The prolongation of the holonomy group

By Gerald D. Ludden

(Received Aug. 1, 1967)
(Revised Oct. 2, 1967)

In a series of recent papers [2], Kobayashi and Yano [2; I] have defined a mapping from the tensor algebra of a manifold M into the tensor algebra of its tangent bundle $T(M)$. This mapping they called the "complete lift". They have also defined the complete lift of a connection on M to a connection on $T(M)$. In [2; III], they have shown that the holonomy group of the connection on $T(M)$ is the tangent group of the holonomy group of the connection on M. They mention that it should be possible to prove this in the spirit of [2; I]. The purpose of this paper is to compare the infinitesimal holonomy groups of M and $T(M)$ (see Nijenhuis [3] for definition and properties).

We will suppose that the manifold M is connected and analytic and also that the connection is analytic. In this case, Nijenhuis [3] has shown that the dimension of the infinitesimal holonomy group is constant on M and thus the infinitesimal holonomy group is equal to the restricted holonomy group of M. The main theorem of this paper then tells us that if the dimension of the Lie algebra of the holonomy group of M is r, then the dimension of the Lie algebra of the holonomy group of $T(M)$ is $2 r$ and furthermore, it has an abelian ideal of dimension r. The result of [2; III] for M can easily be seen by the constructions contained here.

§ 1. Preliminaries.

Let M be a connected, analytic manifold of dimension n and $\mathfrak{X}(M)$ the module of vector fields on M. The connection will be denoted by ∇ and the covariant derivative operator by $\nabla_{X}(X \in \mathscr{X}(M))$. Let R denote the curvature tensor of $\nabla . \nabla$ is assumed to be analytic. If (x^{i}) is a local coordinate system on M, let the corresponding coordinate system on $T(M)$ (the tangent bundle of M) be denoted by (x^{i}, y^{i}. Here we have $i=1, \cdots, n$.

Let $\pi: T(M) \rightarrow M$ be the natural projection map. Then, following Kobayashi and Yano [2], we define two mappings from the tensor algebra of M into the tensor algebra of $T(M)$. The first is called the "vertical lift", and is characterized by
$\left.1_{v}\right)(S \otimes T)^{v}=S^{v} \otimes T^{v}$, where S and T are tensor fields on M and S^{v} and T^{v} their images under the mapping,
2_{v}) if φ is a function on M,

$$
\varphi^{v}=\varphi \circ \pi,
$$

$\left.3_{v}\right)$ if $X=X^{k} \frac{\partial}{\partial x^{k}}$, then

$$
X^{v}=X^{k} \frac{\partial}{\partial y^{k}},
$$

$\left.4_{v}\right)$ if $\omega=\omega_{k} d x^{k}$, then

$$
\omega^{v}=\omega_{k} d x^{k}
$$

The second mapping is called the "complete lift" and it is characterized by
1_{c})

$$
(S \otimes T)^{c}=S^{c} \otimes T^{v}+S^{v} \otimes T^{c}
$$

2_{c}) if φ is a function on M,

$$
\varphi^{c}=y^{i} \frac{\partial \varphi}{\partial x^{i}},
$$

$\left.3_{c}\right)$ if $X=X^{k} \frac{\partial}{\partial x^{k}}$, then

$$
X^{c}=X^{k} \frac{\partial}{\partial x^{k}}+y^{i} \frac{\partial X^{k}}{\partial x^{i}} \frac{\partial}{\partial y^{k}},
$$

$\left.4_{c}\right)$ if $\omega=\omega_{k} d x^{k}$, then

$$
\omega^{c}=y^{i} \frac{\partial \omega_{k}}{\partial x^{i}} d x^{k}+\omega_{k} d y^{k} .
$$

It may then be shown that a unique connection ∇^{c} on $T(M)$ is determined by defining $\nabla_{X c}^{c} Y^{c}=\left(\nabla_{X} Y\right)^{c}$ for $X, Y \in \mathfrak{X}(M)$. The curvature tensor of ∇^{c} is then found to be R^{c}. Also, for any tensor T on $M, \nabla^{c} T^{c}=(\nabla T)^{c}$.

Let p be a fixed point of M and let $W_{0}=\{R(X, Y)(p) \mid X, Y \in \mathfrak{X}(M)\}$. Here $R(X, Y)(p)$ denotes $R(X, Y)$ evaluated at p. Similarly, let

$$
W_{\infty}=\left\{\left(\nabla_{X_{\alpha}} \cdots \nabla_{X_{1}} R\right)(X, Y)(p) \mid \alpha=1,2, \cdots, X_{1}, X_{2}, \cdots, X_{\alpha} \in \mathfrak{X}(M)\right\} .
$$

Then, if we let \mathbb{B}^{8} be the linear span of $W_{0}+W_{\infty}, \mathbb{S}_{5}$ is a Lie algebra (under the usual bracket product). © is the Lie algebra of the infinitesimal holonomy group of M at p (see Nijenhuis [3]). Nijenhuis has proved that if M and the connection are analytic, then the dimension of \mathbb{B} is constant on M. It can be shown in this case that R can be locally decomposed as $R=L_{a} \otimes M^{a}, a=1,2$, $\cdots, r\left(=\operatorname{dim}(\mathbb{B})\right.$, where the $L_{a}(p)$ form a basis of $(\mathbb{E}$. We can also show that $\left(\nabla_{X_{\alpha}} \cdots \nabla_{X_{1}} R\right)=L_{a} \otimes N^{a}\left(\right.$ i. e. $\left.N^{a}=N^{a}\left(X_{1}, \cdots, X_{\alpha}\right)\right)$.

§ 2. Main Theorem.

Henceforth, by holonomy group we mean the infinitesimal holonomy group at a fixed point of M.

Theorem. If the dimension of the holonomy group G of M is r, then the dimension of the holonomy group G^{c} of $T(M)$ is $2 r$. Moreover, the Lie algebra (G' c of G^{c} has an abelian ideal of dimension r.

Let $\left\{L_{a} \mid a=1, \cdots, r\right\}$ be a basis of ©S. If we could show that $\left\{L_{a}^{v}, L_{a}^{c}\right\}$ is a basis for $\mathscr{B r}^{c}$ and that $\left[L_{a}^{v}, L_{b}^{v}\right]=0$ and $\left[L_{a}^{v}, L_{b}^{c}\right]=0$ for all a and b, the proof of the theorem would be finished. Instead of doing this for a general connection, we will consider the special case where the curvature tensor is recurrent (i. e. there is a 1 -form η such that $\nabla R=\eta \otimes R$) and merely note that the proof will carry over to the general case.

In order to state the following proposition, we need a definition due to Hlavaty [1].

Definition. The holonomy group is called perfect if $\mathbb{B}=W_{0}$.
Proposition. Suppose the curvature tensor of M is recurrent. Then $\mathbb{G s}^{c}$ is perfect and satisfies the conclusions of the theorem.

Proof. It is clear that since R is recurrent it is perfect and we can locally decompose R as $R=L_{a} \otimes M^{a}(a=1, \cdots, r)$, where $\left\{L_{a}\right\}$ is a basis for $\mathscr{S}\left(=W_{0}\right)$ and the M^{a} are linearly independent. By 1_{c} we have that $R^{c}=L_{a}^{c} \otimes M^{a^{v}}+L_{a}^{v} \otimes M^{a^{c}}$. If we let the components of M^{a} be denoted by $M_{i j}^{a}$, then the components of $M^{a c}$ are $\left(\begin{array}{cc}\frac{\partial M_{i j}^{a}}{\partial x^{k}} y^{k} & M_{i j}^{a} \\ M_{i j}^{a} & 0\end{array}\right)$ and those of $M^{a^{v}}$ are $\left(\begin{array}{ll}M_{i j}^{a} & 0 \\ 0 & 0\end{array}\right)$. It is easy to see that $\left\{M^{a v}, M^{b c}\right\}$ is a linearly independent set of tensors and that $W_{o}^{c}=s p\left\{L_{a}^{v}(P), L_{a}^{c}(P)\right\}$. Here, W_{0}^{c} is formed from R^{c} in the same manner as W_{0} was formed from $R . \quad P$ is a point of $T(M)$. Similarly, if $L_{a j}^{i}$ are the components of L_{a}, then we have that $L_{a}^{v}:\left(\begin{array}{ll}0 & 0 \\ L_{a j}^{i} & 0\end{array}\right)$ and L_{a}^{c} : $\left(\begin{array}{lc}L_{a j}^{i} & 0 \\ y^{b} \frac{\partial L_{a j}^{i}}{\partial x^{k}} & L_{a j}^{i}\end{array}\right)$, and thus $\left\{L_{a}^{v}(P), L_{b}^{c}(P)\right\}$ form a basis for W_{0}^{c}.

Now suppose that $\nabla R=\eta \otimes R$. Then, we see that $\nabla^{c} R^{c}=(\nabla R)^{c}=(\eta \otimes R)^{c}$ $=\eta^{c} \otimes R^{v}+\eta^{v} \otimes R^{c}$. Therefore, if $\tilde{X}, \tilde{Y}, \tilde{Z} \in \mathfrak{X}(T(M))$, then

$$
\begin{aligned}
\left(\nabla_{\tilde{X}}^{c} R^{c}\right)(\tilde{Y}, \tilde{Z})= & \eta^{c}(\tilde{X}) L_{a}^{v} M^{a v}(\tilde{Y}, \tilde{Z}) \\
& +\eta^{v}(\tilde{X}) L_{a}^{c} M^{a v}(\tilde{Y}, \tilde{Z})+\eta^{v}(\tilde{X}) L_{a}^{v} M^{a c}(\tilde{Y}, \tilde{Z})
\end{aligned}
$$

which, when evaluated at P, is in W_{0}^{c}. Continuing, we obtain that $W_{\infty}^{c} \subseteq W_{0}^{c}$. This shows that $\mathbb{G}^{c}=W_{0}^{c}$ and $\operatorname{dim} W_{0}^{c}=2 r$.

The components of $\left[L_{a}(p), L_{b}(p)\right]$ are given by $L_{a i}^{k}(p) L_{b k}^{j}(p)-L_{b i}^{k}(p) L_{a k}^{j}(p)$.

Suppose that $\left[L_{a}(p), L_{b}(p)\right]=C_{a b}^{d}(p) L_{d}(p)$ (since the $L_{a}(p)$'s are a basis of the Lie algebra (B). This formula is valid in a neighborhood of p. A simple calculation making use of the components of the L_{a}^{v} 's and L_{a}^{c} 's then shows that $\left[L_{a}^{v}, L_{b}^{v}\right]=0$ for all a and b. Also, we find that $\left[L_{a}^{v}, L_{b}^{c}\right]=C_{a b}^{a} L_{a}^{v}$ for all a and b. This shows that the linear span of the $L_{a}^{v}(P)$'s form an abelian ideal of (5).

We can easily go a step further and show that $\left[L_{a}^{c}, L_{b}^{c}\right]=C_{a b}^{d} L_{d}^{c}+\left(C_{a b}^{d}\right)^{c} L_{d}^{v}$. Therefore we have computed all of the structure constants for $\mathscr{C b}^{c}$. The above procedure is extended to a general connection by noting that R can be locally decomposed as $R=L_{a} \otimes M^{a}$, where the non-zero M^{a}, s are linearly independent. We then pick a similar decomposition for the covariant derivatives of R.

§ 3. Concluding remarks.

The results in this paper remain true if we replace the analyticity requirement by C^{∞}, understand that we mean infinitesimal holonomy groups and assume that the dimension of the holonomy group is constant.
Y. C. Wong [4] has given a characterization of recurrent tensors. He assumes that the manifold and tensors are C^{∞}. Using this characterization and the proof presented here, it can be easily shown that the proposition above is true on a C^{∞} manifold. Likewise the result of [2; III] can be seen by this method for this special case.

Michigan State University

References

[1] V. Hlavaty, Holonomy group II, The Lie group induced by a tensor, J. Math. Mech., 8 (1959), 597-622.
[2] S. Kobayashi and K. Yano, Prolongations of tensor fields and connections to tangent bundles, I. General theory and III. Holonomy groups, J. Math. Soc. Japan, 18 (1966), 194-210 and 19 (1967), 486-488.
[3] A. Nijenhuis, On the holonomy groups of linear connections IA, IB, Proc. Kon. Ned. Akad. Amsterdam=Indag. Math., 15 (1953), 233-249.
[4] Y.C. Wong, Recurrent tensors on a linearly connected differentiable manifold, Trans. Amer. Math. Soc., 99 (1961), 325-341.

