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Let $k$ denote an algebraically closed field over a prime field $F(=Q$ or
$Z/pz)$ and $j$ a variable over A. Choose an elliptic curve $A_{j}$ defined over $F(j)$

with $j$ as its absolute invariant. Two such elliptic curves are isomorphic, but
the isomorphism is not necessarily defined over $F(j)$ . In order to avoid this
dithculty, we introduce the Kummer morphism $Ku$ defined over $F(j)$ . Then,

for every positive integer $n$ , the field $F(j, Ku(A))$ is intrinsic in the sense
that it is a uniquely determined finite normal extension of $F(j)$ depending
only on $p$ and $n$ . In the case when $n$ is not divisible by $p$ , the extension is
separable and, taking $k$ instead of $F$ as ground field, it is called the elliptic
modular function field of level $n$ in characteristic $p$ . If we take $C$ as $k$ , we
get back to the classical case. One of the basic theorems in the algebraic
theory of elliptic modular functions describes the Galois group and the rami-
fication of $F(j, Ku(A))$ relative to $F(j)(5)$ . The purpose of this paper is to
give a similar description also in the case when $n=p^{e}$ for $p\neq 0$ . It turns out
that $F(j, Ku(A))$ is a regular extension of $F$ (cf. 8) and a normal extension

1of degree
$\overline{2}$

. $p^{2e-1}(p-1)$ of $F(j)$ . Furthermore, the separable part has the

same Galois group as $Q(\cos(2\pi/n))$ relative to $Q$ . The ramification (of the
separable part) takes place at supersingular invariants (cf. 2) and also at
$j=0,12^{3}$ so that the genus $g$ of $F(j, Ku(A))$ is given by

$2g-2=(1/24)(p-1)(p^{2e-1}-12p^{e-1}+1)-h$ ,

in which $h$ is the number of supersingular invariants. The formula has to be
adjusted by $-3/8$ and $-1/3$ respectively for $p=2$ and 3. Also, in the special
case when $p=2$ , $e=1$ , we have to take $g=0$ . It seems possible to better
understand this genus formula by the Kroneckerian geometry, $i$ . $e.$ , by the
geometry of a scheme over $Z$ constructed from $Q(j, Ku(A))$ .

1. Jacobi quartics. We shall assume that the characteristic $p$ is different
from 2. Consider a plane curve defined inhomogeneously by the following

1) This work was partially supported by the National Science Foundation.
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equation
$Y^{2}=X^{4}-2\rho\cdot X^{2}+1$ .

This curve is absolutely irreducible if and only if $\rho^{2}\neq 1$ (and $\rho\neq\infty$). Moreover,

in this case, the point at infinity is the only singularity and the curve is of
genus 1. Therefore, we can introduce a normal law of composition over $F(\rho)$

taking the point $(0,1)$ , say, as its neutral element. We call the curve with this
normal law of composition the Jacobi quartic of modulus $\rho$ and we shall denote
it by $J_{\rho}$ . We note that the law of composition transported to a non-singular
model $A$ , say, of $J_{\rho}$ converts $A$ into an elliptic curve ($=complete$ group variety
of dimension 1). Moreover, under the morphism $A\rightarrow J_{\rho}$ , two points of order 2
on $A$ are mapped to the singular point of $J_{\rho}$ . If $u$ is a point of $A$ , we shall
denote the x-coordinate of the corresponding point of $J_{\rho}$ by $x(u)$ ; similarly for
$y(u)$ . We shall sometimes identify $u$ with the corresponding point of $J_{\rho}$ as
long as it is different from the singular point. Then, for instance, we have

$\pm u=(\pm x(u), y(u))$ .
Furthermore, if $n$ is an odd positive integer and if we put $x=x(u)$ and $y=y(u)$,

we have
$x(nu)=(-1)^{\frac{1}{2}(n-1)}\cdot x^{n2}F_{n}(x^{-1})F_{n}(x)^{-1}$ , $\gamma(nu)=G_{n}(x)F_{n}(x)^{-2}\cdot y$ ,

in which $F_{n}(X)$ and $G_{n}(X)$ are even polynomials in $X$ with coefficients in $F[\rho]$.
If we denote $X^{n^{2}}F_{n}(X^{-1})$ by $T_{n}(X)$ , we have

$T_{n}(X)=\prod_{na=0}(X-x(a))^{p^{e}}$

in which $p^{e}$ is the inseparability degree of the endomorphism $ n\delta$ of $J_{\rho}$ . We
call $T_{n}(X)$ the n-th division polynomial of $J_{\rho}$ . It is of degree $n^{2}$ and is relatively
prime to $F_{n}(X)$ . We note also that, if $a$ is a point of $J_{\rho}$ of order $n$ , we have
$F(\rho, a)=F(\rho, x(a))$ . More precisely, we have

$y(a)=F_{n}(x(a))^{2}\cdot G_{n}(x(a))^{-1}$ ,

in which $G_{n}(x(a))\neq 0$ . Therefore $y(a)$ is contained in $F(\rho, x(a))$ and, in fact.
in $F(\rho, x^{2}(a))$ . In the special case when $n=p$ with $p\neq 0$ and when $\rho$ is as-
sumed, for a moment, to be a variable over $F$, we have

$T_{p}(X)=X^{p}((X^{p})^{p-1}+\sum_{0<2?<p-1}P(\rho)\gamma_{i}(\rho)\cdot(X^{p})^{2i}+(-1)^{2}P(\rho))1_{(p-1)}$

in which $P(\rho)$ is the $\frac{1}{2}(p-1)$-th Legendre polynomial and $\gamma_{i}(\rho)$ are containedt

in $F[\rho]$ . We know that $P(\rho)$ is a polynomial in $\rho$ of degree $-2-(p-1)1$ with

simple roots, and they are different from $\pm 1$ . If we compare the two expres-
sions for $T_{p}(X)$ , we see that $pJ_{\rho}$ is a cyclic group of order $p$ and
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$P(\rho)=(-1)^{2}(\prod_{P_{a\neq^{0}}^{a=_{0}}}x(a))^{p}1_{(p-1)}$

Therefore, by specializing $\rho$ to $\rho^{\prime}$ different from $\pm 1$ and $\infty$ , we see that
$P(\rho^{\prime})=0$ if and only if $pJ_{\rho}$ , reduces to the neutral element. We refer to (4)

for a systematic treatment, especially for the proofs of some non-trivial state-
ments that we have made so far.

Now, we shall find all Jacobi quartics which are ‘ isomorphic ” to $J_{\rho}$ and
we shall also find the isomorphisms themselves. Suppose that we have $\sigma$ :

$J_{\rho}\rightarrow\sim J_{\rho}$ , for some $\rho^{\prime}$ . Then $\sigma$ gives rise to an isomorphism not only of the
corresponding function-fields but also of their subfields of even functions. We
observe that these subfields are generated over the universal domain by $(x^{2}, y)$

and $((x^{\prime})^{2}, y^{\prime})$ respectively if $(x^{\prime}, y^{\prime})$ denote the coordinate functions on $J_{\rho’}$ . In
this way, we get an isomorphism $\sigma_{0}$ , say, of the non-singular conic $C_{\rho}$ defined
inhomogeneously by

$Y^{2}=X^{2}-2\rho\cdot X+1$

to a similarly defined $C_{\rho}$ . All these conics (forming a linear pencil) pass
through four points (the base points) with homogeneous coordinates $(0,1,1)$ ,

$(0,1, -1),$ $(1,1,0),$ $(1, -1,0)$ . Since $\sigma$ maps the neutral element of $J_{\rho}$ to the
neutral element of $J_{\rho},$ , necessarily $\sigma_{0}$ keeps the point $(0,1,1)$ fixed. We recall
that every isomorphism between two non-singular conics is a projective trans-
formation. Therefore $\sigma_{0}$ determines an element $S$ of $PL_{3}$ keeping $(0,1,1)$ fixed.
On the other hand, the Jacobi quartic $J_{\rho}$ , or its non-singular model $A$ , is rami-
fied over $C_{\rho}$ at the four points on $C_{\rho}$ that we have mentioned above; similarly
for $J_{p’}$ and $C_{\rho},$ . We know that $S$ keeps $(0,1,1)$ fixed. Therefore $S$ has to
permute the three remaining points. In this way, we get the following 3 !
possibilities

$S=\left\{\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right\}$ $\left\{\begin{array}{lll}1 & -1 & 1\\2 & 0 & -2\\-1 & -1 & -1\end{array}\right\}$ $\left\{\begin{array}{lll}1 & 1 & -1\\-2 & 0 & -2\\1 & -1 & -1\end{array}\right\}$

$\rho^{\prime}=\rho$ $(\rho-3)(\rho+1)^{-1}$ $-(\rho+3)(\rho-1)^{-1}$

$\left\{\begin{array}{lll}1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1\end{array}\right\}$ $\left\{\begin{array}{lll}1 & -1 & 1\\-2 & 0 & 2\\1 & 1 & 1\end{array}\right\}$ $\left\{\begin{array}{lll}1 & 1 & -1\\2 & 0 & 2\\-1 & 1 & 1\end{array}\right\}$

$-\rho$ $-(\rho-3)(\rho+1)^{-1}$ $(\rho+3)(\rho-1)^{-1}$ .

All these cases are possible. We note that $\sigma$ determines $\sigma_{0}$ uniquely and $\sigma_{0}$

determines $\sigma$ up to the sign of $x$ . We have thus obtained the information that
we shall use later.

We can consider those six values of moduli as defining a transformation
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group on a projective straight line over $F$. The orbits consist of six points
in general except for the degenerate case $\{\pm 1, \infty\}$ , the harmonic case $\{0, \pm 3\}$

and the equianharmonic case $\{\pm(-3)^{\frac{1}{2}}\}$ with respective multiplicities 2, 2 and
3. We can identify these orbits to single points of another projective straight
line over $F$. Up to a projective transformation, the identification morphism is
given by

$j=2^{6}(\rho^{2}+3)^{3}(\rho^{2}-1)^{-2}$ .
This $j$ is called the absolute invariant of $J_{\rho}$ and also of any curve which is
birationally equivalent to $J_{\rho}$ . Actually, we know how to characterize $j$ up to
the Kroneckerian transformation $j\rightarrow\pm j+integer$ (cf. 5). We note that the
three exceptional orbits are mapped respectively to $\infty,$

$12^{3}$ and $0$ . We also

note that the $-21_{-}(p-1)$ simple roots of $P(\rho)$ are divided into orbits. These

orbits are mapped to supersingular invariants on the j-line (cf. 2). For instance
$0$ is the only supersingular invariant for $p=3$ . Using the Kronecker symbol,
we can write down the number $h$ of supersingular invariants in general, and
it is as follows

$h=(1/12)(p-1)+(1/3)(1-(-3/p))+(1/4)(1-(-4/p))$ .

2. The field $F(\rho, Ku({}_{n}J_{\rho}))$ for $n=p^{e}$ . First of all, suppose that $A$ is an
elliptic curve defined over a field $K$ of characteristic $p\neq 0$ . Then, for $n=p^{e}$

we have
$[K(nA):K]_{S}\leqq p^{e- 1}(p-1)$ , $[K(nA):K]_{i}\leqq p^{e}$ ,

provided that $pA$ is cyclic of order $p$ for the second inequality. We leave the
proof as an exercise to the reader. We say that an ‘ irreducibility theorem “

holds for $A$ and $n$ over $K$ if we have equality signs. In this case, clearly the
Galois group of the separable part of $K(nA)$ over $K$ is isomorphic to $GL_{1}(Z/nZ)$ ,
$i$ . $e.$ , to the Galois group of $Q(e^{2\pi i/n})$ over $Q$ .

Now, we take an algebraically closed field $k$ containing $F$ for $p\neq 2$ and
also a variable $\rho$ over $k$ . We shall show that the irreducibility theorem holds
for $J_{\rho}$ and $n=p^{e}$ over $k(\rho)$ . We choose a sequence of points

...
$a_{m\dashv 1}$ , $a_{m},$ $\cdots$ $a_{1}\neq 0$ , $a_{0}=0$

of $J_{\rho}$ with the $propertypa_{m+1}=a_{m}$ for $m=0,1,2$ , $\cdot$ .. . Then we have $F(\rho, nJ_{\rho})$

$=F(\rho, x(a_{e}))$ . In fact $nJ_{\rho}$ is a cyclic group of order $n$ and $a_{e}$ is one of the
generators. Since the law of composition of $J_{\rho}$ is defined over $F(\rho)$ , we have
$F(\rho, nJ_{\rho})=F(\rho, a_{e})$ , and, as we have seen, this coincides with $F(\rho, x(a_{e}))$ . After
this remark, we take a root $\rho^{\prime}$ of the Legendre polynomial $P(\rho)$ . We shall
show that: (1) there exists only one point $P_{e}$ in $K_{e}=k(\rho, x(a_{e}))$ lying over $\rho^{\prime}$ ;
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(2) $x(a_{e})$ is a local parameter of $K_{e}$ at $P_{e}$ ; and (3) the order of $\rho-\rho^{\prime}$ at $P_{e}$ is
$p^{2e-1}(p-1)$ . We shall prove (1), (2), (3) by an induction on $e$ .

We observe that $x(a_{1})$ is a root of

$T_{p}(X)X^{-p}=(X^{p})^{p-1}+P(\rho)\cdot U_{0}(\rho, X)$ ,
in which

$U_{0}(\rho, X)=\sum_{0<2i<p-I}\gamma_{i}(\rho)\cdot(X^{p})^{2t}+(-1)^{2}I_{(p-1)}$

Let $t_{1}$ denote a local parameter of a point of $K_{1}$ lying over $\rho^{\prime}$ . We shall com-
pute orders of elements of $K_{1}$ with respect to $t_{1}$ . Since $U_{0}(\rho, x(a_{1}))$ is a unit
at $t_{1}=0$ , we have

$p(p-1)$ . ord $(x(a_{1}))=ord(\rho-\rho^{\prime})$ .
Since we have

ord $(x(a_{1}))\geqq 1$ , ord $(\rho-\rho^{\prime})\leqq[K_{1} : K_{0}]\leqq p(p-1)$ ,

we get equality signs everywhere. This proves (1), (2), (3) for $e=1$ . Suppose
next that (1), (2), (3) are verified up to $e=m\geqq 1$ . We shall proceed to prove
them for $e=m+1$ . We observe that $x(a_{m+1})$ is a root of

$T_{p}(X)-(-1)^{2}x(a_{m})\cdot F_{p}(X)1_{(p-1)}$

$=X^{p^{2}}+P(\rho)\cdot X^{p}\cdot U_{m}(\rho, X)-(-1)^{2}1(p1)$
$x(a_{m})$ ,

in which $U_{m}(\rho, X)-U_{0}(\rho, X)$ is given by

$-(-1)^{2}x(a_{m})\cdot(\sum_{0<2i<p-1}\gamma_{i}(\rho)\cdot(X^{p})^{p-2i-2}+(-1)^{2}(X^{p})^{p-2})1_{(p-I)}I(p-1)$

Let $t_{m+1}$ denote a local parameter of a point of $K_{m+1}$ lying over $P_{m}$ . We shall
compute orders of elements of $ K_{m1}\ulcorner$ with respect to $t_{m+1}$ . Since $U_{m}(\rho\cdot x(a_{m+1}))$

is a unit at $t_{m+1}=0$ and since $P(\rho)\cdot x(a_{m+1})^{p}$ clearly has a larger order than
$x(a_{m})$ , we have

$p^{2}$ . ord $(x(a_{m+1}))=ord(x(a_{m}))$ .
Since we have

ord $(x(a_{m+1}))\geqq 1$ , ord $(x(a_{m}))\leqq[K_{m+1} : K_{m}]\leqq p^{2}$ ,

we get equality signs everywhere. This proves (1), (2), (3) for $e=m+1$ , and
the induction is complete. We observe also that the polynomial for $x(a_{e})^{p}$ with
coefficients in $K_{e-1}$ is separable. Therefore, we get $[K_{e} : K_{e- 1}]_{S}=p$ for $e>l$

and $=p-1$ for $e=1$ , and hence

$[K_{e}:K_{0}]_{s}=p^{e-1}(p-1)$ , $[K_{e}:K_{0}]_{i}=p^{e}$ .
This shows that the irreducibility theorem holds for $J_{\rho}$ and $n=p^{e}$ over $k(\rho)$ ,

hence a fortiori over $F(\rho)$ . In particular $F(\rho, nJ_{\rho})$ is a regular extension of $F$
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(cf. 8). We shall calculate the genus of its subfield $F(\rho, Ku(nJ_{\rho}))$ .
First of all, we may take $Ku(u)$ to be $(x^{2}(u), y(u))$ . Then, we have

$F(\rho, Ku(nJ_{\rho}))=F(\rho, x^{2}(a_{e}))$ , and hence we have only to calculate the genus of
$F(\rho, x^{2}(a_{e}))^{p^{e}}=F(\rho, (x^{2pe})(a_{e}))$ or of $L_{e}=k(\rho, (x^{2pe})(a_{e}))$ . Suppose that $\rho^{\prime}$ is an
arbitrary element of $k$ . If $\rho^{\prime}$ is not a root of $\rho^{2}-1$ , the specialization $\rho\rightarrow\rho^{\prime}$

over $k$ extends uniquely to a specialization $(]_{\rho}, nJ_{\rho}$) $\rightarrow(J_{\beta’ n}J_{\rho’})$ . If further $\rho^{\prime}$

is not a root of $P(\rho)$ , the specialization $nJ_{\rho}\rightarrow nJ_{\rho}$ , is an isomorphism of the two
cyclic groups. Therefore $(K_{e})^{p^{e}}$ is ramified over $k(\rho)$ at most at the roots of
$(\rho^{2}-1)P(\rho)$ and at $\infty$ . Suppose that $\rho^{\prime}$ is a root of $P(\rho)$ . We shall first com-
pute the contribution to the different of $(K_{e})^{p^{e}}$ over $k(\rho)$ of the unique point
of $(K_{e})^{p^{e}}$ lying over $\rho^{\prime}$ Since $s_{e}=x(a_{e})1^{e}$ is a local parameter of $(K_{e})^{p^{e}}$ at this
point, we have only to compute the order of $d\rho/ds_{e}$ with respect to $s_{e}$ . By
applying the chain rule and using the equation for $x(a_{m+1})^{p^{m+1}}$ over $(K_{m})^{p^{m}}$ for
$m=0,1,$ $\cdots$ , $e-1$ , we get

$(p-2)p^{e- i}+p^{e- 1}(p-1)\sum_{m=1}^{e-1}p^{m}=p^{e- 1}(p^{e}-2)$ .

Therefore, applying again the chain rule to $(K_{e})^{pe}\supset L_{e}\supset k(\rho)$ , we see that the
contribution to the different of $L_{e}$ over $k(\rho)$ of the unique point of $L_{e}$ lying
over $\rho^{\prime}$ is

$\frac{1}{2}(p^{e- 1}(p^{e}-2)-1)=-\frac{1}{2}(p^{2e-1}-1)-p^{e- 1}$

On the other hand, as we shall see presently in the next section, the contri-
bution coming from the points of $L_{e}$ lying over $\rho^{\prime}=\pm 1$ and $\infty$ are same. We
shall show that they are all $0$ . For this purpose, we take a variable $\rho_{0}$ over
$Q$ and consider the field $Q(\rho_{0’ n}J_{\rho_{0}})$ for $n=p^{e}$ . We know that $nJ_{\rho_{0}}$ is an abelian
group of type $(n, n)$ . Therefore, it is generated by two elements $a_{0},$

$b_{0}$ , say.
’Consider

$\xi=_{m}\prod_{mcdn}x(ma_{0}+b_{0})$ .

Then $\xi$ can be expanded into a power-series in $\rho_{0}-1$ (with coefficients in the
principal order of $Q(e^{2\pi i/n}))$ . This follows from the fact that $\xi$ is invariant by
one of the local Galois groups of $Q(\rho_{0’ n}J_{p_{0}})$ over $Q(e^{2\pi i/n}, \rho_{0})$ at $\rho_{0}=1$ . There-
fore, if we take the reduction modulo a prime factor of $x(b_{0})$ , we see that
$x(a)^{n}$ has a power-series expansion in $\rho-1$ (with coefficients in $F$ ). This proves
the assertion. Therefore, the genus $g(L_{e})$ of $L_{e}$ is given by

$2g(L_{e})-2=_{2}^{1}--(p-1)(\frac{1}{2}(p^{2e-1}-1)-p^{e- 1})-p^{e- 1}(p-1)$ .

As we have seen, $g(L_{e})$ is also the genus of $F(\rho, Ku(nJ_{\rho}))$ .
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3. The field $F(j, Ku({}_{n}A_{j}))$ for $n=p^{e}$ . We shall assume, using the same
notation as before, that $\rho$ is a variable over $k$ . The absolute invariant $j$ of

$J_{\rho}$ is given explicitly as a rational function of $\rho$ with coefficients in $F$ . We
choose an elliptic curve $A_{j}$ , defined over $F(j)$ , which is birationally equivalent
to $J_{\rho}$ (cf. 1, 5). We also choose a Kummer morphism for $A_{j}$ defined over $F(j)$ .
Then, if $w$ and $u$ are biregularly corresponding points of $A_{j}$ and $J_{\rho}$ , we have
$F(\rho, Ku(w))=F(\rho, Ku(u))$ . This implies $F(\rho, Ku(nA_{j}))=F(\rho, Ku(nJ_{\rho}))$ for $n=p^{e_{\sim}}$

Therefore $F(\rho, Ku(nJ_{\rho}))$ is the compositum of $F(j, Ku(A))$ and $F(\rho)$ over $F(j)$ .
Consequently, $F(j, Ku(A))$ is a regular extension of $F$ and over $F(j)$ , the

separable and the inseparable degrees are respectively $-2-p^{e- 1}(p-1)1$ and $p^{e_{\sim}}$

The situation remains same even if we replace $F$ by $k$ . Since $\pm 1$ and $\infty$ on
the $\rho$ -line are conjugate over $k(])$ , this settles a minor point left at the end of
the previous section.

LEMMA. If $ j^{\prime}\neq\infty$ is not a supersingular invariant, no point of $k(j, Ku(A))_{l}$

lying over $j^{\prime}$ is ramified in $k(\rho, Ku(nJ_{\rho}))$ .
PROOF. Suppose that there is a ramification. Then there exists a point

$P$ of $k(\rho, Ku(nJ_{\rho}))$ lying over $j^{\prime}$ and an automorphism $\sigma$ of $k(\rho, Ku(nJ_{\rho}))$ over
$k(j, Ku(A))$ , different from the identity, satisfying $\sigma P=P$ . Now, the mor-
phism $A_{j}\rightarrow J_{p}$ gives rise to a unique isomorphism of their Kummer varieties
over $F(\rho)$ , hence over $k(\rho)$ . Applying $\sigma$ to the graph of this isomorphism, we
get an isomorphism of the Kummer variety of $A_{j}$ to the Kummer variety of

$J_{p\sigma}$ . If we compose the inverse of the first isomorphism with the second iso-
morphism, using the notation of Section 1, we will get an isomorphism of the
conic $C_{\rho}$ to the conic $C_{\rho a}$ . Therefore, for every $a$ in $nJ_{p}$ , the image $(x^{2}(a)^{\sigma}, y(a)^{\sigma}\rangle$

of $(x^{2}(a), y(a))$ under the automorphism $\sigma$ is precisely the image of $(x^{2}(a), y(a)\rangle$,

under the isomorphism $C_{\rho}\rightarrow\sim C_{\rho\sigma}$ determined as above. On the other hand, be-
cause of $\sigma P=P$ , we have

$(\rho^{\sigma}, x^{2}(a)^{\sigma},$ $y(a)^{\sigma})(P)=(\rho, x^{2}(a),$ $y(a))(P)$ .

If we combine this fact with the explicit expression for $x^{2}(a)^{\sigma}$ obtained in Sec-
tion 1, we immediately get a contradiction. In fact, for $a\neq 0,$ $x^{2}(a)(P)$ satisfies,

a quadratic equation when $j^{\prime}=0$ and a linear equation when $j^{\prime}=12^{3}$ . There-
fore, the only possibilities are $n=p=3$ and $n=p=5$ . On the other hand.
since $j^{\gamma}$ is not supersingular, we have $j^{\prime}\neq 0$ in both cases. This will bring a
contradiction. $q$ . $e$ . $d$ .

We shall, now, proceed to determine the contributions of the points of
$\cdot$

$k(j, Ku(A))^{pe}$ lying over $ j^{\gamma}\neq\infty$ to the different relative to $k(j)$ . Suppose first
that $j^{\prime}$ is not supersingular. If $j^{\prime}$ is different from $0$ and $12^{3}$ , the contribution
is $0$ . If $j^{\gamma}=0$ , using the previous lemma, we get $(2/3)N$ for
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$N=_{2}^{1}--p^{e- 1}(p-1)$ .
Similarly, if $j^{\prime}=12^{8}$ , we get $(1/2)N$. Suppose next that $1^{\prime}$ is supersingular. If

$j^{\prime}$ is different from $0$ and $12^{3}$ , the contribution is clearly equal to

$W=_{2}^{1}--(p^{2e-1}-2p^{e-1}-1)$ .

If $j^{\prime}=0$ and $p\neq 3$ , since $k(\rho, Ku(nJ_{\rho}))^{p^{e}}$ is tamely ramified over $k(j, Ku(A))^{pe}$

with 3 as its ramification index, calculating the derivative of $j$ with respect to
the local parameter of $k(\rho, Ku(nJ_{p}))^{pe}$ at any one of the points lying over $j^{\prime}$ in
two different ways, we get $(1/3)(W+2N-2)$ . Similarly, if $j^{\prime}=12^{3}$ and $p\neq 3$,
we get $(1/2)(W+N-1)$ . On the other hand, if $j^{\prime}=0=12^{3}$ and $p=3$ , we proceed
as follows: There is only one point $P$ , say, of $k(\rho, Ku(nJ_{\rho}))^{pe}$ lying over $j$ .
The second ramification group of $P$ is the subgroup which corresponds to $k(\rho)$ .
Consequently, although $k(\rho, Ku(nJ_{\rho}))^{pe}$ is wildly ramified over $k(j, Ku(A))^{pe}$,
the second ramification group of $P$ for this extension reduces to the identity.
The rest is the same as before, and we get $(1/6)(W+7N-7)$ .

Finally, in the case when $ j^{\prime}=\infty$ , we can show as before that it is not
ramified in $k(j, Ku(A))^{pe}$ . Therefore, the genus $g$ of this field, which is equal
to that of $F(j, Ku(A))$ , is given by

$2g-2=(1/24)(p-1)(p^{2e-1}-12p^{e- 1}+1)-h$ ,

in which $h$ is the number of supersingular invariants. In the case when $p=3$ ,
it is necessary to subtract 1/3 from the right-hand side.

We shall, also, discuss the case when $p=2$ . Assuming that $j$ is a variable
over $k$ , we consider a plane curve defined inhomogeously by

$Y^{2}-XY=j^{-1}X^{3}+j$ .
This cubic curve is absolutely irreducible and non-singular, hence it is of
genus 1. Therefore, it becomes an elliptic curve with the point at infinity,
say, as its neutral element. We shall use this elliptic curve as $A_{j}$ because it
has $j$ as its absolute invariant. We observe that, if $j\rightarrow j^{\gamma}$ is a specialization
over $k$ , the elliptic curve $A_{j}$ has a similarly defined elliptic curve $A_{J^{\prime}}$ as its
unique specialization for $j^{\prime}\neq 0,$ $\infty$ . Moreover, as we can see by using a dif-
ferent model, $j^{\gamma}=0$ is supersingular and, in fact, the only one in characteristic
2 (cf. 1, 2). On the other hand, if $u=(x(u), y(u))$ is a point of $A_{j}$ , we have
$x(-u)=x(u)$ and $y(-u)=x(u)+y(u)$ . Therefore, we may take $Ku(u)$ to be $x(u)$ .
Furthermore, if we put $x=x(u)$ , we have the following duplication formula

$x(2u)=j^{-1}x^{2}+j^{2}x^{-2}$ .
We shall show that $F(j, Ku(A)$ for $n=2^{e}$ is a regular extension of $F$ and
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over $F(j)$ , the separable and the inseparable degrees are respectively $2^{e- 2}$ and
2e provided $e\geqq 2$ . We have only to prove the second part replacing $F$ by $k$ .

We choose a sequence of points

... $a_{m+1}$ , $a_{m},$ $\cdots$ , $a_{1}\neq 0$ , $a_{0}=0$

of $A_{j}$ with the property $2a_{m+1}=a_{m}$ for $m=0,1,2$ , $\cdot$ .. . Since the group law is
defined over $F(j)$ and since $nA_{J}$ is a cyclic group of order $n$ generated by $a_{e}$ ,

we have $F(j,A)=F(j, x(a_{e}),$ $y(a_{e}))$ , and $F(j, Ku(A))=F(j, x(a_{e}))$ . On the
other hand, we have $x(a_{0})=\infty,$ $x(a_{1})=0$ and $x(a_{2})^{4}=j^{3}$ . Moreover, if we
introduce

$x_{e}=(x(a_{e+3})^{2}(jx(a_{e+2}))^{-1})^{2^{e+1}}$

for $e=0,1,2,$ $\cdots$ , we have $(x_{0})^{2}-x_{0}=j^{-1}$ , and in general $x_{e}$ is a root of $X^{2}-X$

$=R_{e-1}$ with
$R_{e-1}=(x_{0}(x_{0}-1))^{2^{e+1}- 1}\cdot(x_{0}\cdots x_{e-1})^{-2}$

for $e=1,2,$ $\cdots$ We shall show that: (1) there exists only one point $P_{e-1}$ in
$k(x_{0}, \cdots , x_{e-1})$ lying over $\chi_{0}=\infty;(2)$ the order of $\chi_{e-1}$ at $P_{e-1}$ is $-2^{2e-2}$ ; and (3)
if $t_{e-1}$ is a local parameter of $k(x_{0}$ , $\cdot$ .. , $x_{e-1})$ at $P_{e-1}$ and if we replace $\chi_{e}$ by a
suitable

$\theta_{e}=x_{e}+const.(t_{e-1^{-1}})^{2^{2e-1}}+lower$ powers ,

the equation for $\theta_{e}$ will take the form

$(\theta_{e})^{2}-\theta_{e}=const.(t_{e-1^{-1}})^{\epsilon}\vee e+1ower$ powers
with

$\epsilon_{e}=(2/3)(2^{2e}-1)+1$ ,

in which the constants are both different from $0$ . We observe that (1), (2), (3)
tcan be verified easily for $e=1$ . Therefore, we shall assume that they are true
up to $e=m\geqq 1$ . Since $\epsilon_{m}$ is an odd positive integer, we see that $\theta_{m}$ generates
a separable quadratic extension of $k(x_{0}, \cdots , x_{m-1})$ ramified at $P_{m-1}$ (cf. 3), and
this extension is $k(x_{0}, \cdots , x_{m})$ . In particular, there exists only one point $P_{m}$ in
$k(x_{0}, x_{m})$ lying over $P_{m-1}$ , hence over $ x_{0}=\infty$ , and the order of $t_{m-1}$ at $P_{m}$

is 2. Since we have $2^{2m}-\epsilon_{m}=(1/3)(2^{2m}-1)\geqq 1$ , the order of $x_{m}$ at $P_{m}$ is $-2^{2m}$ .
Therefore, the order of $R_{m}$ at $P_{m}$ is $-2^{2m+2}$ . Moreover, we have

$dR_{m}/dt_{m}=(x_{0}(x_{0}-1))^{2^{m+2}-2}\cdot(x_{1}\cdots x_{m})^{-2}\cdot(dt_{0}/dt_{m})$

for $t_{0}=x_{0}^{-1}$ , and the order of the coefficient of $dt_{0}/dt_{m}$ at $P_{m}$ is $-2^{2m+2}$ . On
the other hand, the order of $dt_{0}/dt_{m}$ at $P_{m}$ can be calculated by the chain rule
using (3) for $e=1,2,$ $\cdots$ , $m$ (cf. 3), and we get

$\sum_{e=1}^{m}2^{m- e}(\epsilon_{e}+1)=(2^{2}/3)(2^{2m}-1)$ .
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Therefore, the order of $dR_{m}/dt_{m}$ at $P_{m}$ is equal to

$-(2/3)(2^{2m+2}+2)=-(\epsilon_{m+1}+1)$ .
Consequently, if we expand $R_{m}$ into a series of powers of $t_{m}$ , the highest
negative odd exponent will be precisely $-\epsilon_{m+1}$ . Since we have $\epsilon_{m+1}-2^{2m+1}$

$=(1/3)(2^{2m+1}+1)\geqq 3$ , it is certainly possible to replace $x_{m+1}$ by a suitable

$\theta_{m+1}=x_{m+1}+const.(t_{m^{-1}})^{2^{2m+1}}+lower$ powers

so that the equation for $\theta_{m+1}$ takes the form

$(\theta_{m+1})^{2}-\theta_{mf1}=const$ . $(t_{m^{-1}})^{\epsilon_{m+1}}+lower$ powers,

in which the constants are both different from $0$ . We have thus proved (1),
(2), (3) for $e=m+1$ , and the induction is complete.

If we observe that $k(j, x(a_{e}))$ contains $k(x_{0}, \cdots , x_{e-3})$ for $e\geqq 3$ and that $k(x_{0})$

is a separable quadratic extension of $k(j)$ , which incidentally is ramified only
,at $j=0$ , we see that the separable degree of $k(j, x(a_{e}))$ over $k(j)$ is $2^{e- 2}$ and
that $k(x_{0}, \cdots , x_{e- s})$ is the maximal separable subfield of $k(j, x(a_{e}))$ over $k(j)$ .
Furthermore, because of

$x(a_{e})^{2^{e}}=j^{3}\cdot(\prod_{m=0}^{e3}j^{2^{m+1}}x_{m})^{2}$ ,

we see that $x(a_{e})^{2^{e}}$ but not $x(a_{e})^{2}e-1$ is separable over $k(j)$ for $e\geqq 3$ . Con-
sequently, the inseparability degree of $k(j, x(a_{e}))$ over $k(j)$ is $2^{e}$ . In view of
the fact that $k(j, x(a_{2}))=k(j^{1/4})$ , we have completed the proof of the irreduci-
bility statement that we made in the beginning.

We can also determine the genus of $F(j, Ku(A))$ , which is equal to that
of $k(x_{0}, \cdots , x_{e-3})$ , for $e\geqq 3$ . We observe that the contributions to the different
of $k(x_{0}$ , $\cdot$ .. , $x_{e-3})$ relative to $k(x_{0})$ come only from those points lying over $j=0$

and $\infty$ . The contribution coming from the unique point lying over $j=0,$ $i$ . $e.$ ,
over $\chi_{0}=\infty$ has already been calculated in proving (1), (2), (3). We shall show
that $ j=\infty$ is not ramified in $k(x_{0}$ , $\cdot$ .. , $x_{e-3})$ . At any rate, over $ j=\infty$ we have
two points $x_{0}=0$ and 1 in $k(x_{0})$ . Suppose that $k(x_{0}, \cdots, x_{m})$ but not $k(x_{0}, \cdots, x_{m-1})$

is ramified over $k(j)$ at $ j=\infty$ . Then $k(x_{0}$ , $\cdot$ .. , $x_{m})$ is ramified over $k(x_{0}, x_{m-1})$

at every one of the $2^{m}$ points lying over $ j=\infty$ (because they are conjugate
over $k(j))$ . Now, there is one point $P$ , say, where we have $x_{0}=\ldots=x_{m-1}=1$ .
Then $R_{m-}$ , is flnite at $P$ , and hence the extension of $k(x_{0}, \cdots , x_{m- 1})$ generated
by $x_{m}$ is unramified at $P$ . This is a contradiction. In this way, we get

$2g-2=(2^{2}/3)(2^{2e-6}-1)-2^{e- 2}$

and this is a special case of the general formula if we make an adjustment
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by subtracting 3/8 from the right-hand side (of the general formula).
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