)$ is a unit at $t_{1}=0$, we have

$$
p(p-1) \cdot \operatorname{ord}\left(x\left(a_{1}\right)\right)=\operatorname{ord}\left(\rho-\rho^{\prime}\right) .
$$

Since we have

$$
\operatorname{ord}\left(x\left(a_{1}\right)\right) \geqq 1, \quad \operatorname{ord}\left(\rho-\rho^{\prime}\right) \leqq\left[K_{1}: K_{0}\right] \leqq p(p-1),
$$

we get equality signs everywhere. This proves (1), (2), (3) for $e=1$. Suppose next that (1), (2), (3) are verified up to $e=m \geqq 1$. We shall proceed to prove them for $e=m+1$. We observe that $x\left(a_{m+1}\right)$ is a root of

$$
\begin{aligned}
T_{p}(X) & -(-1)^{\frac{1}{2}(p-1)} x\left(a_{m}\right) \cdot F_{p}(X) \\
& =X^{p^{2}}+P(\rho) \cdot X^{p} \cdot U_{m}(\rho, X)-(-1)^{\frac{1}{2}(p-1)} x\left(a_{m}\right),
\end{aligned}
$$

in which $U_{m}(\rho, X)-U_{0}(\rho, X)$ is given by

$$
-(-1)^{\frac{1}{2}(p-1)} x\left(a_{m}\right) \cdot\left(\sum_{0<2 i<p-1} \gamma_{i}(\rho) \cdot\left(X^{p}\right)^{p-2 i-2}+(-1)^{\frac{1}{2}(p-1)}\left(X^{p}\right)^{p-2}\right) .
$$

Let t_{m+1} denote a local parameter of a point of K_{m+1} lying over P_{m}. We shall compute orders of elements of K_{m+1} with respect to t_{m+1}. Since $U_{m}\left(\rho \cdot x\left(a_{m+1}\right)\right)$ is a unit at $t_{m+1}=0$ and since $P(\rho) \cdot x\left(a_{m+1}\right)^{p}$ clearly has a larger order than $x\left(a_{m}\right)$, we have

$$
p^{2} \cdot \operatorname{ord}\left(x\left(a_{m+1}\right)\right)=\operatorname{ord}\left(x\left(a_{m}\right)\right) .
$$

Since we have

$$
\operatorname{ord}\left(x\left(a_{m+1}\right)\right) \geqq 1, \quad \operatorname{ord}\left(x\left(a_{m}\right)\right) \leqq\left[K_{m+1}: K_{m}\right] \leqq p^{2},
$$

we get equality signs everywhere. This proves (1), (2), (3) for $e=m+1$, and the induction is complete. We observe also that the polynomial for $x\left(a_{e}\right)^{p}$ with coefficients in K_{e-1} is separable. Therefore, we get $\left[K_{e}: K_{e-1}\right]_{s}=p$ for $e>1$ and $=p-1$ for $e=1$, and hence

$$
\left[K_{e}: K_{0}\right]_{s}=p^{e-1}(p-1), \quad\left[K_{e}: K_{0}\right]_{i}=p^{e} .
$$

This shows that the irreducibility theorem holds for J_{ρ} and $n=p^{e}$ over $k(\rho)$, hence a fortiori over $\boldsymbol{F}(\rho)$. In particular $\boldsymbol{F}\left(\rho,{ }_{n} J_{\rho}\right)$ is a regular extension of \boldsymbol{F}
(cf. 8). We shall calculate the genus of its subfield $\boldsymbol{F}\left(\rho, K u\left({ }_{n} J_{\rho}\right)\right)$.
First of all, we may take $K u(u)$ to be $\left(x^{2}(u), y(u)\right)$. Then, we have $\boldsymbol{F}\left(\rho, K u\left(_{n} J_{\rho}\right)\right)=\boldsymbol{F}\left(\rho, x^{2}\left(a_{e}\right)\right)$, and hence we have only to calculate the genus of $\boldsymbol{F}\left(\rho, x^{2}\left(a_{e}\right)\right)^{p^{e}}=\boldsymbol{F}\left(\rho,\left(x^{2 p e}\right)\left(a_{e}\right)\right)$ or of $L_{e}=k\left(\rho,\left(x^{2 p^{e} e}\right)\left(a_{e}\right)\right)$. Suppose that ρ^{\prime} is an arbitrary element of k. If ρ^{\prime} is not a root of $\rho^{2}-1$, the specialization $\rho \rightarrow \rho^{\prime}$ over k extends uniquely to a specialization $\left(J_{\rho},{ }_{n} J_{\rho}\right) \rightarrow\left(J_{\rho^{\prime}},{ }_{n} J_{\rho^{\prime}}\right.$). If further ρ^{\prime} is not a root of $P(\rho)$, the specialization ${ }_{n} J_{\rho} \rightarrow_{n} J_{\rho}$, is an isomorphism of the two cyclic groups. Therefore $\left(K_{e}\right)^{p^{e}}$ is ramified over $k(\rho)$ at most at the roots of ($\left.\rho^{2}-1\right) P(\rho)$ and at ∞. Suppose that ρ^{\prime} is a root of $P(\rho)$. We shall first compute the contribution to the different of $\left(K_{e}\right)^{r^{e}}$ over $k(\rho)$ of the unique point of $\left(K_{e}\right)^{p^{p}}$ lying over ρ^{\prime}. Since $s_{e}=x\left(a_{e}\right)^{p^{e}}$ is a local parameter of $\left(K_{e}\right)^{p^{e}}$ at this point, we have only to compute the order of $d \rho / d s_{e}$ with respect to s_{e}. By applying the chain rule and using the equation for $x\left(a_{m+1}\right)^{p^{m+1}}$ over $\left(K_{m}\right)^{p m}$ for $m=0,1, \cdots, e-1$, we get

$$
(p-2) p^{e-1}+p^{e-1}(p-1) \sum_{m=1}^{e-1} p^{m}=p^{e-1}\left(p^{e}-2\right) .
$$

Therefore, applying again the chain rule to $\left(K_{e}\right)^{p e} \supset L_{e} \supset k(\rho)$, we see that the contribution to the different of L_{e} over $k(\rho)$ of the unique point of L_{e} lying over ρ^{\prime} is

$$
\frac{1}{2}\left(p^{e-1}\left(p^{e}-2\right)-1\right)=\frac{1}{2}\left(p^{2 e-1}-1\right)-p^{e-1} .
$$

On the other hand, as we shall see presently in the next section, the contribution coming from the points of L_{e} lying over $\rho^{\prime}= \pm 1$ and ∞ are same. We shall show that they are all 0 . For this purpose, we take a variable ρ_{0} over \boldsymbol{Q} and consider the field $\boldsymbol{Q}\left(\rho_{0},{ }_{n} J_{\rho_{0}}\right)$ for $n=p^{e}$. We know that ${ }_{n} J_{\rho_{0}}$ is an abelian group of type (n, n). Therefore, it is generated by two elements a_{0}, b_{0}, say. Consider

$$
\xi=\prod_{m \operatorname{mcd} n} x\left(m a_{0}+b_{0}\right) .
$$

Then ξ can be expanded into a power-series in $\rho_{0}-1$ (with coefficients in the principal order of $\boldsymbol{Q}\left(e^{2 \pi i / n}\right)$). This follows from the fact that ξ is invariant by one of the local Galois groups of $\boldsymbol{Q}\left(\rho_{0},{ }_{n} J_{\rho_{0}}\right)$ over $\boldsymbol{Q}\left(e^{2 \pi i / n}, \rho_{0}\right)$ at $\rho_{0}=1$. Therefore, if we take the reduction modulo a prime factor of $x\left(b_{0}\right)$, we see that $x(a)^{n}$ has a power-series expansion in $\rho-1$ (with coefficients in \boldsymbol{F}). This proves the assertion. Therefore, the genus $g\left(L_{e}\right)$ of L_{e} is given by

$$
2 g\left(L_{e}\right)-2=\frac{1}{2}(p-1)\left(\frac{1}{2}\left(p^{2 e-1}-1\right)-p^{e-1}\right)-p^{e-1}(p-1) .
$$

As we have seen, $g\left(L_{e}\right)$ is also the genus of $\boldsymbol{F}\left(\rho, K u\left(_{n} J_{\rho}\right)\right)$.
3. The field $\left.\boldsymbol{F}\left(j, K u u_{n} A_{j}\right)\right)$ for $n=p^{e}$. We shall assume, using the same notation as before, that ρ is a variable over k. The absolute invariant j of J_{ρ} is given explicitly as a rational function of ρ with coefficients in \boldsymbol{F}. We choose an elliptic curve A_{j}, defined over $\boldsymbol{F}(j)$, which is birationally equivalent to J_{ρ} (cf. 1, 5). We also choose a Kummer morphism for A_{j} defined over $\boldsymbol{F}(j)$. Then, if w and u are biregularly corresponding points of A_{j} and J_{ρ}, we have $\boldsymbol{F}(\rho, K u(w))=\boldsymbol{F}(\rho, K u(u))$. This implies $\boldsymbol{F}\left(\rho, K u\left(_{n} A_{j}\right)\right)=\boldsymbol{F}\left(\rho, K u\left(_{n} J_{\rho}\right)\right)$ for $n=p^{e}$. Therefore $\boldsymbol{F}\left(\rho, K u\left({ }_{n} J_{\rho}\right)\right)$ is the compositum of $\left.\boldsymbol{F}\left(j, K u{ }_{n} A_{j}\right)\right)$ and $\boldsymbol{F}(\rho)$ over $\boldsymbol{F}(j)$. Consequently, $\boldsymbol{F}\left(j, K u{ }_{n} A_{j}\right)$) is a regular extension of \boldsymbol{F} and over $\boldsymbol{F}(j)$, the separable and the inseparable degrees are respectively $\frac{1}{2} p^{e-1}(p-1)$ and p^{e}. The situation remains same even if we replace \boldsymbol{F} by k. Since ± 1 and ∞ on the ρ-line are conjugate over $k(j)$, this settles a minor point left at the end of the previous section.

Lemma. If $j^{\prime} \neq \infty$ is not a supersingular invariant, no point of $k\left(j, K u{ }_{n} A_{j}\right)$), lying over j^{\prime} is ramified in $\left.k\left(\rho, K u u_{n} J_{\rho}\right)\right)$.

Proof. Suppose that there is a ramification. Then there exists a point P of $k\left(\rho, K u\left(_{n} J_{\rho}\right)\right)$ lying over j^{\prime} and an automorphism σ of $k\left(\rho, K u\left(_{n} J_{\rho}\right)\right)$ over $k\left(j, K u\left({ }_{n} A_{j}\right)\right.$), different from the identity, satisfying $\sigma P=P$. Now, the morphism $A_{j} \rightarrow J_{\rho}$ gives rise to a unique isomorphism of their Kummer varieties over $\boldsymbol{F}(\rho)$, hence over $k(\rho)$. Applying σ to the graph of this isomorphism, we get an isomorphism of the Kummer variety of A_{j} to the Kummer variety of $J_{\rho \sigma}$. If we compose the inverse of the first isomorphism with the second isomorphism, using the notation of Section 1, we will get an isomorphism of the conic C_{ρ} to the conic $C_{\rho \sigma}$. Therefore, for every a in $_{n} J_{\rho}$, the image $\left(x^{2}(a)^{\sigma}, y(a)^{\sigma}\right)$) of ($\left.x^{2}(a), y(a)\right)$ under the automorphism σ is precisely the image of $\left(x^{2}(a), y(a)\right)$, under the isomorphism $C_{\rho} \simeq C_{\rho \sigma}$ determined as above. On the other hand, because of $\sigma P=P$, we have

$$
\left(\rho^{\sigma}, x^{2}(a)^{\sigma}, y(a)^{\sigma}\right)(P)=\left(\rho, x^{2}(a), y(a)\right)(P) .
$$

If we combine this fact with the explicit expression for $x^{2}(a)^{\sigma}$ obtained in Section 1 , we immediately get a contradiction. In fact, for $a \neq 0, x^{2}(a)(P)$ satisfies. a quadratic equation when $j^{\prime}=0$ and a linear equation when $j^{\prime}=12^{3}$. Therefore, the only possibilities are $n=p=3$ and $n=p=5$. On the other hand, since j^{\prime} is not supersingular, we have $j^{\prime} \neq 0$ in both cases. This will bring a contradiction. q.e.d.

We shall, now, proceed to determine the contributions of the points of $\left.k\left(j, K u{ }_{n} A_{j}\right)\right)^{p e}$ lying over $j^{\prime} \neq \infty$ to the different relative to $k(j)$. Suppose first. that j^{\prime} is not supersingular. If j^{\prime} is different from 0 and 12^{3}, the contribution is 0 . If $j^{\prime}=0$, using the previous lemma, we get (2/3) N for

$$
N=\frac{1}{2} p^{e-1}(p-1)
$$

Similarly, if $j^{\prime}=12^{3}$, we get $(1 / 2) N$. Suppose next that j^{\prime} is supersingular. If j^{\prime} is different from 0 and 12^{3}, the contribution is clearly equal to

$$
W=\frac{1}{2}\left(p^{2 e-1}-2 p^{e-1}-1\right)
$$

If $j^{\prime}=0$ and $p \neq 3$, since $k\left(\rho, K u\left({ }_{n} J_{\rho}\right)\right)^{p^{e}}$ is tamely ramified over $k\left(j, K u\left({ }_{n} A_{j}\right)\right)^{p e}$ with 3 as its ramification index, calculating the derivative of j with respect to the local parameter of $k\left(\rho, K u\left({ }_{n} J_{\rho}\right)\right)^{p e}$ at any one of the points lying over j^{\prime} in two different ways, we get $(1 / 3)(W+2 N-2)$. Similarly, if $j^{\prime}=12^{3}$ and $p \neq 3$, we get $(1 / 2)(W+N-1)$. On the other hand, if $j^{\prime}=0=12^{3}$ and $p=3$, we proceed as follows: There is only one point P, say, of $k\left(\rho, K u\left(_{n} J_{\rho}\right)\right)^{p e}$ lying over j. The second ramification group of P is the subgroup which corresponds to $k(\rho)$. Consequently, although $k\left(\rho, K u\left({ }_{n} J_{\rho}\right)\right)^{p e}$ is wildly ramified over $\left.k\left(j, K u{ }_{n} A_{j}\right)\right)^{p e}$, the second ramification group of P for this extension reduces to the identity. The rest is the same as before, and we get $(1 / 6)(W+7 N-7)$.

Finally, in the case when $j^{\prime}=\infty$, we can show as before that it is not ramified in $k\left(j, K u\left({ }_{n} A_{j}\right)\right)^{p e}$. Therefore, the genus g of this field, which is equal to that of $\boldsymbol{F}\left(j, K u\left({ }_{n} A_{j}\right)\right)$, is given by

$$
2 g-2=(1 / 24)(p-1)\left(p^{2 e-1}-12 p^{e-1}+1\right)-h,
$$

in which h is the number of supersingular invariants. In the case when $p=3$, it is necessary to subtract $1 / 3$ from the right-hand side.

We shall, also, discuss the case when $p=2$. Assuming that j is a variable over k, we consider a plane curve defined inhomogeously by

$$
Y^{2}-X Y=j^{-1} X^{3}+j
$$

This cubic curve is absolutely irreducible and non-singular, hence it is of genus 1. Therefore, it becomes an elliptic curve with the point at infinity, say, as its neutral element. We shall use this elliptic curve as A_{j} because it has j as its absolute invariant. We observe that, if $j \rightarrow j^{\prime}$ is a specialization over k, the elliptic curve A_{j} has a similarly defined elliptic curve $A_{j^{\prime}}$ as its unique specialization for $j^{\prime} \neq 0, \infty$. Moreover, as we can see by using a different model, $j^{\prime}=0$ is supersingular and, in fact, the only one in characteristic 2 (cf. 1, 2). On the other hand, if $u=(x(u), y(u))$ is a point of A_{j}, we have $x(-u)=x(u)$ and $y(-u)=x(u)+y(u)$. Therefore, we may take $K u(u)$ to be $x(u)$. Furthermore, if we put $x=x(u)$, we have the following duplication formula

$$
x(2 u)=j^{-1} x^{2}+j^{2} x^{-2} .
$$

We shall show that $\boldsymbol{F}\left(j, K u{ }_{n} A_{j}\right)$ for $n=2^{e}$ is a regular extension of \boldsymbol{F} and
over $\boldsymbol{F}(j)$, the separable and the inseparable degrees are respectively 2^{e-2} and 2^{e} provided $e \geqq 2$. We have only to prove the second part replacing \boldsymbol{F} by k.

We choose a sequence of points

$$
\cdots a_{m+1}, \quad a_{m}, \cdots, \quad a_{1} \neq 0, \quad a_{0}=0
$$

of A_{j} with the property $2 a_{m+1}=a_{m}$ for $m=0,1,2, \cdots$. Since the group law is defined over $\boldsymbol{F}(j)$ and since ${ }_{n} A_{j}$ is a cyclic group of order n generated by a_{e}, we have $\boldsymbol{F}\left(j,{ }_{n} A_{j}\right)=\boldsymbol{F}\left(j, x\left(a_{e}\right), y\left(a_{e}\right)\right)$, and $\left.\boldsymbol{F}\left(j, K u{ }_{n} A_{j}\right)\right)=\boldsymbol{F}\left(j, x\left(a_{e}\right)\right)$. On the other hand, we have $x\left(a_{0}\right)=\infty, x\left(a_{1}\right)=0$ and $x\left(a_{2}\right)^{4}=j^{3}$. Moreover, if we introduce

$$
x_{e}=\left(x\left(a_{e+3}\right)^{2}\left(j x\left(a_{e+2}\right)\right)^{-1}\right)^{2^{\epsilon+1}}
$$

for $e=0,1,2, \cdots$, we have $\left(x_{0}\right)^{2}-x_{0}=j^{-1}$, and in general x_{e} is a root of $X^{2}-X$ $=R_{e-1}$ with

$$
R_{e-1}=\left(x_{0}\left(x_{0}-1\right)\right)^{2^{e+1}-1} \cdot\left(x_{0} \cdots x_{e-1}\right)^{-2}
$$

for $e=1,2, \cdots$. We shall show that: (1) there exists only one point P_{e-1} in $k\left(x_{0}, \cdots, x_{e-1}\right)$ lying over $x_{0}=\infty$; (2) the order of x_{e-1} at P_{e-1} is $-2^{2 e-2}$; and (3) if t_{e-1} is a local parameter of $k\left(x_{0}, \cdots, x_{e-1}\right)$ at P_{e-1} and if we replace x_{e} by a suitable

$$
\theta_{e}=x_{e}+\text { const. }\left(t_{e-1}^{-1}\right)^{2 e-1}+\text { lower powers },
$$

the equation for θ_{e} will take the form

$$
\left(\theta_{e}\right)^{2}-\theta_{e}=\text { const. }\left(t_{e-1}^{-1}\right)^{s e}+\text { lower powers }
$$

with

$$
\varepsilon_{e}=(2 / 3)\left(2^{2 e}-1\right)+1 \text {, }
$$

in which the constants are both different from 0 . We observe that (1), (2), (3) can be verified easily for $e=1$. Therefore, we shall assume that they are true up to $e=m \geqq 1$. Since ε_{m} is an odd positive integer, we see that θ_{m} generates a separable quadratic extension of $k\left(x_{0}, \cdots, x_{m-1}\right)$ ramified at P_{m-1} (cf. 3), and this extension is $k\left(x_{0}, \cdots, x_{m}\right)$. In particular, there exists only one point P_{m} in $k\left(x_{0}, \cdots, x_{m}\right)$ lying over P_{m-1}, hence over $x_{0}=\infty$, and the order of t_{m-1} at P_{m} is 2 . Since we have $2^{2 m}-\varepsilon_{m}=(1 / 3)\left(2^{2 m}-1\right) \geqq 1$, the order of x_{m} at P_{m} is $-2^{2 m}$. Therefore, the order of R_{m} at P_{m} is $-2^{2 m+2}$. Moreover, we have

$$
d R_{m} / d t_{m}=\left(x_{0}\left(x_{0}-1\right)\right)^{2^{m+2}-2} \cdot\left(x_{1} \cdots x_{m}\right)^{-2} \cdot\left(d t_{0} / d t_{m}\right)
$$

for $t_{0}=x_{0}{ }^{-1}$, and the order of the coefficient of $d t_{0} / d t_{m}$ at P_{m} is $-2^{2 m+2}$. On the other hand, the order of $d t_{0} / d t_{m}$ at P_{m} can be calculated by the chain rule using (3) for $e=1,2, \cdots, m$ (cf. 3), and we get

$$
\sum_{e=1}^{m} 2^{m-e}\left(\varepsilon_{e}+1\right)=\left(2^{2} / 3\right)\left(2^{2 m}-1\right) .
$$

Therefore, the order of $d R_{m} / d t_{m}$ at P_{m} is equal to

$$
-(2 / 3)\left(2^{2 m+2}+2\right)=-\left(\varepsilon_{m+1}+1\right) .
$$

Consequently, if we expand R_{m} into a series of powers of t_{m}, the highest negative odd exponent will be precisely $-\varepsilon_{m+1}$. Since we have $\varepsilon_{m+1}-2^{2 m+1}$ $=(1 / 3)\left(2^{2 m+1}+1\right) \geqq 3$, it is certainly possible to replace x_{m+1} by a suitable

$$
\theta_{m+1}=x_{m+1}+\text { const. }\left(t_{m}^{-1}\right)^{2^{2 m+1}}+\text { lower powers }
$$

so that the equation for θ_{m+1} takes the form

$$
\left(\theta_{m+1}\right)^{2}-\theta_{m+1}=\text { const. }\left(t_{m}^{-1}\right)^{\varepsilon_{m+1}}+\text { lower powers; }
$$

in which the constants are both different from 0 . We have thus proved (1), (2), (3) for $e=m+1$, and the induction is complete.

If we observe that $k\left(j, x\left(a_{e}\right)\right)$ contains $k\left(x_{0}, \cdots, x_{e-3}\right)$ for $e \geqq 3$ and that $k\left(x_{0}\right)$ is a separable quadratic extension of $k(j)$, which incidentally is ramified only at $j=0$, we see that the separable degree of $k\left(j, x\left(a_{e}\right)\right)$ over $k(j)$ is 2^{e-2} and that $k\left(x_{0}, \cdots, x_{e-3}\right)$ is the maximal separable subfield of $k\left(j, x\left(a_{e}\right)\right)$ over $k(j)$. Furthermore, because of

$$
x\left(a_{e}\right)^{2 e}=j^{3} \cdot\left(\stackrel{\prod}{m=0}_{e-3}^{j^{2 m+1}} x_{m}\right)^{2},
$$

we see that $x\left(a_{e}\right)^{2 e}$ but not $x\left(a_{e}\right)^{2 e-1}$ is separable over $k(j)$ for $e \geqq 3$. Consequently, the inseparability degree of $k\left(j, x\left(a_{e}\right)\right)$ over $k(j)$ is 2^{e}. In view of the fact that $k\left(j, x\left(a_{2}\right)\right)=k\left(j^{1 / 4}\right)$, we have completed the proof of the irreducibility statement that we made in the beginning.

We can also determine the genus of $\boldsymbol{F}\left(j, K u\left({ }_{n} A_{j}\right)\right)$, which is equal to that of $k\left(x_{0}, \cdots, x_{e-3}\right)$, for $e \geqq 3$. We observe that the contributions to the different of $k\left(x_{0}, \cdots, x_{e-3}\right)$ relative to $k\left(x_{0}\right)$ come only from those points lying over $j=0$ and ∞. The contribution coming from the unique point lying over $j=0$, i. e., over $x_{0}=\infty$, has already been calculated in proving (1), (2), (3). We shall show that $j=\infty$ is not ramified in $k\left(x_{0}, \cdots, x_{e-3}\right)$. At any rate, over $j=\infty$ we have two points $x_{0}=0$ and 1 in $k\left(x_{0}\right)$. Suppose that $k\left(x_{0}, \cdots, x_{m}\right)$ but not $k\left(x_{0}, \cdots, x_{m-1}\right)$ is ramified over $k(j)$ at $j=\infty$. Then $k\left(x_{0}, \cdots, x_{m}\right)$ is ramified over $k\left(x_{0}, \cdots, x_{m-1}\right)$ at every one of the 2^{m} points lying over $j=\infty$ (because they are conjugate over $k(j)$). Now, there is one point P, say, where we have $x_{0}=\cdots=x_{m-1}=1$. Then R_{m-1} is finite at P, and hence the extension of $k\left(x_{0}, \cdots, x_{m-1}\right)$ generated by x_{m} is unramified at P. This is a contradiction. In this way, we get

$$
2 g-2=\left(2^{2} / 3\right)\left(2^{2 e-6}-1\right)-2^{e-2},
$$

and this is a special case of the general formula if we make an adjustment
by subtracting $3 / 8$ from the right-hand side (of the general formula).

The Johns Hopkins University

References

[1] M. Deuring, Invarianten und Normalformen elliptischer Funktionenkörper, Math. Z., 47 (1941), 47-56.
[2] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hamb. Univ., 14 (1941), 197-272.
[3] H. Hasse, Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper, J. Reine Angew. Math., 172 (1934), 37-54.
[4] J. Igusa, On the transformation theory of elliptic functions, Amer. J. Math., 81 (1959), 436-452.
[5] J. Igusa, Fiber systems of Jacobian varieties III, Amer. J. Math., 81 (1959), 453476.
[6] J. Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math., 81 (1959), 561-577.
[7] L. Kronecker, Zur Theorie der elliptischen Functionen, Collected Works, Vol. 4, 1929, 345-495.
[8] A. Weil, Foundations of Algebraic Geometry, Providence, 1962.

