
J. Math. Soc. Japan
Vol. 20, No. 3, 1968

Note on cohomological dimension for
non-compact spaces II

By Yukihiro KODAMA

(Received Feb. 13, 1967)

\S 1. Introduction.

Let (X, $A$) be a pair of a topological space $X$ and a closed set $A$ . For an
abelian group $G$ we shall denote by $H_{f}^{*}$ $(X, A : G)$ and $H^{*}(X, A:G)$ the \v{C}ech
cohomology groups based on all finite open coverings and all locally finite
open coverings of $X$, respectively. As Dowker [1, Theorem 9.6] shows, even
if $X$ is a real line and $G$ is the additive group of integers $Z$, the groups
$H_{f}^{1}(X:Z)$ and $H^{1}(X:Z)$ are quite different. Define the following dimension
functions:

$D(X:G)=the$ least integer $n$ such that, for each $m\geqq n$ and each closed
set $A$ of $X$, the homomorphism $i^{*}:$ $H^{m}(X:G)\rightarrow H^{m}(A:G)$ induced by the inclu-
sion mapping $i:A\subset X$ is onto,

$d(X:G)=the$ largest integer $n$ such that $H^{n}(X, A:G)\neq 0$ for some closed
set $A$ of $X$ .
Similarly, the dimension functions $D_{f}(X:G)$ and $d_{f}(X:G)$ are defined by making
use of the group $H_{f}^{*}$ in place of $H^{*}$ . Skljarenko [10] proved that, if $X$ is
paracompact, then $d(X:G)=D(X:G)$ . We shall prove that, if $X$ is a normal
space with finite covering dimension and $G$ is finitely generated, then $D(X:G)$

$=D_{f}(X:G)=d(X:G)=d_{f}(X:G)$ . As a consequence, we have the equality
$D(X:Z)=D_{f}(X:Z)=d(X:Z)=d_{f}(X:Z)=\dim X$.

Next, let $X$ be a normal space with finite covering dimension and let $f$ be
a closed continuous mapping of $X$ onto a paracompact space $Y$ . We shall
show that, if $G$ is finitely generated and $D(f^{-1}(y):G)\leqq k$ for each point $y$ of
$Y$ , then $D(X:G)\leqq IndY+k$ . Moreover, if $X$ is paracompact, then this relation
holds for any abelian group $G$ . As a consequence, we have Morita’s theorem
[9]. Finally, we shall discuss peripherial properties of the cohomological
dimension.

Throughout this paper we assume that all spaces are normal and mappings
are continuous transformations.
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\S 2. \v{C}ech cohomology groups of normal spaces.

Let $(M, N)$ be a pair of simplicial complexes with weak topology and let
$G$ be an abelian group. Take an element $e$ of $H^{n}(M, N:G)$ . Let $K(G, n)$ be
an Eilenberg-MacLane space with base point $k_{0}$ which is a simplicial complex
with metric topology. For a cocycle $z$ which represents $e$ , there is a mapping

$f_{z}$ of $(M, N)$ into $(K(G, n),$ $k_{0}$) such that $f_{z}(M^{n- 1}UN)=k_{0}$ and $ f_{z}|\sigma$ represents
the element $z(\sigma)$ of $\pi_{n}(K(G, n))=G$ for each n-simplex $\sigma$ of $M$. The homotopy
class relative to $N$ of a mapping $f_{z}$ is uniquely determined by the element $e$ .
Thus, if we denote the set of homotopy classes relative to $N$ of all mappings
of $(M, N)$ into $(K(G, n),$ $k_{0}$) by $\pi^{n}(M, N:G)$ , then we have a transformation
$\chi_{(M,N)}$ : $H^{n}(M, N:G)\rightarrow\pi^{n}(M, N:G)$ . It is well known that $\chi_{(VI.N)}4$ is 1: 1 and
onto. Moreover, $\chi_{(M.N)}$ is natural in the following sense. If $f$ is a mapping of
$(M, N)$ into $(M^{\prime}, N^{\prime})$ , then $\chi_{(M.N)}f^{*}=f^{*}\chi_{(M,N^{})}$ , where $f^{*}:$ $ H^{n}(M^{\prime}, N^{\gamma} : G)\rightarrow$

$H^{n}(M, N:G)$ and $f^{*};$ $\pi^{n}(M^{\prime}, N^{\prime} : G)\rightarrow\pi^{n}(M, N:G)$ are induced by $f$. For the
sake of convenience we shall state these facts in the following lemma.

LEMMA 1. Let $(M, N)$ be a pair of simplicial complexes. Then a natural
transformation $\chi_{(M,N)}$ : $H^{n}(M, N:G)\rightarrow\pi^{n}(M, N:G)$ is 1 : 1 and onto.

In case (X, $A$) is a pair of a paracompact space $X$ and a closed set $A$ ,

Goto [2] proved that $\chi_{(X.A)}$ : $H^{n}(X, A:G)\rightarrow\pi^{n}(X, A:G)$ is a natural isomorphism
under a group structure of $\pi^{n}(X, A:G)$ induced by an H-structure of $K(G, n)$ .
For the proof of Lemma 1, we have only to use the obstruction theory. (Cf.
[4, Chap VI].)

By a normal pair we mean a pair of a normal space and its closed set.
For a normal pair (X, $A$), we shall denote by $H_{c}^{*}(X, A:G)$ the $\check{C}ech$ cohomo-
logy group based on all countable locally finite open coverings of $X$. Since
$H_{f}^{n}(X, A:G)$ is the direct limit of the subsystem of the direct system which
defines $H_{c}^{n}(X, A:G)$ , there is a natural homomorphism $\mu$ : $ H_{f}^{n}(X, A:G)\rightarrow$

$H_{c}^{n}(X, A:G)$ is defined. Similarly, a natural homomorphism $\nu$ : $ H_{c}^{n}(X, A:G)\rightarrow$

$H^{n}(X, A:G)$ is defined. Then the following theorems hold.
THEOREM 1. Let (X, $A$) be a normal pair with finite covering dimension.

If $G$ is finitely generated, then $\mu$ is onto.
THEOREM 2. Let (X, $A$) be a normal pair. If $G$ is countable, then }) is

onto.
PROOF OF THEOREM 1. Let $\dim X<q$ . For an element $e$ of $H_{c}^{n}(X, A : G)$ ,

take a countable locally finite open covering $\mathfrak{U}$ of $X$ such that order of $\mathfrak{U}\leqq q$

and there is an element $e_{u}$ of $H^{n}$( $M_{u}$ , N. : $G$) which represents $e$ , where $M_{u}$

and N. are the nerves of $\mathfrak{U}$ and $\mathfrak{U}|A$ . Put $K=the$ q-section of $K(G, n)$ . There
is a simplicial mapping $f_{\mathfrak{u}}$ of (M., $N_{\mathfrak{u}}$ ) into $(K, k_{0})$ such that $\chi_{(M_{\mathfrak{u}}N_{\mathfrak{U}})}(e_{\mathfrak{u}})=\{f_{\mathfrak{u}}\}$ ,

where $\{f_{u}\}$ is the homotopy class relative to $N_{u}$ of $f_{1I}$ . Since $G$ is finitely
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generated, we may assume that $K$ is a finite simplicial complex. Let $\mathfrak{W}$ be
the covering of $K$ consisting of open stars. If (M., $N_{\mathfrak{w}}$ ) is the pair of the
nerves of $f_{\mathfrak{U}}^{-1}\mathfrak{W}$ and $f_{1t}^{-1}\mathfrak{W}|$ N., then there are projections $\pi_{w}^{u}$ : (M.., $N_{u}$ ) $\rightarrow(M_{\mathfrak{n})}, N_{\mathfrak{n})})$

and $\pi$ ; (M., $N_{\mathfrak{w}}$) $\rightarrow(K, k_{0})$ such that $\pi\pi_{\mathfrak{w}}^{u}\sim$ ($homotopic$ to) $f_{\mathfrak{U}}$ relative to N..
Denote by $e_{\mathfrak{w}}$ the element of $H^{n}$(M., N. : $G$) such that $\chi_{(M_{\mathfrak{w}},N_{it)})}(e_{\mathfrak{w}})=\{\pi\}$ . By
Lemma 1 we have $\pi_{\mathfrak{w}}^{\mathfrak{U}*}e_{\mathfrak{w}}=e_{\mathfrak{U}}$ . Since $M_{\mathfrak{n})}$ is finite, there is an element $\overline{e}$ of
$H_{f}^{n}(X, A:G)$ whose representative is $e_{\mathfrak{w}}$ . It is obvious that $\mu(\overline{e})=e$ . This
proves that $\mu$ is onto.

In case $G$ is countable, there is an Eilenberg-MacLane space $K(G, n)$ which
is a countable simplicial complex. By the same argument as in Theorem 1 we
can prove Theorem 2.

\S 3. Cohomological dimension of normal spaces.

Throughout this section $X$ is a normal space with finite covering dimen-
sion. We defined the cohomological dimension $D_{f}(X:G)$ and $D(X:G)$ in \S 1.
By $D_{c}(X:G)$ we mean the cohmological dimension defined by using the group
$H_{c}^{*}$ . Similarly we define $d_{c}(X:G)$ .

THEOREM 3. If $G$ is finitely generated, then $D_{f}(X:G)=D_{c}(X:G)=D(X:G)$

$=d_{f}(X:G)=d_{r,}(X:G)=d(X:G)$ .
To prove Theorem 3 we need the following lemmas.
LEMMA 2. Let $K$ be a countable simplicial complex with metric topology.

Then,

(i) $K$ is an $ANR$ (perfectly normal),
(ii) $K$ is an $ANR$ (normal) if $K$ contains no infinite full subcomplexes,

where a subcomplex $N$ of $K$ is called full if each finite subcollection of vertexes
of $N$ spans a simplex of $K$,

(iii) $K$ is an $AR$ (normal) if $K$ is contractible and $K$ contains no infinite
full subcomplexes.

The proof is found in Hanner [3].

LEMMA 3. Let $B$ be a closed subset of a normal space Y. If $\mathfrak{U}$ is a count-
able locally finite open covering of $B$, then there is a countable locally finite
open covering $\mathfrak{V}$ of $Y$ such that $\mathfrak{V}|B$ is a refinement of $\mathfrak{U}$ .

PROOF. Let $N$ be the nerve of $\mathfrak{U}$ with metric topology. By Dowker [1,

Lemma 3.1] we may assume that each open star of $N$ has finite dimension.
Since a cone $C(N)$ on $N$ is an AR (normal) by Lemma 2, a canonical mapping
$\phi:B\rightarrow N$ has an extension $\psi:Y\rightarrow C(N)$ . Let $\mathfrak{W}$ be a countable locally finite
open covering of $C(N)$ which refines the open covering of open stars of $C(N)$

It is obvious that $\mathfrak{V}=\psi^{-1}\mathfrak{W}$ satisfies the lemma.
Let $\dim X<q$ . Consider the following four conditions:
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$D_{1}$ : $D_{f}(X:G)\leqq n$ .
$D_{2}$ : $D_{c}(X:G)\leqq n$ .
$D_{s}$ : $D(X:G)\leqq n$

$D_{4}$ : For each $m\geqq n$ and each closed set $A$ of $X$ every mapping of $A$ into
$K$ ($=the$ q-section of $K(G,$ $m)$) is extendable over $X$ .

LEMMA 4. (i) If $G$ is finitely generated, then the conditions $D_{1},$ $D_{2},$ $D_{3}$ and
$D_{4}$ are equivalent.

(ii) If $G$ is countable, then the conditions $D_{2},$ $D_{3}$ and $D_{4}$ are equivalent.
PROOF. We shall prove only the first case. The implications $D_{1}e\ni D_{4}$ ,

$D_{2}\sigma\ni D_{4}$ and $D_{3}\Rightarrow D_{4}$ are showed by the same argument in the proof of [7,

Theorem 1] by making use of Lemmas 2 and 3 in place of [7, Lemma 1] and
[7, Lemma 2]. To prove the implication $D_{4}\Rightarrow D_{3}$ consider the following dia-
gram:

$i_{c}^{*}$

$H_{c}^{m}(X:G)\rightarrow H_{c}^{m}(A:G)$

$\downarrow\nu$

$i^{*}$

$\downarrow\nu$

$H^{m}(X:G)-\rightarrow H^{m}(A:G)$

Here, $i_{c}^{*}$ and $i^{*}$ are the homomorphisms induced by the inclusion $i:A\subset X$, and
$\nu$ is the homomorphism in Theorem 2. We already proved that $D_{4}$ implies
$D_{2}$ . Thus $i_{c}^{*}$ is onto. Since $\nu$ is onto, $i^{*}$ is onto. Thus $D_{4}$ implies $D_{3}$ . This
completes the proof.

Note that, if $X$ is perfectly normal, then Lemma 4 (ii) holds without
dimensional restriction for $X$ . As a consequence of Lemma 4, we have the
following corollaries.

COROLLARY 1. If $G$ is countable, then $D_{c}(X:G)=D(X:G)$ .
COROLLARY 2. Let $X$ be a normal space with finite covering dimension or

a perfectly normal space, and let $G$ be a countable abelian group.
(i) If $\{A_{\dot{t}} : i=1, 2, \}$ is a closed covering of $X$, then $D(X:G)=$

${\rm Max}\{D(A_{i} : G) ; i=1, 2, \}$ .
(ii) If $X$ has weak topology with respect to $\{A_{\lambda}|\lambda\in\Gamma\}$ , then $D(X:G)=$

${\rm Max}\{D(A_{\lambda} : G) ; \lambda\in\Gamma\}$ .
(iii) If $A$ is a closed subset of $X$ such that the complement $X-A$ and $X$

are both normal or perfectly normal, then $D(X:G)\leqq{\rm Max}\{D(X-A:G), D(A:G)\}$ .
Moreover, if $A$ is $G_{\delta}$ , then the equality holds.

PROOF OF THEOREM 3. Note that, by Lemma 3, the sequence of the coho-
nology groups $H_{f}^{*}$ and $H_{c}^{*}$ for a normal pair are well defined and exact. This
shows that $D_{f}(X:G)\leqq d_{f}(X:G)$ and $D_{c}(X:G)\leqq d_{c}(X:G)$ . Let us prove the
relation $D(X:G)\leqq d(X:G)$ . Let $A$ be a closed set of $X$. By $\Omega$ denote the
set of all locally finite open coverings of $A$ such that, for each $\mathfrak{V}$ of $\Omega$ , there
is a locally finite open covering $\mathfrak{U}$ of $X$ whose restriction to $A$ refines $\mathfrak{V}$ . Let
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$H_{\Omega}^{*}(A:G)$ be the Cech cohomology groups based on $\Omega$ . Consider the following
commutative diagram:

$H^{m}(A:G)$

$ i^{*}\nearrow$
$\uparrow\nu_{1}$

$\delta$

... $-H^{m}(X : G)-H_{\Omega}^{m}(A : G)\rightarrow H^{m\vdash 1}(X, A : G)\rightarrow\ldots$

$i_{\Omega}^{*}$

$|\nu_{2}$

$H_{c}^{m}(A:G)$

Here, $i^{*}$ and $i_{\Omega}^{*}$ are homomorphisms induced by the inclusion $i:A\subset X$, and $\nu_{1}$

and $\nu_{2}$ are homomorphisms defined by a similar way to the homomorphism $\nu$

of Theorem 2. Suppose that $d(X:G)\leqq n$ . Since the sequence is exact and
$H^{m+1}(X, A:G)=0$ for $m\geqq n,$ $i_{\Omega}^{*}$ is onto. Since $\nu=\nu_{1}\nu_{2}$ is onto by Theorem 2,
$\nu_{1}$ is also onto. Thus $i^{*}=\nu_{1}i_{t?}^{*}$ is onto for $m\geqq n$ . This shows that $D(X:G)$

$\leqq d(X:G)$ . Next, we have the relation $d(X:G)\leqq d_{c}(X:G)\leqq d_{f}(X:G)$ by Theo-
rem 1. From these facts and Lemma 4 it follows that $D_{f}(X:G)=D_{c}(X:G)$

$=D(X:G)\leqq d(X:G)\leqq d_{c}(X:G)\leqq d_{f}(X:G)$ . Thus, to prove Theorem 3, it is
sufficient to show that $D_{f}(X:G)\geqq d_{f}(X:G)$ . Let $\beta X$ be the $\check{C}ech$ compactifica-
tion of $X$ . Let us prove that $D_{f}(X:G)=D(\beta X:G)$ and $d_{f}(X:G)=d(\beta X:G)$ .
Since we know that $D(\beta X:G)=d(\beta X:G)$ by compactness of $\beta X$, the above
equalities mean Theorem 3. By Morita [8], we have a natural isomorphism
$H_{f}^{n}(X, A:G)\cong H^{n}(\beta X, \beta A:G)$ for a closed set $A$ of $X$. This shows that
$D_{f}(X:G)\leqq D(\beta X:G)$ and $d_{f}(X:G)\leqq d(\beta X:G)$ . Suppose that $D_{f}(X:G)=n$ and
let $B$ be a closed set of $\beta X$. For an element $e$ of $H^{m}(B:G)$ , where $m\geqq n$ ,
there is an open set $V$ of $\beta X$ containing $B$ such that $i^{*}H^{m}(\overline{V}:G)\ni e$ , where

$\overline{V}$ is the closure of $V$ in $\beta X$ . Put $A=\overline{V}\cap X$ . Then $i_{f}^{*}:$ $H_{f}^{m}(X;G)\rightarrow H_{f}^{m}(A:G)$

is onto. Thus, if $j:B\subset X$, then $j^{*}:$ $H^{m}(\beta X:G)\rightarrow H^{m}(B:G)$ is onto for $m\geqq n$ .
This shows that $D(\beta X:G)\leqq n$ . The relation $d(\beta X:G)\leqq d_{f}(X:G)$ is proved
similarly. This completes the proof.

Let $\Gamma$ be any subset of the set of all locally finite open coverings of $X$

which forms a directed set and contains the set of finite open coverings.
From the proof of Theorem 3 we know that all the dimension functions
$D_{\Gamma}(X:G)$ and $d_{\Gamma}(X:G)$ defined by groups based on $\Gamma$ are equal to $D(X:G)$ if
$G$ is finitely generated. If we put $G=Z$, then we know that all the dimension
functions $D_{\Gamma}(X:Z)$ and $d_{\Gamma}(X:Z)$ are equal to $\dim X$.

\S 4. Inductive properties of cohomological dimension.

Throughout this section we shall consider spaces with finite covering
dimension.

LEMMA 5. Let $X$ be a normal space such that $\dim X<q$ , and let $G$ be a
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finitely generated abelian group. Suppose that there are closed sets $A$ and $C$ ,

mappings $f$ : $X\rightarrow K$ ($=the$ q-section of $K(G,$ $m)$) and $g:CUA\rightarrow K$ such that
$f|A=g|A$ . If $H_{f}^{m}(C, C\cap A:G)=0$ , then the mapping $g$ is extendable over $X$ .

PROOF. Let $\mathfrak{W}_{0}$ be the covering of $K$ consisting of open stars. Take a
finite open covering $\mathfrak{V}$ of $X$ such that order of $\mathfrak{V}\leqq q,$ $\mathfrak{V}$ is a refinement of
$f^{-1}\mathfrak{W}_{0}$ and $\mathfrak{V}|CUA$ is a refinement of $g^{-1}\mathfrak{W}_{0}$ . Let $\phi$ be a canonical mapping
of $X$ into the nerve $M$ of $\mathfrak{B}$ such that $\phi(C)\subset N_{1}$ and $\phi(A)\subset N_{2}$ , where $N_{1}$ and
$N_{2}$ are the nerves of $\mathfrak{V}|C$ and $\mathfrak{V}|A$ . There are simplicial mappings $g_{1}$ : $N_{1}\rightarrow K$

and $f_{1}$ : $M\rightarrow K$ such that (i) $g$ and $g_{1}\phi|C$ are contiguous, (ii) $f$ and $ f_{1}\phi$ are
contiguous and (iii) $g_{1}|N_{1}\cap N_{2}=f_{1}|N_{1}\cap N_{2}$ . The obstruction of the homotopy
relative to $N_{1}\cap N_{2}$ in connection with the pair $(f_{1}|N_{1}, g_{1})$ belongs to $H^{m}(N_{1},$ $N_{1}$

$\cap N_{2}$ : $G$). (See Hu [4, Chap. VI]). Since $H_{f}^{m}(C, C\cap A:G)=0$ , we can find a
finite refinement $\mathfrak{V}^{\prime}$ of $\mathfrak{V}$ satisfying the following condition: (iv) if $M^{\prime}$ , N\’i and
$N_{2}^{\prime}$ are the nerves of $\mathfrak{V}^{\prime},$ $\mathfrak{V}^{\prime}|C$ and $\mathfrak{V}^{\prime}|A$ and $\pi:M^{\prime}\rightarrow M$ is a projection, then
$g_{1}\pi|N_{1}^{\prime}\sim f_{1}\pi|N_{1}^{\prime}$ relative to $N_{1}^{\prime}\cap N_{2}^{\prime}$ . By homotopy extension theorem, $g_{1}\pi|N_{1}^{\prime}$

has an extension $g_{2}$ : $M^{\prime}\rightarrow K$ such that $g_{2}|N_{2}^{\prime}=f_{1}\pi|N_{2}^{\prime}$ . Let $\phi^{\prime}$ be a canonical
mapping of $X$ into $M^{\prime}$ . Since $g_{2}\phi^{\gamma}|CUA$ and $g$ are contiguous by (i), $g$ is
extendable over $X$ by [7, Lemma 1]. This completes the proof.

THEOREM 4. Let $X$ be a normal space and let $G$ be a finitely generated
abelian group. If $f$ is a closed mapping of $X$ onto a paracompact space $Y$

such that $D(f^{-1}(y) : G)\leqq k$ for each point $y$ of $Y$ , then the relation $D(X:G)$
$\leqq IndY+k$ . Here $IndY$ is the large inductive dimension of $Y$.

PROOF. We shall give the proof by an analogous argument as in Hurewicz-
Wallman [5, Theorem VI 7]. Suppose that the theorem is true in case $IndY$

$\leqq n-1$ . Let $IndY=n$ . Take a closed set $A$ of $X$ and a mapping $g$ of $A$ into
$K$ ($=the$ q-section of $K(G,$ $m)$), where $\dim X<q$ and $n+k\leqq m$ . We shall show
that $g$ is extendable over $X$. Since $D(f^{-1}(y):G)\leqq k\leqq m$ for each point $y$ of
$Y$, by Lemma 4 and Lemma 2, we can find an open set $W_{y}$ of $X$ containing
$f^{-1}(y)$ such that $g$ is extendable over A $UW_{y}$ . We denote its extension by $g_{y}$ .
Since $f$ is closed and $Y$ is a paracompact space with large inductive dimension
$n$ , there is a locally finite open covering $\mathfrak{V}=\{U_{\alpha} : \alpha<\Omega\}$ of $Y$ such that (i)
$\{f^{-1}(\overline{U}_{\alpha}):\alpha<\Omega\}$ is a refinement of $\{W_{y} : y\in Y\}$ the (ii) $Ind(\overline{U}_{\alpha}-U)\leqq n-1$ for
$\alpha<\Omega$ , where $\Omega$ is some ordinal. For each $\beta<\Omega$ , set $F_{\beta}=\bigcup_{\beta’<\beta}f^{-1}(\overline{U}_{\beta},)$ and
$H_{\beta}=F_{\beta}Uf^{-1}(\overline{U}_{\beta})$ . Suppose that there is an ordinal $\gamma<\Omega$ such that $g$ has an
extension $g_{\beta}$ over $H_{\beta}UA$ for each $\beta<\gamma$ and $g_{\beta},$ $=g_{\beta}|H_{\beta’}UA$ for $\beta^{\prime}\leqq\beta$ .
Define $h_{\gamma}$ : $F_{\gamma}UA\rightarrow K$ by setting $h_{\gamma}|H_{\beta}=g_{\beta}$ for $\beta<\gamma$ Then $h_{\gamma}$ is continuous.
Set $B=f^{-1}(\overline{U}_{\gamma})-\bigcup_{\beta<\gamma}f^{-1}(U_{\beta}),$ $C=B\bigcap_{\beta<\gamma}Uf^{-1}(\overline{U}_{\beta}-U_{\beta})$ and $D=C\cap A$ . To prove

the theorem it is sufficient to prove that $h_{\gamma}$ is extendable over $H_{\gamma}UA$ . Take
an open set $W_{y}$ containing $\overline{U}_{r}$ , and set $h=h_{\gamma}|CU(B\cap A)$ and $k_{1}=g_{y}|B$ . By
induction hypothesis and (ii) we have $D(C:G)\leqq m-1$ . From Theorem 3 it
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follows that $d_{f}(C:G)\leqq m-1$ . Thus we have $H_{f}^{m}(C, D:G)=0$ . Put $X=B$,

$C=C,$ $A=B\cap A,$ $g=h$ and $f=k_{1}$ in Lemma 5 and apply Lemma 5. Then we
know that $h$ has an extension $h^{\gamma}$ : $B\rightarrow K$. Define $g_{\gamma}$ : $H_{\gamma}UA\rightarrow K$ by setting
$g_{\gamma}|F_{\gamma}UA=h_{\gamma}$ and $g_{\gamma}|B=h^{\prime}$ . Obviously $g_{\gamma}$ is continuous. This completes the
proof.

If we put $G=Z$ in Theorem 4, then we have the following corollary.
COROLLARY 3 (Morita [8]). If $f$ is a closed mapping of a normal space $X$

onto a paracompact space $Y$ such that $\dim f^{-1}(y)\leqq k$ for each point $y$ of $Y$ ,

then $\dim Y\leqq IndY+k$ .
COROLLARY 4. If $X$ is paracompact, then Theorem 4 is true for any abelian

group $G$ .
PROOF. Let us the notations in the proof of Theorem 4. Consider the

closed subsets $B,$ $C$ and $D$ of $X$ in the proof of Theorem 4. Since $D(C:G)$

$\leqq m-1$ by induction hypothesis, we know $D(C\times I:G)\leqq m$ by [7, Corollary 5].

Define a mapping $F:(C\times O)U(C\times 1)U(D\times I)\rightarrow K$ by setting $F(x, O)=h(x)$ ,

$F(x, 1)=k(x)$ for $x\in C$ and $F(x, t)=h(x)$ for $(x, t)\in D\times I$. Since $D(C\times I:G)$

$\leqq m,$ $F$ is extendable over $C\times I$. Denote its extension by $F$ again. Next,
define $F^{\prime}$ : $\{(CU(A\cap B))\times I\}U(B\times 1)\rightarrow K$ by setting $F^{\prime}|C\times I=F,$ $F^{\prime}|B\times 1=k_{1}$

and $F^{\prime}(x, t)=k_{1}(x)$ for $(x, t)\in(A\cap B)\times I$. Since $X$ is paracompact, $F^{\prime}$ has an
extension $F^{\prime/}$ over $B\times I$ by homotopy extension theorem. Define $g$, : $H_{\gamma}UA\rightarrow K$

by setting $g_{\gamma}|F_{\gamma}=h_{\gamma}$ and $g_{\gamma}|B=F^{\prime\prime}|B\times 0$ . It is obvious that $g_{\gamma}$ is a continuous
extension of $h_{\gamma}$ over $H_{\gamma}UA$ . This completes the proof.

THEOREM 5. Let $X$ be a normal space and let $G$ be finitely generated.
Suppose that, for each closed set $A$ and each open set $U$ containing $A$ there is
an open set $V$ such that $A\subset V\subset\overline{V}\subset U$ and $D(\overline{V}-V:G)\leqq n-1$ . Then $D(X:G)$

$\leqq n$ . If $X$ is paracompact, then the theorem is true for any abelian group $G$ .
PROOF. Let $\dim X<q$ . Take a closed set $A$ and a mapping $f$ of $A$ into

$K$ ($=the$ q-section of $K(G,$ $n)$). Let $g$ be an extension of $f$ over some open
set $U$ . There is an open set $V$ such that $A\subset V\subset\overline{V}\subset U$ and $D(\overline{V}-V : G)$

$\leqq n-1$ . By Theorem we know $d_{f}(\overline{V}-V:G)\leqq n-1$ . Thus, $H_{f}^{n}(\overline{V}-V:G)=0$ .
An analogous argument as in the proof of Lemma 5 shows that $g|\overline{V}$ is ex-
tendable over $X$. Thus we know $D(X:G)\leqq n$ .

Define the dimension function $D_{B}(X:G)$ as the least integer $n$ such that,

for each closed set $A$ and each open set $U$ containing $A$ , there is an open set
$V$ which satisfies $A\subset V\subset\overline{V}\subset U$ and $D(\overline{V}-V:G)\leqq n-1$ . Theorem 5 shows
that $D(X:G)\leqq D_{B}(X:G)\leqq D(X:G)+1$ for a normal space $X$ and a finitely
generated abelian group $G$ . As a consequence of this relation, we have Veden-
issoff’s relation $\dim X\leqq IndX$. However, the equality $D(X:G)=D_{B}(X:G)$ does
not generally hold. For, let $M_{0}$ be a Cantor manifold constructed in [6, p. 44].

Then $D_{B}(M_{0} : G)=2$ for any abelian group $G$ . On the other hand $D(M_{0} : G)=1$



Cohomological dimension for non-compact spaces II 497

for a finite group $G$ . To determine a compact space $X$ such that the equality
$D(X:G)=D_{B}(X:G)$ for any abelian group $G$ is an interesting problem.
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