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In a series of recent papers [2], Kobayashi and Yano $[$2; $I]$ have defined
a mapping from the tensor algebra of a manifold $M$ into the tensor algebra
of its tangent bundle $T(M)$ . This mapping they called the ” complete lift ”.
They have also defined the complete lift of a connection on $M$ to a connection
on $T(M)$ . In [2; III], they have shown that the holonomy group of the con-
nection on $T(M)$ is the tangent group of the holonomy group of the connection
on $M$. They mention that it should be possible to prove this in the spirit of
$[$2; $I]$ . The purpose of this paper is to compare the infinitesimal holonomy
groups of $M$ and $T(M)$ (see Nijenhuis [3] for definition and properties).

We will suppose that the manifold $M$ is connected and analytic and also
that the connection is analytic. In this case, Nijenhuis [3] has shown that the
dimension of the infinitesimal holonomy group is constant on $M$ and thus the
infinitesimal holonomy group is equal to the restricted holonomy group of $M$.
The main theorem of this paper then tells us that if the dimension of the
Lie algebra of the holonomy group of $M$ is $r$ , then the dimension of the Lie
algebra of the holonomy group of $T(M)$ is $2r$ and furthermore, it has an
abelian ideal of dimension $r$ . The result of [2; III] for $M$ can easily be seen
by the constructions contained here.

\S 1. Preliminaries.

Let $M$ be a connected, analytic manifold of dimension $n$ and $\mathfrak{X}(M)$ the
module of vector fields on $M$. The connection will be denoted by $\nabla$ and the
covariant derivative operator by $\nabla_{X}(X\in \mathfrak{X}(M))$ . Let $R$ denote the curvature
tensor of $\nabla$ . $\nabla$ is assumed to be analytic. If $(x^{i})$ is a local coordinate system
on $M$, let the corresponding coordinate system on $T(M)$ (the tangent bundle of
$M)$ be denoted by $(x^{i}, y^{i})$ . Here we have $i=1$ , $\cdot$ .. , $n$ .

Let $\pi:T(M)\rightarrow M$ be the natural projection map. Then, following Koba-
yashi and Yano [2], we define two mappings from the tensor algebra of $M$

into the tensor algebra of $T(M)$ . The first is called the “ vertical lift “, and
is characterized by
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$1_{v})$ $(S\otimes T)^{v}=S^{v}\otimes T^{v}$ , where $S$ and $T$ are tensor fields on $M$ and $S^{v}$ and
$T^{v}$ their images under the mapping,

2.) if $\varphi$ is a function on $M$,

$\varphi^{v}=\varphi\circ\pi$ ,

3.) if $X=X^{k}\frac{\partial}{\partial x^{k}}$ , then

$X^{v}=X^{k}-\frac{\partial}{\partial y^{k}}$ ,

4.) if $\omega=\omega_{k}dx^{k}$, then
$\omega^{v}=\omega_{k}dx^{k}$ .

The second mapping is called the “ complete lift “ and it is characterized by

1,) $(S\otimes T)^{c}=S^{c}\otimes T^{v}+S^{v}\otimes T^{c}$ ,

$2_{c})$ if $\varphi$ is a function on $M$,
$i\underline{\partial\varphi}$

$\varphi^{c}=y\partial x^{i}$ ,

3,) if $X=X^{k}\frac{\partial}{\partial x^{k}}$ , then

$X^{c}=X^{k}\frac{\partial}{\partial x^{k}}+y^{i}\frac{\partial X^{k}}{\partial x^{i}}\frac{\partial}{\partial y^{l_{\vee}^{\wedge}}}$ ,

4,) if $\omega=\omega_{k}dx^{k}$ , then

$\omega^{c}=y^{i}\frac{\partial\omega_{k}}{\partial x^{i}}dx^{k}+\omega_{k}dy^{k}$ .

It may then be shown that a unique connection $\nabla^{c}$ on $T(M)$ is determined by
defining $\nabla_{xc}^{c}Y^{C}=(\nabla_{X}Y)^{c}$ for $X,$ $Y\in\#(M)$ . The curvature tensor of $\nabla^{c}$ is then
found to be $R^{c}$ . Also, for any tensor $T$ on $M,$ $\nabla^{c}T^{c}=(\nabla T)^{c}$ .

Let $p$ be a fixed point of $M$ and let $W_{0}=\{R(X, Y)(p)|X, Y\in \mathfrak{X}(M)\}$ . Here
$R(X, Y)(p)$ denotes $R(X, Y)$ evaluated at $p$ . Similarly, let

$W_{\infty}=\{(\nabla_{x_{a}}\ldots\nabla_{x_{1}}R)(X, Y)(p)|\alpha=1,2, \cdots X_{1}, X_{2}, X_{\cap}\in\backslash \not\in(M)\}$ .

Then, if we let $\mathfrak{G}$ be the linear span of $W_{0}+W_{\infty},$ $\mathfrak{G}$ is a Lie algebra (under

the usual bracket product). $\mathfrak{G}$ is the Lie algebra of the infinitesimal holonomy
group of $M$ at $p$ (see Nijenhuis [3]). Nijenhuis has proved that if $M$ and the
connection are analytic, then the dimension of $\mathfrak{G}$ is constant on $M$. It can be
shown in this case that $R$ can be locally decomposed as $R=L_{a}\otimes M^{a},$ $a=1,2$,

... , $r(=\dim \mathfrak{G})$ , where the $L_{a}(p)$ form a basis of G. We can also show that
$(\nabla_{x_{\alpha}}\cdots\nabla_{x_{1}}R)=L_{a}\otimes N^{a}(i. e. N^{a}=N^{a}(X_{1}, \cdots , X_{\lambda}))$ .
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\S 2. Main Theorem.

Henceforth, by holonomy group we mean the infinitesimal holonomy group
at a fixed point of $M$.

THEOREM. If the dimension of the holonomy group $G$ of $M$ is $r$, then the
dimension of the holonomy group $G^{c}$ of $T(M)$ is $2r$ . Moreover, the Lie algebra
$\mathfrak{G}^{c}$ of $G^{c}$ has an abelian ideal of dimension $r$ .

Let $\{L_{a}|a=1, \cdots , r\}$ be a basis of $\mathfrak{G}$ . If we could show that $\{L_{a}^{v} , L_{a}^{c}\}$ is
a basis for $\mathfrak{G}^{c}$ and that $[L_{a}^{v}, L_{b}^{v}]=0$ and $[L_{a}^{v}, L_{b}^{c}]=0$ for all $a$ and $b$ , the proof
of the theorem would be finished. Instead of doing this for a general connec-
tion, we will consider the special case where the curvature tensor is recurrent
( $i$ . $e$ . there is a l-form $\eta$ such that $\nabla R=\eta\otimes R$) and merely note that the proof
will carry over to the general case.

$ln$ order to state the following proposition, we need a definition due to
Hlavaty [1].

DEFINITION. The holonomy group is called perfect if $\mathfrak{G}=W_{0}$ .
PROPOSITION. Suppose the curvature tensor of $M$ is recurrent. Then $\mathfrak{G}^{c}$ is

perfect and satisfies the conclusions of the theorem.
PROOF. It is clear that since $R$ is recurrent it is perfect and we can

locally decompose $R$ as $R=L_{a}\otimes M^{a}$ $(a=1, \cdots , r)$ , where $\{L_{a}\}$ is a basis
for $\mathfrak{G}(=W_{0})$ and the $M^{a}$ are linearly independent. By $1_{c}$ we have that
$R^{c}=L_{a}^{c}\otimes M^{a^{v}}+L_{a}^{v}\otimes M^{a^{C}}$ . If we let the components of $M^{a}$ be denoted by $M_{tj}^{a}$ ,

then the components of $M^{ac}$ are $\left(\begin{array}{ll}\frac{\partial M_{i}}{\partial x^{k}}-y^{k}a_{j} & M_{ij}^{a}\\M_{\iota}^{a_{j}}i & 0\end{array}\right)$ and those of $M^{a^{v}}$ are

( $00$). It is easy to see that $\{M^{av}, M^{b^{C}}\}$ is a linearly independent set of

tensors and that $W_{0}^{c}=sp\{L_{a}^{v}(P), L_{a}^{c}(P)\}$ . Here, $W_{0}^{c}$ is formed from $R^{c}$ in the
same manner as $W_{0}$ was formed from R. $P$ is a point of $T(M)$ . Similarly, if
$L_{aj}^{i}$ are the components of $L_{a}$ , then we have that $L_{a}^{v}$ : $\left(\begin{array}{ll}0 & 0\\L_{aj}^{i} & 0\end{array}\right)$ and $L_{a}^{c}$ :

( $y^{k}\frac{\partial L_{a}^{i}}{\partial x^{k}}j-L_{aj}^{i}$

$L_{aj}^{0_{i}}$) , and thus $\{L_{a}^{v}(P), L_{b}^{c}(P)\}$ form a basis for $W_{0}^{c}$ .

Now suppose that $\nabla R=\eta\otimes R$ . Then, we see that $\nabla^{c}R^{c}=(\nabla R)^{c}=(\eta\otimes R)^{c}$

$=\eta^{c}\otimes R^{v}+\eta^{v}\otimes R^{c}$ . Therefore, if $\tilde{X},\tilde{Y},\tilde{Z}\in \mathfrak{X}(T(M))$ , then

$(\nabla_{\overline{X}}^{C}R^{c})(\tilde{Y},\tilde{Z})=\eta^{c}(\tilde{X})L_{a}^{v}M^{a?}’(\tilde{Y},\tilde{Z})$

$+\eta^{v}(\tilde{X})L_{a}^{c}M^{av}(\tilde{Y},\tilde{Z})+\eta^{v}(\tilde{X})L_{a}^{v}M^{ac}(\tilde{Y},\tilde{Z})$ ,

which, when evaluated at $P$, is in $W_{0}^{c}$. Continuing, we obtain that $W_{\infty}^{c}\subseteqq W_{0}^{c}$ .
This shows that $\mathfrak{G}^{c}=W_{0}^{c}$ and $\dim W_{0}^{c}=2r$ .

The components of $[L_{a}(p), L_{b}(p)]$ are given by $L_{ai}^{k}(p)L_{bk}^{j}(p)-L_{bi}^{k}(p)L_{ak}^{j}(p)$ .
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Suppose that $[L_{a}(p), L_{b}(p)]=C_{ab}^{d}(p)L_{a}(p)$ (since the $L_{a}(p)s$ are a basis of the
Lie algebra G). This formula is valid in a neighborhood of $p$ . A simple cal-
culation making use of the components of the $L_{a}^{v}$ ’s and $L_{a}^{c}’ s$ then shows that
$[L_{a}^{v}, L_{b}^{v}]=0$ for all $a$ and $b$ . Also, we find that $[L_{a}^{v}, L_{b}^{c}]=C_{ab}^{a}L_{d}^{v}$ for all $a$ and
$b$ . This shows that the linear span of the $L_{a}^{v}(P)s$ form an abelian ideal of
$\mathfrak{G}^{c}$ .

We can easily go a step further and show that $[L_{a}^{c}, L_{b}^{c}]=C_{ab}^{a}L_{a}^{c}+(C_{ab}^{a})^{c}L_{d}^{v}$ .
Therefore we have computed all of the structure constants for $\mathfrak{G}^{c}$ . The above
procedure is extended to a general connection by noting that $R$ can be locally
decomposed as $R=L_{a}\otimes M^{a}$ , where the non-zero $M^{a}’ s$ are linearly independent.
We then pick a similar decomposition for the covariant derivatives of $R$ .

\S 3. Concluding remarks.

The results in this paper remain true if we replace the analyticity require-
ment by $C^{\infty}$ , understand that we mean infinitesimal holonomy groups and
assume that the dimension of the holonomy group is constant.

Y. C. Wong [4] has given a characterization of recurrent tensors. He
assumes that the manifold and tensors are $C^{\infty}$ . Using this characterization
and the proof presented here, it can be easily shown that the proposition
above is true on a $C^{\infty}$ manifold. Likewise the result of [2; III] can be seen
by this method for this special case.

Michigan State University
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