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Introduction.

Let P be a p-adic number field. Denote by O, P and ©* the ring of inte-
gers, the maximal ideal of £ and the unit group respectively. We consider
the subgroup G of GL(n®, P) formed by matrices with determinant in %,
K=GL(n, Q) is a maximal compact subgroup of G. In this paper, we con-
struct continuous irreducible unitary representations of K parametrized by
certain characters (which must satisfy rather restrictive conditions) of compact
Cartan subgroups of G. We then show that unitary representations of G
induced by these irreducible representations of K are irreducible and square
integrable.

This paper is divided into four sections and last two sections are divided
into several subsections. In §1, we prove results in the theory of induced
representations of finite groups, which are basic in our argument. In §2, us-
ing results of §1, we show that continuous irreducible unitary representations
of K, which are not reduced to representations of GL(n, O/B), are induced by
certain irreducible representations of some subgroups of K (Theorem 1). We
further show that there exists a rather large family of irreducible unitary
representations of K which are monomial (Theorem 2). In §3, we study uni-
tary representations of G induced by irreducible unitary representations of K.
After the study of general properties of such representations, we show that
there exists a rather large family of irreducible unitary representations of K
which induce square integrable irreducible unitary representations of G (Theo-
rem 3). We also show that an analogue of Frobenius’ formula for induced
characters is valid. In §4, we first study correspondence between compact
Cartan subgroups of G and extensions of P of degree n. Then, in 4-4 and
4-5 we construct irreducible unitary representations of K parametrized by
certain characters, which satisfy certain conditions (‘strong regularity’ in our
terminology), of compact Cartan subgroups of G. We show that they induce
square integrable irreducible unitary representations of G (Theorem 4). Theo-

1) = is a natural number =2,
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rem 4 is in fact a refinement of a special case of In 4-7, we
study equivalences between constructed representations of G and influences of
outer automorphisms of G on these representations. In the last 4-8, restric-
tions of constructed irreducible unitary representations of G to the subgroup
G’ =SL(n, P) are studied.

Mautner first observed that there exist square integrable irreducible uni-
tary representations of PGL(2, P) which are induced by irreducible representa-
tions of certain maximal compact subgroup. This work was done during the
last one year. Meanwhile, the author could get copies of J. A. Shalika’s lec-
tures given in “Seminar on Representations of Lie Groups” held at Princeton
in 1966; “ Representations of the two by two unimodular group over local
fields; [ and II”.

In the first lecture, he constructed discrete series of irreducible unitary
representations of SL(2, P) by a different method and showed that most of
them were induced by suitable irreducible unitary representations of maximal
compact subgroups. In the second lecture, he constructed irreducible unitary
representations of SL(2, ©) by using induced representations. He pointed out
the possibility of extending his results to wider classes of p-adic linear groups.

Most of the author’'s work were done independently of Shalika’s work.
But the author owes a certain part of 4-5to Shalika’s second lecture. A part
of results in this paper was announced in [6]

The author expresses his sincere gratitude to Professor M. Saito who read
the manuscript and gave the author many advices.

NOTATIONS :

For a ring R, we denote by M(n,, n,; R) the set of n, by n, matrices with
elements in R. We put M(n, R)=M(n,n; R). When R is commutative, we
denote by det x the determinant of an element x in M(n, R).

§1. Preliminary results in the theory of induced representations.

Let G be a finite group and H be a subgroup of G. Let y be a repre-
sentation of H on a finite dimensional vector space V over the complex

number field. We denote by V, the vector space of V-valued functions f on
G which satisfy the following condition :

fhg) =v(h) f(g for every he H.
We define a representation ¢ of G on V, as follows:
W )(egH=rge (feV,;gge<b.

We call ¢ the representation of G induced by the representation y of H and
we derote x=Indy. Now let H be a normal subgroup of G. We denote by

HG
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H the set of all one-dimensional representations of H.
For any g G and y € H we define g- xeﬁ as follows:

gy =yx(g'hg) (heH).

Thus G operates naturally on H. For every y € ﬁ, weput I,={geG; g-y=y}-
I, is a subgroup of G containing H. Let p be an irreducible representation
of G on a finite dimensional vector space W. For each ye& I—?, we associate a
subspace W, of W as follows:

Wy={we W; p(hw = y(hyw for every he H}.

LEMMA 1-1. Suppose Wy, {0} for at least one XOEFI (this is always the
case when H is abelian). Let O be the G-orbit in H containing 7y, Then we

have W= Wy and every Wy is a non-zero Iy-invariant subspace and p induces
a1
naturally a representation py of I, on Wy. Then p, is an irreducible vepre-

sentation of Iy and Ind py 1s equivalent to p.
Iyt@G

ProoF. All these things are a special case of the theorem in Curtis-Reiner’s
book [1] p. 348. q.e. d.

Now let v, be an irreducible representation of I, (y € ﬁ) on a finite dimen-
sional vector space V such that y,(h)=y(h)-1 for every he H.

LEMMA 1-2. The representation Indy, is irreducible.
It G

Moreover, Ind vy, and Ind vy, are mutually equivalent if and only if there
Iy 16 Iy 16

exists g,€ G such that y,=g,-y, and if vy, and vg ave mutually equivalent
representations of Iy,, where vg9 is defined as follows :

v8(2) =vy(g5'ggy) (g€ ly,).

Proor. For any xe (G, we denote by I the subgroup xIyx* I, of I,
We define the representations v? and y,|/? of IZ on V as follows:

vi(g) =y (x7'gx) and v |I{(@=v(g) (g=1?).

Then to prove Indy, is irreducible, it is sufficient to show that v* and y,|I?
Iyt G

are disjoint representations® of /? when x& [, (see Curtis-Reiner p. 328).
Suppose that these two representations were not disjoint for some x < [,.
Then there exists a non-zero linear transformation S of V such that Sy,(x~'gx)
=,(g)S for every ge I?. Since x & [,, there exists an element he H such
that y(x*hx) =+ y(h). Since h, x'hxe HC IZ, we have

Sy, (xhx) = v (S and y(xhx)S = y(h)S.

Since y(x~'hx) # y(h), we must have S=0. This contradicts the assumption

2) Two representations of a finite group are said to be disjoint if they have no
common irreducible components.
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that S is a non-zero linear transformation. Ind y,, and Ind y,, are equivalent
Iy 16 Iy, 16

if and only if there exists g,= G such that representations v, and vg:g
—v,,(g7'gg, of the group I£9 ., =1Iy Ngly,gy"' are not disjoint (see Curtis-
Reiner [1] p. 329).

Assume that they are not disjoint. The above argument yields that »,(h)
= y.(g5'2g,) for every he H. Then y,=g,x, and I, = g;'Ig, hence v,, and
v& are both irreducible representations of I4?,,=1I,. Since they are not dis-
joint, they must be equivalent. The converse is obvious. g.e. d.

§2. Irreducible unitary representations of a maximal compact subgroup
of a p-adic general linear group.

Let P be the completion of an algebraic number field with respect to a
discrete valuation. Let ©, § and = be the ring of integers of P, the prime
ideal of © and a generator of P. Put R,=9O/P" ((=1,2, ---). Denote by g
the number of elements of the residue class field R, =O/B. Then R, is a finite
ring with ¢' elements. Let p be the characteristic of ®,. Denote by ¢, the
natural projection of © onto R,, We extend ¢, naturally to a ring homomor-
phism of M(n, O) onto M(n, R;) and denote this extension of ¢, by the same
symbol.

For two natural numbers m,, m, such that m, < m,, there exists a ring
homomorphism ¢72 of %, onto R,, such that ¢, =¢rw,,. We extend ¢m
naturally to a homomorphism of M(n, R,,) onto M(n, R,,) and denote this ex-
tension of ¢z by the same symbol.

Put

M(n, 1; Ry) (resp. M(n, 1; 0)=R,)" (resp. (O)).

Every element x € M(n, R,,) (resp. M(n, D)) operates naturally on (R,)" (resp.
(). We call n elements vy, -+, v, € (R,)" (resp. (O)*) form a base when every
element of (R,)* (resp. (0)*) can be uniquely expressed as R,-linear (resp. -
linear) combination of v, ---,v,. Put

0
: 1—1
0
e;=| 1 e Ry (resp. (O)) (1=1=n),
0
: } n—i
0 /
then ey, ---, ¢, form a base of (R,)" (resp. (O)”). We call an element x of

M(n, R,) (resp. M(n, O)) quasi-regular if the minimal polynomial of ¢P*(x) (resp.
¢.(x)) over R, is of degree n.
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LEMMA 2-1. Let x be a quasi-regular element of M(n, R,) (resp. M(n, O)).
There exists an element v of (Rp)" (resp. (O)*) such that v, xv, ---, x" v form a
base of (R,)" (resp. (O)").

PROOF. 'Put X =¢P(x) (resp. ¢,(x)). Since the minimal polynomial of %
over R, is of degree n, £ is a cyclic R;-linear transformation of (R,". Hence
there exists a 7 € (R)"” such that 7, X, ---, £*~'5 form a R,-base of (R,)". Take
ave(@R,y" (resp. (O)") such that ¢*@) (resp. ¢,(v))=1. Since ey, ---, e, form
a base of (R,)* (resp. (O)*), there exists Y = (ay) € M(n, R,) (resp. M(n, O))

such that x*= 3 aye, (l<i<n). Since 4, id, -, %5 is a base of (B)7,
k=1

it is obvious that ¢,(Y) e GL(n, ®,). Hence Y  GL(n, R,) (resp. GL(n, O)). It

is proved that v, xv, ---, x" v form a base. q.e.d.

COROLLARY 1. FEvery element of M(n, R,) (resp. M(n, )) which commutes
with x can be expressed as an Ry-linear (D-linear) combination of 1, x, x2, -+,
x*L,

PrROOF. We assume that fx=xt, where { € M(n, R,,) (resp. M(n, D)). Since

v, xv, --- and x""'» form a base, we can put tv = i} a;x*"'v, where a; R, (resp.
i=1
Q) @G=1,-,n). Let w=33bx"" (bR, (resp. D)) be any element of (R,)*
i=1

(resp. (0)). We have tw= ﬁ} bixtYy = i bix""l(ﬁ} a;x’"l) = (i} ajxf'l)gj bixt v
i=1 i=1 =1 =1 i=1

n . .
=( Zl a;x"w. Hence we have f= 21 azxi-1, q.e.d.
]= ]=

COROLLARY 2. Let x be a quasi-regular element of M(n,R,) and let X be
an element of M(n, ) such that ¢ (X)=x. We denote by C, (resp. Cy) the
centralizer of x (resp. X) in GL(n, R,) (resp. GL(n, O)). Then Cyx and C, are
abelian groups and we have C,=¢,(Cx).

Proor. Obvious from Cor. 1. g.e.d.

COROLLARY 3. Put det (t-1—x)=t"+ 3\ Cg"" (C; & R, (resp. D)), where
t is an indeterminate. We have =

0 1 Qeeeeeerennnn 0
0 01
D |=YxYy e,
: . 0
0 01
—Cpyrreererenannnns (—Cy),
PrOOF. From the definition of Y, we have
v ey
X1y en

3) Y is given in the proof of Lemma 2-1.
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in matrix notations. Hence

0 1 0-eeeee 0
xv 01 e ey
Xy 0 i e, en
s S (—C)
(We have x" i};Cix”*izo from Hamilton-Cayley theorem.) Hence
i=1
0 1 0-eeeee 0
01 :
Y=Yx.
0 1
—Cyeeneee (—C)
Since Y e GL(n, R,) (resp. GL(n, D)), the is proved. q.e.d.

COROLLARY 4. Let X, and X, be two quasi-regular elements of M(n, )
whose characteristic polynomials are identical. Then X, and X, are conjugate
in GL(n, O).

Proor. Obvious from Cor. 3. qg.e.d.

Let G be the subgroup of GL(n, P) formed by all elements with deter-
minant in %Y, Put K=GL(n,£). K is a maximal compact subgroup of
GL(n, P). We denote by K, (m=1, 2, ---) the invariant subgroup of K formed
by all integral matrices congruent to the identity modulo ™. Then K,DK,D---
form a neighborhood basis of the identity in K. Take a character y of the
additive group P which is trivial on £ and is not trivial on #7*. Let r be a

natural number =2 and put s:[%]. For every xe M(n, R,), we define the
function y; on K, , as follows:

15 (k) = x(z~" trace x(k—1)) (ke K,.»).

LEMMA 2-2. Let notations be as above.

1) % is a one-dimensional representation of K,_; which is trivial on K,.

(i) For every ke K, we have k- ¥, = yo,mwrsw-1 (for the definition of
kx5, see §1).

(iii) The mapping: x— % defines an isomorphism of the additve group
M(n, R,) onto the multiplicative group of all one-dimensional representations of
K. s which are trivial on K,.

Proor. (i) Let k,, k, be two elements of K,_,, We put kb, =1-+xz""%y, and
ky=1+4+x""%y, (3, ¥, € M(n, )). Then we have

4) We denote by D* the unit group of P.

5) Take XeM(n, D) such that ¢;(X)=x. Then y(z"trace X(k—1)) (k€K,_;) de-
pends only on x. We put y(z"trace X(k—1))=yx(ax " trace x(k—-1)). In the following
we use such notations frequently without further references.
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x5 (Riky) = y(m~" trace x{14+n"*(y,+y,)+7*" 2y, y,—1})

= y(rw~* trace xy)y(w° trace xy,)y(z"* trace xy,y,)

= x5 (RO)x% (ky) (y(m"~* trace xy,y,) =1) .
Hence y; is a one-dimensional representation of K, ,, When ke K,, we have
r~" trace x(k—1) €O and y3(k)=1. Therefore y; is trivial on K,.
(i) By the definition of k- y%, we have, for every he K, _,,
k- yr(h)=y5(k~'hk) = y(z~" trace x(k~*hk—1))
= y(z " trace {p,(R)xp(R)" }(h—1))
= X bsctrzpsier! (h.

(iii) It is obvious that the mapping: x— y; defines a homomorphism of
the additive group M(n, R,) into the character group of K, ,/K,. When y,=1,
we have y(z~*trace xy)=1 for every y & M(n, Q) and we have x=0. There-
fore, this homomorphism is injective. Since M(n, R,) and K,.,/K, are finite
abelian groups of the same order, this homomorphism is surjective. q.e.d.

Let v be a non-trivial continuous irreducible unitary representation of K
on a Hilbert space V. Then V is finite dimensional and there exists a natural
number »=r(v) such that v is trivial on K, and is not trivial on K,.,. Then
y can be identified with a representation of the finite group K/K, = GL(n, R,).

We assume that »>2 and put S:[,;‘]_ Then K, /K, is a normal abelian

subgroup of K/K,. For every x< M(n, R,), we define the subspace V, of V
as follows:

Ve={veV; vkv=7y50Rp" for every k= K,_,}.

We denote by O, the set of x = M(n, R,) such that V,+ {0}. We define the
adjoint transformation of an element of GL(n, R;) on M(n, R, as follows
(=12, -):
Ad k-x=kxk' (ke GL(n,R), x< Mn,R)).
THEOREM 1. Let v be a continuous irreducible unitary representation of K

which is not trivial on K, Put r=rQ) and s:[rg—] (we have r=2). Let
notations be as above.

(i) GL(n, R, acts on O, transitively by the adjoint transformation and for
every x < 0, we have ¢j(x) = 0.

(ii) For every x € M(n, R,), we denote by I, the centralizer of x% in K (i e.
the set of ke K such that k- y,=y3). I, is given as follows:

I,={ke K; o(k)xp(k)~' = x} .

6) g7 is defined in Lemma 2-2.
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(iii) For every x=0,, V, is an [ invariant subspace of V. We denote by
v, the representation of I, on V, defined as follows:

vo(R)=v(®)ly, (kEl).

Then v, isjan irreducible representation of I, which coincides with 3% -1 on

K, ,, and Ind}y, is equivalent with y.
I,tK
(iv) Let p be an irreducible unitary representation of I, (x is any element

. M(n, R,) such that ¢§(x)=0) which coincides with y3-1 on K, Then

v:IIndy 1s a continuous trreducible unitary representation of K such that r(v)
2 TK

=r and x<0,.

PrROOF. Theorem 1 follows from Lemma 1-1, Lemma 1-2, Lemma 2-2 and
the definition of r(v). (Although K is an infinite group, here we consider only
representations of K which are trivial on a certain normal subgroup of finite
index in K. So results in §1 are applicable.) g.e. d.

When there exists an element of O, which is quasi-regular, any element
of O, is quasi-regular, since GL(n, N,) acts on O, transitively. In this case,
we say that O, is quasi-regular.

LEMMA 2-3. Let x be a quasi-regular element of M(n, R;). Take X € M(n, )
such that ¢ (X)=x. Then we have I,=Cy - K;, where we denote by Cy the sub-
group of K formed by elements which commute with X.

ProOOF. Take k< I,. Then, by definition, ¢ (k)xpk)*=x. By Corollary
2 to Lemma 2-1, there exists c& Cy such that ¢ c)=¢y k). Put h=c"k.
Then we have he K, and k=ch. Therefore we have [,CCy- K,. Since the
inverse inclusion relation is obvious, we have I,=Cy - K.. qg.e. d.

COROLLARY. We assume that v is even. Then we have s=r—s= % Let

¢ be an irreducible representation of I, which coincides with y% -1 on K,;. Then
¢ 1s a one-dimensional representation of I, and there exists a character & of
Cx which coincides with x5 on Cx N\ K,-s; such that

#(ak) = E(a)X; (k) (d = CX, ke Kr—s) .
Proor. By Lemma 2-3, we have [,=Cy: K,. Since pg is an irreducible
2
representation which coincides with y% -1 on K, the restriction of p to Cy is
2

still irreducible. Corollary 2 to Lemma 2-1 shows that Cy is abelian, hence g
must be l-dimensional. The restriction of p to Cy defines a character & of
Cx. Obviously, & coincides with y; on Cy K, and we have

2

plak) = E(a)ys (k) (aesCyx, ke K%) . g.e. d.

Let x be a quasi-regular element of M(n, R,). We take X & M(n, ) such
that ¢(X)=2x. For every character & of Cy which coincides with 3% on K,
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we put p, (ak)=E(a)y¥(k) (a € Cyx, k< K;). Then p,, defines a one-dimensional
representation of [, =Cy - K; which coincides with 3% on K,

THEOREM 2. y=Ind p, , 1s a continuous irreducible unitary representation
I 1K

of K such that r(v)=2s and x<0,. Conversely every continuous irreducible
unitary representation v of K such that r(v) is even and that O, is quasi-regular
can be constructed in this manner.

ProOOF. This theorem follows from Theorem 1 and Corollary to Lemma 2-3.

§ 3. Unitary representations of G induced by irreducible unitary repre-
sentations of K.

3-1. Let G be the subgroup of GL(n; P) formed by all elements with
determinant in $£* In this section we denote by K the set of equivalence
classes of continuous irreducible unitary representations of K. We normalize
Haar measure dg on G as follows:

degzl.

For every v = K, we denote by V, a representation space of v. V, is a finite
dimensional Hilbert space. We denote by .4, the set of V,-valued functions
on G which satisfy following two conditions :

1. f(kg)=v(k)f(g) for every k< K and every ge< G.

2. § (Ha), fleNdg < oo.

(We denote by (,) the inner product in V,). We define inner product [,] in
4, as follows:

Lf, W)= [ (o) Wa)dg  (fihes).

Then 4, becomes a Hilbert space. We define the representation U, of G on
4, as follows:

U gh=/g'e (888G fed).

Then U, is a continuous unitary representation of G. We denote by U,|K the
representation of K on .4, obtained by restricting U, to K. For every p K,
we denote by (U, |K, p¢) the multiplicity of g in U,|K.

LEMMA 3-1. We assume that i =1(U,|K, v) < oo. Then U, decomposes into
direct sum of at most 1 irreducible representations.

PrROOF. We define the linear operator P, on 4%, as follows:

P.f=dim V.| y®UMSE  (feL),

where y, is the character of v. P, is a projection operator. We put



Square-integrable irreducible unitary representations 531

W.={fed,; P.f=r}.

By the assumption we have dim W,=idim V,. Let X be any closed non-zero
G-invariant subspace of 4,. Let f be any non-zero element of X. Since f is
a continuous function on G, there exists g,= G such that f(g,)+#0. Then
P(ULg)f)e)=J(gy)+0. P, (U(gyf) is a continuous non-zero function on G
and belongs to W, N X. Thus W, X =+ {0}. Since X is G-invariant, we have

dim (W, A X)=dim V,.

Let X,, X,, ---, X; be mutually orthogonal non-zero G-invariant subspaces of
4, Then we have

idim V,=dim W,= 3 dim (W, A X) = dim V, .
=1

Hence we have i>7. g.e.d.

COROLLARY. When (U,|K,v)=1, U, is an irreducible unitary representa-
tion of G.

We say that a continuous irreducible unitary representation U of G on a
Hilbert space 4 is square-integrable if there exists a non-zero element v of %
such that (U(g)v,v) is a square integrable function on G. When U is square
integrable, it is known that there exists positive number d which depends
only on the equivalence class of U and the normalization of Haar-measure dg
of G such that

§ W, v )T, 52308 = (s, w2, 2

for every uy, u, vy, v, €9 (see Godement [2] and Harish-Chandra @ii)).
The above relation is called Schur’s orthogonality relation and d is called the
formal degree of U.
LEMMA 3-2. We assume that U, tis irreducible. Then U, is a square-
integrable representation of G and the formal degree of U, is equal to dim V.
ProoF. Take v & V, such that (v,v)=1. We define f = .4, as follows:

f(@=0 when ga&K
and

/(@ =v(gv when gekK.
Then we have [f,f1=1 and

[ 1tusof, g = |[ ek, e dk

= j lu(k), v)|2dk = —rm . q.ed
K

LEMMA 3-3. We assume that U, is irreducible and that for every peK,
WU, K, p) <oo. For every Schwartz-Bruhat function f on G, we define a linear
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operator U, (f) on 9, as follows:
U =] faULes.

Then U/f) is of trace-class and we have

Trace U,(/)= | G( j J(ghg™) trace v(k)dk )dg .

PrOOF. For every px < K, we define a projection operator P, on 4, as
follows :

P,=(dim V) j frace p(BU (k)dk

We put 4, (¢)=P,(4,). Then we have 4, = @.ﬂ[,,(/,e) (direct sum). By the
=K

assumption, 4,(y) is finite dimensional. Theré exists a complete orthonormal
base {e;; 1=1,2, .-} of %, such that every e; belongs to some % ,(¢) (¢ € K).
Let f be a Schwartz-Bruhat function on G. Since f is a uniformly locally
constant function on G with compact support, the set of pEK such that
U()(#()+ {0} is a finite set. Hence the set of (1, )€ N X N such that
LU(Nes, ej]1="Te;, US f)e]-] +0 is a finite set, where we denote by N the set of
natural numbers and put f(g) =7(g 9. Therefore we have 2ILULS)es, el
< oo. Hence U/f) is of trace-class and we have "

Trace U (f)= :21 LU)es, e:]

(see Harish-Chandra ).

From the assumption and Lemma 3-2, U, is a square-integrable irreducible
unitary representation of G and the formal degree of U, is dim V,. In the
following, we repeat the argument used in the proof of theorem 2 in Harish-

Chandra [3], (ii).

Let e¢ be any unit vector in 4%,. For every xe G, we put UL))
UL ULNULR). We have [UK(e, €] = LULNULR)e, UkDel= S [ULNUe,

e le;, Uyx)e] :g g[Uu(f)ej; e LU (x)e, e;1[e;, U (x)e]. The set of (4, )eNXN

such that [U,(f)e;, e;JLU.(X)e, e;1[e;, U (x)e]+ 0 is a finite set. Therefore we
have, using Schur’s orthogonality relation,

[ tUsre, e1dx
= 3 3 WUe e [ULe, e TTRe; eddx

1 & 1
=dEm v, 2 LU.(fes, €] =dm Vv, Trace Uy(f).

i=1
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Square-integrable irreducible unitary representations
Let {v;; i=1, ---,dim V,} be an orthonormal base of V,. We define f;, & 4,
as follows:
0, when ga K.
rao=|
v(gw;, when g K.

Then f; 1<£i<dim V,) is a unit vector in %,. Hence
Trace U(f)=dim V.| [UL(Nf, fildx
=dim V.| dxf [(OLUx"'gn), fldg
G G

=dim V.| _dx{ fgx)({ (Fhe), fihpdh)dg

—dim V, j dej Kf(xkx‘l)( j (fihkys, Fllivdh)dk

= dim v, | Jdx { SOk Ry, vi)dk.

We have

dimVy

Trace U(f)= % | dx| flckxukw, v)dk
i=1 G K
—_—j dxf flxkx~Y) trace y(k)dk .
G K
, g.e. d.
3-2. We define the subset H, of G=GL(n, P) as follows:
™
T My, e, M, EZL
My Z My = e Z My,

H, =1 h(m,, My, ey My) =

o

For every integer j, we define the subset HJ of H, as follows:
H'—’I-:: {h(ml’ My, +++ mn), m1+ o +mn:]} .

For every he H,, we put K*=Kh*Kh. We denote by v" the representation

of K" on V, defined as follows:
v(k)=v(hkh™).

It is well-known that
G= \U KhK  (disjoint union).
heHY,
For every he HY, we denote by 4% the subspace of %, formed by functions

which vanish outside open compact subset KAK of G. Then 4% is a closed

subspace of 4, and we have
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H,= @ K} (direct sum).
reHY

4% is an invariant subspace of U,|K. We denote by U,(h)|K the representa-
tion: k—U(k) of K on 4}

LEMMA 3-4. U, (h)|K is equivalent to Innd v (he HY).

K1 K

Proor. This is a special case of Mackey’s “Subgroup Theorem ” (see
Curtis-Reiner [17 p. 324).

For every pe K, and he H,, we denote by p|K"* the representation of
K" on V, obtained by restricting u to K" Let i(z|K" v*) be the dimension
of the vector space formed by linear mappings S of V, to V, satisfying the
following condition :

p(R)S = Sv™(k) for every ke K* (he H,).
Using Lemma 3-4 and the Frobenius’ reciprocity theorem, we get the fol-
lowing.
LEMMA 3-5. For every p= K and he HY, we denote by i(U,h)|K, p) the

multiplicity of p in U h)|K. Then we have (U (W) |K, p) =1(p| K", v").
COROLLARY. We have

WK, = 2 (] K" 079

h€H+
Put
0 1 0 coveeennn 0
0 0 1 0o 0
= 0 .. & GL(n, P).
: 1
T 0

Put K9 =J7IKJi (1<j<n—1) and define the representation v’ of K’ on V,
and the representation U of G on 4, as follows:

VPR =v(JEk]Z) (ke KD).

UPQ)=U.Jig]z) (g€06).
LEMMA 3-67,

G= \U KPJZ/hK  (disjoint union).

heH,
Proor. It is well-known that
GL(n, P)=G= \J KhK  (disjoint unijon).
hEH.'_

Hence

7) This lemma was communicated to the author by Professor Ni Iwahori to whom
the author expresses his hearty thanks.
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G=\ JPKhK= U K¥J;hK  (disjoint union).
hEH,, REH,.
Since K, K’ G, we have
G= U KY[FhK=\U KPJz7hK (disjoint union).

REH rEHY,
Tinea g.e.d.

We denote by 4, , the Hilbert space formed by V,-valued functions on G
satisfying following conditions :

® Sk =29(R)f(g) (Ve K, Vge().

(i) J (o), fandg <oo.
We define the representation U9 of G on K, as follows:

(TP an =28 (g 8<06).

LEMMA 3-7. UY and U are mutually equivalent.
PROOF. We define the isometric linear mapping T of 4, onto %,y as
follows :

TIX=rUtglz) (fed).

We have for every g, G,

TW P8 X&) =1(J# (28] = { UL8)T/)}(Q).
q.e.d.
We denote by (U9|K, ) (resp. (UP | K, 1)) the multiplicity of g in the
restriction of U9 (resp. UY) to K.
LEMMA 3-8, We have
(09K, =3 i(u| K" ).
heHZ,_
ProOF. Using Lemma 3-6, this lemma can be proved in the same manner
as corollary to Lemma 3-5. q. e. d.
COROLLARY. We have
WK, = 2 i(p| K" VY.
ner,
ProOOF. This corollary follows from Lemma 3-7 and Lemma 3-8, q.e.d.
3-3. For every integer j such that 1<j<n-—1, we define the subgroup
N; of G as follows:

N={(¥ 1 )i XeMu—ii; P}

For every ,ueK’, we denote by r(y) the smallest non-negative integer such
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that p is trivial on K, = {1+z"* M(n, O)}. Take h=h(m,, m,, -, m,)

my

T o
= e H,.

.n'm—n

LEMMA 3-9. We assume that i(u|K" v")>0(pe K) and that m;—mjy,
=r(p)—1 for some natural numbers | and j 1<j<n—1). Then the restriction
of v to N;N\K, contains the identity representation of N; N\ K.

ProOOF. By the assumption, there exists a non-zero linear mapping S of
V, into V, such that p(k)S=Sv"(k)=Sv(hkh™*) for every ke K"=Kh'Kh.
When ke N;K,, we have h“lkheKthl+mj_mj+1. Since r(p) < l4+m;—mjyy,
we have Sy(k)=S for every ke N; N K,. Since S0, the restriction of v to
N; N\ K, contains the identity representation of N, K;. g.e. d.

In the following we assume that » =r(y) =2 and put s= [é] We recall

that y% (xe M(n, R,)) is the one-dimensional representation of K,_, defined as
follows :
yu(R) = y(z~" trace x(k—1)) (ke K,_y).

‘We also recall that (V,), (x € M(n, R,)) is the subspace of V, defined as follows:
V)e={ve V,; v(Rv=1yikw for any ke K,_,}.
By Theorem 1, there exists a subset O, of M(n, R,), on which the adjoint

action of GL(n, R,) acts transitively and such that V,= > (V,), (direct sum).
<0,
Let ¢ be an indeterminate. We put g

C)=det(t-1—x) (xe0,)
=t DNCH (Cre Ry
i=1

{Note that C,(f) does not depend on the choice of x.) For every natural num-
ber m (m<s), we define the polynomial ¢, -C, over %, as follows:

(@n - CXt) = 1"+ izzn}lgo:,(ci)tn-i .

We say that a polynomial over R, of degree j is monic when the coefficient
of ¢/ is 1. We say that a monic polynomial over R, is irreducible if it cannot
be expressed as product of two monic polynomials of lower degrees.

LEMMA 3-10. We assume that the restriction of v to N;N\K,-, contains
the identity representation. Then ¢, - C, decomposes into product of two monic
polynomials over R, whose degrees are j and n—j (1<j=n—1, 1=m<s).

Proor. From the assumption, there exists a non-zero vector v of V¥, such
that v(k)v =v for every ke N;NK,.,. Put v :m% vy (W,e(V,),). From defini-

=Uy
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tions we have

> Ux:U:D(k)U: ”EC; X;(k)vxr

Z=0y
for every k= N;N\K,_,. Take an x=0, such that v,+0. Then we have
%=1 for all ke N;NK,,. We write x=(T' %), where x, & M(j, %),
3 4

X, € M(j, n—j; Ry, x,€ M(n—j, 7; Ry and x,& M(n—j, R,). Then y(z~™trace x,X)
=1 for all X M(n—j,7;90). Hence ¢(x,)=0. Thus we have

(P - CHO =det (¢ - 1—@(x) det (- 1—3.(x,)) .
q.e.d.
COROLLARY. We assume that ¢, (C(1)) is irreducible. Then i(p| K", v*) =0,
when Max (m;—my) = r(p)—r)+m, where we put h=him,, my, ---, m,) < H,.

1Si=n—1
PrROOF. This follows from Lemma 3-9 and Lemma 3-10. q.e. d.
LEMMA 3-11. We assume that C,(f) is irreducible. Then we have i(U,|K, )
< oo for any pe K.
Proor. From Corollary to Lemma 3-5, we have
(UK, )= 20 (| K", o).

hEH

Take an element h=h(m,, m,, ---, m,) e HY. We put d(h)= Max (m;—m;,).

When d(h) = r(p)—r(v)+s, we have i(u| K" v*)=0 by Corollary to Lemma 3-10.
Hence (| K", v")=0 except a finite number of h= HY. Hence i(U,|K, p)<co.

g.e.d.
LEMMA 3-12. Let v, u be two elements of K such that r=r@)=r(y)=2.
Take an element h=h(m,, m,, ---, m,) in H,.. We assume that m,—m,<s and

i(pe| K" V") >0. Then there exist x= 0, and y <0, such that

@s—mﬁmn(h_ 1Xh) = SDZ—mHmn( V)

for every X & M(n, Q) satisfying ¢(X)=x.

Proor. From the assumption, there exists a non-zero linear mapping S
of V, into V, such that u(k)S=Sv(hkh-') for every ke K". We have
Ky simimmp C Kyos and AK,_qomqom, A7 C Ko

For every z<0,, take a non-zero v,=(V,),, Then we have u(k)Sv,
= 5 (hkh~")Sv, for every k€ K, simy-m, Since Sis a non-zero linear mapping,
we can take x< O, and v, & V, such that Sy, 0. Then there exists y=0O,
such that yj (k)= y5(hkh™?) for every kE K, qymi-m, We take X, Y & M(n, )
such that ¢(X)=ux and o(Y)=y. Put X=(x;) (x;;€9), Y=y i €DO)
and k=14zx"s*m-"n(k, N (k;; =0). We have

y(m™-mn=s {Z/J Viski) = y (3 xym™ Mtk
=)
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for every k;; 9.
This means that y;;—x;m™ ™ e z*-™+™Q (1=1, j<n). Since s> m;—m,,
we have h™'Xhe M(n, ) and @;-my-mpy(h " X) = @s-my-ma¥ ) =P cma-max(D)-
g.e.d.
3-4. Let Q(t)=1t"+ ti)lcit”‘”: (C; € ©) be a monic polynomial over © of de-

gree n. For every natural number m, we put (gpm-Q)(t)::t"—{—él} O(CH.
¢+ Q is a monic polynomial of degree n over $%,.

LEMMA 3-13. We assume that Q(t) is irreducible. Then there exists a
natural number m, such that ¢,-Q is irreducible as a monic polynomial over
R, whenever m = my.

Proor. For every natural number m, we denote by 7, the minimum of
degrees of monic polynomials over $%,, which divide ¢, - Q. It is obvious that
n<En,< - <n,<--<n Hence there exists a natural number m, such that
Mo = Mpgey = ---. Assume that n’=mn, <n. For every natural number m
(m=m,), there exist d, ,, doms s Qprn s Ay Aoy ++ « Qfpmrm, € O such that

On - QU= Pul(+ B dinl™ "+ 3] it ).

There exists a subsequence {m;;s=1, 2, ---} of {m; m =m,} such that lim d, ,,
$—00

and lim dj},,,, exist for every tandj (1=<i<n/,1<j<n—n’). Put d;=limd,,,
$—00 8§00

and d;=limdj,,. We have
Q)= ("' + X dt™-(t* 4 33 djt-).
i= i=

This contradicts the assumption that Q(t) is irreducible. Hence we must have
n=n. @, -Q is irreducible whenever m = m,. q.e.d.

LEMMA 3-14. Let X be an element of M(n, ) such that the centralizer of
X in G is contained in K and that the characteristic polynomial of X is irre-
ducible. Then there exists an open neighbourhood W of X in M(n, D) such that

UNn{gXg?; gG=Un{kXk™; ke K}.
PrOOF. For every he HY, we put
Y={gXg™?; g KhK}.

Since the centralizer of X in G is contained in K, we have

{gXg'; g&G}= \US% (disjoint union).
reHY,
Put Cx(f)=det(t-1—X). Since Cx(¢) is an irreducible monic polynomial over
O by the assumption, there exists a natural number m such that ¢, -Cy is
irreducible, by Lemma 3-13.
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Put d(h)= Max (m;—m;,,) for every h=h(m,, m,, ---,m,)s H%. Let us

1=i=n—1
show that St \M(n, O)=¢ for every he HY satisfying d(h)=m. Suppose
there exists an h such that d(h)=m and that S% ~ M(n, O)+ ¢. There exist
k,, ky, € K such that khk, Xk7'h-kii=Y & M(n, ). Take i such that m;—m,,,

— d(h) and write k{'Yk, = hk, Xksth 1= ;1 ZZ) (2, € MG, D), z, € MG, n—i; O),
3 4

zs€ M(n—1,1; Q) and z,& M(n—i,9)). Then we have ¢,(z,)=0. Hence we
have det (t - 1—¢, (hk,Xky*h~)) =det (¢ - 1—¢,(z)) det (¢ - 1—¢,(2,)). On the other
hand, we have

det (¢ - 1—@n(hk, Xky1h=Y) = @, (det (¢ - L—hk, Xk31h~Y))

=@u(det (¢ - 1— X)) =, - Cx(®.

This contradicts the fact that ¢,-Cy is irreducible. Hence we have

ENMn, O)=¢, when d(h)=m. Since {S%; he HY, dh)<m} is a finite
family of mutually disjoint compact subsets of M(n, P) and S%C M(n, O), there
exists an open subset U1 of S% in M(n, O) such that W\ S% = ¢ whenever h+1
and d(h) <m. When d(h)=m, we have 1St =¢. Hence U S%=¢ when-
ever h+1. We have

UnigXg?;geGl=0n{ U S} =UNSk=UN{kXE™; ke K}.

hEH

q.e.d.
For every element X € M(n, O) such that ¢,(x) 0 and every natural num-
ber | (we assume [=2), we put [y={keK; go[_l_](ka”l): gp[k](X)}. We
2 2

define the one-dimensional representation y% of KL_[;‘] as follows:
2
xk(k) = y(z"" trace X(k—1)) (ke Kl_[\é]) .

We denote by rz% the set of equivalence classes of irreducible unitary repre-

sentations A1 of [% satisfying A(R)=y%(k)-1 for every £k EKL_[J_]. Put
2

v,=Ind 2. From [Theorem 1, v, is an irreducible unitary representation of K.

I K
We have r(vp)=! and O,,= {go[i'](ka'l); ke K}. We also have C.(5

2
=det (t . 1—‘@[7%]()()).

THEOREM 3. Take X & M(n, O) such that ¢,(X)+0. We assume that the
centralizer of X in G is contained in K and that the characteristic polynomial
of X is irreducible®.

There exists a natural number /[, such that for every [=/, and for every

A in 7%, U,,=Indy; is an irreducible untary representation of G.
K16

ProOF. From Lemma 3-13, there exists a natural number j, such that

8) An example of such X will be given in Lemma 4-5.
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det (f-1—¢; (X)) is an irreducible monic polynomial over %;. From Lemma
3-14, there exists a natural number j, such that

{X+z;zen2Mn, O)} N {gXg?; geGC{kXk?; ke K}.
Put [(=2{(n—1)j;+j,}. We assume that [=1, and 1 =r% From corollary to
Lemma 3-5, we have i(U,,|K, v)) = Zoi(ule”, v2). Take h=h(m,, my, -, m,)

fLGH+
s . .. .
ens. since ghrlc, O)=det(t-1-pnx) is irreducible ([5]=[% ]
=n—Dj:1+7. >, we have i(v; | K", v})=0 when Max (m;—m,.,)=j,, by corol-
1=i=n—1
lary to Lemma 3-10. Now we assume that Max (m;—m;y,) <j; and (v, | K?, v2)
1si=sn—1
n—1 . ZO l
>0. We have m;,—m, = > (m;—m,; )< (n—17, < [—2 —] = [~-~2~]. From Lemma
=1
3-12, there exist Y,, Y, = M(n, ) such that gp[k](Yl), go[»lf](Yg)ezO,,/1 and that
2 2
e _;,Mn(h_lyﬁ) = Sp[vé-]Aml-*—mn(YZ)’ Since O,,= {w[“é_](k_Xk“l) ; ke K}, there
exist k,, k, = K such that

o[ H(kiX ki) = go[ﬂ(Yi) (=1,2).

Therefore we have

h~k, Xkith € M(n, 2)
and

IR G ¥ G DR E I S D
Since [—%]—mﬁ—mn = [J—Z‘r’rv-]——ml—l—mn > 7, we have

k3'th~k, Xki'hk, € {gXg™; g€ G}
N{X+z;zen2Mn, O)}C {kXk*; ke K}.

Hence there exists k, = K such that ky'h-'k, Xk‘hk,=k,Xk;'. Since the cen-
tralizer of X in G is contained in K, we have

bitkyth-'k,e K and he HO AK=1.

Thus we have proved that i(y;]K" v2)=0 unless h—=1. Hence we have
i(U,,|K, v)=1i(v;| K*, v})=1. Hence U,, is irreducible by corollary to Lemma
3-1. q. e. d.
CorOLLARY 1. U,, is square-integrable and the formal degree of U, is
equal to the dimension of the representation space of v;.
Proor. This follows from Lemma 3-2. g.e.d.
COROLLARY 2. For every Schwartz-Bruhat function f on G we put U,,(f)

:j (U (9dg. Then U,, is of trace-class and we have
g )
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Trace U, (f)= j _dg j [(ghg™) trace v,(k)dk

Proor. This follows from Lemma 3-11 and Lemma 3-3. q.e. d.

§4. Irreducible unitary representations of G parametrized by certain
characters of compact Cartan subgroups of G.

4-1. We call a maximal abelian subgroup A of G a Cartan subgroup when
every element of A is semi-simple. For every Cartan subgroup A, we denote
by 4 the subalgebra of M(n, P) generated by elements of A.

LEMMA 4-1. When A is a Cartan subgroup of G, A is a maximal abelian
semi-simple subalgebra of M(n, P) and we have A= 4NG.

PrROOF. From the definition of .4, we have

]
J:{‘leiai;xlf"'rxlep;aly ""alEA}'
==

Since A is commutative and every element of A is semi-simple, .4 is a com-
mutative semi-simple subalgebra of M(n, P). Take an element x of M(n, P)
which commutes with 4. Take a natural number [ such that z'x & M(n, D).
Then it is obvious that 14-#*'x € G and that 1+z'*'x commute with A. Since
A is maximal abelian in G, we have 14+7"*'x= A and x& 4. Hence 1 is a
maximal abelian subalgebra of M(n, P). It is obvious that ACG 4. Since
A is maximal abelian in G and every element of 4G commutes with A4, we
have A GC A. Hence A=u4nNG. g.e. d.

LEMMA 4-2. When A is a compact Cartan subgroup of G, A is an exten-
sion field of P of degree n and A is the unit group of A.

Proor. From Lemma 4-1, .1 is a commutative semi-simple subalgebra of
- M(n, P). From Dedekind’s theorem, 4 is a direct sum of extensions of

P: 4= E}-T)Jli, where .4, is an extension of P. Let 1= ﬁ) 1; ;€ 4,) be the
=1 i=1

decomposition of the unit element of 4. We put (P)"= M(n, 1; P), (P)=1,-(P)"
and n;=dim (P)? (1=<1<7r). We assume that r=2. Then we have n,, n, > 0.

Put a;=n""2.1,4r"™.1,+ é 1, Obviously we have a,€ ANG=A for
=3

every integer [. Since A is compact, there exists a sequence [, <[, <[, < ---
of natural numbers such that lim a;, exists. Take 0+v e (P)f, then we have

j-—»oo
aljv:n‘lj”zv. But limz-%"w does not exist unless 7n,=0. Thus we get a
J-roo

contradiction.

We have r=1 and A=.4, is an extension of P. Since .4 is maximal
abelian in M(n, P), the degree of 1 over P is n. For every a € 4, we have
det « = Norm 4/ P(«). Hence
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A={a s 4; det a = O*}

= {a e d; Normdz/pa ED*} )

so A is the unit group of 4.

LEMMA 4-3. Let A be a subalgebra of M(n, P) whichis an extension of P
of degree n. Then A= JANG is a compact Cartan subgroup of G and A 1is
generated by elements of A.

Proor. From the assumption, it is easily proved that .4 is a maximal
abelian semi-simple subalgebra of M(n, P) and that .1 G is the unit group
of 4. Therefore it is obvious that A is compact maximal abelian subgroup
of G whose elements are semi-simple. We can take an element a of the unit
group of .4 such that 4= P[a]. Then a= A and a generates 4. q.e.d.

We put 5:GL(n, P). Two subgroups L, and L, of G are said to be G-
conjugate if there exists an element ge G such that gL,g7'=1L,. Two exten-
sions P, and P, of P are said to be P-conjugate if there exists an isomorphism
which maps P, onto P, and fixes every element of P.

LEMMA 4-4. Let A, and A, be two compact Cartan subgroups of G. A,
and A, are 5-conjugate if and only if A, and A, are P-conjugate.

PROOF. Assume that A, and A, are é-conjugate, then there exists an
element g of G such that A,=gA,g7'. We have A, =g, g and the isomor-
phism: a—gag™ (a & A,) maps 4, onto 4, and fixes every element of P.
Hence 4, and 4, are P-conjugate. Conversely, we assume that 4, and A4,
are P-conjugate. There exists an isomorphism ¢ which maps .4, onto .4, and

x X
X X
o " = ", for every x& P.
x " x

Take an element «, € 4, such that 4, = P[«,]. We denote by C,, the minimal
polynomial of @, over P. Then C,, is of degree n and irreducible. C,, is the
minimal polynomial of o(«,) and characteristic polynomials of «,; and «, are
identical with C,,. Hence there exists g= G such that o(a,)=ga,g™*. Since
Ay =Pla,] and A,=04,= P[o(a,)], it is obvious that ca =gag™ for every

a € A, Hence A, and A, are GN-conjugate. q.e. d.
Since every extension of P of degree n can be isomorphically imbedded
in M(n, P), we have the following proposition from Lemma 4-1~Lemma 4-4.
PROPOSITION 4-12. There exists one to one correspondence between the set
of 6-c0njugate classes of compact Cartan subgroups of G and the set of P-

9) This proposition is communicated to the author by Dr. H. Hijikata and Dr, Y.
Thara to whom the author expresses his hearty gratitude.
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conjugate classes of extensions of P of degree n. Every compact Cartan sub-
group of G is isomorphic to the unit group of the corresponding extension of P.

4-2. We denote by &(P, n) a complete set of representatives of P-conjugate
classes of extensions of P of degree n. It is known that &(P, n) is a finite set.

For every element P, of &(P, n) we take an injective homomorphism z; of
131 into M(n, P) as algebras over P. Put Ai:Gmri(ﬁi). Then A; is a com-
pact Cartan subgroup of G and {A4;; ﬁi e &(P, n)} is a complete set of repre-
sentatives of CN?-conjugate classes of compact Cartan subgroups of G.

LEMMA 4-5. Assume that t(£;) C M(n, O), where D, is the ring of integral
elements of ﬁi. Let x be any integral regular element of ﬁi“’) and write
X=rz,x) M(n, ). Then the centralizer of X in G is contained in K and the
characteristic polynomial of X is irreducible.

PROOF. Since x & P, is regular, the minimal polynomial of x over P is of
degree n and coincides with the characteristic polynomial of X =r7,(x). There-
fore the characteristic polynomial of X is irreducible. As X =r,(x) generates
ri(ﬁi), every element of M(n, P) which commutes with X lies in Ti<ﬁi)' Hence
the centralizer of X in G is t(P)NG=r(DHCK. q.e.d.

In the following, we assume that p (the characteristic of the residue class
field ©/P) is prime to n. We construct for every _ﬁieé’(P, n) an injective
homomorphism 7; which is convenient for our applications. We omit the
index 1.

Denote by © and P the ring of integral elements of P and the maximal
ideal of © respectively. Denote by e and f the ramification index and the
modular degree of P over P respectively. We denote by PY the unramified
extension of P of degree f. PY is a subfield of P. We put OV =9 PP
and PP =P PY. Since p is prime to n, it is known that there exists a
prime element # of P such that #¢ lies in O and generates P in OU. (See
Lang’s book [47] p. 38). Take such a #. Then we have

P=pPor#] and ©=90V[#].

{1, % --,71} is a PY-base of P. The regular representation of P with
respect to this base defines an injective homomorphism ¢/ of P into M(e, BL).
We have

: !
x:ﬁ ) ::’(x)( ﬁ ) for every xreP.

~e-1

xﬁ@'l

We denote by Gal(P’/P) the Galois group of P with respect to P.
Gal (PY/P) is a cyclic group of order f. Let ¢ be a generator of this group.

10) We call an element x of P; regular if ﬁ:ﬁ[x].
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For every natural number m, put R’ =OP/RD)™. RY is a finite ring and
Gal (PY/P) operates naturally on this ring. The homomorphism ¢, of R onto
R, extends naturally to the homomorphism of £ onto RY’. We denote this
extension by the same symbol. We also denote by ¢, the naturally defined
mapping of matrices over Y onto matrices over R, Put

0 1, 0 coveerene 0

0 0 1, 0-e-e0
]: e 0 ’

0 1,

1, 0

where 1, is the ¢ by e identity matrix. We define the P-submodule It of
M(n, PY) as follows:

M= {xe Mn, P"); ox=]x]"'}.

Put M, =M\ M(n, O) and for every natural number m, put &,=M {1
+7z™M,}. Take an element g, = GL(n, OY) such that og,=Jg,.

Take an element x e Y such that gol(]f[l(x—a’“x));&o. Put
k=1

Txx?...x/?
hoz(

2 .. yf-1
lxx X . e M(e, n; OD).
1 xx?ee xf?

ho
g0:< 0-?0 )
o7-1h,

We denote by « the automorphism of M(n, PY”) defined as follows:

We can put

K(X)=gy'Xg, (X&Mn, PP)).
We have «(W) = M(n, P), k(M) = M(n, O) and k(R,)=K, (in=1,2,---). We
put ® =x"Y(K). Now we define the injective homomorphism ¢ of P into M
(as algebras over P) as follows:

¢/(%)

oc'(x)

. (xe P).
) a’ /(%)

o((x) =

Put z=r-¢c. Then 7 is an injective homomorphism of P into M(n, P). When
xe 9, we have ¢/(x) € M(e, OU), «(x) €M, and z(x) = M(n, ). Hence we have
) Mmn, D). Put A=t(P)NG=1r(5*) and A=«D*). A is a compact
Cartan subgroup of G contained in K.

Since {1, #, #% ..., 7'} is an OY-base of O, for every x < ©, there exist
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€ R .
L1 Mo -0 s te €OV such that x= 3 p7771 Put I =7° From the assumption,
j=1
we have [l = P,
LEMMA 4-6. We have

01 j—1
01
¢ 01
()= 20t .
j=1 .
1
17 0
Putting fi;=¢,(p;) (L=j=e), we have

iy [l - e

Hi o :

@, (' () = L. o

o2

0 IR

Proor. This lemma follows from the definition of ¢’
LEMMA 4-7. Put x= 3 p#'e D (ueOP). Then H=900x] if and only
=1

if the following two conditions are satisfied:

® @iy #= (o) (R=1,2, -, f—1),
(i) p,=OY* (when e>1).
PROOF. Assume that © =O[x].

Put §t= /P and denote by @ the natural projection of © onto RN We
have

RO =R =R,[0,(0)] =R Lou(p)].
Hence ¢,(c"(,)) +¢i(pt) (B=1,2, -, f—1). We further assume that e>1.
There exist ¢, ¢y, -+, ¢z such that 7= jéocjxf. We have é}cﬂu{ e POP
=R P On the other hand, we have 7F— Zk) ci(pd +]p{“1y]2ﬁ)e P2, There-
fore we have =
ﬁ{l—ﬂzéjcmf'l} e .

Hence p, € OV

Conversely we assume that conditions (i) and (ii) are satisfied. It follows
from (i) that Rt =R =RN,[0,(x)].

Put Q(t)::ﬁ)(t—o"pl) (t is an indeterminate). Q(t) is a polynomial over

£. From assumptions, we have Q(x) =} and Q(x) & P2 Now it is obvious
that  =O[x]. q.e.d.

COROLLARY 1. We assume that & =[x (x€ D). Then the minimal poly-
nomial of ¢(z(x)) over R, is the characteristic polynomial of ¢(z(x)) which is
the e-th power of an irreducible polynomial over R, of degree f.
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PrROOF. Put x:iyjﬁf*l (r;€90Y) and put f;=¢,(y;). From Lemma
&
4-6, we have !

oY
©,(e(x) = " , where Y =

/'Y

y LN )
-

i

#1

Therefore det (¢ - 1—@,(z(x))) =det (¢ - 1—¢,(c(x))) = {)ﬁl(t——a’“ﬂl)}e. From Lemma
k=0
4-7, (@) :ﬁ (t—o*a,) is an irreducible polynomial over i, of degree f. There-
k=0

fore, the minimal polynomial over R, of ¢,(z(x)) is equal to ¢)* for some

natural number ¢’ not exceeding e. If ¢(p,(v(x)))* =0 we must have ¢(p,(c(xX)

=0. Since f,+ 0 (Lemma 4-7), we have ¢’ =e¢. Hence e=c¢’. g.e.d.
COROLLARY 2. We assume that © =0x] (x= D). Put

() =det (¢ - 1—7(x))
="} f} c 1"t (c;€9).
i=1
When e=1, @(c,(t))=1t"+ é Q,(cHt™ is an irreducible polynomial over R,
i=1

When e > 1, @,(c () =1t"+ i%(ci)t”‘i ts an irreducible monic polynomial over
R, .

PrOOF. When e=1, this corollary is a consequence of Corollary 1. Now
we assume that e>1 and that ¢,(C,(¥)) is reducible. Then there exist dj, d,,
ey dysdyy e, dp; €20 (L£7 < n) such that

©(C(1) = @ ,({t/+ lé d -t} {tn—j_}_té: din=i-11) .

Since C,(x)=0, we have
(x4 i} dyxd=4) (a9 2 dixrIi-) e PO = P,
Therefore, we may assume that
o+ é‘i d;xite Pe.

Hence gol(:c(x))f—}—:z1 0:(d)p(z(x))"*=0. Therefore the minimal polynomial of
¢,(z(x)) over R, is of degree less than n. This contradicts Corollary 1. ¢,(Cy (%))
is irreducible. g.e. d.
LEMMA 4-8. We assume that ©=0[x] (x= D). Then the centralizer of
z(x) in G is A and is contained in K.
PRrOOF. It is obvious that ﬁ:P[x] and x is a regular integral element.
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The lemma is an immediate consequence of Lemma 4-5. q.e.d.
4-3. We assume that p is prime to n and use notations in 4-2 without
further references.

For every natural number m, we define the subgroup 11,, of £* as follows:
n,={xe d*; x—-1c P"}.

Let & be a continuous character of £*. There exists a natural number m such
that ¢ is trivial on 1, and is not trivial on U,_,., We assume that m = 2.
Take a character y of the additive group of P which is trivial on © and is
not trivial on z-3O. Since p is prime to n, P is tamely ramified over P.
Therefore the mapping: x— y(traces7'~°x) gives a character of the additive
group P which is trivial on © and is not trivial on # 9. Since the mapping

a—»fz[j;*]“m(a—l) gives an isomorphism of um_[ﬁmf]/um onto f)/%[“f], there
~ 2
exists an element x; of ©* such that we have

£(a) = y(tracezp{#-*™xL(a—1)}) for every a = llm_[;m;] .
2

Put m—1=m’e—0 (m’ and 0 are integers such that 0<d<e). We have #-¢"™
=go-tm'tbe  gpd Fremd — [IHmED g an element of (PO)F'+D Hence there
exists an element x, of P? such that &(a) = y(x~™*? tracegpx.(a—1)) for every
aes um_[g,,;]. )

We call & a strongly regular character of ©* when we can take x, so
that we have ©=O[x,]. When ¢ is strongly regular, we have x. < O* by
Lemma 4-7. Since xee%@‘;, we have § =0 and m=m’e+1. Since m=2 from
the assumption, we have m’>1.

4-4, We assume p is prime to n and use notations in 4-3. Let & be a
strongly regular character of 9*. ¢ is trivial on I, and is not trivial on I,,_,.

We can write m =m’e-+1, where m’ is a natural number. There exists x. € D
such that © =9O[x.] and that

£(a) = y(z~™*V tracepp x.(a—1)), for every ae um_[_m‘] .
2

We write z:[r”i'}L and X=1t(x). We define the function y%¥* on K as

follows :
3 (k) = y(m~™*P trace X(k—1)) (ke K, X=1(xg)).
From Lemma 2-2, y%*!' defines a one-dimensional representation of K.,
which is trivial on K., and coincides with & on A\ K,+,'P (A =17(D%)).
LEMMA 4-9. The centralizer of the one-dimensional representation y%'™** of

11) We define the character & of A by
E(r(a))=E(a)  (a€ED®).
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Kpprr in K is AK,.

Proor. The centralizer of X=17(x;) in K is A by Lemma 4-8. Since 7(x,)
is a quasi-regular element in M(n, ) by [Corollary I to Lemma 4-7, the lemma
follows from Lemma 2-2 and Lemma 2-3. g.e.d.

Now we assume that m’ is odd. We have l:ﬂlzﬂ» and Ky =K
We define the function g, on AK, as follows:

pelak) =E(@xg (k) (ke K, as A).
Then p. is a one-dimensional representation of A - K, which coincides with

2% on K, (Although the residue class of x; mod.ﬂ?[lg“] is uniquely deter-
mined by &, x. is not uniquely determined by & Hence, p. is not uniquely
determined by &.)

4
PROPOSITION 4-2.  We assume that m’ is odd. Put ye= Ind p,. (l:m 2_{:1)

AK 1K
Then v 1s a continuous irreducible unitary representation of K.

Proor. This proposition follows from Lemma 4-9 and [Theorem 2
g.e.d.
COROLLARY 1. The dimension of the representation space of vg 1S

nn-1 ,

q ? m(q”—qn"f)“lill(q’“—l)-
PrROOF. From Proposition 4-2, the dimension of the representation space
of v, is
#2(K/)AK) = #{(K/K)/(A] AN Ky}
=$(G L(n, R))/4(O* /W,

n(n—1

— q(lfl)nzq 9 kli[l (qk__1>/qf(el—1)(qf_l)

(2t—1) 22D

=g 7 ﬁ1<qk—1>/qn-f<qf—1>

m’ nn—1)

=q 2 (q”*q”"’)’lklil1 (@*—1.

COROLLARY 2. Using notations in §2, we have

r(vg) =m’'+1, s=1
and
Ove={pkr(x)k™); k= K}.

4-5. We assume that p is prime to n. We use notations in 4-4 and assume

7’ /7
that m’ is even. Then [= ﬂ;—l]:ﬁ;—. We shall construct a certain irre-

12) In the following we denote by #(S) the number of elements of a finite set S.
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ducible unitary representation p. of A.K, which coincides with y%* .1
(X=1(2) on Kip1=Kpss-te
We recall certain notations in 4-2. We put

M, = {x & M(n, D); ox=JxJ-1}
and
R={xeM,;; x*—1lezM} (s=12, ..

The mapping & (conjugation by some element g;' e GL(n, OY) gives an iso-
morphism of & onto K (s=1,2, ---). We put & =x*(K)=GL(n, O9) "M, and
put A=x"1(A)=(O*¥). We identify D* with A by means of mapping ¢(§ is
then a character of ).

We put X =¢(x;). We define the function y#*!' on & as follows:

rZ (k) = y(m= ™V trace ¥(k—1) (k= R).

We have yg''=y% ™ £ and y7'* is one dimensional representation of &,.;-;
= &,+; which coincides with & on % &;,.,. Put

M= {x € M(n, %) ; ox=Jx] '}
M is an R,-module. For every R,-submodule T of M, put
RUT)={g€ &; oz (g—1NET}.
K(T) is a normal subgroup of &, Put
al(Yy, Vo) = trace p,(8)(Y,Y,— Y, YD) (Y, Ve D, %= o(x).

ag is an R,-bilinear skew-symmetric form on M. For every R,-submodule T
of M, put TL={xeM'; alr,»)=0 for every ye T}.
LEMMA 4-10. Let Z, and Z, be two elements of &, Putting Z,=1-\znlz,
z;eM, i=1,2), we have
Po11i(Z1 2,27 251 = 14 Qo (™ 2,2,— 2,2, })
PrOOF. We have

Por41(Z7) = 1_‘9021+1(7le1‘)+9021+1(7?%22¢) t=12).
Therefore we have
NI VAVAYARIAD
= Qo {(I+7%2,)A+7'2,)A— 7'z, 4-n*2) (1 — 'z, + 725)}

=1+, (2,2, 2,2)) -
g.e. d.
LeEMMA 4-11. Let T be an R,-submodule of ' and let 5 be any one-
dimensional representation of K(T) which coincides with y2'*' on Ry, Then

the centralizer of n in & is &(TL).
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PrROOF. Take ge®, and he &(T). Write g=1+z'x and h=1+=r'y
(x,yeM,). We have (g-n)(h)=75(g*hg)=n(h)n(gthgh ). Therefore g cen-
tralizes » if and only if (g -*hgh™)=1 for every he &(T). It follows from
Lemma 4-10 that

n(g  hgh™) =y *(1—n*(xy—yx))
= (=7 aglp.(), () .

Hence g centralizes % if and only if ¢,(x) = T<L. qg.e.d.
Let z,, 2z, ---,2, be elements of M(e, OV (resp. M(e, R{(")), we define
HM(Z1, 24y -+, 27) €M, (resp. MY as follows:

Z, 22 Zf
‘-%<Zl’ Zgy vty zf): ( UZf g2y - O-Zf—l ) .
o'z, 077z
We define the %,-submodule W of ' as follows: when f is odd,
J1
/—E—
W: {‘-%/l(zl’ Boy =t*y Z_f‘ii, 0; 0, oy 0); Z1y Zgy =7y Zﬁl_ S M(e.v SR%'”)
2 2
and z, is an upper triangular matrix},

when f is even,

5 —1

——H— ¢
W: {ﬂ(‘zl: oy **ny Zfzf*Jr]; 07 01 Tt 0); Z1y By *** Z‘-;L 1 € M(e, 9t1f)>r

+

2z, is an upper triangular matrix and zs  is an upper
2

1
triangular matrix with diagonal elements zero}.
When f is even, we define the ®,-submodule E of M! as follows:
E= {W(O’ O’ ] Oy z, O: ] O);
z is a diagonal matrix in M(e, R)} .

It follows from Lemma 4-6 that ®(W) and &(W+E) are normal subgroups
Of S‘)I . '@l'
LEMMA 4-12. We have

W,  when f is odd,
W+E, when [ is even.

W=

PROOF. We assume @ = MWy, Wy, -+, Wy) E WL (Wy, w,, -+, wy & M(e, R{)).
Then ag(w, y)=0 for every ye W. Write y=IMz,, z, 2[_L]+1, 0,---,0ew
2%
(215 B9y =+ z[i]“ e M(e, R)). We have
2
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-1 - =
kgo o*[trace ' {z,w,—w,z,+Y }]1=0, where & =¢,(¢/(xe))

and
[%]” ki .
Y wielze, W),

Y_ 2 Zjo'j_ILUf+2_j_
j=ra-[4]

2

j=2

Putting Z,=8,2 (2=i=[L51]) in @), we have

r-1 . i A
> o* trace £/(20" W ypyoy— Wy, ;07 02)
x=0
J-1 . - = .
= > ot trace 2(0° " Wyyy_; - B —0° & - 0" Wpppyo ) =0

k=0
for every z & M(e, R). We have ¢*w;y, ;- F =0"'& . 0" Wsy,.,. It follows

from Lemma 4-6 that
ﬂl gz ...... /{e
. e :
B =0, (x) = i,
Ty
0 I3

where we put x;= ‘:_,“uiﬁi-l and g;=¢,(¢;). By Lemma 4-7, we have fg,#0
i=1
and f,+o%g, (k=1,-.,f—1). Hence we have w;., ;=0 (2§i§ [LELD

Putting z;,=40;z in (), we have
r-1 -
> of trace ¥ (zw,—w,2) =0
k=0

for every upper triangular matrix z e M(e, R{"). Therefore w, is an upper
triangular matrix. Finally we assume that f isevenand put z,= ... =2z, =0
2
in ). We have
=1 I = A
Softrace Z; (02 wy F—c2F . .02wy )=0
=0 5+l e+l 51

for every upper triangular matrix ZJ;H whose diagonal elements are zero.
2
Therefore w s | is an upper triangular matrix. It is proved that
2
ws W  when fis odd,

and that
we W+HE when f is even.
Therefore WL+ C W when f is odd and WL W4 E when f is even. Since the
g.e.d.

inverse inclusion relation is obvious, lemma is proved.
Now, we construct a one-dimensional representation 7. of (W) which

satisfies following conditions :
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(1) %, coincides with yZ'*' on &,
(i) 7, coincides with & on (W)NY,
(iii) Every element of % centralizes 7,.
We define an R,-submodule W, of W as follows:

Wy={Mzy, 25, -+, 27y W; 2, is an upper triangular
matrix with diagonal elements zero}.

It follows from Lemma 4-6 that &(W,) is a normal subgroup of A- R,
LEMMA 4-13. y¥* is a one-dimensional representation of K,(W,) which
coincides with & on AN\ K(W,). Every element of U centralizes y¥*.
PROOF. Let k;=147'x, and k,= 1+4x'x, be elements of K(W,) (x,, x, € M,).
Since k,k,=1+7rl(x,+x,)+7%x,x, we have

A (Ryky) = ¥ (k) x ¥ (ky)y(m " trace Xx,x,).

Put

xlzﬂ(zv Zoy tt Zf)
and

Xy =M1, 25, -+, 2}) (24, 2} € M(e, O9)).
We have

x(z~! trace £x,x,)
s-1 ks .
= x[rc‘lkz()) o® trace ¢/(xz){z,21+Z}], where Z = 22 2,02
= i=

Note that ¢,(x,) and ¢,(x,) are in W, and that ¢,(¢(x,)) is an upper triangular
matrix. Hence we have trace ¢/(x.){z,z{+Z} € $P. Since y is trivial on O,
we have

x(z~! trace Xx;x,) =1.

Therefore y¥+'(k,k,) = y¥+(kDy# (k) for every ky, k, € &(W,). Hence y¥*' is
a one-dimensional representation of ®,(W,). We have &(W) N\ UA=cW;er)-
Remember that m =2[e4-1 and m-—[wn—zl—] =e+1. When a € 1,,,,, we have
from the definition of x,
§(a) = x(m~*" traceg;p(x)(@a—1)
= y(w =~ trace ¥(«(a)—1) = zF(«(a)).

Therefore y#+' coincides with & on A\ &(W,). It is obvious that every ele-
ment of % centralizes yF*. q.e. d.

e

We define the isomorphic imbedding & of (f0V*)¢=0U* x ... x OP* into
& as follows:
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Xy

X e—1
2 —_——— ],
00
xe

5(.7(1, Koy ** s xe):*m

We denote by © the image of (0U%)° by §. We put D,=dDNRK; s=1,2, ---).
It is obvious that (W)=9D,. K(W,). and that D, N\ (W) =D,.,. We put
U =N N0 (s=1,2,.-). Then D, is the image of (1Y")* by §. Since p is
prime to 7, the mapping: a—a® of U into itself defines an automorphism
of U (s=1,2,-.--; n=ef). Therefore, for every element « € 1" there exists

1 1
unique a¢ €Y such that (¢ ¢ )=a. We define a character p of D, as follows:

P(a(xn Koy *o0 s xe))zf((% st xe)%—) (xll ey Xe Euéf)) .

Then p coincides with y#*! on ®,,,. (Note that diagonal elements of ¢/(x;) are
all equal by Lemma 4-6.) It is obvious that p coincides with & on ©,N\W.
Now we define the function 7, on &(W) as follows:

ne(dR) = p(d)¥1(k)  (deD, ke X(Wy).

Well-definedness of 7, is obvious. It follows from Lemma 4-11 and 4-12 that
every element of ®, centralizes the one-dimensional representation y#*' of
f,(W,). Hence 7. is a one-dimensional representation of (W) which coincides
with ¥ on &, and coincides with & on ®(W)\A.
LEMMA 4-14. Every element of % centralizes ..
PROOF. Let a be any element of % and %k be any element of &,(W).
Write k=dh, where d= 9, and h = (W,). We have
aka=a"'dad*-d-a*ha and a-'dad?, a*hac Q(W,).
Therefore
n(aka) =n(d)y¥*(a - ha)y$(a*dad-Y) = p(k)y¥+(a 'dad™?).
Put

X
d:5(x1’x21 "'yxe): d,:( 1". ) (xieugf);i:]-yzy ""e)'
xe
We have

¥ (a'dad-")= x[n-m“’:g o® trace ¢/(x){¢/(a)*d’¢/(@)d’ Y],

Yy
where a=/(a). Write x;=147zly, (3, € 09;i=1,2,--,¢)and y' = ( - . ),
Ve

then we have
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Ua) e (@)d' = (1wl (@) y @1+ 3 (~ Dy

=1+r{c (@) ' (a)—y } a3 — (@) y e (a)y )+ a2
(Z € M(e, O9U).

Since ¢/(x;) commutes with ¢/(a) and ¢,(¢’(x;)) is an upper triangular matrix
we have

=@ trace /(x){¢/ (@) d ¢/ (@)d "1 —1} € OP .

Hence y¥*'(a-'dad~*)=1 and a centralizes 7,. q.e.d.
COROLLARY. The centralizer of ns in %- & is A- KUWL).
PROOF. follows from Lemma 4-11 and Lemma 4-14. q.e.d.
The restriction of y¥*!' to (W, depends only on the residue class of x.

mod. ?B[J;’]:SB‘“ and therefore uniquely determined by & Therefore 7, is
uniquely determined by & Now we assume that f is odd. We define the
function ¢, on A - K(W) as follows : ¢.(ak)=E(@)n:(k) (a €N, k= R(W)). Then
¢ is a one-dimensional representation of . ®,(W) which coincides with 7,
on &,(W).

LEMMA 4-15. We assume that f is odd and put

£e :9!-91(11%(% 21~Rz¢e ’
Then fi. is an irreducible unitary representation of - R, which coincides with
xEH-1 on Q..

Proor. It follows from Corollary to Lemma 4-14 and Lemma 4-12 that
the centralizer of 7, in A-R, is A.- KW). Since ¢, is a one-dimensional
representation of . QW) which coincides with 7. on (W), /i, is irreducible
by Lemma 1-2. The remaining part is obvious. g.e.d.

1

-n(n—1)

COROLLARY 1. The dimension of the representation space of figls q°

COROLLARY 2. We put pe=ji.-x*. Then pe is an irreducible unitary
representation of A- K, which coincides with y¥™-1 on K.

Now we assume that f is even. We denote by M* the group of root of
1 in £* of orders prime to p. Then, we have D% = M*U, and M* U, = {1}.
M* can be naturally identified with R* We put %,=(M*) and A, =1L,).
It is obvious that 9,®,(W) is a normal subgroup of AK(W-L). We define the
function /¢ on %, - (W) as follows:

Aaky=E(@me(R)  (a W, ke R(W)).

Then A, is a one-dimensional representation of - ®(W) which coincides
with 7, on &(W).
LEMMA 4-16. Every element of W- QW) centralizes A..
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Proor. It is obvious that every element of ¥ centralizes 4. Take

ahe, - (W) (aeN, he (W) and g= (W +L). We have by the definition
of /. that

Ag 7 ahg) = A(ah)A:(g aga™)
= Ae(ah)me(graga™) (g-laga™* € RAWy)
= A(ah)y# (g aga™).
Put g=1+rz'x and a=¢(a) (a €U,). We have
Wi(gtaga ™) = i [ —rlxt-m? )1+ rtaxa)]
=y~ ®+ trace ((x)n'{axa ' —x}]
X yLr~#+0 trace e(xg)n®(x*—xaxa1)]
= y[r~* trace ¢(xg)(x*—xaxa~*)].

Note that ¢,(x) € W-L. We further remember that ¢,(¢/(x)) is an upper trian-
gular matrix and that ¢,(¢/(«)) is an upper triangular matrix with diagonal
elements 1. Using these, we can easily prove that trace((xz)(x*—xaxa=!)e .
Hence

y[m~! trace (xg)(x*—xaxa)]=1.

Therefore every element of &(W+) centralizes A,. g.e.d.
For every z, w € M(e, OY), we put

I J
J-1 -1

Az, w)y=M(z, O, ---, 0, w, 0, ---, 0).
We define the subgroup € of &,(F) as follows:
€ = {4(1+x*z, r'w); z and w are diagonal matrices of M(e, OV} .

It is obvious that %, normalizes € and %, & ={1}. We have

A KUW L) =W, - YA - RW))
and

W - ENU, - RUW)=C N\ Ry
It the following, we construct an irreducible unitary representation @, of
%A, - € which coincides with y#™1.1 on €\ R,;,, We denote by D the set of

A

diagonal matrices of M(e, RY"). We put D, ={{=D,o? {==(}. We denote

by L*D.) the Hilbert space of complex valued functions on D, endowed with
the following inner-product:

;9 =, 65‘5+f Qg (f.g= LXD.).

The dimension of L*(D,) is q‘g—. We define the character 4, of the additive
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group D as follows:

20 = (@S {o* trace (D).

s
Take e = R such that 67 e=—¢. We denote by R(+) the subfield of R

formed by a% -fixed elements. We denote by sgn the Legendre symbol of the
multiplicative group of R{¥(+). For every element g of %,- €, we define the
linear operator @,(g) on L*D,) as follows.

(i) When g=41+=%z, z'w) € E,

(B = F A DI~ 2B I e~ B 0,8}

where we put Z=¢,(z), W=¢,Ww), &' = o% w, 20, =w+w and 20W.=w0—w’
(f € L*Ds), L= Dy ;
(i) When g=¢(a) (a € M*) and a # *0 7 a (We note that M* is naturally
identified with R{7*),
{08/ }()=&(a) sgn (er)eC‘lc,é)jx[r‘l{~[3C2+2CC’—,3C’2}]J’ (QF

where we put

28=% 4% (@=osVa) =22 and 6= B L(—=<).

kA
(iii) When g=¢a) (0= M*) and a=+0? a,

L
2

OLDNO=(sgn =) F(-2-0)&a),  where &' =07 a.
(iv) When g=ah (a=¥%, hcs ),
@e(g) = @5(0)@5(h) .

LEMMA 4-17. O is an irreducible unitary representation of N,- € on L*D.)
which coincides with y#* -1 on € N\ K.

PrROOF. We denote by A(D) the group whose underlying space is D, X D.
xT*® and whose composition rule is given as follows:

(u, v, YW/, v/, V) = (u+u’, v+v/, tt'{u, v’ ))

(u,w’eD,, v,v eD_ and t,t'eT), where we put {u,v’)=A,(—2uv). We
define a unitary representation U of A(D) on L*D,) as follows:

{U(u, v, D) YO =FC+w< vyt.
We denote by Z the mapping of € into A(D) given as follows:

13) We denote by T the multiplicative group of complex numbers of modulus 1.
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E(A(L+r%z, tw)) = <u7+, ., xx(z'—wévwm—m,w_)) ,

f

where we put z=¢,(2), @ =@,W), W' =0 7w, W, = %(fv‘—l—ﬂi’) and _ = —12‘—@#@’).

By direct computation, it is proved that 5 is a homomorphism of € into A(D)
and that
O:Lg)=U"5(g) for every g=6.

Hence 6, is a unitary representation of € on L*D,). It is easily proved that
this is an irreducible representation of €. For any g,=¢(a)< N, (a« € M*),
we define the automorphism S, of A(D) as follows:

S, v, ) = <u/’ v, <_flg_u/, v/><«%—u, v>—lt> ’
w=futpy and v'=putpv,

(= H () e 1= (52

where we put

Then we have

H(84'88)="S.5(g))  for every gec@.
Put

(R NO=0"1 5 (50> —tr G B a0,

if a’ +#+a and

(REINO=f(5rC) if a=zxa’.

Then, Weil’s result (see Weil [8] Chap. I; see also Tanaka Section 2) shows
that R is a projective unitary representation of %, which satisfies the following
relation for every g€ :

U-5(ga'g8)=R(g)" U E(g)R(&.).

Put
~ ¢ _n 1 -1 .
Reo=sen (st 5 (40 e0)) R if arza
and
Rgd=sen (-5 )R(g) if a=za’.

Then, easy computation shows that R is a unitary representation of %, and
we have

@E(ga) = E(a)ﬁ(ga’) .

Therefore @, is a unitary representation of , which satisfies
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0:(8:'88.) = O0(87'0:()0(g)  for every ge<€.
Now it is obvious that 6, is an irreducible unitary representation of %,-€
which coincides with y#*1-1 on €~ R;41. q.e.d.
COROLLARY. Let g=a)<= N, we have

(—D%(a) sgn (aa’)®, when a+ +a
trace O (g)=41 0 , when a=-—a'
g™ , when a=a’.

Now we define the operator-valued function ¥, on %- (W) as follows:

V(g:18:) = O(g)de(g),
where
gIE"JIO'@ and gZE%I-QZ(W).

Then it follows from Lemma 4-16 and Lemma 4-17 that ¥, is an irreducible
unitary representation of % - &,(W-<L) on L*D,) which coincides with 7.-1 on
KUW).

LEMMA 4-18. We assume that f is even. Put

fie= Ind V..
A QW) 190 9
Then fi. is an irrveducible unitary representation of -8, which coincides with
&1 on K4,

ProoF. From Corollary to Lemma 4-14, it follows that . Q(W-<L) is the
centralizer of 7z, in A-&,. Since ¥, is an irreducible unitary representation
of % - &(WL) which coincides with . -1 on &(W), it follows from Lemma 1-2
that /. is an irreducible representation of - &,. It is obvious that g, coincides
with y%.1 on &, g. e. d.

5y
COROLLARY 1. The dimension of the representation space of fig is q*

COROLLARY 2. We put pe=fizok™'. Then p. is an irreducible unitary
representation of A-K, which coincides with ¥%% -1 on Ky,

PROPOSITION 4-3. Let p, be the irreducible unitary representation of A- K,
which is defined in Lemma 4-15 when f is odd and is defined in Lemma 4-18
when f is even. Put DS:A.I;IZ(%K”G' Then vg is a continuous irreducible unitary

n(n—1)

representation of K.
ProOOF. This proposition follows from Theorem 1, Lemma 4-9, Lemma 4-15
and Lemma 4-18. g.e. d.

COROLLARY 1. The dimension of the representation space of ve is equal to
(n—1)

¢ @ =) @ D).
1

PROOF. Since the dimension of the representation space of p. is ¢2

n(n—1)
’
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1 —
the dimension of the representation space of v, is equal to gV R(K/A-K).
We have

(n=1)

=

L1 _ 2 n B=fN=1 TT ( ok
q2 $(K/AK)=¢ @ —q*7) kgl(q -1

nin—1)

= qﬂ-’"’(qn—qn‘f)“,}:ll(qk—l) . g.e.d.

COROLLARY 2. Using notations in §2, we have

r(ve)=m'+1, s=1
and
O, = {pulke(x)k™); ke K} .

4-6. We assume that p is prime to n. We denote by v, an irreducible
unitary representation of K constructed in 4-4 and 4-5, corresponding to a
strongly regular character £ of £*. & is trivial on 11, and is not trivial on
n,.,. We put m=m’e+1. There exists x, = £ such that be:D[xE] and that,
for every aellm_[gb], §(a) = y(m~™*V trace x.(a—1)). We use notations in 4-4

and 4-5. We also use notations in § 3.
/
THEOREM 4. We assume that = —m—2+—1~:|>e—1 and put Ug=Ind y,.

K¢
Then Ug is a continuous irreducible unitary representation of G.

Proor. From Corollary to Lemma 3-5, we have

(U K, ve)= 3 i(vel K v2) .
15:40

Put h=h(m,, - ,m,)e H%. From Corollaries to Proposition 4-2 and 4-3, we
have
0,,= {oukr(x)k™™); ke K} .

When e=1, det (¢ - 1—¢,(z(xp))) is an irreducible polynomial over %, by Corollary
1 to Lemma 4-7. Hence, by Corollary to Lemma 3-10, i(v.|K" v£)=0 if
Max (m;—m.)= 1.  Therefore (Ug|K, ve)=1(ve| K, v)=1. When e>2,

1=is=n—1

det (¢ - 1—¢,(z(xs))) is an irreducible monic polynomial over $,, by Corollary 2
to Lemma 4-7. Hence, by Corollary to Lemma 3-10, i(v.|K™", v%)=0 when
Max (m;—m)=2. Now we assume that Max (m;—m;,)<1 and that

1=i=n—1 1=sisn—1
i(ve| K™, vp) > 0.

We assume that m;—m;,, =1 for some j 1<j<n—1). From Lemma 3-9
and Lemma 3-10, det (¢ - 1—¢,(¢(x,))) decomposes into two polynomials over %,
of degrees j and n—j. From Corollary 1 to Lemma 4-7, det (¢ - 1—¢,(z(x.))) is
an e-th power of an irreducible polynomial of degree f over ®,. Hence j=0
mod f. So we have m;—m,<e—1<I[. Since i(ve|K" v} >0, we have, from
Lemma 3-12, that there exist k,, k, € K such that
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gol—m1+mn(h_lk1f(x{-‘)kf1h) - Sol—m1+mn(k27:(x$)k§1) .
Since k,z(x.)k;! is a quasi-regular element in M(n, ) by [Corollary 1l to Lemma

4-7, h~*kr(x.)ki'h is also a quasi-regular element in M(n, O). From
4 to Lemma 2-1, there exists k, € K such that

kr(xe)kyt = -tk r(xe)kith .

From Lemma 4-8, the centralizer of z(x.) in G is contained in K. Therefore
ki‘hk,= K. Hence he KnH%=1. We have

I(Ue | K, v =1(we| K% vD=1.

From to Lemma 3-1, U, is irreducible. q. e.d.
COROLLARY 1. U is square integrable and the formal degree of U, is

g (g grty 1 @*D).

ProOOF. This corollary follows from Lemma 3-2, Proposition 4-2 and
Proposition 4-3.
COROLLARY 2. Put

U«H)= [ fe)U«a)dg,

where [ is a Schwartz-Bruhat function on G. Then Us(f) ts of trace class and
we have

Trace Ug(f) —_—j dngf(gkg“l) trace ve(k)dk

nln-=1) (2l—1)

=q ¥ T (" ”f)lﬂ(q ~1)
j dg j o, (8RE™) trace ().

ProOF. This follows from Lemma 3-11 and Lemma 3-3.

4-7. We assume that p is prime to n. We use notations in 4-2. Let
131, ﬁzeé’(P, n) (&P, n) is a complete set of representatives of P-conjugate
classess of extensions of P of degree n). Let &; be a character of ¥ (i=1, 2).
&: is trivial on U®, and is not trivial on UY,_; (¢=1,2). In the following, we
assume that &, and &, are both strongly regular. Then we can put m;=mle,+1
(mi=z1) (i=1,2). There exists an element x., of £, such that ,=0[x.,] and
that

(@) = y(m=™i*V tracep, p x:,(a—1)) for every aeWP _[m i=12).
We assume that

=[] > e (=12,
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Let vg, be the irreducible unitary representation of K corresponding to §&;
constructed in 4-4 and 4-5 (1=1, 2). Put Uei:II?Tdeei (1=1,2). Then Ug, is
an irreducible unitary representation of G from (=1, 2).
PROSOSITION 4-4. U,, and U,, are mutually equivalent if and only if v
and v, are mutually equivalent.
Proor. It is sufficient to prove that v, and v, are equivalent under the

assumption that U, and U,, are equivalent. The formal degree of Ue, is
equal to

in(-)m,’,; n n-f-1 1o
¢ =g T (@* D)

by Corollary 1 to Theorem 4. Hence we have m{=wmj and f,=f,. Let us
compute ¢(Ug, | K, ve,) (We use notations in §3). From Corollary to Lemma 3-5,
we have

i(UéllK’ Veo) == Eoi(”éleh’ y’él)'

h€H+
Repeating the argument in the proof of Theorem 4, we can prove
1(vg, | K vE) =0 if h+1.

Therefore we have 1(Ug, | K, vg,) =i(vg, | K, vt,). Since U, and Uy, are mutually
equivalent, we have i(Ug, | K, vg,) =1(Ug, | K, ve,) =1. Hence we have i(ve,|K?,

vt)=1. Therefore v; and y,, are equivalent. g.e. d.
Now we study influences of outer automorphisms of G on U, Put
01
01
-1
T 0

We define the representation Ug§? of G as follows (1=j<n—1):

UP(g)=U: (Jig]e).
Then U is obviously irreducible,

PROPOSITION 4-5. If j is not divisible by f,, U{’ and U, are mutually
inequivalent.

PROOF. It is obvious that U{? is square integrable and that the formal
degree of U{’ is equal to that of U,. Hence, U§ and U, is not mutually
equivalent unless m{=m} and f,=/f,.

Now we assume that m{=mj and f,=/f,. Let us compute ((U{|K, v,).
From Lemma 3-8, we have

LUK, ve,) = 2 1(vg, | K™ v2).

heH,
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Put h=h(s,, s,, -+, 5,) € H,. Suppose i(ve,| K" vE) > 0. Repeating the argument
in the proof of we can prove that s,=s,., for every k not divisi-
ble by f,=/f,. Therefore we have

n
J= 1§1Sk = f1(S1+S 41T Sorprt o +Ster-vr1+1) -

Hence ; is divisible by f,. This is impossible by the assumption. We have
W(ve, | K", v2)=0 for every h € H{. Therefore we have proved that i(U{’| K", v¢,)
=0.

If we assume that U§’ and U,, are equivalent, we must have

UK, ve,) =1(Ug, | K, ve,)=1.

This is impossible. q.e.d.

4-8. We assume that p is prime to n. We return to the notation of 4-6.
Put

SL(n, D)=K' CK

SL(n, P)=G'CG.

We take P <&(P, n) and put A=(D*).
LEMMA 4-19. The double coset space K'\K/AK, (r=1) is a finite set and
we have

and

t(KN\K/AK,)=G.C.D.(g—1, ¢).
Proor. We define the isomorphism d of K’\K onto £O* by d(k)=detk
(ke K). Then K'\K/AK, can be identified with £*/d(AK,).
For any x< %, we have d(z(x))=x". Therefore d(AK,) D{x"; x< O*}.
Since we assume that p is prime to n, we have {x"; x= O*} D1+P. Hence
we have

O /d(AK,) = 0% /1+B)/d(A) /(L+P) ,
= RE/RE’ .
where (RF)°={x°; x= RF)}. g.e.d.
In the following we write

(¢—1,¢)=G.C.D.(g—1, ¢).

Take a representative system k, =1, k,, ---, By, Of the double coset space
A-KNK/E (1= 7EET). For every i 1=i<(—1, ) we put

(AK);=ki"(AK, N K"k, .

We define a representation (u¢4?); of (AK,); as follows:

(e)i(l) = pekikky) (ke (AKD)) .

14) pg is the representation of A . K; defined in Lemmas 4-15 and 4-18.
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We denote by (x%'*'); a one-dimensional representation of K}, ;= K, N\ K’
defined as follows:

(8 Dk, = 3w trace X{kikki'—1})  (X=1(x), k€ Kpary).

LEMMA 4-20. (pe); is an irreducible unitary representation of (AK,); which
coincides with (% *™,-1 on Khyy oy A1 (e, g—1)).

Proor. It follows easily from the definition of y. that the restriction of
pe to K is still irreducible. Since K; is the direct product of K{= K, " K’ and
the center of K, the restriction of p. to K; is still irreducible. Therefore (y.)
is an irreducible unitary representation of (AK));. Since p. coincides with
x% -1 on Ky (pe)i coincides with (y3 ;-1 on K, Now the Lemma
is obvious. g.e.d.

LEMMA 4-21. The centralizer in K’ of the one-dimensional representation
& ™i of Kpwimi is (AKY; (=1, -, (e, ¢—1)).

PrROOF. This lemma follows immediately from Lemma 4-9.

LEMMA 4-22. Put

(ei= Ind (g (A=i=(eq-1D).
(4K 1 K/
Then (ve), Wl *++ » Wellem—y are mutually inequivalent irreducible unitary repre-
sentations of K'.

Proor. It follows from Lemma 4-19, Lemma 4-20, Lemma 4-21 and Lemma
1-2 that (v,); is an irreducible unitary representation of K’ (1<1i<(e, g—1)).
Since (y%*); and (y%2'*); (@) lie on different K’-orbits in the set of all one-
dimensional representations of K., (ve); and (vg); are mutually inequivalent.

g.e.d.

PROPOSITION 4-6. We denote by v{ the representation of K’ obtained by

., . . (g—1.¢)
restricting ve to K'. Then v is equivalent to @ (ve)j
=1

Proor. This proposition follows easily from “ Subgroup Theorem” (see
Curtis-Reiner [17 p. 324) and Lemma 4-22. a. e. d.
COROLLARY. The dimension of the representation space of (ve)j is

L tn—1)m’ L .
N R G O 1 (G N ] O )L

PROPOSITION 4-7. We put
Upi=1Ind (vo; (A=Zi=(e, n—1)).
K 16"

When = ~@;:L] >e—1, (Up); is a square-integrable irreducible unitary repre-

sentation of G’.
PrROOF. Proof of this proposition is an easy modification of the proof of
theorem 4. q.e. d.
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COROLLARY 1. We normalize Haar measure d’g on G’ so that the volume
of K" is 1. Then the formal degree of (Up); is

Lon(n—1)m’ iz .
(@=1, 07" =) T @D Q=i -1 o).
COROLLARY 2. For a Schwartz-Bruhat function f on G’ we put

WHN=]_F(e)Uia)e.

Then (Upi(f) is of trace class and we have

Trace U= d'gf r(g'kg'™") trace wik)d'k .

Since K'\G’ is identified naturally with K\G, we get the following proposition.
PROPOSITION 4-8. We denote by (U,) the representation of G’ obtained by

- . . (e,q—1)
restricting U, to G'. Then (Ug)’ is equivalent to E—D Upi-
i=1
PROPOSITION 4-9. (U,,);, and (U,), are mutually equivalent if and only if

i
(ve )i, and (vg,)i, are mutually equivalent (we assume that [;>e;—1 (=1, 2)).
ProOOF. Proof of this proposition is similar to that of Proposition 4-4.
g.e.d.

We define the representation (Ug)/, of G’ as follows:
WUe )i @) =Ug)(Jrg]z ).
When [, >e,—1, it follows from Proposition 4-7 that (U,)/, is an irreducible
unitary representation of G’.
PROPOSITION 4-10. When r is not divisible by fy, (Ug)i» is not equivalent
to (Ug)j
PrROOF. Proof of this proposition is similar to that of Proposition 4-5.

University of Tokyo
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