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Introduction

An investigation of finite groups by means of group characters frequently
leads to an array of numbers which looks like a perfectly reasonable table of
characters. Actually there may exist groups $G$ with these characters. On the
other hand, it may turn out that no such groups exist.

It seems natural to study such arrays. Since they may be considered as
generalizations of the system of group characters of finite groups, we will use
the term pseudo groups for them. We shall see that they share some of the
properties of groups. We require relatively little in our definition of pseudo
groups in section 1. A stronger axiom is added in section 3. There are further
conditions which one might impose. This is discussed briefly in the last section.

1. Definition of pseudo groups

We consider collections

(1.1) $G=\{K, \Xi, v, E\}$

where $K$ is a finite set

(1.2) $K=\{k_{1}, k_{2}, \cdots k_{r}\}$ ,

$\Xi$ is a set of complex-valued functions

(1.3) $\Xi=\{\chi_{1}, \chi_{2}, \cdots \chi_{s}\}$

defined on $K,$ $v$ is a complex-valued function defined on $K$, and $E$ is a set of
mappings $e_{n}$ of $K$ into $K$, one for each rational integer $n$ .

Each finite group $G$ gives rise to a system (1.1), if the following inter-
pretations are used:

(a) $K$ is the set of conjugate classes of $G$ .
(b) $-$ is the set of irreducible characters of $G$ .
(c) If $g$ is the order of $G$ , then for each conjugate class $k_{j},$ $gv(k_{j})$ is the

number of elements in $k_{j}$ .
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(d) If $\sigma$ is an element of the conjugate class $k$ then $e_{n}(k)$ is the well
defined conjugate class which contains $\sigma^{n}$ .

We shall denote by $G(\mathfrak{G})$ the particular system (1.1) obtained in this manner
from the given group G.

In the case of an arbitrary system (1), we shall use an analogous termi-
nology. We call the element $k_{j}$ the classes, even though they need not be sets
of elements. The functions $\chi_{i}$ will be termed the irreducible characters of $G$ .
By a character $\chi$ of $G$ , we mean a linear combination

$\langle\backslash 1.4)$

$\chi=\sum_{j}a_{j}\chi_{j}$

with non-negative rational integral $a_{j}$ .
It will be convenient to write $k^{n}$ for $e_{n}(k)$ .
If $\tilde{G}=\{\tilde{K}, -\underline{\sim}\overline{v},\tilde{E}\}$ is a second system, a mapping $\zeta$ of $\tilde{K}$ into $K$ will be

called an imbedding of $\tilde{G}$ into $G$ , if the following conditions are satisfied:
$(\alpha)$ If $\chi$ is an irreducible character of $G$ , the composite function $\chi\circ\zeta$ is a

character of $\tilde{G}$ .
$(\beta)$ $\zeta\circ\tilde{e}_{n}=e_{n}\circ\zeta$ .
$(\gamma)$ If $\zeta(\tilde{k}^{n})=\zeta(\tilde{k}^{0})$ for some $\tilde{k}\in\tilde{K}$, then $\tilde{k}^{n}=\tilde{k}^{0}$ .
If $\tilde{\mathfrak{G}}$ is a subgroup of a group $\mathfrak{G}$ , we have a natural imbedding of $G(\tilde{\mathfrak{G}})$

into $G(\mathfrak{G})$ .
We shall call the system $G$ in (1) a pseudo-group, if the following axioms

are satisfied:
(I) The number $s$ of irreducible characters $\chi_{i}$ is equal to the number $r$ of

classes $k_{j^{1)}}$ . The functions $\chi_{1},$
$\cdots$ , $\chi_{r}$ satisfy the “ orthogonality relations ”

\langle 1.5) $\sum_{k\in K}v(k)\chi_{i}(k)\overline{\chi}_{j}(k)=\delta_{ij}$

for $i,$ $j=1,2,$ $\cdots$ , $r$ .
(II) The product of two irreducible characters $\chi_{i},$ $\chi_{j}$ of $G$ is a character

of $G$ .
(III) The constant 1 is an irreducible character of $G$ .
(IV) There is a fixed class denoted by 1 such that $k^{0}=1$ for each $k\in K$.
(V) For each class $k$ , there exists a positive integer $m$ such that the

system $G(\mathfrak{Z}_{m})$ belonging to a cyclic group $\mathfrak{Z}_{m}=\langle\sigma\rangle$ of order $m$ have imbeddings
$\zeta$ into $G$ with $\zeta(\sigma)=k$ .

Obviously, $m$ is uniquely determined by $k$ . We call $m$ the order of $k$ .
(VI) If $k$ is a class of order $m$ and if $m$ and the integer $n$ are coprime,

then $v(k)=v(k^{n})$ .
It is clear that if $\mathfrak{G}$ is a group, $G(\mathfrak{G})$ is a pseudo-group.
If $k$ is a class of order $m$ , it follows from (V) that $m$ is the first positive

1) It suffices to require $s\geqq r$ .
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integer for which $k^{m}=1$ . We have $k^{1}=k,$ $(k^{q})^{n}=k^{qn}$ . We may have $k^{n}=k^{q}$

for $0<n<q<m$ .
By $A=A(G)$ , we denote the algebra of all complex-valued functions defined

on $K$. For two such class functions $\varphi,$ $\psi\in A$ , we define an inner product

$(\varphi, \psi)=\sum_{k\epsilon K}v(k)\varphi(k)\overline{\psi(k)}$ .

Then $\{\chi_{1}$ , $\cdot$ . , $\chi_{r}\}$ is an orthonormal basis of $A$ , cf. (1.5).

By a generalized character of $G$ , we mean a difference of two characters.
It follows from (II) that the generalized characters form a ring. An element
$\varphi\in A$ is a generalized character, if and only if the product $(\varphi, \chi_{j})$ belongs to
the ring $Z$ of integers for $j=1,2,$ $\cdots$ , $r$ . The element $\varphi$ is a character, if and
only if all $(\varphi, \chi_{j})$ are non-negative elements of $Z$.

Let $(\chi)$ denote the $(r\times r)$-matrix $(\chi_{i}(k_{j}))$ with $i$ as row-index and $j$ as column
index. If $V$ is the diagonal matrix with the entry $v(k_{i})$ in the i-th row, then
(1.5) can be written in the form

(1.6) $(\chi)V(\overline{\chi})^{T}=I^{2)}$ .
It follows that $v(k_{i})\neq 0$ for each $i$ . We set

(1.7) $c(k_{i})=v(k_{i})^{-1}$ .
In the following, we shall work with the function $c$ rather than with the

function $v$ . If several pseudo-groups occur, we shall write $c_{a}$ instead of $c$ . In
particular, $c(1)$ will be called the order of $G$ . Since (6) implies

$(\overline{\chi})^{T}(\chi)=V^{-1}$ ,

we have the orthogonality relation of second kind

\langle 1.8) $x\in_{-}\sum_{-}.\overline{\chi}(k_{i})\chi(k_{j})=c(k_{i})\delta_{ij}$
,

$(1 \leqq i, j\leqq r)$ . As indicated, $\chi$ here ranges over all irreducible characters of $G$ .
Consider a fixed class $k$ of order $m$ and let $\zeta$ denote the imbedding of the

system $G(\mathfrak{Z}_{m})$ given by Axiom (V): Clearly, $\zeta$ is unique. Let $\{\epsilon_{1}, \epsilon_{2}, \cdots , \epsilon_{m}\}$

denote the m-th roots of unity. If $\chi$ is a character of $G$ , the condition $(\alpha)$ for
imbeddings implies that $\chi\circ\zeta$ is a character of the cyclic group $\mathfrak{Z}_{m}$ . It follows
that

(1.9) $\chi(k^{i})=\sum_{J=0}^{m-1}b_{j}\epsilon_{\dot{j}^{?}}$

where the $b_{j}$ are non-negative integers which depend on $k$ but not on $i$ . This
shows that all $\chi(k^{i})$ lie in the field $\Omega_{m}$ of the m-th roots of unity. If $\sigma$ is an
element of the Galois group of $\Omega_{m}$ over the field $Q$ of rational numbers and

2) The transpose of a matrix $M$ is denoted by $M^{T}$ and $\overline{M}^{T}$ is the conjugate com-
plex of $M^{T}$ .
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if $\sigma$ maps a primitive m-th root of unity $\epsilon$ on $\epsilon^{n}$ with $n\in Z,$ $(m, n)=1$ , then

(1.10) $\chi(k)^{\sigma}=\chi(k^{n})$ .
In particular,

(1.11) $\overline{\chi(k)}=\chi(k^{-1})$ .
It is also clear from (1.9) that the degree $\chi(1)$ of the character $\chi$ is a non-
negative rational integer

(1.12) $\chi(1)=\sum_{J=0}^{m-1}b_{j}$ ;

we have $\chi(1)=0$ if and only if $\chi=0$ .
By (1.8), $c(k)$ is an algebraic integer and, if $k$ has order $m$ , then $c(k)\in\Omega_{m}$ .

It now follows from (1.10), (1.7) and Axiom VI that $c(k)$ is a rational integer.
Clearly, $c(k)>0$ . In particular, we have

(1A) The order of a pseudo-group is a positive rational integer $g$.
It follows from (1.9) and (1.12) that, for each class $k$ , we have $|\chi(k)|\leqq\chi(1)$ .

Then (1.8) implies that $c(k)\leqq g$.

2. Sub-pseudo-groups

Consider two pseudo-groups

$G=\{K, \Xi, 1/c, E\}$ , $\tilde{G}=\{\tilde{K}, -\underline{\sim}, 1/\tilde{c},\tilde{E}\}$

where we now expressed the weight-function $v$ by its reciprocal $c$ , cf. (1.7). If
$\zeta$ is an imbedding of $\tilde{G}$ into $G$ , we say that the pair $(\tilde{G}, \zeta)$ is a sub-pseudo-
group of $G$ . There may exist distinct imbeddings $\zeta,$ $\zeta_{1}$ of $\tilde{G}$ into $G$ . Then
$(\tilde{G}, \zeta)$ and $(\tilde{G}, \zeta_{1})$ will be considered as distinct sub-pseudo-groups.

If $(\tilde{G}, \zeta)$ is a sub-pseudo-group of $G$ , and $(H, \eta)$ a sub-pseudo-group of $\tilde{G}$ ,

then $(H, \zeta\circ\eta)$ is a sub-pseudo-group of $G$ .
If $\mathfrak{G}$ is a group and $\tilde{\mathfrak{G}}$ a subgroup, we have a natural imbedding of $G(\tilde{\mathfrak{G}})$

into $G(\mathfrak{G})$ . Obviously, conjugate subgroups define the same sub-pseudo-group.
Let $G$ and $\tilde{G}$ be pseudo-groups and let $(\tilde{G}, \zeta)$ be a sub-pseudo-group of $G$ .

If $\theta\in A(G)$ is a class function of $G$ , we can define a class function $\theta_{\zeta}$ on $H$ by
setting

(2.1) $\theta_{\zeta}=\theta\circ\zeta$ .
Clearly, the mapping $\theta\rightarrow\theta_{\zeta}$ is a linear mapping of $A(G)$ into $A(\tilde{G})$ . In the case
of groups, this is the restriction map and the conjugate map of $A(\tilde{G})\rightarrow A(G)$

maps each class function $\varphi\in A(\tilde{G})$ on the function $\varphi^{\zeta}\in A(G)$
“ induced , by $\varphi$ .

This carries over to the case of a pseudo-group $G$ and a sub-pseudo-group
$(\tilde{G}, \zeta)$ . If $k$ is a class of $G$ , we set
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(2.2) $\varphi^{\zeta}(k)=c(k)\sum_{(l\in\zeta^{-1}k)}\tilde{c}(l)^{-1}\varphi(l)$

where the sum on the right extends over all classes $l\in\tilde{K}$ of $\tilde{G}$ for which
$\zeta(l)=k$ . Just as in the group case, one sees that, for $\theta\in A(G),$ $\varphi\in A(\tilde{G})$ , we
have
(2.3) $\varphi^{\zeta}\cdot\theta=(\varphi\cdot\theta_{\zeta})^{\zeta}$ ,

and the ‘ Frobenius reciprocity ”

(2.4) $(\varphi^{\zeta}, \theta)=(\varphi, \theta_{\zeta})$ .

The usual proof then yields.
(2A) Let $G$ and $\tilde{G}$ be pseudo-groups and let $(\tilde{G}, \zeta)$ be a sub-pseudo-group

of $G$ . If $\psi$ is a character of $\tilde{G}$ , then $\psi^{\zeta}$ is a character of $G$ .
If $G$ and $\tilde{G}$ have orders $g$ and $\tilde{g}$ respectively,

(2.5) $\tilde{g}\cdot\psi^{\zeta}(1)=g\psi(1)$ .
As a corollary, we note
(2B) The order $\tilde{g}$ of a sub-pseudo-group $(\tilde{G}, \zeta)$ of the pseudo group $G$ divides

the order $g$ of $G$ .
Indeed, we see this when we take $\psi$ as the constant 1 in (2.5). We use

the ordinary notation $|G:\tilde{G}|$ for $g/\tilde{g}$ and speak of the index of $\tilde{G}$ in $G$ . We
see in the same manner that for each class $k$ of $G$ ,

(2.6)
$c(k)\sum_{(\iota\in\zeta^{-1}k)}c\sim(l)^{-1}\in Z$

,

where $Z$ denotes the ring of rational integers.
It follows from (2B) and Axiom V that the order $m$ of each class $k$ of a

pseudo-group $G$ divides the order $g$ of $G$ . The exponent $e$ of $G$ can be defined
as the least common multiple of the orders of the classes $k$ of $G$ . Then $e$

divides the order $g$ of $G$ .
The following statement is obvious on account of the results of Section 1.

(2C) Let $G$ be a pseudo-group of exponent $e$ . The values of the characters of
$G$ lie in the field of the e-th roots of unity.

It will be clear what we mean by an isomorphism of pseudo-groups.
(2D) Assume that $(\tilde{G}, \zeta)$ is a sub-pseudo-group of the pseudo-group $G$ and

that $G$ and $\tilde{G}$ have the same order $g=\tilde{g}$. Then $\zeta$ defines an isomorphism of $\tilde{G}$

onto $G$ .
PROOF. If $\sim_{i}\chi$ is an irreducible character of $\tilde{G}$ , then by (2A), $\sim\chi_{i}^{\zeta}$ is a char-

acter of $G$ of the same degree as $\sim_{i}\chi$ . If $\chi_{j}$ is an irreducible constituent of $\sim\chi_{i}^{\zeta}$ ,

by the Frobenius reciprocity law (2.4), $\overline{\chi}_{i}$ is an irreducible constituent of $(\chi_{j})_{\zeta}$ .
It follows that $\sim_{i}\chi(1)=\chi_{j}(1)$ and hence that $\sim\chi_{i}^{\zeta}=\chi_{j},$ $(\chi_{j})_{\zeta}=\chi_{i}$ . Each irreducible
character $\chi_{j}$ of $G$ can be obtained in the form $\sim\chi_{i}^{\zeta}$ and $\zeta$ establishes a one-to-one
mapping of the set $--\sim$ of irreducible characters of $\tilde{G}$ onto the corresponding
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set $\Xi$ for $G$ .
The mapping $\zeta$ maps the set $\tilde{K}$ of classes of $G$ into the set $K$ of classes

of $G$ . If $\zeta(\tilde{K})\neq K$, choose $k\in K,$ $k\not\in\zeta(\tilde{K})$ . Then

$\sim\chi_{i}^{\zeta}(k)=0$

for each $\sim_{i}\chi\in_{\cup}\underline{\sim}$. But then $\chi_{j}(k)=0$ for each $\chi_{j}\in\overline{\underline{\sim}}$ and this is certainly false.
Since $\tilde{G}$ and $G$ have the same number of classes, $\zeta$ is a one-to-one mapping
of $\tilde{K}$ onto $K$. By (1.8), $\tilde{c}(\tilde{k})=c(\zeta(\tilde{k}))$ for all classes $\tilde{k}$ of $\tilde{G}$ . Finally,

$\zeta\circ\tilde{e}_{n}=e_{n}\circ\zeta$

by the condition $(\beta)$ in the definition of imbedding. This proves (2D).
(2E) Let $(\tilde{G}, \zeta)$ be a sub-pseudo-group of the pseudo-group $G$ . Assume

that $\zeta$ maps the set $\tilde{K}$ of classes of $\tilde{G}$ onto the set of classes $K$ of $G$ . Then
$G$ and $\tilde{G}$ have the same order and $\zeta$ establishes an isomorphism of $\tilde{G}$ onto $G$ .

PROOF. If we use the same notation as before, then (2.6) can be written
in the form

(2.7)
$\sum_{l\in\zeta^{-1_{(k)}}}$

$\tilde{v}(l)=M(k)v(k)$

with $M(k)\in Z$, cf. (1.7). Moreover, $M(k)>0$ .
Applying (1.5) to $\chi_{i}=\chi_{j}=1$ , we have

$\sum_{k\in K}v(k)=1$
,

$\sum_{\iota\in\tilde{K}}\tilde{v}(l)=1$
,

and (2.7) yields

$ M(k)=\sum_{k\in K}M(k)v(k)\leqq$ $\sum_{\sim,l\subseteq K}\tilde{v}(l)=1$
.

-rhus, $M(k)=1$ for all classes. In particular, for $k=1$ , we have $v(1)=\tilde{v}(1)$ and
hence $g=\tilde{g}$. Now, (2C) applies and yields the statement.

In the group case, (2E) yields the well known result that if a subgroup
$\tilde{G}$ of a group $G$ meets every conjugate class of $G$ , then $G=\tilde{G}$ .

3. Artin’s Theorem

By a cyclic subgroup of a pseudo-group $G$ , we mean a sub-pseudo-group
$(\tilde{G}, \zeta)$ with $\tilde{G}$ of the form $G(Z),$ $Z$ a cyclic group.

We can state Artin’s theorem in the form
(3A) Let $G$ be a pseudo-group. Let $n$ be the least common multiple of the

numbers $c(k)$ for the classes $k$ of G. If $\chi$ is a character of $G$ , then $\chi$ can be
written in the form
(3.1) $\chi=\frac{1}{n}\sum_{j}c_{j}\psi_{j}$

where each $\psi_{j}$ is a character of $G$ induced by a character of a cyclic subgroup



Pseudo groups 19

and where the $c_{j}$ are rational integers.
The proof does not differ substantially from a proof in the group case

and we sketch it only briefly. Let $e$ be the exponent of $G$ and let $\epsilon$ be a
primitive e-th root of unity. Set $R=Z[\epsilon]$ . It will suffice to prove that $\chi$ can
be written in the form (3.1) with $c_{j}\in R$ . $lf$ we then express each $c_{j}$ by a Z-
basis $\omega_{1}=1,$

$\omega_{2},$
$\cdots$ of $R$ , the method in [1] yields a representation of $\chi$ with

coefficients $c_{j}$ in $Z$.
Let $V_{R}$ denote the set of all linear combinations

$\sum_{j}b_{j}\psi_{j}$

where each $\psi_{j}$ is a character of $G$ induced by a character of a cyclic subgroup
of $G$ and where the coefficients $b_{j}$ belong to $R$ . We have to show that $ n\chi$

belongs to $V_{R}$ .
Let $h$ be a fixed class, say of order $m$ , set $\tilde{G}=G(\mathfrak{Z}_{m})$ and let $\zeta$ denote the

imbedding of $\tilde{G}$ into $G$ given by Axiom V which maps the generator $\sigma$ of $\mathfrak{Z}_{\eta t}$

on $h$ . Define a class function $\psi$ on $G(\mathfrak{Z}_{m})$ by setting

$\psi(\sigma)=m$ , $\psi(\sigma^{j})=0$ for $\sigma^{j}\neq\sigma$ .
Let $\eta_{h}$ denote the induced function on $G$ . Then

$\eta_{h}(k)=c(k)\sum_{\iota\in\zeta^{-1_{(k)}}}m^{-1}\psi(l)=\left\{\begin{array}{l}c(h) for k=h,\\0 for k\neq h.\end{array}\right.$

As $\psi$ is a linear combination of characters of $G(\mathfrak{Z}_{m})$ with coefficients in $R$ , we
have $\eta_{h}\in V_{R}$ for each class $h$ of $G$ .

On the other hand, we can set

$\chi=\sum_{h\in K}\chi(h)c(h)^{-1}\eta_{h}$ .

Since all $nc(h)^{-1}\chi(h)$ lie in $R$ , we have $n\chi\in V_{R}$ and the proof is complete.

4. Characterization of characters

Our next aim is to establish the results of [1] for pseudo-groups. This
seems to require an additional axiom. We begin $V^{r]}$ th some definitions. In
them, $p$ will be a fixed prime number. If $k$ is a class of order $m$ of a pseudo-
group and if $m=p^{a}b$ with $(p, b)=1$ , we determine $u$ and $v$ in $Z$ such that

$1=u+v$ , $u\equiv 0(mod p^{a})$ , $v\equiv 0(mod b)$ .
Then

$\mathfrak{R}(k)=k^{u}$ , $\mathfrak{S}(k)=k^{v}$

are uniquely determined by $k$ . We call $\mathfrak{R}(k)$ the p-regular factor and $\mathfrak{S}(k)$ the
p-singular factor of $k$ . The class $k$ is p-regular, if its order is prime to $p$ .



20 R. BRAUER

Then $\mathfrak{R}(k)=k$ . For each $k,$ $\mathfrak{R}(k)$ is $p$ -regular.
DEFINITION. Let $H$ be a pseudo-group, let $p$ be a prime number. We call

$H$ a p-elementary pseudo-group with the base factor $h$ , if the following condi-
tions are satisfied.

$(a)$ The class $h$ is $p$-regular. If its order is $m$ , the classes

1, $h,$ $h^{2},$ $\cdots$ , $h^{m- 1}$

are distinct and they are the only $p$ -regular classes of $H$.
$(b)$ Let $(G(\mathfrak{Z}_{m}), \zeta)$ be a cyclic subgroup of $G$ such that $\zeta$ maps the generator

$\sigma$ of $3_{m}$ on $h$ , (cf. Axiom V). lf $\omega$ is an irreducible character of $\mathfrak{Z}_{m}$ then

$\psi(k)=\omega\zeta^{-1}(\mathfrak{R}(k))$ , $(k\in K)$

is a character of $G$ .
A pseudo-group will be said to be elementary, if it is $p$-elementary for a

suitable prime $p$ .
If $\mathfrak{G}$ is a direct product of a $p$ -group and a group of order prime to $p$ , then

$G(\mathfrak{G})$ is $p$ -elementary.
Our additional axiom is:
AXIOM (A). Let $G$ be a pseudo-group. Let $p$ be an arbitrary prime. If

$k$ is a $p$ -regular class of $G$ , there exists a sub-pseudo group $(H, \zeta)$ such that
$H$ is $p$ -elementary with the base factor $h$ , that $\zeta(h)=k$ , and that the following
condition holds: The prime $p$ divides $c_{H}(h)$ at least with the same exponent
with which $p$ divides $c_{G}(k)$ .

In the case of group systems $G(\mathfrak{G}),$ $c_{G}(k)$ is the order of the centralizers
$\mathfrak{C}_{\mathfrak{G}}(\tau)$ for elements $\tau$ in the conjugate class $k$ . If $\mathfrak{P}$ is a $p$ -Sylow sub-group,
if we set $\mathfrak{H}=\langle\tau\rangle\times \mathfrak{P}$ and $H=G(\mathfrak{H})$ , we see immediately that the Axiom (A)

holds in $G(\mathfrak{G})$ .
Now the methods of [1] can be applied. They yield the following two

equivalent statements.
(4A) Let $G$ be a pseudo-group for which Axiom (A) is satisfied. The follow-

ing condition is necessary and sufficient in order that a class function $\theta$ on $G$

be a generalized character: If $(H, \zeta)$ is an elementary sub-pseudo-group of $G$ ,

then $\theta_{\zeta}$ is a generalized character of $H$.
(4B) Each character $\chi$ of $G$ in (4A) can be written in the form

$\chi=\sum c_{i}\psi_{i}$

where each $\psi_{i}$ is a character of $G$ induced by a character of an elementary sub-
pseudo-group $(H, \zeta)$ of $G$ and where $c_{i}\in Z$.

A class function $\theta$ on $G$ is an irreducible character of $G$ , if and only if
in addition to the condition in (4A), the following conditions hold

$(\theta, \theta)=1$ , $\theta(1)>0$ .
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5. Additional remarks

We are mainly interested in pseudo-groups $G(\mathfrak{G})$ belonging to groups (S.

In this case, a number of further properties of classes and characters are
known. In principle, each of them could be introduced as a new axiom. We
mention only a few possibilities.

AXIOM B. Let $k,$ $h,$ $1$ be classes of a pseudo-group $G$ of order $g$ . Then

$a(k, h, l)=gc(k)^{-1}c(h)^{-1}\sum_{i}\chi_{i}(k)\chi_{i}(h)\overline{\chi_{i}(l)}\chi_{i}(1)^{-1}$

(the sum extended over all irreducible characters of $G$) is a non-negative ra-
tional integer.

If this is so, we can define a commutative and associative algebra $T$ whose
elements are formal linear combinations

$\sum_{k_{\backslash }- K}u_{k}k$

with coefficients $u_{k}\in Z$. Multiplication is defined by means of

$k\cdot h=\sum_{\iota_{c}K}a(k, h, 1)1$ .

In the case of group systems $G(\mathfrak{G}),$ $T$ will be the class algebra of $G$ .
If the Axiom (B) holds, the usual proof shows that, for each irreducible

character $\chi_{i}$ of $G$ and each class $k$ , the number
$gc(k)^{-1}\chi_{i}(k)\chi_{i}(1)^{-1}$

is an algebraic integer. It follows that the degrees of the irreducible characters
divide $g$ . It is also clear that $c(k)$ must divide $g$ . The number $n$ in (3A) then
is equal to $g$ (as in the usual form of Artin’s theorem).

AXIOM (C). Let $\chi_{i}$ be a character of degree $x$ of a pseudo-group $G$ . Let
$Y$ be one of the Schur representations of the general linear group $GL(x, C)$ ,

and $\eta$ its character, cf. [2], [3]. Then $\eta$ applied to $\chi$ in the obvious manner
yields a character of $G$ .

This can be modified in various ways.
Other possible axioms might describe other known group theoretical state-

ments. For instance, we may require that $c(k)$ is the order of a sub-pseudo-
group $(C(k), \zeta)$ of a particular type. Our aim then would be to replace axiom
(A) in Section IV. However, it seems that further postulates are needed.

We may also incorporate results of the theory of modular characters as
axioms.

As is well known if $\mathfrak{G}$ is a group, it can be seen from the table of char-
acters whether or not $\mathfrak{G}$ is simple. An analogous condition is to define sim-
plicity of pseudo-groups.

It will be clear that a great number of questions arise. Many of them
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seem to be very difficult. Of course, if one could describe all simple pseudo-
groups, this would have far reaching effects on the theory of simple groups.
In some ways, the algebraic conditions characterizing simple pseudo-groups
may seem simpler than the conditions for simple groups. (At least, they might
look simpler to a computer.) On the other hand, in discussing pseudo-groups,
we cannot use many of the powerful methods of group theory.

It might be of some interest to study simple pseudo-groups in which all
the quantities depend in a well-specified manner on a parameter $q$ .

Harvard University
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