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\S 1. Introduction.

Let $D$ be an arbitrary bounded domain of the N-dimensional Euclidean
space $R^{N}(N\geqq 1)$ . A function $G_{\alpha}(x, y)$ defined for $\alpha>0,$ $x,$ $y\in D,$ $x\neq y$ will be

called a resolvent density on $D$ , if it satisfies that, $G_{\alpha}(x, y)\geqq 0,$ $\alpha\int_{D}G_{\alpha}(x, z)dz\leqq 1$

and $G_{\alpha}(x, y)-G_{\beta}(x, y)+(\alpha-\beta)\int_{D}G_{\alpha}(x, z)G_{\beta}(z, y)dz=0$ for all $\alpha>0,$ $\beta>0$ and $x,$ $y$

$\in D,$ $\chi\neq y$ . Denote by $G_{a}^{0}(x, y)$ the resolvent density corresponding to the
absorbing barrier Brownian motion on $D^{1)}$ .

Consider the family $G$ of all conservative symmetric resolvent densities2) on
$D$ possessing the following properties:

(G. a) $G_{a}(x, y)$ is written in the form
$G_{\alpha}(x, y)=G_{a}^{0}(x, y)+R_{\alpha}(x, y)$ .

$R_{\alpha}(x, y)$ is a non-negative function of $\alpha>0,$ $x,$ $y\in D$ , and $\alpha$ -harmonic3) in $x\in D$

for each $\alpha>0$ and $y\in D$ .
(G. b) For any compact subset $K$ of $D,\sup_{x\in K.y\in D}R_{\alpha}(x, y)$ is finite.
In [15], we constructed a particular element of $G$ and showed that it

determines a continuous strong Markov process (called the reflecting barrier
Brownian motion) on an extended state space $D^{*}$ .

In the present paper, by studying the structure of Dirichlet spaces asso-
ciated with elements of $G$ , we will answer the questions:

(i) How many elements are there in $G$ ?
(ii) $ln$ what sense is the resolvent density of [15] typical among $G$ ?

1) Cf. [5].
2) We will say that a resolvent density $G_{\alpha}(x, y)$ is conservative (resp. symmetric)

when $\alpha\int_{D}G_{\alpha}(x, z)dz=1,$ $\alpha>0,$ $x\in D(resp. G_{\alpha}(x, y)=G_{\alpha}(y, x), \alpha>0, x, y\in D)$ .
3) We call a function on $ D\alpha$ -harmonic when

$\frac{1}{2}\sum_{\iota=1}^{N}\frac{\partial^{2}u(x)}{\partial x_{i}^{2}}=\alpha u(x)$ , $x\in D$ .
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Our goal is to establish in section 5 and section 7 a one-to-one correspondence
between $G$ and a class of Dirichlet spaces formed by functions on the Martin
boundary of the domain $D$ .

The present paper consists of nine sections.
Sections 2 and 3 will serve as preparations for later discussions. In sec-

tion 2 we will introduce the notion of the Dirichlet space (relative to an $L^{2}-$

space), in a slightly modified sense, due to Beurling and Deny [2]. In section
3, the Dirichlet space formed by every square integrable BLD function (denoted

by $BLD$)
$\wedge$

will be studied by making use of the Feller kernels on the Martin
boundary.

With a given element $G_{\alpha}(x, y)=G_{\alpha}^{0}(x, y)+R_{\alpha}(x, y)$ of the class $G$ , we asso-
ciate a Dirichlet space $(q_{D}, \mathcal{E})$ relative to $L^{2}(D)$ by

$g_{D}=\{u\in L^{2}(D);\mathcal{E}(u, u)=\lim_{\beta\rightarrow\dashv\infty}\beta(u-\beta G_{\beta}u, u)_{L^{2}(D)}<+\infty\}$
.

In sections 4, 5 and 6, the space $(\mathscr{Z}_{D}, \mathcal{E})$ will be analized in details as outlined
in the followin $g$ .

Let $q_{D}^{(0)}$ (actually independent of $\alpha>0$) be the space spanned by $\{G_{\alpha}^{0}f$,

$f\in B(D)\}$ with respect to the norm $\sqrt{\mathcal{E}^{\alpha}(u,u)}=\frac{u,u\alpha u,U2}{\mathcal{E}()+()_{L(D)}}$ and $\ovalbox{\tt\small REJECT}_{\alpha}$,
the space spanned by $\{R_{\alpha}f, f\in B(D)\}$ . For each $\alpha>0$ , spaces $S^{i_{D}^{(0)}}$ and $Yt_{\alpha}$

are orthogonal with respect to $\mathcal{E}^{\alpha}$ and $q_{D}=g_{D}i(0)\oplus\ovalbox{\tt\small REJECT}_{\alpha}$ . Further the space
$(q_{D}^{(0)}, \mathcal{E})$ is identical with the space $BLD_{0}$ of BLD functions of potential type.
The proof of these facts will be carried out in section 4 by making use of a
Feller type expression of $R_{\alpha}f:R_{\alpha}f(x)=H_{\alpha}^{x}\tilde{R}^{\alpha}\hat{H}_{o}f$.

Denote by $M$ the Martin boundary of the domain $D$ . Using the Feller
kernels, we introduce by (3.14) and (3.15) respectively a bilinear form $D(, )$ for
functions on $M$ and a space $H_{M}$ of functions on $M$. Theorem 5.2 and 5.3 will
characterize the above-mentioned Hilbert spaces $\{(\ovalbox{\tt\small REJECT}_{\alpha}, \mathcal{E}^{\alpha}), \alpha>0\}$ by means of
a Dirichlet space $(g_{M}, \mathcal{E}_{M}(, ))$ satisfying the following conditions4).

(B. 1) $q_{H}$ is a linear subspace of $H_{M}$ . $q_{M}$ contains every constant func-
tion on $M$.

(B. 2) $\mathcal{E}_{M}$ is a bilinear form on $\mathscr{Z}_{M}$ which is written as $\mathcal{E}_{M}(\varphi, \psi)=$

$D(\varphi\cdot\psi)+N(\varphi, \psi),$ $\varphi,$ $\psi\in g_{M}$ , where $N$ is a non-negative symmetric bilinear
form on $g_{M}$ satisfying $N(1\cdot 1)=0$ . The space $g_{M}$ is complete with metric
$\mathcal{E}_{M}(, )+\lambda(, )_{L}z_{(M)^{}}$ for a $\lambda>0$ .

(B. 3) If $\varphi\in g$: and if $\psi$ is a normal contraction of $\varphi$ in the sense of
[4], then $\psi\in gr_{M}$ and $N(\psi, \psi)\leqq N(\varphi, \varphi)$ .

Conversely, for any pair $(g_{M}, N)$ satisfying the conditions (B. 1), (B. 2)

4) Conditions (B.1), (B.2) and (B.3) implies that $(\ddagger F_{M}, \mathcal{E}_{M})$ is a Dirichlet space re-
lative to $L^{2}(M)^{\prime}$ , the space $L^{2}(M)^{J}$ being defined in section 3.
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and (B. 3), we will construct in section 7 an element $G.(x, y)$ of the class $G$

which corresponds to this pair $(q_{M}, N)$ in the manner of Theorem 5.2. In this
way, we will establish a one-to-one correspondence between the class $G$ and
the class of the pairs $(\mathcal{G}_{M}, N)$ .

Section 6 will be concerned with the boundary condition. Consider again
the Dirichlet space $(9_{D}, \mathcal{E})$ associated with a given element $G_{\alpha}(x, y)$ of $G$ .
Since $2D(\varphi, \varphi)$ for $\varphi\in H_{M}$ is nothing but an expression of the Dirichlet integral
of the harmonic function with fine boundary function $\varphi$ (see Doob [7] and
Fukushima [13]), our results of sections 4 and 5 enable us in Theorem 6.1 to

conclude that $BLD_{0}\subset q^{6)}\subset BLD\wedge$ and, for every $u\in \mathscr{Z},$ $\mathcal{E}(u, u)\geqq\frac{1}{2}\int_{D}(gradu$ ,

$gradu)(x)dx$ . Furthermore, we can see that the space $9=G_{\alpha}(L^{2}(D))$ is a re-
striction of the domain $9(\Delta)$ of the generalized Laplacian $\Delta$ (denoted by the
same symbol $\Delta$ as the usual Laplacian), which is defined in terms of the space
$BLD\wedge$ (Definition 6.1). This restriction will be decided in terms of $(\mathscr{Z}_{M}, N)$ by
the boundary condition (6.8). Formula (6.8) includes implicitly the notion of
the (generalized) normal derivative in Doob’s sense [7]. Moreover, (6.8) is
analogous to a boundary condition by Feller [11; p. 560], where the Markov
chains with a finite number of exit boundary points are treated.

The final two sections will be devoted to the study of several special cases.
In section 8, we will be concerned with the subclass $G_{1}$ formed by those ele-
ments of $G$ for which the corresponding forms $N(, )$ vanish identically on the
corresponding spaces $\mathscr{Z}_{M}$ . We will see that a diffusion process on an extended
state space corresponds to each element of $G_{1}$ . There are two extreme ele-
ments of $G_{1}$ : the cases when $q_{M}=H_{M}$ and when $S^{\gamma_{M}}$ contains only constant
functions. We will see that the former case turns out to reconstruct the
resolvent density of [15]. In section 9, we will examine the cases that the
domain $D$ is a disk and an interval6).

Here are two remarks about our class $G$ of resolvent densities.
First, we note that there is a one-to-one correspondence between $G$ and a

family of (equivalent classes of) Markov processes dominating the absorbing
Brownian motion on $D$ . Indeed, with each element G. (., $\cdot$ ) of $G$ , we can asso-
ciate, exactly in the same manner as in [15; section 3], a right continuous
strong Markov process $X=(X_{t}, P_{x}, x\in D^{*})$ whose state space $D^{*}$ is the Martin-
Kuramochi type completion of $D$ with respect to the class of functions
$\{G_{1}(\cdot, y), y\in D\}$ . $X$ has the following properties:

(X. 1) $X$ is conservative on $D$ :

5) $S^{i}$ is the refinement of the space $g_{D}$ (see (4.18)).
6) There, we can compare our boundary condition (6.8) with those of Wentzell

[23] and Feller [12].
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$P_{x}(X_{t}\in D)=1$ . $t>0$ , $x\in D$ .
(X. 2) Let $\tau$ be the first exit time from $D$ of the path $X_{t}$ , then (X,, $ t<\tau$ ,

$P_{x},$ $x\in D$) is the absorbing Brownian motion on $D$ .
(X. 3) For any Borel set $E$ of $D^{*}$ ,

$\int_{0^{+\infty}}e^{-\alpha t}P_{x}(X_{t}\in E)dt=\int_{E\cap D}G_{\alpha}(x, y)dy$ , $\alpha>0$ , $x\in D$ .

Conversely, suppose that a right continuous strong Markov process $X$ on an
enlarged state space $D^{*}$ satisfies the conditions (X. 1) and (X. 2). Further we
assume the existence of a symmetric, jointly continuous function $G_{\alpha}(x, y),$ $\alpha>0$ ,

$x,$ $y\in D,$ $x\neq y$ satisfying the condition (X. 3). Then, as one easily verifies, this
function is an element of $G$ .

Second remark is about the relation between the class $G$ and the class of
symmetric Brownian resolvents in the sense of T. Shiga and T. Watanabe [21].

By a Brownian resolvent, we mean a resolvent kernel $\{G_{\alpha}(x, E),$ $\alpha>0,$ $x\in D$ ,

$E\subset D\}$ such that $G.f(x)=\int.G.(x, dy)f(y)$ satisfies the equation

$(\alpha-\frac{1}{2}\sum_{i=1}^{N}\frac{\partial^{2}}{\partial x_{i}^{2}})G_{o}f(x)=f(x)$ , $x\in D$ ,

for any infinitely differentiable function $f$ with compact support. A resolvent
kernel $\{G.(x, E)\}$ is said symmetric if, for any non-negative measurable func-

tions $f$ and $g,$ $\int_{D}G_{\alpha}f(x)g(x)dx=\int_{D}f(x)G_{\alpha}g(x)dx\leqq+\infty$ . Any symmetric resolvent

kernel defines a symmetric resolvent (operator) on $L^{2}(D)$ in the sense of sec-
tion 2, so that we can associate with it a Dirichlet space relative to $L^{2}(D)$ . It
is obvious that each element of the class $G$ is a density function of a con-
servative symmetric Brownian resolvent (kernel). Conversely, we can prove
that any conservative symmetric Brownian resolvent is of the class $G$ , as is
outlined in the following. It is implied in the remark preceding Proposition
A. 6 of [21] that the decomposition theorem (Theorem 4.3) of the present
paper is still valid for the Dirichlet space associated with any symmetric
Brownian resolvent. Hence, starting with a conservative symmetric Brownian
resolvent (without assuming the existence of a density function), we can go
along the same line as in section 5 and we can reconstruct in section 7 the
resolvent considered, by showing that it has a density function of the class $G$ .

I wish to express my hearty thanks to T. Shiga and T. Watanabe for
their valuable advices. They have shown me the manuscript of [21] before
publication. T. Watanabe admitted me to mention one of his unpublished
results that the space $\ovalbox{\tt\small REJECT}_{\alpha}$ , in our context, is contained in the space of $\alpha$ -har-
monic functions with finite Dirichlet integrals (Theorem 5.1). This made the
arguments of section 5 simpler than those of the original version.
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\S 2. Symmetric resolvents and Dirichlet spaces relative to $L^{2}$-spaces.

Let (X, $\mathscr{Q}m$) be a measure space on a Hausdorff space $X$ with the topo-
logical Borel field $\mathscr{D}$ . We assume that $m$ is finite: $ m(X)<+\infty$ . Denote by
$L^{2}(X)$ the space of all real-valued square integrable functions on $X$ with the

inner product $(u, v)_{X}=\int_{X}u(x)v(x)m(dx)$ .

DEFINITION 2.1. A symmetric resolvent on $L^{2}(X)$ is a family of symmetric
linear operators $\{G_{\alpha}, \alpha>0\}$ on $L^{2}(X)$ such that $G_{\alpha}u$ is non-negative for any
non-negative $u\in L^{2}(X),$ $\alpha G_{\alpha}1\leqq 1,$ $G_{\alpha}-G_{\beta}+(\alpha-\beta)G_{\alpha}G_{\beta}=0$ and $G_{\alpha}u_{n}$ decreases
to zero m-almost everywhere on $X$ when $u_{n}\in L^{2}(X)$ decreases to zero.

DEFINITION 2.2. Let $u$ and $v$ be measurable functions on $X$. We call $u$ a
normal contraction of $v$ if the following inequalities are valid on $X$ ;

$|u(x)|\leqq|v(x)|$ , $|u(x)-u(y)|\leqq|v(x)-v(y)|$ .

DEFINITION 2.3. A function space $(\mathscr{Z}_{X}, \mathcal{E}_{X}(, ))$ is called a Dirichlet space
relative to $L^{2}(X)$ , if the following three conditions are satisfied.
(2.1) $\mathscr{Z}_{X}$ is a non-emply linear subset of $L^{2}(X)$ and $\mathcal{E}_{X}(, )$ is a non-negative
symmetric bilinear form on $g_{X}$ .
(2.2) For some (or equivalently for every) $\alpha>0,$ $g_{X}$ is a real Hilbert space
with the inner product

$\mathcal{E}_{X}^{\alpha}(u, v)=\mathcal{E}_{X}(u, v)+\alpha(u, v)_{X}$ ,

two functions of $g_{X}$ being identified if they coincide m-almost everywhere
on $X$.
(2.3) Every normal contraction operates on $(g_{X}, \mathcal{E}_{X})$ ; if $u$ is a normal con-
traction of $v\in \mathscr{Z}_{X}$ , then $u\in g_{X}$ and $\mathcal{E}_{X}(u, u)\leqq \mathcal{E}_{X}(v, v)$ .

Following Beurling and Deny [2] and Deny [4], let us state two theorems
about a one-to-one correspondence between Dirichlet spaces and symmetric
resolvents.

THEOREM 2.1. Let $(\mathscr{Z}_{X}, \mathcal{E}_{X}(, ))$ be a Dirichlet space relative to $L^{2}(X)$ .
(i) For each $\alpha>0$ and $u\in L^{2}(X)$ , there is a unique element $G_{\alpha}u$ of $q_{X}$

such that

(2.4) $\mathcal{E}_{X}^{\alpha}(G_{\alpha}u, v)=(u, v)_{X}$ for any $v\in g_{X}$ .
(ii) The family of operators $G_{a},$ $\alpha>0$ , defined by (2.4) is a symmetric re-

solvent on $L^{2}(X)$ .
(iii) For each $\alpha>0,$ $\{G_{\alpha}u;u\in L^{2}(X)\}$ is dense in $\mathscr{Z}_{X}$ with respect to the

norm $\mathcal{E}_{X}^{\beta}$ ($\beta>0$ being arbitrary).
We note that the non-negativity and the sub-Markov property of $\alpha G_{\alpha}$ ,

where $G_{\alpha}$ is defined by the equation (2.4), follow from the condition (2.3) of
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the space $(\mathscr{Z}_{X}, \mathcal{E}_{X})$ . Conversely, suppose that we are given a symmetric re-
solvent $\{G_{\alpha}, \alpha>0\}$ on $L^{2}(X)$ . It is easy to see that $G_{\alpha}$ on $L^{2}(X)$ is a bounded
operator with norm less than $ 1/\alpha$ and consequently $(G_{\alpha}u, u)_{X}$ is non-negative
for any $u\in L^{2}(X)^{7)}$ . Put for $\alpha\geqq 0$ and $u\in L^{2}(X)$ ,

(2.5) $S_{X.\beta}^{\alpha}(u, u)=\beta(u-\beta G_{\beta+\alpha}u, u)_{X}$

(2.6) $q_{x.\rho}^{\alpha}(u, u)=(u-\beta G_{\beta+\alpha}u, u-\beta G_{\beta+\alpha}u)_{X}$ .

We then have,

(2.7) $\frac{\partial}{\partial\beta}\mathcal{E}_{X.\beta}^{\alpha}(u, u)=Z_{x.\beta}^{\alpha}(u, u)$ and $\frac{\partial}{\partial\beta}\mathscr{Z}_{x.\beta}^{a}(u, u)\leqq 0$ , $\beta>0$ ,

which leads us to the following theorem.
THEOREM 2.2. Let $\{G_{\alpha}, \alpha>0\}$ be a symmetric resolvent on $L^{2}(X)$ .
(i) $\mathcal{E}_{x,\rho}^{\alpha}(u, u)$ defined by (2.5) is non-negative and it is non-decreasing as $\beta$

increases. If we set

(2.8)
$\mathcal{E}_{X}(u, u)=\lim_{\beta\rightarrow+\infty}\mathcal{E}_{X,\beta}^{0}(u, u)$

, $u\in L^{2}(X)$ ,

(2.9) $gr_{X}=\{u ; u\in L^{2}(X) , \mathcal{E}_{X}(u, u)<+\infty\}$ ,

then $(q_{X}, \mathcal{E}_{X}(, ))$ is a Dirichlet space relative to $L^{2}(X)$ .
(ii) For $u\in gr_{X}$ and $\alpha>0$ ,

$\mathcal{E}_{X}^{\alpha}(u, u)(=\mathcal{E}_{X}(u, u)+\alpha(u, u)_{X})=\lim_{\beta\rightarrow+\infty}8_{x.\beta}^{\alpha}(u, u)$ .

(iii) $G_{\alpha}$ satisfies the equation (2.4) for the space $(\mathscr{Z}_{X}, \mathcal{E}_{X}(, ))$ defined by (2.8)
and (2.9).

Assertions (i) and (ii) of the theorem can be proved easily from (2.5) and
(2.7). As for the statement (iii), note a consequence of (2.7): $\beta G_{\beta}v$ converges
to $v$ strongly in $L^{2}(X)$ if $v$ is in $g_{X}$ . Hence we can conclude that the equation
in statement (iii) is valid for every $v\in \mathscr{Z}_{X}$ .

The following lemma will be used in section 5.
LEMMA 2.1. Suppose that $(g_{X}, \mathcal{E}_{X})$ is a Dirichlet space and $u\in g_{X}$ . De-

note by $u_{n}$ the truncation of $u:u_{n}(x)=u(x)$ for $|u(x)|<n,$ $u_{n}(x)=n$ for $u(x)\geqq n$

and $u_{n}(x)=-n$ for $u(x)\leqq-n$ . Then,
(i) $u_{n}\in S^{i_{X}}$ , and $\mathcal{E}_{X}(u_{n}, u_{n})$ increases to $\mathcal{E}_{X}(u, u)$ as $n$ tends to infinity.
(ii) $(u_{n})^{2}\in q_{X}$ and $\mathcal{E}_{X}((u_{n})^{2}, (u_{n})^{2})\leqq 4n^{2}\mathcal{E}_{X}(u, u)$ .
PROOF. Since $u_{n}$ is a normal contraction of $u,$ $u_{n}$ is an element of $u$ .

Obviously $\mathcal{E}_{X}(u_{n}, u_{n})$ is increasing and its limit is no greater than $\mathcal{E}_{X}(u, u)$ .
Define $G_{\beta}$ and $\mathcal{E}_{X.\beta}^{0}$ by (2.4) and (2.5) successively. Theorem 2.1 and 2.2 imply
that, for any $v\in \mathscr{Z}_{X},$ $\mathcal{E}_{X.\beta}^{0}(v, v)$ increases to $\mathcal{E}_{X}(v, v)$ as $\beta\rightarrow+\infty$ . Hence, we

7) By the resolvent equation, $\frac{d}{d_{\alpha}}(G_{\alpha}u, u)_{X}=-(G_{\alpha}u, G_{\alpha}u)_{X}\leqq 0$ .
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have $\mathcal{E}_{X.\beta}^{0}(u_{n}, u_{n})\leqq\lim_{n\rightarrow+\infty}\mathcal{E}_{X}(u_{n}, u_{n})$ . Letting $n$ and $\beta$ tend to infinity successively,

we arrive at the statement (i). Assertion (ii) is an immediate consequence of

the fact that $(\frac{1}{2n}u_{n})^{2}$ is a normal contraction of $\frac{1}{2n}u_{n}$ .
From now on, we treat only the cases that the underlying space $X$ is an

Euclidean domain or its Martin boundary.
Suppose that $G_{\alpha}(x, y),$ $\alpha>0,$ $x,$ $y\in D,$ $x\neq y$ is a symmetric resolvent den-

sity on a bounded Euclidean domain $D$ . Then, by

(2.10) $G_{\alpha}u(x)=\int_{D}G_{\alpha}(x, y)u(y)dy$ , $\alpha>0$ , $u\in L^{2}(D)$ ,

we have a symmetric resolvent $\{G_{\alpha}, \alpha>0\}$ on $L^{2}(D)$ .
DEFINITION 2.4. With the resolvent (2.10), we define a Dirichlet space

$(\Phi_{D}, \mathcal{E})$ relative to $L^{2}(D)$ by formulae (2.8) and (2.9). We call $(ff_{D}, \mathcal{E})$ the Diri-
chlet space associated with the resolvent density $G_{\alpha}(x, y)$ on $D$ .

Denote by $B(D)(C_{0}^{\infty}(D))$ the space of all bounded measurable functions on
$D$ (resp. all infinitely differentiable functions with compact supports). By
Theorem 2.2 (iii), we have

LEMMA 2.2. Let $G_{\alpha}(x, y)$ be a symmetric resolvent on D. Then, $\{G_{t\lambda}u$ ,
$u\in C_{0}^{\infty}(D)\}$ and $\{G_{\alpha}u, u\in B(D)\}$ are the dense subsets of the associated Dirichlet
space $q_{D}$ with metric $\mathcal{E}^{\beta}(, )$ ($\beta>0$ being arbitrary).

\S 3. Space of BLD functions which are square integrable. lntegrations
by the Feller kernel.

Properties of BLD functions were profoundly investigated by Deny and
Lions [5] and Doob [7]. In this section, we will study BLD functions in terms
of the associated Dirichlet spaces and the Feller kernels defined on the Martin
boundary. Theorem 3.1 will state that the space of BLD functions of potential
type is identical with the Dirichlet space associated with the resolvent density
of the absorbing barrier Brownian motion. We will give two applications of
this theorem to exhibit the properties of the Feller kernel. Finally, we will
present some results concerning boundary properties of $\alpha$ -harmonic functions
with finite Dirichlet integrals, analogous to those by Doob [7]. Inequalities in
Lemma 3.1 and equalities in the proof of the lemma will play basic roles in
the following sections.

Throughout this section to section 8, we fix an arbitrary bounded domain
$D$ of $R^{N}$ .

DEFINITION 3.1. Denote by $BLD\wedge$ the space of all BLD functions which are
square integrable on $D$ . Precisely, $ u\in BLD\wedge$ , if and only if $u\in L^{2}(D)$ , every
first partial derivatives of $u$ (in the sense of Schwartz’s distribution) are in
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$L^{2}(D)$ and $u$ is fine continuous quasi-everywhere on $D^{8)}$ .
For $u,$

$ v\in BLD\wedge$ , put

$(u, v)_{D,1}=-12-\int_{D}(gradu, gradv)(x)dx$ .

The pair $(BLD\wedge, (, )_{D,1})$ is a Dirichlet space relative to $L^{2}(D)$ in the sense of
Definition 2.3.

DEFINITION 3.2. Denote by $BLD_{0}$ the closure of $C_{0}^{\infty}(D)$ in the space $(BLD\wedge$ ,

$(, )_{D,1})$ .
Note that, for each $\alpha>0,$ $(u, u)_{D,1}+\alpha(u, u)_{D}$ gives a metric equivalent to

$(u, u)_{D,1}$ for the space $BLD_{0}([5])$ . In accordance with Doob [7], a function of
$BLD_{0}$ will be called a BLD function of potential type.

Let $(g_{D}^{(0)}, \mathcal{E}^{(0)})$ be the Dirichlet space associated with the resolvent density
$G_{\alpha}^{0}(x, y)$ of the absorbing barrier Brownian motion on $D$ (see Definition 2.4).

We put

(3.1) $S^{7^{(0)}}=$ { $u\in q_{D}^{(0)},$ $u$ is fine-continuous quasi-everywhere on $D$ }.

We call $g^{(0)}$ the refinement of the space $q_{D}^{(0)}$ .
THEOREM 3.1.
(i) For each function $u$ of $\mathscr{Z}_{D}^{(0)}$ , there exists a function of $g^{(0)}$ , which is

equal to $u$ almost everywhere.
(ii) $g^{(0)}=BLD_{0}$ and $\mathcal{E}^{(0)}(u, u)=(u, u)_{D,1},$ $u\in g^{(0)}$ .
PROOF. On account of Lemma 2.2 and the remark in the preceding para-

graph, it is sufficient to show that, for a fixed $\alpha>0$ ,

(a) $\ovalbox{\tt\small REJECT}^{(0)}=\{G_{\alpha}^{0}u;u\in C_{0}^{\infty}(D)\}$ is contained in $BLD_{0}$ and, for $v\in R^{(0)},$ $\mathcal{E}^{(0),\alpha}(v, v)$

$=(v, v)_{D,1}+\alpha(v, v)_{D}$ .
(b) $R^{(0)}$ is dense in the space $BLD_{0}$ with respect to the norm $(, )_{D,1}+\alpha(, )_{D}$ .
Consider a sequence of domains $D_{n}$ which increases to $D$ . Assume that

boundaries $\partial D_{n}$ are of class $C^{2}$ . Approximate the function $v=G_{\alpha}^{0}u,$ $u\in C_{0}^{\infty}(D)$

by functions

$v_{n}(x)=|0G_{\alpha}^{(n)}u(x)$ $x\in D^{n}-D_{n}x\in D$

$n=1,2,$ $\cdots$

where $G_{\alpha}^{(n)}u$ is defined by (2.10) for the resolvent density of absorbing Brownian
motion on $D_{n}$ . We can see that $v_{n}\in BLD_{0^{9)}}$ . By the equality

1 $N$ $\partial^{2}$

$\alpha v_{n}(x)=--\sum_{i=1}v_{n}(x)+u(x)$ , $x\in D_{n}$ ,

we have

(3.2) $(v_{n}, v_{m})_{D,1}+\alpha(v_{n}, v_{m})_{D}=(u, v_{m})_{D}$ , $n\geqq m$ .

8) By ‘ quasi-everywhere ’ we means ‘ except for a set of capacity $z$ero ”

9) $G_{a}^{(n)}u$ is in $BLD_{0}$ for the domain $D_{n}$ and hence, $v_{n}\in BLD_{0}$ for $D[5]$ .
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Since $v_{n}$ converges to $v$ uniformly on each compact set of $D$ , the formula (3.2)

implies that $v_{n}$ is convergent in norm $\sqrt{(}$
in $BLD_{0}$ coincides with $v$ almost everywhere. Hence, $v\in BLD_{0}$ and $(v, v)_{D,1}$

$+\alpha(v, v)_{D}=(u, v)_{D}=\mathcal{E}^{(0),\alpha}(v, v)$ , completing the proof of assertion (a).

As for (b), assume that $w\in BLD_{0}$ satisfies $(w, v)_{D,1}+\alpha(w, v)_{D}=0$ for all
$v=G_{\alpha}^{0}u\in 9\mathfrak{i}^{(0)}$ . Find $w_{n}\in C_{0}^{\infty}(D)$ which converges to $w$ in $BLD_{0}$ , then we see
that the left-hand side of the above equation is equal to $\lim_{n\rightarrow+\infty}((w_{n}, v)_{D,1}+\alpha(w_{n}, v)_{D})$

$=\lim_{n\rightarrow+\infty}(w_{n}, u)_{D}=(w, u)_{D}$ . Thus, $w$ must vanish. The proof of the theorem is

complete.
Now we are in a position to introduce several notions related to the Martin

boundary $M$ of the domain $D$ . Let $\mu(E)$ be the harmonic measure of the Borel
set $E$ of $M$ relative to the fixed reference point $x_{0}\in D$ .

DEFINITION 3.3. If a function $u$ on $D$ has a fine limit $\varphi(\xi)$ at $\mu$-almost
every $\xi\in M$, we denote $\varphi$ by $\gamma u$ and call it a boundary function of $u$ .

Doob [7] has proved that every BLD function has a boundary function in
$L^{2}(M)$ and that $u$ is an element of $BLD_{0}$ if and only if $u$ is a BLD-function
and $(\gamma u)(\xi)=0$ for almost all $\xi\in M$. Thus,

COROLLARY To THEOREM 3.1. $u$ belongs to $q^{(0)}$ if and only if $u$ is $a$ BLD
function and $u$ has a boundary function vanishing $\mu$-almost everywhere on $M$.

Let $K(x, \xi)=K^{\xi}(x),$ $x\in D$ , be the Martin kernel associated with $\xi\in M$.
Define, for $\alpha>0$ .

(3.3) $K_{\alpha}(x, \xi)=K_{\alpha}^{\xi}(x)=K^{\xi}(x)-\alpha\int_{D}G_{\alpha}^{0}(x, y)K^{\xi}(y)dy$ .
Put for $\xi,$ $\eta\in M,$ $\alpha>0$ ,

(3.4) $ U_{\alpha}(\xi, \eta)=\alpha(K^{\xi}, K_{\alpha}^{\eta})_{D}\leqq+\infty$ .
$U_{\alpha}(\xi, \eta)$ is non-decreasing in $\alpha$ and we put

(3.5) $ U(\xi, \eta)=\lim_{\alpha\rightarrow\perp\infty}U_{\alpha}(\xi, \eta)\leqq+\infty$ .

We call $U_{\alpha}$ and $U$ the Feller $kernels^{1)}$ . For functions $\varphi$ and $\psi$ on $M$, we
define

(3.6) $U_{\alpha}(\varphi, \psi)=\int_{M}\int_{M}U_{\alpha}(\xi, \eta)\varphi(\xi)\psi(\eta)\mu(d\xi)\mu(d\eta)$ ,

(3.7) $U(\varphi, \psi)=\int_{M}\int_{M}U(\xi, \eta)\varphi(\xi)\psi(\eta)\mu(d\xi)\mu(d\eta)$ .
Finally, we set for $\varphi\in L^{1}(M)$ ,

(3.8) $H\varphi(x)=\int_{M}K(x, \xi)\varphi(\xi)\mu(d\xi)$ , $x\in D$ ,

10) These kernels are symmetric $\mu$-almost everywhere (see [13] and footnote 15)).
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(3.9) $H_{\alpha}\varphi(x)=\int_{M}K_{a}(x, \xi)\varphi(\xi)\mu(d\xi)$ , $x\in D$ .

If $\varphi\in L^{1}(M)$ , then we have $\gamma(H\varphi)=\varphi^{11)}$ .
Here are two applications of Theorem 3.1.
THEOREM 3.2. Let $\varphi$ be a non-negative bounded measurable functions on

M. Then, it holds that

\langle 3.10) $U(\varphi, \varphi)=\mathcal{E}^{(0)}(H\varphi, H\varphi)$ .
Moreover, if $U(\varphi, 1)$ is finite, then $\varphi$ must vanish almost everywhere on $M$.

PROOF. It is evident that $H\varphi\in L^{2}(D)$ . Identity (3.10) follows from $U_{Q}(\varphi, \varphi)$

$=\alpha(H_{\alpha}\varphi, H\varphi)_{D}=\alpha(H\varphi-\alpha G^{0}{}_{\alpha}H\varphi, H\varphi)_{D}=\mathcal{E}_{\alpha}^{(0).0}(H\varphi, H\varphi)$ . Assume that $U(\varphi, 1)$ is
finite. Then $U(\varphi, \varphi)$ is finite, and identity (3.10) implies that $ H\varphi$ must be an
element of $g^{(0)}$ . Corollary to Theorem 3.1 now implies that $\gamma(H\varphi)=\varphi=0$ .

Theorem 3.2 will be used in the next section. In section 8, we will refer
to the following theorem.

Let $\tilde{D}=D\cup\{\infty\}$ be the one point compactification of $D$ . For a Borel
subset $A$ of the Martin boundary $M$, we set $\Pi_{\beta}A(x)=H_{\beta}\chi_{A}(x),$ $\chi_{A}(\xi)$ being the
indicator function of the set $A$ . Define a probability measure $V_{\beta}^{A}$ on $\tilde{D}$ by

(3.11) $\{$
$V_{\beta}^{A}(E)=\frac{\int_{E}\Pi A\beta(x)dx}{(\Pi A\beta’ 1)_{D}}V_{\beta}^{A}(\{\infty\})--0$

.
’ if $E$ is a Borel set of $D$

THEOREM 3.3. Suppose that $\mu(A)>0$ . As $\beta$ tends to infinity, the sequence
.of measures $V_{\beta}^{A}(dx)$ on $\tilde{D}=DU\{\infty\}$ converges weakly to the $\delta$ -measure con-
.centrated at $\{\infty\}$ .

PROOF. By virtue of Theorem 3.2, $\beta(\Pi_{\beta}A1)_{D}=U_{\beta}(\chi_{A}, 1)\rightarrow+\infty$ as $\beta$ tends
to infinity. Hence, it suffices to prove that, for each open set $E$ the closure of

which is compact in $D,$ $\beta\int_{B}\Pi_{\beta}A(x)dx$ is bounded in $\beta>0$ . Choose a non-nega-

tive $u\in C_{0}^{\infty}(D)$ with $u=1$ on the set $E$ . Let $v$ be an element of $C_{0}^{\infty}(D)$ which
is less than $H\chi_{A}$ everywhere on $D$ and equal to $H\chi_{A}$ on the support of $u$ .
Then,

$\beta\int_{E}\Pi_{\beta}A(x)dx\leqq\beta(\Pi_{\beta}Au)_{D}=\beta(H\chi_{A}, u)_{D}-\beta^{2}(G_{\beta}^{0}H\chi_{A}, u)_{D}$

$\leqq\beta(v, u)_{D}-\beta^{2}(G_{\beta}^{0}v, u)_{D}$ .
Owing to Theorem 3.1, the last term converges to $(v, u)_{D,1}$ as $\beta\rightarrow+\infty$ . The
proof of Theorem 3.3 is complete.

Turning to the study of boundary properties of $\alpha$ -harmonic functions, let

11) Cf. Doob [6].
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us introduce new spaces of functions on $M$. For a function $\varphi$ on $M$, we put

$U_{\alpha}\varphi(\xi)=\int_{M}U_{o}(\xi, \eta)\varphi(\eta)\mu(d\eta)$ . Define a new measure $\mu^{\prime}$ on $M$ by

(3.12) $\mu^{\prime}(A)=\int_{A}U_{1}1(\xi)\mu(d\xi)$

for the Borel set $A$ of $M$. For functions $\varphi$ and $\psi$ on $M$, set

(3.13) $\left\{\begin{array}{l}(\varphi,\psi)_{M}=\int_{JI}\varphi(\xi)\psi(\xi)\mu(d\xi)\\(\varphi,\psi)_{M}=\int_{M}\varphi(\xi)\psi(\xi)\mu’(d\xi)\end{array}\right.$

(3.14) $D(\varphi, \psi)=_{2}^{1}--\int_{M}\int_{M}(\varphi(\xi)-\varphi(\eta))(\psi(\xi)-\psi(\eta))U(\xi, \eta)\mu(d\xi)\mu(d\eta)$ .

Denote by $L^{2}(M)(L^{2}(M)^{\prime})$ the space of $measurable_{\&}^{1^{\prime}}functions\varphi$ on $M$ such as
$(\varphi, \varphi)_{M}<+\infty$ (resp. $(\varphi,$ $\varphi)_{M}^{\prime}<+\infty$). We set

(3.15) $H_{M}=$ { $\varphi;\varphi\in L^{2}(M)^{\prime}$ and $D(\varphi,$ $\varphi)<+\infty$ }.

$B(D)(B(M))$ will stand for the space of all bounded measurable functions on
$D$ (resp. on $M$).

The next lemma collects the basic relations among these spaces and norms.
LEMMA 3.1.
(i) $B(M)\subset L^{2}(M)^{\prime}\subset L^{2}(M)$ and there is a constant $C>0$ such that

(3.16) $(\varphi, \varphi)_{M}\leqq C(\varphi, \varphi)_{M}^{\prime}$ , for every $\varphi\in L^{2}(M)^{\prime}$ .
(ii) For $\varphi\in L^{2}(M)^{\prime}$ and $\alpha>0$ ,

(3.17) $0\leqq U_{a}(\varphi, \varphi)\leqq(\alpha\vee 1)(\varphi, \varphi)_{M}^{\prime}$ .
(iii) For $\varphi\in H_{M}$ and $\alpha>0$ ,

(3.18) $(\varphi, \varphi)_{M}^{\prime}\leqq(1\vee\frac{1}{\alpha})\{D(\varphi, \varphi)+U_{a}(\varphi, \varphi)\}$ .

PROOF. The first inclusion in assertion (i) follows from $(1_{M}, 1_{M})_{M}^{\prime}=(H1_{Mr}$

$H_{1}1_{M})_{D}\leqq the$ Lebesgue measure of $D^{12)}$ . $U_{1}1(\xi)$ is finite for $\mu$ -almost all $\xi\in M$.
It is lower semi-continuous and strictly positive everywhere on $M$. Hence, it
suffices to set $C=1/\inf_{\xi\in M}U_{1}1(\xi)$ to obtain estimate (3.16). Next, observe that

$U_{\alpha}1(\xi)$ is increasing and $\frac{1}{\alpha}U_{\alpha}1(\xi)$ is decreasing as $\alpha$ increases. The first and

second inequalities in (3.17) and inequality (3.18) are the consequences of the
following equalities (3.19), (3.20) and (3.21) respectively.

12) $1_{M}$ denotes the function which is identically one on $M$ .
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\langle 3.19) $U_{\alpha}(\varphi, \varphi)=\alpha(H_{\alpha}\varphi, H_{a}\varphi)_{D}+\alpha^{2}(G_{0+}^{0}H_{\alpha}\varphi, H_{\alpha}\varphi)_{D}$ ,

(3.20) $U_{\alpha}(\varphi, \varphi)+\frac{1}{2}\int_{M}\int_{M}(\varphi(\xi)-\varphi(\eta))^{2}U_{\alpha}(\xi, \eta)\mu(d\xi)\mu(d\eta)$

$=\int_{M}\varphi(\xi)^{2}U_{\alpha}1(\xi)\mu(d\xi)$ , $\varphi\in L^{2}(M)^{\prime}$ ,

(3.21) $D(\varphi, \varphi)+U_{\alpha}(\varphi, \varphi)=\frac{1}{2}\int_{M}\int_{M}(\varphi(\xi)-\varphi(\eta))^{2}$

$\{U(\xi, \eta)-U_{\alpha}(\xi, \eta)\}\mu(d\xi)\mu(d\eta)+\int_{JI}\varphi(\xi)^{2}U_{a}1(\xi)\mu(d\xi)$ , $\varphi\in H_{M}$ .

Now, denote by $BLD_{\alpha,h}\wedge$ the space of all $\alpha$ -harmonic functions belonging to
$BLD\wedge$ . It is easy to see that $BLD_{\alpha,h}\wedge$ is the orthogonal complement of $BLD_{0}$ in
the Hilbert space $(BLD\wedge, (, )_{D,1}+\alpha(, )_{D})$ .

Our final assertions in this section are as follows.
THEOREM 3.4. Fix an $\alpha>0$ .
(i) Every bounded $\alpha$ -harmonic function $u$ on $D$ has its boundary function

$\gamma u$ in $B(M)$ and $u(x)=H_{o}(\gamma u)(x),$ $\chi\in D$ .
(ii) Every function $u$ of $BLD_{\alpha,h}$ has its boundary function $\gamma u$ in $H_{M}$ and

$u(x)=H_{\alpha}(\gamma u)(x),$ $x\in D$ . Further, it holds that

(3.22) $(u, u)_{D,1}+\alpha(u, u)_{D}=D(\gamma u, \gamma u)+U_{\alpha}(\gamma u, \gamma u)$ .
(iii) For $\varphi\in L^{2}(M)^{\prime},$ $ H_{\alpha}\varphi$ has $\varphi$ as its boundary function. In particular, if

$\varphi\in H_{M}$ , then $ H_{\alpha}\varphi\in BLD_{\alpha,h}\wedge$ and equality (3.22) holds for $ u=H_{\alpha}\varphi$ and $\gamma u=\varphi$ .
(iv) For $ u\in BLD_{\alpha,h}\wedge$ , the following inequality holds.

\langle 3.23) $(\gamma u, \gamma u)_{M}^{\prime}\leqq(1\vee\frac{1}{\alpha})\{(u, u)_{D,1}+\alpha(u, u)_{D}\}$ ,

$\gamma u$ being the boundary function of $u$ .
PROOF. (i) set

\langle 3.24) $u_{1}=u+\alpha G_{0+}^{0}u$ .
$u_{1}$ is a bounded harmonic function. Hence, $u_{1}$ has its boundary function, say
$\varphi$, in $B(M)$ and $u_{1}(x)=H\varphi(x),$ $x\in D^{13)}$ . Since $\gamma(G_{0+}^{0}u)=0,$ $u$ has $\varphi$ as its boun-
dary function. By virtue of the equality $ u=u_{1}-\alpha G_{\alpha}^{0}u_{1}=H\varphi-\alpha G^{0}{}_{\alpha}H\varphi$ and
identity (3.3), we obtain $ u=H_{\alpha}\varphi$ .

(ii) For $ u\in BLD_{\alpha,h}\wedge$ , define $u_{1}$ by (3.24). Note that $G_{0+}^{0}$ is a bounded opera-
tor on $L^{2}(D)$ , so that $u_{1}\in L^{2}(D)$ . Therefore $G_{0+}^{0}u=G_{\alpha}^{0}u_{1}\in BLD_{0}$ (Theorem 3.1)
and $ u_{1}\in BLD\wedge$ . Hence we have

13) Cf. Doob [6].
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$(u_{1}, u_{1})_{D,1}+\alpha(u_{1}, u_{1})_{D}=(u, u)_{D,1}+\alpha(u, u)_{D}+(\alpha G_{0+}^{0}u, \alpha G_{0+}^{0}u)_{D,1}$

$+\alpha(\alpha G_{0+}^{0}u, \alpha G_{0+}^{0}u)_{D}=(u, u)_{D,1}+\alpha(u, u)_{D}+(\alpha G_{a}^{0}u_{1}, \alpha G_{0+}^{0}u)_{D_{2}1}$

$+\alpha(\alpha G_{\alpha}^{0}u_{1}, \alpha G_{0+}^{0}u)_{D}=(u, u)_{D,1}+\alpha(u, u)_{D}+(\alpha u_{1}, \alpha G_{0+}^{0}u)_{D}$ ,
so that

(3.25) $(u, u)_{D,1}+\alpha(u, u)_{D}=(u_{1}, u_{1})_{D,1}+\alpha(u_{1}, u)_{D}$ .
Owing to Doob [7] and Fukushima [13], $u_{1}$ has the boundary function (say $\varphi$)

in $L^{2}(M)$ with $(u_{1}, u_{1})_{D,1}=D(\varphi, \varphi)$ . Corollary Theorem 3.1 implies that $\gamma(G_{0+}^{0}u)$

$=0$ . Thus, in the same way as in the proof of statement (i), we have $\gamma u=\varphi$

and $ u=H_{a}\varphi$ . Identity (3.25) now implies (3.22). Further, in view of equality
(3.22) and the preceding lemma, $\varphi(=\gamma u)$ must be an element of $H_{M}$ .

(iii) By virtue of formulae (3.17) and (3.19), we see that $H_{\alpha}\varphi\in L^{2}(D)$ for
$\varphi\in L^{2}(M)^{\prime}$ . Hence, $G_{0+}^{0}(H_{\alpha}\varphi)\in BLD_{0}$ and $\gamma(H_{\alpha}\varphi)=\gamma(H\varphi)=\varphi$ . If, in addition,
$D(\varphi, \varphi)$ is finite, then $ u_{1}=H\varphi$ is BLD harmonic with $(u_{1}, u_{1})_{D,1}=D(\varphi, \varphi)$ ([7])

and identity (3.25) is valid for $ u=H_{\alpha}\varphi$ .
(iv) is only the restatement of Lemma 3.1 (iii).

\S 4. An expression of the symmetric resolvent density $G_{\alpha}(x, y)$ and a
decomposition of the Dirichlet space associated with $G_{a}(x, y)$ .

Throughout \S 4, 5 and 6, we assume that we are given a resolvent $G_{\alpha}(x, y)$

of $G:G_{\alpha}(x, y)=G_{\alpha}(x, y)+R_{\alpha}(x, y)$ is a conservative symmetric resolvent density
and $R_{\alpha}(x, y)$ satisfies the conditions $(G, a)$ and $(G, b)$ stated in the beginning
of section 1.

Our first task in this section is to give an expression of $R_{\alpha}f,$ $f\in B(D)$ ,
which is analogous to that of Feller [11].

For a function $\varphi$ on $M,$ $ H_{\alpha}\varphi$ defined by (3.9) can be rewritten in terms of
the measure $\mu^{\prime}$ (see (3.12)) as
(4.1) $H_{\alpha}\varphi(x)=H_{\alpha}^{x}\varphi=\int_{M}K_{\alpha}^{\prime}(x, \xi)\varphi(\xi)\mu^{\prime}(d\xi)$ , $x\in D$ ,

with the function $K_{\alpha}^{\prime}(x, \xi),$ $\alpha>0,$ $x\in D,$ $\xi\in M$, defined by

(4.2) $K_{\alpha}^{\prime}(x, \xi)=\left\{\begin{array}{l}K_{\alpha}(x,\xi)/U_{1}1(\xi) ifU_{1}1(\xi)<+\infty,\\0 ifU_{1}1(\xi)=+\infty.\end{array}\right.$

14) Theorem 1 of [13] states that $U(\xi, \eta)=\frac{\mathfrak{q}}{2}\theta(\xi, \eta)$ when $\xi$ and $\eta$ are exit

boundary points. Here, $\theta$ is Naim’s kernel [18] and $q$ denotes either $2_{\pi}$ (if $N=2$) or
$(N-2)\times$ { $area$ of the unit sphere}. Since $D$ is bounded, $\mu\cdot almost$ all points of $M$ are
exit (see footnote 15)) and Theorem 9.2 of [7] leads to this expression of the Dirichlet
integral of the harmonic function. For one dimensional case, this expression is trivially
true (see footnote 33)).
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Indeed, $U_{1}1(\xi)$ is strictly positive everywhere and finite almost everywhere on
$M$. For a signed measure $v(dy)$ on $D$ , let us put

(4.3) $\hat{H}_{\alpha}\nu(\xi)=\int_{D}K_{a}^{\prime}(x, \xi)\nu(dy)$ , $\xi\in M$ .
$H_{\alpha}$ brings signed measure on $D$ into functions on $M$. For $x\in D,\hat{H}_{\alpha}^{x}$ will stand
for $K_{a}^{\prime}(x, \xi)$ . When $\nu$ has a density function $ f\in B(D),\hat{H}_{\alpha}\nu$ will be denoted by
$\hat{H}_{\alpha}f$. Obviously, $\hat{H}_{\alpha}f(\xi)=\int_{D}\hat{H}_{\alpha}^{x}(\xi)f(x)dx$ .

LEMMA 4.1. (i) $\hat{H}_{\alpha}$ is a bounded linear operator from $B(D)$ into $B(M)$ , and

(4.4) $|\hat{H}_{\alpha}f(\xi)|\leqq(1\vee\frac{1}{\alpha})\sup_{x\in D}|f(x)|$

for $f\in B(D),$ $\xi\in M$.
(ii) The equation

(4.5) $\hat{H}_{\alpha}f-\hat{H}_{\beta}f+(\alpha-\beta)\hat{H}_{\alpha}G_{\beta}^{0}f=0$

holds for every $f\in B(D),$ $\alpha,$ $\beta>0$ .
(iii) The identity

(4.6) $(\alpha-\beta)(\varphi,\hat{H}_{\alpha}(H_{\beta}\psi))_{M}^{\prime}=U_{\alpha}(\varphi, \psi)-U_{\beta}(\varphi, \psi)$

holds for every $\varphi,$ $\psi\in B(M),$ $\alpha,$ $\beta>0$ .
PROOF. Note that $\mu$-almost all points $\xi\in M$ are exit in the sense that

$K_{\alpha}(x, \xi)>0$ for some $\alpha>0$ and some $x\in D^{16)}$ . $U_{\alpha}(\xi, \eta)$ is symmetric if $\xi$ and

$\eta$ are exit ([13; Lemma 2]). Therefore, $\int_{D}K_{\alpha}^{\prime}(y, \xi)dy=\hat{H}_{\alpha}(H1)(\xi)$ is either

$\frac{1}{\alpha}\frac{U_{\alpha}1(\xi)}{U_{1}1(\xi)}$ or zero.

Inequality (4.4) follows from this. The definition (3.3) of $K_{\alpha}(x, \xi)$ and the
resolvent equation for $G_{\alpha}^{0}$ lead to equation (4.5) for bounded $f$ with compact
support. Identity (4.5) is valid for every $f\in B(D)$ by means of the bounded
convergence theorem. Identity (4.6) follows from (3.3) and (4.5).

Now, let us state a representation theorem for

$R_{\alpha}f(x)=\int_{D}R_{\alpha}(x, y)f(y)dy$ , $f\in B(D)$ .

Set $A(M)=\hat{H}_{\alpha}(B(D))$ for an $\alpha>0$ . In view of the preceding lemma, $A(M)$ is
independent of $\alpha>0$ and it is a linear subset of $B(M)$ .

To avoid confusion, we denote by $1_{D}$ (resp. $1_{M}$) the function on $D$ (resp. $M$)
which is identically unity there. Note that $1_{M}$ is, up to a set of $\mu$-measure

15) Let $E$ be the set of all non-exit boundary points and put $u=H\chi_{E}$ . Then $\alpha G_{a}^{0}u$

$=u$ for every $\alpha>0$ . Letting $\alpha$ tend to zero, we obtain $u=0$ and $\mu(E)=0-$
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zero, an element of $A(M)$ because of $ 1_{M}=\hat{H}_{1}1_{D}\mu$-almost everywhere.
THEOREM 4.1. For each $\alpha>0$ , the function $R_{\alpha}f,$ $f\in B(D)$ , is expressed as

(4.7) $R_{\alpha}f(x)=H_{\alpha}^{x}\tilde{R}^{\alpha}(\hat{H}_{\alpha}f)$ , $x\in D$ ,

with a non-negative linear operator $\tilde{R}^{\alpha}$ from $A(M)$ into $L^{\infty}(M)$ satisfying the
following conditions:

(4.8) $\mu- ess\sup_{\xi\in M}|\tilde{R}^{\alpha}\varphi(\xi)|\leqq(1\vee\frac{1}{\alpha})\sup_{\xi\in JI}|\varphi(\xi)|$ , $\varphi\in A(M)$ ,

(4.9) $(\varphi,\tilde{R}^{\alpha}\psi)_{M}^{\prime}=(\tilde{R}^{\alpha}\varphi, \psi)_{M}^{\prime}$ , $\varphi,$ $\psi\in A(M)$

(4.10) $\lim_{\alpha\rightarrow+\infty}(1_{M},\tilde{R}^{\alpha}1_{M})_{M}^{\prime}=0$ .

PROOF. On account of the conditions $(G, a)$ and $(G, b)$ , for each $x\in D$ ,
$R_{\alpha}(x, y)$ is bounded and $\alpha$ -harmonic in $y\in D$ . By Theorem 3.4 (i), there exists
a boundary value

(4.11) $R_{\alpha}(x, \xi)=fine-\lim_{y\rightarrow\xi}R_{\alpha}(x, y)$

for $\mu$-almost all $\xi\in M$ and

(4.12) $R_{\alpha}(x, y)=\int_{M}R_{\alpha}(x, \xi)\hat{H}_{\alpha}^{y}(\xi)\mu^{\prime}(d\xi)$ for every $y\in D$ .
We set for $\varphi\in A(M)$

\langle 4.13) $R^{\alpha}\varphi(x)=\int_{M}R_{\alpha}(x, \xi)\varphi(\xi)\mu^{\prime}(d\xi)$ .

For any $\varphi\in A(M),$ $R^{a}\varphi(x)$ is bounded and $\alpha$ -harmonic on $D$ . Indeed, $\varphi$ can be
written as $\hat{H}_{\alpha}f,$ $f\in B(D)$ , and, in view of identity (4.12), $ R^{\alpha}\varphi$ is expressed with
this $f$ as
(4.14) $R^{\alpha}\varphi(x)=R_{\alpha}f(x)$ , $x\in D$ .
Thus, owing to Theorem 3.4 (i), there is a well defined function

(4.15) $\tilde{R}^{\alpha}\varphi=\gamma(R^{\alpha}\varphi)$ , $\varphi\in A(M)$

and this $\tilde{R}^{\alpha}$ is a non-negative linear operator from $A(M)$ into $L^{\infty}(M)$ . Since
$ 1_{M}=\hat{H}_{1}1_{D}\leqq(\alpha\vee 1)\hat{H}_{\alpha}1_{D}\mu$-almost everywhere, we see by (4.14) that $R^{\alpha}1_{M}(x)$

$\leqq(\alpha\vee 1)R_{\alpha}1_{D}(x)\leqq 1\vee\frac{1}{\alpha}$ , $x\in D$ , and that $\tilde{R}^{\alpha}1_{M}(\xi)\leqq 1\vee\frac{1}{\alpha}\mu$-almost every-
where, which implies the estimate (4.8). Equality (4.9) is an immediate con-
sequence of the expression (4.7) and the symmetry of $R_{\alpha}(x, y)$ . Let us prove
\langle 4.10). We have for all $\alpha>0$

(4.16) $ U_{\alpha}(\partial^{\alpha}1_{M}, 1_{M})=(1_{M}, 1_{M})_{M}^{\prime}<+\infty$ ,

because the left-hand side of (4.16) is equal to



Boundary conditions for multi.dimensional Brownian motions 73

$\alpha(\tilde{R}^{\alpha}1_{M},\hat{H}_{a}1_{D})_{M}^{\prime}=(1_{M}, \alpha\tilde{R}^{o}(\hat{H}_{\alpha}1_{D}))_{M}^{\prime}=(1_{M}, \gamma(\alpha R_{\alpha}1_{D}))_{M}^{\prime}$ .
Let $\{\alpha_{n}, n=1, 2, \}$ be an arbitrary sequence of real numbers increasing to
infinity. Then ft $\alpha_{n1_{M}(\xi)}$ decreases to a non-negative function $\varphi(\xi)$ for every
$\xi\in M$ except on a set of $\mu$ -measure zero. We set $\varphi(\xi)=0$ on the exceptional
set. From (4.16), we have $U_{a}(\varphi, 1_{M})\leqq(1_{M}, 1_{M})_{M}^{\prime}$ for all $\alpha>0$ . Letting $\alpha$ tend
to infinity, we obtain $ U(\varphi, 1_{M})<+\infty$ . Theorem 3.2 now implies that $\varphi$ vanishes
almost everywhere. Therefore, $\lim_{n\rightarrow+\infty}(1_{M},\tilde{R}^{\alpha_{n}}1_{M})_{M}^{\prime}=(1_{M}, \varphi)_{M}^{\prime}=0$ , ccmpleting the
proof of (4.10).

Next, let $(g_{D}, \mathcal{E})$ be the Dirichlet space associated with our resolvent den-
sity $G_{\alpha}(x, y)=G_{\alpha}^{0}(x, y)+R_{\alpha}(x, y)$ . Let us represent $(9^{i_{D}}, \mathcal{E})$ as a direct sum of
a potential part and an $\alpha$ -harmonic part. Our procedure is based on Theorem
4.1 and we will never use any classical tool such as Green’s formula.

Put for $\alpha>0$ .
(4.17) $9^{*}=\{G_{\alpha}^{0}f, f\in B(D)\}$

$\ovalbox{\tt\small REJECT}_{a}^{*}=\{R_{\alpha}f, f\in B(D)\}$ .
Note that $q*is$ independent of $\alpha>0$ . Let us show the following basic lemma.

LEMMA 4.2. (i) $gr*\subset g_{D}$ and

$e(u, u)=e^{(0)}(u, u)$ for $u\in q*$ .
Here, $\mathcal{E}^{(0)}$ is the norm for the Dirichlet space $q_{D}^{(0)}$ associated with the resol-

vent density $G_{\alpha}^{0}(x, y)$ .
(ii) For each $\alpha>0,$ $g*and\ovalbox{\tt\small REJECT}_{\alpha}^{*}$ are orthogonal with respect to the inner

product
$\mathcal{E}^{\alpha}(u, v)=\mathcal{E}(u, v)+\alpha(u, v)_{D}$ .

PROOF. (i) Set $u=G_{1}^{0}f,$ $f\in B(D)$ . Then $u\in L^{2}(D)$ and

$8_{\beta}^{0}(u, u)=\beta(u-\beta G_{\beta}^{0}u, u)_{D}-\beta^{2}(R_{\beta}u, u)_{D}$

$=\mathcal{E}_{\beta}^{(0).0}(u, u)-\beta^{2}(R_{\beta}u, u)_{D}$ .
On the other hand, by virtue of Theorem 4.1 and Lemma 4.1,

$\beta^{2}(R_{\beta}u, u)_{D}=\beta^{2}(H_{\beta}\tilde{R}^{\beta}(\hat{H}_{\beta}G_{1}^{0}f), G_{1}^{0}f)_{D}=\beta^{2}(\tilde{R}^{\beta}(\hat{H}_{\beta}G_{1}^{0}f),\hat{H}_{\beta}G_{1}^{0}f)_{M}^{\prime}$

$=\frac{\beta^{2}}{(\beta-1)^{2}}(\tilde{R}^{\beta}\varphi_{\beta}, \varphi_{\beta})_{M}^{\prime}$, with $\varphi_{\beta}=(\hat{H}_{1}-\hat{H}_{\beta})f$ .

By Theorem 4.1, we have

$|(\tilde{R}^{\beta}\varphi_{\beta}, \varphi_{\beta})_{M}^{\prime}|\leqq(\tilde{R}^{\beta}1_{M}, 1_{M})_{M}^{\prime}(\sup_{\subset x^{\prime}D}|f(x)|)^{z_{\overline{\beta\rightarrow+\infty}}}0$ .
Thus, $u\in q_{D}$ and $\mathcal{E}(u, u)=\mathcal{E}^{(0)}(u, u)$ .
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(ii) Owing to the preceding assertion (i), we have for $f,$ $g\in B(D)$ that

$\mathcal{E}^{\alpha}(G_{\alpha}^{0}f, R_{a}g)=\mathcal{E}^{\alpha}(G_{\alpha}^{0}f, G_{\alpha}g)-\mathcal{E}^{\alpha}(G_{\alpha}^{0}f, G_{\alpha}^{0}g)$

$=(G_{\alpha}^{0}f, g)_{D}-\mathcal{E}^{(0).\alpha}(G_{\alpha}^{0}f, G_{\alpha}^{0}g)$

$=(G_{\alpha}^{0}f, g)_{D}-(G_{\alpha}^{0}f, g)_{D}=0$ .
The proof of Lemma 4.2 is complete.

According to Lemma 2.2, functions

$\{G_{\alpha}f=G_{a}^{0}f+R_{\alpha}f, f\in B(D)\}$ (resp. $\{G_{\alpha}^{0}f,$ $f\in B(D)\}$ )

are dense in the Hilbert space $\{S^{i_{D}}, \mathcal{E}^{\alpha}\}$ (resp. $\{ff_{D}^{(0)},$ $\mathcal{E}^{(0).\alpha}\}$ ). Hence, we im-
mediately obtain the next theorem from Lemma 4.2.

THEOREM 4.2. (i) $ff_{D}^{(0)}\subset \mathscr{Z}_{D}$ and

$\mathcal{E}(u, u)=\mathcal{E}^{(0)}(u, u)$ for $u\in \mathscr{Z}_{D}^{(0)}$ .
(ii) For each $\alpha>0$ , the Hilbert space $(gr_{D}\mathcal{E}^{\alpha})$ can be decomposed as a

direct sum:
$\mathscr{Z}_{D}=g_{D}^{(0)}\oplus\ovalbox{\tt\small REJECT}_{\alpha}$ ,

$\ovalbox{\tt\small REJECT}_{\alpha}$ being the closure of $\{R_{\alpha}f, f\in B(D)\}$ in this space.
In order to refine Theorem 4.2, let us introduce the space
(4.18) $g=$ { $u\in q_{D}$ ; $u$ is fine continuous quasi-everywhere on $D$ }.
We will call this the refinement of the Dirichlet space $g_{D}$ . We, have then
THEOREM 4.3. (i) For each function $u$ of $g_{D}$ , there exists a function of $q$

which coincides with $u$ almost everywhere on $D$ .
(ii) $ g^{(0)}\subset$ EY and $\mathcal{E}(u, u)=\mathcal{E}^{(0)}(u, u),$ $u\in g^{(0)},$ $9^{i^{(0)}}$ being the refinement of

the space $gD$)
$((3.1))$ .

(iii) For each $\alpha>0$ , the space $(q, \mathcal{E}^{\alpha})$ is represented as
$S^{\gamma}=\mathfrak{H}^{(0)}\oplus\ovalbox{\tt\small REJECT}_{\alpha}$ ,

with $\ovalbox{\tt\small REJECT}_{\alpha}=$ { $u\in g;u$ is $\alpha$ -harmonic on $D$ }. $R_{\alpha}(B(D))$ is dense in $(\ovalbox{\tt\small REJECT}_{\alpha}, \mathcal{E}^{\alpha})$ .
PROOF. Let $\ovalbox{\tt\small REJECT}_{\alpha}$ be the space of Theorem 4.2 (ii). Any function in $\ovalbox{\tt\small REJECT}_{\alpha}$ is

$\alpha- harmonic^{16)}$ , and so, continuous on $D$ . Hence, in view of Theorem 3.1 (i) and
Theorem 4.2, we can see that statements (i) and (ii) of the present theorem
hold and that $g=9^{(0)}\oplus\ovalbox{\tt\small REJECT}_{\alpha}$ . Take any $\alpha$ -harmonic function $u$ of $q$ and de-
compose $u$ as $u=u^{(1)}+u^{(2)},$ $u^{(1)}\in q^{(0)},$ $u^{(2)}\in\ovalbox{\tt\small REJECT}_{\alpha}$ . Then, $u^{(1)}$ is $\alpha$-harmonic and
belon$gs$ to the space $BLD_{0}$ (Theorem 3.1 $(ii)$). Hence, $ u^{(1)}\in BLD_{0}\cap BLD_{\alpha,h}\wedge$ and
$u^{(1)}=0$ . This proves the last assertion of Theorem 4.3.

16) Any $u\in\ovalbox{\tt\small REJECT}_{a}$ is a limit of $\alpha$ -harmonic functions $R_{\alpha}f_{n},$ $f_{n}\in B(D)$ , in $L^{2}(D)$ . Hence,
$R_{\alpha}f_{n}(x)$ converges to $u(x)$ uniformly on each compact subset of $D$ and $u$ is $\alpha$ -harmonic
(see [15; Lemma 2.2]).
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\S 5. The Dirichlet space $(\mathcal{F}_{M}, \mathcal{E}_{M})$ induced by $(\mathcal{H}_{\alpha}, \mathcal{E}^{a})$ .
In this section, the Hilbert space $(.glr_{\alpha}, c^{\alpha})$ appeared in Theorem 4.3 will be

identified with a Dirichlet space formed by functions on the Martin boundary
$M$.

For this purpose, we will employ the next theorem due to T. Watanabe,
which permits us to conclude that each function $u$ of $sit_{\alpha}$ has its boundary
function $\gamma u$ in $L^{2}(M)$ ‘ and that $u=H_{\alpha}(\gamma u)$ .

Take any symmetric Brownian resolvent $\{\hat{G}_{\alpha}, \alpha>0\}$ (see the final part of
section 1 for the definition) and consider its associated Dirichlet space $(\hat{\mathscr{Z}},\hat{\mathcal{E}})$

relative to $L^{2}(D)$ in the sence of section 2. Set $\hat{\ovalbox{\tt\small REJECT}}_{\alpha}=$ { $u\in\hat{\mathscr{Z}}$ ; $u$ is $\alpha$ -harmonic}.
Then,

THEOREM 5.1 (T. Watanabe).

$\hat{\ovalbox{\tt\small REJECT}}_{\alpha}\subset BLD_{\alpha,h}\wedge$ and $\hat{\mathcal{E}}(u, u)\geqq(u, u)_{D,1}$ for $u\in\hat{\ovalbox{\tt\small REJECT}}_{\alpha}$ .
Combining this with Theorem 3.4 (ii), we are led to
$CoROLLARY$ . Every function $u$ of $\hat{\ovalbox{\tt\small REJECT}}_{\alpha}$ has its boundary function $\gamma u$ in $H_{M}$

(consequently in $L^{2}(M)$ ‘) and $u(x)=H_{\alpha}(\gamma u)(x),$ $x\in D$ . Further we have, for
$u\in\hat{\ovalbox{\tt\small REJECT}}_{\alpha},\hat{\mathcal{E}}^{\alpha}(u, u)\geqq D(\gamma u, \gamma u)+U_{\alpha}(\gamma u, \gamma u)$ .

Let us sketch the proof of Theorem 5.1. Take a function $u\in\hat{\mathscr{X}}_{a}$ and set
$\hat{\mathcal{E}}_{\beta}^{0}(u, u)=\beta(u-\beta\hat{G}_{\beta}u, u)_{D}$ . Then, by definition, $\hat{\mathcal{E}}(u, u)=\lim_{\beta\rightarrow+\infty}\hat{\mathcal{E}}_{\beta}^{0}(u, u)<+\infty$ . It

suffices for us to derive the inequality $\lim_{\beta\rightarrow+\infty}\hat{\mathcal{E}}_{\beta}^{0}(u, u)\geqq(\frac{1}{4}\Delta(u^{2}),$ $1)_{D}$– $\alpha(u, u)_{D}$ ,

since the right-hand side is nothing but $(u, u)_{D,1}$ . $\hat{\mathcal{E}}_{\beta}^{0}(u, u)$ can be expressed as
$\hat{\mathcal{E}}_{\beta^{0}}(u, u)=\frac{1}{2}(f_{\beta}, 1)_{D}$ , with $f_{\beta}=2\beta u(u-\beta\hat{G}_{\beta}u)-\beta(u^{2}-\beta\hat{G}_{\beta}u^{2})+\beta u^{2}(1-\beta\hat{G}_{\beta}1)_{D}$ . It

is easy to see that $f_{\beta}$ is a non-negative function on $D$ for each $\beta>0$ . On the
other hand, $\{\hat{G}_{\beta}, \beta>0\}$ , being a Brownian resolvent, has the following property.

If both $|g|$ and $\hat{G}_{\beta}g$ are locally integrable, then $\beta(g-\beta\hat{G}_{\beta}g)_{\beta\rightarrow+\infty}\rightarrow\frac{1}{2}\Delta g$ in the

sence of Schwartz’s distribution. Therefore, $f_{\beta}$ converges (as distribution) to
$2u(-\frac{1}{2}\Delta u)+\frac{1}{2}\Delta(u^{2})$ and we have, for any $h\in C_{0}^{\infty}(D)$ such as $0\leqq h\leqq 1$ ,

$\lim_{\beta\rightarrow+\infty}\hat{\mathcal{E}}_{\beta}^{0}(u, u)\geqq\frac{1}{2}(\frac{1}{2}\Delta(u^{2})-u\cdot\Delta u,$ $h)_{D}$ . The desired inequality follows from

this.
Now, let us consider the space $(\ovalbox{\tt\small REJECT}_{a}, \mathcal{E}^{\alpha}),$ $\alpha>0$ , of Theorem 4.3. Our main

assertions are as follows.
THEOREM 5.2. (i) For each $\alpha>0$ , any function $u$ of $\ovalbox{\tt\small REJECT}_{\alpha}$ has its boundary

function $\gamma u$ in $L^{2}(M)^{\prime}$ and $u=H_{\alpha}(\gamma u)$ .
(ii) The function space
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(5.1) $g_{M}=\gamma \mathscr{K}_{\alpha}=\{\varphi;\varphi=\gamma u, u\in\ovalbox{\tt\small REJECT}_{\alpha}\}$

is independent of $\alpha>0$ . Set for $\varphi,$
$\psi\in \mathscr{Z}_{M}$ ,

\langle 5.2) $\mathcal{E}_{M}^{[\alpha]}(\varphi, \psi)=\mathcal{E}^{\alpha}(H_{\alpha}\varphi, H_{\alpha}\psi)$

\langle 5.3) $\mathcal{E}_{M}(\varphi, \psi)=\mathcal{E}_{M}^{[\alpha]}(\varphi, \psi)-U_{\alpha}(\varphi, \psi)$

then $\mathcal{E}_{M}(\varphi, \psi)$ is independent of $\alpha>0$ ,
(iii) For each $\alpha>0$ , the space $(\mathcal{G}_{M}, \mathcal{E}_{M}^{[\alpha]})$ is a Dirichlet space relative to

$L^{2}(M)^{\prime}$ .
(iv) The space $(\mathscr{Z}_{M}, \mathcal{E}_{M})$ is a Dirichlet space relative to $L^{2}(M)^{\prime}$ and it

satisfies the conditions (B. 1), (B. 2) and (B. 3) stated in section 1. Moreover,

the bilinear form $N(, )$ in (B. 2) and (B. 3) is given by the following formula.

\langle 5.4) $N(\varphi, \varphi)=\lim_{n\rightarrow+\infty}\lim_{\alpha\rightarrow+\infty}\lim_{\mu\rightarrow\vdash\infty}\frac{1}{2}\mu^{2}\int_{M}\int_{\mathbb{J}J}\tilde{R}_{u,\prime}^{a}(d\xi, d\eta)(\varphi_{n}(\xi)-\varphi_{n}(\eta))^{2}$ .

Here, $\tilde{R}^{\cap}(d\xi, d\eta)$ is a Radon measure on $M\times M$ satisfying

\langle 5.5) $\int_{M}\int_{M}\tilde{R}_{\mu}^{\alpha}(d\xi, d\eta)\varphi(\xi)\cdot\psi(\eta)=(\tilde{R}_{\alpha,\prime}^{\alpha}\varphi, \psi)_{M}^{\prime}$ ,

$\varphi,$ $\psi\in L^{2}(M)^{\prime}$ , for the symmetric resolvent $\{\tilde{R}_{\mu}^{\alpha}, \mu>0\}$ on $L^{2}(M)^{\prime}$ associated with
the Dirichlet space $(\mathscr{Z}_{M}, \mathcal{E}_{M}^{[\alpha]})$ . $\varphi_{n}$ is a truncation of $\varphi\in F_{M}$ : $\varphi=$ ( $\varphi$ A $n$) $\vee(-n)$ .

PROOF OF THEOREM 5.2. The first assertion is involved in Corollary to
Theorem 5.1, since $\ovalbox{\tt\small REJECT}_{\alpha}$ of Theorem 4.3 consists of all $\alpha$-harmonic functions in
$(\mathscr{Z}_{D}, \mathcal{E})$ , which is a Dirichlet space associated with a symmetric Brownian
resolvent having a density function in $G$ .

The first part of (ii) is a consequence of Theorem 4.3 and Corollary
to Theorem 3.1. Indeed, we have $g_{M}=\gamma(9^{(0)}\oplus\ovalbox{\tt\small REJECT}_{\alpha})=\gamma^{q}$ , which is independent
of $\alpha>0$ .

Now, let us prove the remaining assertions of Theorem 5.2 by a series of
Lemmas.

The second part of statement (ii) is contained in Lemma 5.1. The third
assertion will be proved in Lemma 5.3 by making use of Lemma 5.2. The
last assertion is just Lemma 5.4.

LEMMA 5.1. (i) If $\varphi_{n}\in S^{7_{M}}$ converges to $\varphi\in g_{M}$ in norm $\mathcal{E}_{M}^{[a]}$ , then $U_{a}(\varphi_{n}$ ,
$\varphi_{n})$ converges to $U_{\alpha}(\varphi, \varphi)$ .

(ii) $\mathcal{E}_{M}(\varphi, \psi)$ defined by (5.3) for $\varphi,$ $\psi\in g_{M}$ is independent of $\alpha>0$ .
(iii) $1_{M}\in \mathscr{Z}_{M}$ and $\mathcal{E}_{M}(1_{M}, \varphi)=0$ for any $\varphi\in gr_{M}$ .
PROOF. (i) From the definition of $\mathcal{E}_{M}^{[\alpha]}(, )$ , it follows that $H_{\alpha}\varphi_{n}$ converges

to $ H_{\alpha}\varphi$ in $L^{2}(D)$ . Then, on account of identity (3.19) and the estimate $(u, G_{0+}^{0}u)_{D}$

$\leqq\sup_{x\in D}G_{0+}^{0}1(x)\cdot(u, u)_{D}$ for $u\in L^{2}(D)$ , we can see that statement (i) is valid.

17) Cf. footnote 16).
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(ii) The desired identity is

$\mathcal{E}_{M}^{[\alpha]}(\varphi, \varphi)-U_{\alpha}(\varphi, \varphi)=\mathcal{E}_{M}^{[\beta]}(\varphi, \varphi)-U_{\beta}(\varphi, \varphi)$

for $\alpha,$ $\beta>0$ and $\varphi\in \mathscr{Z}_{M}$ . Set $\tilde{\Re}=\gamma(R_{a}(B(D)))$ , then Si2 $=\gamma(G_{\alpha}(B(D)))$ and this
is independent of $\alpha>0$ . Further, $\tilde{\Re}$ is dense in the space $(\mathscr{Z}_{M}, \mathcal{E}_{M}^{[\alpha]})$ for an
arbitrary $\alpha>0$ , since $R_{\alpha}(B(D))$ is dense in $(\ovalbox{\tt\small REJECT}_{\alpha}, \mathcal{E}^{a}(, ))$ . Therefore, taking into
account of the first assertion of this lemma, it suffices for us to show the
above identity for $\varphi\in\tilde{R}$ . Let $\varphi$ be $\gamma(R_{\alpha}f)$ with an $\alpha>0$ and an $f\in B(D)$ .
Then, it holds that

(5.6) $\mathcal{E}_{M}^{[\alpha]}(\varphi, \psi)=\mathcal{E}^{\alpha}(R_{\alpha}f, H_{\alpha}\psi)=\mathcal{E}^{\alpha}(G_{\alpha}f, H_{\alpha}\psi)$

$=(f, H_{\alpha}\psi)_{D}=(\hat{H}_{\alpha}f, \psi)_{M}^{\prime}$ for any $\psi\in \mathscr{Z}_{M}$ .
On the other hand, the resolvent equation for $G_{\alpha}$ implies that $\varphi$ can be ex-
pressed as $\gamma(R_{\beta}g)$ with $\beta>0$ and

(5.7) $ g=f+(\beta-\alpha)G_{a}^{0}f+(\beta-\alpha)H_{\alpha}\varphi$ .
Hence, equations (4.5), (4.6) and (5.6) lead us to

$\mathcal{E}_{M}^{\subset\beta 1}(\varphi, \varphi)-U_{\beta}(\varphi, \varphi)=(\hat{H}_{\beta}g, \varphi)_{M}^{\prime}-U_{\beta}(\varphi, \varphi)$

$=(\hat{H}_{\alpha}f, \varphi)_{M}^{\prime}-U_{\alpha}(\varphi, \varphi)=\mathcal{E}_{M}^{[\alpha]}(\varphi, \varphi)-U_{\alpha}(\varphi, \varphi)$ .
(iii) From equation (5.6) and the identity $\gamma(\alpha R_{\alpha}1_{D})=\gamma(\alpha G_{\alpha}1_{D})=1_{M}$ , we have

$\mathcal{E}_{M}^{[\ell\ell]}(1_{M}, \psi)=\alpha(\hat{H}_{\alpha}1_{D}, \psi)_{M}^{\prime}=\alpha(H1_{M}, H_{\alpha}\psi)_{D}=U_{\alpha}(1_{M}, \psi),$ $\psi\in q_{M}$ . The proof of
Lemma 5.1 is complete.

Next, set for $\alpha,$
$\lambda>0$ and $u,$ $v\in q$ ,

(5.8) $\mathcal{E}^{\alpha,\lambda}(u, v)=\mathcal{E}^{\alpha}(u, v)+\lambda(\gamma u, \gamma v)_{M}^{\prime}$ .
LEMMA 5.2. Let us consider the space $(9, \mathcal{E}^{\alpha.\lambda}(, ))$ with $\alpha>0$ and $\lambda>0$

fixed.
(i) It is a real Hillert space.

(ii) It is decomposed as a direct sum:
$\mathcal{G}=S^{i^{(0)}}\oplus\ovalbox{\tt\small REJECT}_{a}$ .

Especially $\ovalbox{\tt\small REJECT}_{\alpha}$ is a closed subspace.
(iii) If a function $v$ on $D$ is a normal contraction of a function $u\in S^{i}$ ,

then $v\in gr$ and $\mathcal{E}^{\alpha.\lambda}(v, v)\leqq \mathcal{E}^{\alpha.\lambda}(u, u)$ .
PROOF. Theorem 4.3 and Corollary to Theorem 3.1 imply that each ele-

ment $u$ of EY is a sum of functions $u^{(0)}\in q^{(0)}$ and $u^{(1)}\in\ovalbox{\tt\small REJECT}_{\alpha}$ and that $\mathcal{E}^{\alpha.\lambda}(u^{(0)}$ ,
$u^{C1)})=\mathcal{E}^{\alpha}(u^{(0)}, u^{(1)})+\lambda(\gamma u^{(0)}, \gamma u^{(1)})_{M}^{\prime}=0$ .

Since $\mathcal{E}^{\alpha,\lambda}(u, u)=\mathcal{E}^{\alpha}(u, u)$ for $u\in g^{(0)}$ , the space $g^{(0)}$ is closed in norm $\mathcal{E}^{\alpha.\lambda}$ .
Therefore, for the proof of assertions (i) and (ii), it suffices to show that $\ovalbox{\tt\small REJECT}_{\alpha}$
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is complete with metric $\mathcal{E}^{\alpha,\lambda}$ . Suppose that $\{u_{n}\}$ forms a Cauchy sequence in
$\{.gt_{\alpha}, \mathcal{E}^{\alpha.\lambda}\}$ . Then, $u_{n}$ converges to a function $u\in\ovalbox{\tt\small REJECT}_{\alpha}$ with metric $\mathcal{E}^{\alpha}$ and $\gamma u_{n}$

converges in $L^{2}(M)^{\prime}$-sence to a function $\varphi$ . Since $u_{n}$ converges in $L^{2}(D)$-sence,
the convergence is the pointwise sencei8). On the other hand, $u_{n}(x)=H_{\alpha}(\gamma u_{n})(x)$

$\rightarrow H_{\alpha}\varphi(x)$ for each $x\in D$ . Hence $ u=H_{\alpha}\varphi$ and $\gamma u=\varphi$ . The last statement
$ n\rightarrow+\infty$

of Lemma 5.2 follows from the facts that $(g, \mathcal{E})$ is a Dirichlet space and that
$|\gamma v(\xi)|\leqq|r^{u(\xi)}|$ for $\mu$ -almost all $\xi\in M$.

We will mention here the consequences of Lemma 5.2. Let $\varphi$ be in $L^{2}(M)^{\prime}$ .
Owing to Lemma 5.2 (i), there exists a unique element $u_{\varphi}^{\alpha.\lambda}$ of $g$ such that
the equation

\langle 5.9) $\mathcal{E}^{\alpha.\lambda}(u_{\varphi}^{\alpha.l}, v)=(\varphi, \gamma v)_{M}^{\prime}$ holds for all $v\in q$ .
By virtue of Lemma 5.2 (ii), we can conclude that

(5.10) $u_{\varphi}^{\alpha.\lambda}\in\ovalbox{\tt\small REJECT}_{\alpha}$ ,

since (5.9) implies $\mathcal{E}^{\alpha,\lambda}(u_{\varphi}^{\alpha.\lambda}, v)=0$ for all $v\in g^{(0)}$ . Furthermore, $u_{\varphi}^{\alpha.\lambda}$ enjoys the
property:

(5.11) $0\leqq u_{\varphi}^{\alpha,\lambda}\leqq 1$ if $0\leqq\varphi\leqq 1$ .
We can see this from the final statement of Lemma 5.2 and the fact that
$u_{\varphi}^{\alpha.\lambda}$ is the unique element of $S^{7}$ minimizing the functional $\Phi(v)=\mathcal{E}^{\alpha}(v, v)$

$+\lambda(\gamma v\frac{1}{\lambda}\varphi,$ $\gamma v-\div\varphi)_{M}^{\prime}$.
Set, for $\varphi\in L^{2}(M)^{\prime}$ ,

(5.12) $\tilde{R}_{\lambda}^{\alpha}\varphi=\gamma u_{\varphi}^{\alpha.\lambda}(\in 9_{M})$ ,

then we have
LEMMA 5.3. Fix an $\alpha>0$ .
(i) For each $\lambda>0$ and $\varphi\in L^{2}(M)^{\prime},\tilde{R}_{\lambda}^{\alpha}\varphi$ defined by (5.12) is the unique ele-

ment of $q_{M}$ for which the equation

(5.13) $\mathcal{E}_{M}^{[\alpha]}(\tilde{R}_{\lambda}^{\alpha}\varphi, \psi)+\lambda(\tilde{R}_{\lambda}^{\alpha}\varphi, \psi)_{M}^{\prime}=(\varphi, \psi)_{M}^{\prime}$

holds for every $\psi\in q_{M}$ .
(ii) $\{\tilde{R}_{\lambda}^{\alpha}, \lambda>0\}$ is a symmeiric resolvent on $L^{2}(M)^{\prime}$ (see Definition 2.1.).

(iii) $(S^{\gamma_{M}}, \mathcal{E}_{M}^{[\alpha]})$ is just the Dirichlet space relative to $L^{2}(M)^{\prime}$ associated with
the above resolvent. In other words, $\varphi\in L^{2}(M)^{\prime}$ is an element of $S^{i_{M}}$ if and
only if $\lim \mathcal{E}_{M\ell}^{[\alpha,]}(\varphi, \varphi)$ is finite, and in this case the limit necessarily coincides

with $\mathcal{E}_{N}^{[\alpha]}(\varphi^{1\infty}\varphi)\mu\rightarrow$ . Here,

(5.14) $\mathcal{E}_{M\mu}^{[\alpha,]}(\varphi, \psi)=\mu(\varphi-\mu\tilde{R}_{\mu}^{\alpha}\varphi, \psi)_{M}^{\prime}$ .

18) Cf. footnote 16).
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PROOF. (i) By (5.9), (5.10) and (5.12), the equation $\mathcal{E}^{o.\lambda}(H_{a}\tilde{R}_{\lambda}^{\alpha}\varphi, H_{\alpha}\psi)$

$=(\varphi, \psi)_{M}^{\prime}$ holds for every $\psi\in q_{M}$ . Rewrite the left-hand side to obtain (5.13),
which obviously characterize $\tilde{R}_{\lambda}^{\alpha}\varphi$ in $q_{M}$ .

(ii) In view of (5.13), $\tilde{R}_{\lambda}^{\alpha}$ is a bounded linear operator on $L^{2}(M)^{\prime}$ . Further,
by (5.11), we have $\lambda\tilde{R}_{\lambda}^{\alpha}1\leqq 1$ and $\tilde{R}_{\lambda}^{\alpha}\varphi\geqq 0$ for $\varphi\geqq 0$ . Symmetry and the resol-
vent equation for $\{\tilde{R}_{\lambda}^{\alpha}, \lambda>0\}$ follow from assertion (i).

(iii) Note that, for each $\lambda>0$ , the space $(g_{M}, \mathcal{E}_{M}^{[\alpha]}(, )+\lambda(, )_{M}^{\prime})$ is a real Hil-
bert space, since the space $(\ovalbox{\tt\small REJECT}_{\alpha}, \mathcal{E}^{\alpha.\lambda})$ is. Identity (5.13) for the resolvent
$\{\tilde{R}_{\lambda}^{\alpha}, \lambda>0\}$ now implies assertion (iii).

LEMMA 5.4. (i) For $\varphi\in q_{M},$ $\mathcal{E}_{M}(\varphi, \varphi)$ is expressed as $\mathcal{E}_{M}(\varphi, \varphi)=D(\varphi, \varphi)$

$+N(\varphi, \varphi)$ with $D(\varphi, \varphi)$ and $N(\varphi, \varphi)$ defined by (3.14) and (5.4) respectively. $In$

particular, $g_{M}$ is a linear subspace of $H_{M}$ .
(ii) $q_{M}$ contains constant functions and $N(1,1)=0$ .

(iii) For each $\lambda>0,$ $(S^{7_{M}}, \mathcal{E}_{M}(, )+\lambda(, )_{M}^{\prime})$ is a real Hilbert space.
(iv) If $\varphi$ is a normal contraction of $\psi\in gr_{M}$ then $\varphi\in q_{M}$ and $N(\varphi, \varphi)$

$\leqq N(\psi, \psi)$ .
PROOF. (i) Take $\varphi$ in $q_{M}$ and define $\varphi_{n}$ by $\varphi_{n}=$ ( $\varphi$ A $n$) $\vee(-n),$ $n=1,2$, $\cdot$ ...

Then, $\varphi_{n}\in g_{M}$ and

(5.15) $\lim_{n\rightarrow+\infty}\mathcal{E}_{M}(\varphi_{n}, \varphi_{n})=\mathcal{E}_{M}(\varphi, \varphi)$ .
Indeed, for any $\alpha>0,$ $(9_{M}, \mathcal{E}_{M}^{[\alpha]})$ is a Dirichlet space (Lemma 5.3 (iii)) and there-
fore Lemma 2.1 implies that $\varphi_{n}\in \mathscr{Z}_{M}$ and $\lim_{n\rightarrow+\infty}(\mathcal{E}_{M}(\varphi_{n}, \varphi_{n})+U_{\alpha}(\varphi_{n}, \varphi_{n}))=\mathcal{E}_{M}(\varphi, \varphi)$

$+U_{\alpha}(\varphi, \varphi)$ . On the other hand, $U_{\alpha}(\varphi_{n}, \varphi_{n})$ converges to $U_{\alpha}(\varphi, \varphi)$ because of
identity (3.20).

We will compute $\mathcal{E}_{M}(\varphi_{n}, \varphi_{n})$ . Owin $g$ to Lemma 5.3 (iii), it holds that

\langle 5.16)
$\mathcal{E}_{M}(\varphi_{n}, \varphi_{n})=\lim_{\mu\rightarrow+\infty}\mathcal{E}_{M.\mu}^{\subset\alpha)}(\varphi_{n}, \varphi_{n})-U_{\alpha}(\varphi_{n}, \varphi_{n})$

with $\mathcal{E}_{M\mu}^{[a]}$ defined by (5.14). The right-hand side of (5.16) is independent of
$\alpha>0$ (Lemma 5.1 (ii)). Rewrite $\mathcal{E}_{M.\mu}^{[\alpha]}(\varphi_{n}, \varphi_{n})as^{19)}$

$(5.17)$ $\mathcal{E}_{M\mu}^{[\alpha,]}(\varphi_{n}, \varphi_{n})=\frac{1}{2}\mu^{2}\int_{M}\int_{M}\tilde{R}_{\mu}^{\alpha}(d\xi, d\eta)(\varphi_{n}(\xi)-\varphi_{n}(\eta))^{2}+\mu(1-\mu\tilde{R}_{u}^{\alpha}1, \varphi_{n}^{2})_{M}^{\prime}$ .

On account of Lemma 2.1 and Lemma 5.1 (iii), we see that $\varphi_{n}^{2}\in gr_{M}$ and

(5.18) $\mathcal{E}_{M.\mu}^{[\alpha]}(1, \varphi_{n}^{2})=(1-\mu\tilde{R}_{\mu}^{\alpha}1, \varphi_{n}^{2})_{u_{\mu\rightarrow+\infty}}^{\prime}$
$\rightarrow \mathcal{E}_{M}(1, \varphi_{n}^{2})+U_{\alpha}(1, \varphi_{n}^{2})=U_{\alpha}(1, \varphi_{n}^{2})$ .

Combining (5.16) with (5.17) and (5.18) and employin $g$ equality (3.26), we arrive
at

19) Cf. [2].
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(5.19) $\mathcal{E}_{M}(\varphi_{n}, \varphi_{n})=_{2}^{1}--\int_{M}\int_{M}(\varphi_{n}(\xi)-\varphi_{n}(\eta))^{2}U_{\alpha}(\xi, \eta)\mu(d\xi)\mu(d\eta)$

$+\lim_{\mu\rightarrow+\infty}\mu^{2}\int_{M}\int_{M}\tilde{R}_{\mu}^{\alpha}(d\xi, d\eta)(\varphi_{n}(\xi)-\varphi_{n}(\eta))^{2}$

for each $n$ and $\alpha>0$ .
Statement (i) of our lemma can be derived from (5.19) by letting $\alpha$ and

then $n$ tend to infinity.
(ii) This assertion is immediate from Lemma 5.1 (iii) and formula (5.4).

(iii) By Lemma 5.3 (iii), the space $gr_{M}$ is complete with metric $\mathcal{E}_{M}(, )$

$+U_{\alpha}(\varphi, \varphi)+\lambda(, )_{M}^{\prime}$ for $\alpha>0$ . In view of inequality (3.17), we arrive at conclu-
sion (iii).

(iv) This is a consequence of Lemma 5.3 (iii) and formula (5.4).
The proof of Theorem 5.2 is now complete. We should point out here

that the space $(\Phi_{M}, \mathcal{E}_{M})$ characterizes our resolvent density. Precisely,
THEOREM 5.3. Consider two elements $G_{\alpha}^{(t)}(x, y)$ of the class $G,$ $i=1,2$ . We

associate the space $(\mathscr{Z}_{M}^{(t)}, \mathcal{E}_{M}^{(i)})$ with $G_{\alpha}^{(i)}(x, y)$ by means of Theorem 5.2, $i=1,2$ .
Assume that $(S^{7_{M}^{(1)}}, \mathcal{E}_{M}^{(1)})=(S^{7_{M}^{(2)}}, \mathcal{E}_{M}^{(2)})$ , then $G_{\alpha}^{(1)}(x, y)=G_{\alpha}^{(2)}(x, y),$ $\alpha>0,$ $x,$ $y\in D$ .

PROOF. Let $(q^{(t)}, \mathcal{E}^{(i).\alpha})$ and $(\ovalbox{\tt\small REJECT}_{\alpha}^{(t)}, \mathcal{E}^{(i),\alpha})$ be the spaces of Theorem 4.3 asso-
ciated with $G_{\alpha}^{(\dot{t})}(x, y),$ $i=1,2$ . We have by assumption $\ovalbox{\tt\small REJECT}_{\alpha}^{(1)}=H_{\alpha}(S^{7_{M}^{(1)}})=H_{\alpha}(9_{M}^{(2)})$

$=\ovalbox{\tt\small REJECT}_{\alpha}^{(2)}$ and $\mathcal{E}^{(1).\alpha}(u, u)=\mathcal{E}_{M}^{(1)}(\gamma u, \gamma u)+U_{\alpha}(\gamma u, \gamma u)=\mathcal{E}_{M}^{(2)}(\gamma u, \gamma u)+U_{\alpha}(\gamma u, \gamma u)=\mathcal{E}^{(2).\alpha}(u, u)$

for $u\in \mathscr{K}_{\alpha}^{(1)}$ . By Theorem 4.3, we see that $(\mathscr{Z}^{(1)}, \mathcal{E}^{(1),\alpha})=(\mathscr{Z}^{(2)}, \mathcal{E}^{(2).\alpha})$ and that,
for every $u,$ $v\in L^{2}(D),$ $(G_{\alpha}^{(1)}u, v)_{D}=\mathcal{E}^{(2).\alpha}(G_{a}^{(1)}u, G_{\alpha}^{(2)}v)=\mathcal{E}^{(1).\alpha}(G_{\alpha}^{(1)}u, G_{\alpha}^{(2)}v)=(u, G_{\alpha}^{(2)}v)_{D}$ ,

from which the conclusion of Theorem 5.3 follows.

\S 6. Boundary condition.

In the preceding two sections, we have investigated the structure of the
Dirichlet space $(S^{\gamma_{D}}, \mathcal{E})$ associated with a given element $G_{cr}(x, y)$ in $G$. Consider
the space $(BLD\wedge, (, )_{D,1})$ in section 3. On the ground of Theorem 3.1, 3.4, 4.3,
5.1 and 5.2, we can state the relation of the refinement $q^{20)}$ of $g_{D}$ to the space
$BLD\wedge$ as follows.

THEOREM 6.1. (i) $BLD_{0}\subset g\subset BLD\wedge$ ,
(ii) Each function $u$ of $gi$ has its boundary function $\gamma u$ in $H_{M}$ and it holds

that

(6.1) $\mathcal{E}(u, u)=(u, u)_{D,1}+N(\gamma u, \gamma u)$ ,

with a bilinear non-negative form $N$ on $\gamma \mathscr{Z}$ . Moreover, if $v$ is a normal con-
traction of $u\in gr$ then $v\in gr$ and $N(\gamma v, \gamma v)\leqq N(\gamma u, \gamma u)$ .

PROOF. The first assertion is immediate from Theorem 3.1, 4.3 and 5.1.

20) See (4.18).
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Indeed, for a fixed $\alpha>0$ , the Hilbert space $(S^{\gamma}, \mathcal{E}^{\alpha})$ is a direct sum of the space
$q^{(0)}=BLD_{0}$ and the space $\ovalbox{\tt\small REJECT}_{\alpha}$, the latter being a subspace of $BLD_{\alpha,h}\wedge$ . In order
to prove equality (6.1), decompose $u\in s^{\gamma}$ as $u=u_{1}+u_{2},$ $u_{1}\in q^{(0)},$ $u_{2}\in\ovalbox{\tt\small REJECT}_{\alpha}$ . Then,

(6.2) $(u_{1}, u_{2})_{D,1}+\alpha(u_{1}, u_{2})_{D}=0$ .
By Theorem 3.1 and 4.3 (ii),

(6.3) $\mathcal{E}^{\alpha}(u_{1}, u_{1})=(u_{1}, u_{1})_{D,1}+\alpha(u_{1}, u_{1})_{D}$ .
Combining Theorem 5.2 with Theorem 3.4 (iii), we see that $u_{2}$ has its boundary
function $\gamma u_{2}=\gamma u$ in $H_{M}$ and

(6.4) $\mathcal{E}^{\alpha}(u_{2}, u_{2})=(u_{2}, u_{2})_{D,1}+\alpha(u_{2}, u_{2})_{D}+N(\gamma u, \gamma u)$ .
Formula (6.2), (6.3) and (6.4) lead us to equality (6.1). The properties of $N$

stated in this theorem are implied in Theorem 5.2.
Our next task is concerned with an expression of the boundary condition

for the class $G$.
DEFINITION 6.1. If, for a function $ u\in BLD\wedge$ , there exists an $f\in L^{2}(D)$ such

that the equation

(6.5) $(u, v)_{D,1}=(f, v)_{D}$

holds for every $v\in BLD_{0}$ , then we will write

(6.6) $-2-\Delta u1=-f$ .

The set of functions $u$ satisfying the above property will be denoted by $g(\Delta)$ .
We call such $\Delta$ the generalized Laplacian with domain $9(\Delta)$ .

We notice that the equation (6.5) holds for all $v\in BLD_{0}$ if and only if it
does for all $v\in C_{0}^{\infty}(D)$ (see the paragraph following Definition 3.2).

Thus, $u$ is an element of $g(\Delta)$ if and only if $ u\in BLD\wedge$ and $\sum_{r=1}^{N}\frac{\partial^{2}}{\partial x_{i}^{2}}u$ in the

sense of Schwartz’s distribution is a function of $L^{2}(D)$ . The notion $\Delta$ in (6.6)
is nothing but the Laplacian in the distribution sense.

For a given element $G_{\alpha}(x, y)$ of $G$ , let us put

(6.7) $g$) $=G_{\alpha}(L^{2}(D))=\{u;u=G_{\alpha}f=\int_{D}G_{\alpha}(\cdot, y)f(y)dy , f\in L^{2}(D)\}$ .

The space 9 does not depend on $\alpha>0$ . Let $gr_{M}$ be the space of Theorem 5.2
and $N$, the form of (5.4). The next theorem will characterize the space $\mathscr{D}$

(and consequently, the element of (;).

THEOREM 6.2. A function $u$ belongs to 9 if and only if
(1) $u\in 9(\Delta)$ , and
(2) $u$ has its boundary function $\gamma u$ in $q_{M}$ and it satisfies, for every $\psi\in g_{M}$ ,
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(6.8) $D(\gamma u, \psi)+1V(\gamma u, \psi)+(\frac{1}{2}\Delta u,$ $H\psi)_{D}=0$ .
PROOF. Take a function $u$ of 9. For $\alpha>0,$ $u$ is equal to $G_{\alpha}f=G_{\alpha}^{0}f+R_{\alpha}f$

with an $f\in L^{2}(D)$ . The function $u$ is an element of $q$ and we have $\mathcal{E}^{\alpha}(u, v)$

$=\mathcal{E}(u, v)+\alpha(u, v)_{D}=\mathcal{E}^{(0),\alpha}(G_{\alpha}^{0}f, v)=(f, v)_{D}$ for every $v\in BLD_{0}$ . On the other
hand, according to the preceding theorem, $u$ belongs to $BLD\wedge$ and $e(u, v)$

$=(u, v)_{D,1}$ for every $v\in BLD_{0}$ . Therefore, $u\in \mathscr{D}(\Delta)$ and

(6.9) $-2^{-\Delta u=\alpha u-f}1$ .
Next, by making use of the identity

(6.10) $\mathcal{E}^{\alpha}(u, H_{\alpha}\psi)=\mathcal{E}^{\alpha}(R_{\alpha}f, H_{\alpha}\psi)$ , $\psi\in \mathscr{Z}_{M}$ ,

we will derive formula (6.8). The left-hand side of (6.10) is equal to $(f, H_{\alpha}\psi)_{D}$

and the right-hand side can be expressed in terms of $\gamma u=\gamma(R_{\alpha}f)$ as $D(\gamma u, \psi)$

$+U_{\alpha}(\gamma u, \psi)+N(\gamma u, \psi)$ (Theorem 5.2). Hence is suffices to show

(6.11) $(f, H_{a}\psi)_{D}-U_{\alpha}(\gamma u, \psi)=-(\frac{1}{2}\Delta u,$ $H\psi)_{D}$ .

Note that $(|g|, |H\psi|)_{D}$ is finite for $g\in L^{2}(D)$ and $\psi\in L^{2}(M)^{\prime}$ . In fact, it is no
greater than $(|g|, |H_{\alpha}\psi|)_{D}+\alpha(|g|, G_{0+}^{0}|H_{\alpha}\psi|)_{D}$ , which is finite because $ H_{\alpha}\psi$

$\in L^{2}(D)$ (see (3.19)) and $(|g|, G_{0+}^{0}|H_{\alpha}\psi|)_{D}^{2}\leqq(\sup_{x\in D}G_{0+}^{0}1(x))^{2}(g, g)_{D}(H_{\alpha}\psi, H_{\alpha}\psi)_{D}$ .
Equation (6.11) now follows from (6.9) and a formal computation as follows:

$(f, H_{\alpha}\psi)_{D}-U_{\alpha}(\gamma u, \psi)=(f, H\psi)_{D}-\alpha(G_{\alpha}^{0}f, H\psi)_{D}-\alpha(R_{\alpha}f, H\psi)_{D}$ .
Conversely, suppose that a function $u$ satisfies conditions (1) and (2) of our

theorem. $Setf=\alpha u-\frac{1}{2}\Delta u,$ $v=G_{\alpha}fandw=u-v$ . $Then,$ $wehave\frac{1}{2}\Delta w=\alpha w$

or equivalently,

(6.12) $(w, v^{\prime})_{D,1}+\alpha(w, v^{\prime})_{D}=0$ for every $v^{\prime}\in BLD_{0}$ .

Hence, $ w\in BLD_{\alpha,h}\wedge$ and $w=H_{\alpha}(\gamma w)$ (Theorem 3.4). However, $w$ satisfies the
condition (6.8) for all $\psi\in q_{M}$ . Set $\psi=\gamma w$ . Then we have $U_{\alpha}(\gamma w, \gamma w)=0$

which implies that $w=H_{\alpha}(\gamma w)=0$ in view of identity (3.19). Thus, $u$ must be
an element of 9.

\S 7. Construction of the symmetric resolvent density.

In the present section we are concerned with the converse problem to that
of sections 4 and 5. For a given space $(S^{i_{M}}, \mathcal{E}_{M})$ described just below, does
there its associated resolvent density $G_{\alpha}(x, y)$ of $G$ exist ? The answer is
affirmative.
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Define the bilinear form $D$ and the function space $H_{M}$ by (3.14) and (3.15)

respectively. We start with a function space $g_{M}$ and a non-negative sym-
metric bilinear form $N$ on $\mathscr{Z}_{M}$ satisfying the following conditions: (B. 1) $q_{M}$

is a linear subspace of $H_{K}$ and it contains constant functions, (B. 2) $\{9_{M},$ $D(, )$

$+N(, )\}$ is a Dirichlet space relative to $L^{2}(M)^{\prime}$ and $N(1,1)=0$ and (B. 3) if $\psi$

is a normal contraction of $\varphi\in g_{M}$ , then $\psi\in q_{M}$ and $N(\psi, \psi)\leqq N(\varphi, \varphi)$ .
For $\varphi$ and $\psi\in S^{i_{M}}$ , set

(7.1) $\mathcal{E}_{M}(\varphi, \psi)=D(\varphi, \psi)+N(\varphi, \psi)$ ,

(7.2) $\mathcal{E}_{M}^{[\alpha]}(\varphi, \psi)=\mathcal{E}_{M}(\varphi, \psi)+U_{\alpha}(\varphi, \psi)$ , $\alpha>0$ .
By the assumption, the space $q_{M}$ is complete with the metric $\mathcal{E}_{M}(, )+\lambda(, )_{N}^{\prime}$

for each $\lambda>0$ . On the other hand, inequality (3.18) leads us to

(7.3) $(\varphi, \varphi)_{JI}^{\prime}\leqq(1\vee\frac{1}{\alpha})\mathcal{E}_{M}^{[\alpha]}(\varphi, \varphi)$ ,

$\varphi\in\Psi_{M},$ $\alpha>0$ .

By virtue of inequality (7.3) and Lemma 3.1 (ii), $\mathcal{E}_{M}^{[\alpha]}$ defines a metric on $g_{M}$

equivalent to $\mathcal{E}_{M}(, )+\lambda(, )_{D}^{\prime}$ , $\lambda>0$ . Hence, the space $(\mathcal{G}_{M}, \mathcal{E}_{Jf}^{[\alpha]})$ is a real Hilbert
space for each $\alpha>0$ . Further, (7.3) implies

LEMMA 7.1. Fix an $\alpha>0$ . For each $\varphi\in L^{2}(M)^{\prime}$ , there is a unique element
$\tilde{R}^{\alpha}\varphi\in q_{M}$ such that

(7.4) $\mathcal{E}_{M}^{[\alpha]}(\tilde{R}^{\alpha}\varphi, \psi)=(\varphi, \psi)_{M}^{\prime}$

for every $\psi\in q_{M}$ .
For $\alpha>0$ and $y\in D$ , the function $K_{\alpha}^{\prime}(y, \xi)$ defined by (4.2) is in $B(M)$ and

so in $L^{2}(M)^{\prime}$ as a function of $\xi\in M$ (Lemma 3.1 $(i)$).

DEFINITION 7.1. For $x,$ $y\in D$ and $\alpha>0$ , set

(7.5) $R_{\alpha}(x, y)=H_{\alpha}^{x}\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y}$

with $\tilde{R}^{\alpha}$ of the preceding lemma (see section 4 for notations $H_{\alpha}^{x}$ and $\hat{H}_{\alpha}^{y}$ ).
Further, we set

\langle 7.6) $G_{\alpha}(x, y)=G_{\alpha}^{0}(x, y)+R_{\alpha}(x, y)$

with above $R_{\alpha}$ and the resolvent density $G_{\alpha}^{0}$ of the absorbing barrier Brownian
motion on $D$ .

We will show the following theorem.
THEOREM 7.1. Suppose that a function space $q_{M}$ and a non-negative definite

symmetric bilinear form $N$ on $q_{M}$ satisfying conditions (B. 1), (B. 2) and (B. 3)
are given. Then, the following statements hold.

(i) $G_{\alpha}(x, y)$ defined by Definition 7.1 is an element of $G$ ; it is a conservative,
symmetric resolvent density satisfying conditions (G. a) and (G. b).
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(ii) Let $(g_{D}, \mathcal{E})$ be the Dirichlet space relative to $L^{2}(D)$ associated with this
$G.(x, y)$ . For each $\alpha>0$ , decompose $\{ff_{D}, \mathcal{E}^{\alpha}(, )=\mathcal{E}(, )+\alpha(, )_{D}\}$ as $S^{\gamma_{D}}=q_{D}^{(0)}+\ovalbox{\tt\small REJECT}_{\alpha}$

by means of Theorem 4.2.
Then, we have

$\gamma\ovalbox{\tt\small REJECT}_{\alpha}=g_{M}$ and $\mathcal{E}^{o}(u, v)=\mathcal{E}_{M}^{[\alpha]}(\gamma u, \gamma v)$ for $u,$ $v\in\ovalbox{\tt\small REJECT}_{\alpha}$ .
Owing to Theorem 6.2, we obtain
COROLLARY To THEOREM 7.1. Under the assumption of Theorem 7.1, there

exists a unique element $G_{\alpha}(x, y)$ of $G$ such that every function of $ G.(L^{2}(D)\rangle$

satisfies the boundary condition (6.8).
Before proceeding to the proof of Theorem 7.1, we prepare two lemmas.

For $\varphi\in B(M)$ and $\alpha>0$ , we set

(7.7) $U_{\alpha}^{\prime}\varphi(\xi)=\left\{\begin{array}{l}U_{\alpha}\varphi(\xi)/U_{1}1(\xi) ifU_{1}1(\xi)<+\infty,\\0 ifU_{1}1(\xi)=+\infty.\end{array}\right.$

Following the argument in the proof of Lemma 4.1,

(7.8) $U$ a $\varphi(\xi)=\alpha\hat{H}_{\alpha}(H\varphi)(\xi)$ for $\mu$ -almost all $\xi\in M$ .
Further we have easily

(7.9) $1_{M}\leqq(1\vee\frac{1}{\alpha})U_{\alpha}^{\prime}1_{M}$
$\mu$ -almost everywhere.

LEMMA 7.2. Consider the operator $\tilde{R}^{\alpha}$ of Lemma 7.1.
(i) For each $\alpha>0,\tilde{R}^{\alpha}$ is a positive linear operator.

(ii) $\tilde{R}^{\alpha}U_{\alpha}^{\prime}1_{M}=1_{M},$ $\alpha>0$ .
(iii) $\tilde{R}^{\alpha}$ is a bounded operator on $B(M)$ with norm less than IV $\frac{1}{\alpha}$

(iv) $\tilde{R}^{\alpha}\varphi-\tilde{R}^{\beta}\varphi+\tilde{R}^{\alpha}(U_{\alpha}^{\prime}-U_{\beta}^{\prime})\tilde{R}^{\beta}\varphi=0$ , $\alpha,$ $\beta>0$ ,

$\varphi\in B(M)^{21)}$ .
PROOF. (i) We can see from condition (B. 3) and identity (3. 21) that

every normal contraction operates on $(\mathscr{Z}_{M}, \mathcal{E}_{M}^{[\alpha]})$ ; if $\varphi$ is a normal contraction
of $\psi\in q_{M}$ , then $\varphi\in g_{M}$ and $h^{\alpha j}(\varphi, \varphi)\leqq \mathcal{E}_{JI}^{[\alpha]}(\psi, \psi)$ . Thus, $\tilde{R}^{\alpha}$ must be positive.
(ii) and (iv). For $\varphi,$ $\psi\in q_{M}$ , since $\mathcal{E}_{M}(\varphi, 1_{M})=0$ and $\mathcal{E}_{M}^{[\alpha]}(\varphi, \psi)=S_{M}(\varphi, \psi)+(\varphi, U_{\alpha}^{\prime}\psi)_{M}^{\prime}$,
equalities of (ii) and (iv) follow from equation (7.4) through simple computa-
ttions. Assertion (iii) is a consequence of (i), (ii) and inequality (7.9).

LEMMA 7.3. Suppose that a function $\varphi^{x}(\xi),$ $x\in D,$ $\xi\in M$, is jointly measur-
able in $(x, \xi)$ and bounded in $\xi for$ each $x\in D$ . Let $v$ be a signed measure on $D$

such that $\varphi^{\nu}(\xi)=\int_{D}\varphi^{x}(\xi)v(dx)$ is bounded in $\xi\in M$. Then, it holds that

21) See Neveu [20] for an analogous formula.
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$\int_{D}(\psi,\tilde{R}^{\alpha}\varphi^{x})_{M}^{\prime}v(dx)=(\psi,\tilde{R}^{\alpha}\varphi^{\nu})_{M}^{\prime}$

for every $\psi\in L^{2}(M)^{\prime}$ .
PROOF. By equation (7.4), $\tilde{R}^{\alpha}$ is symmetric on $L^{2}(M)^{\prime}$ . Integrating the

identity
$(\psi,\tilde{R}^{\alpha}\varphi^{x})_{M}^{\prime}=(\tilde{R}^{\alpha}\psi, \varphi^{x})_{JI}^{\prime}$

by $v$ , we have

$\int_{D}x)(\tilde{R}^{\alpha}\psi, \varphi^{j})_{J}^{J_{f}}=(\psi,\tilde{R}^{\alpha}\varphi^{\nu})_{M}^{\prime}$ .

PROOF OF THEOREM 7.1 (i).

Condition (G. a). $R_{\alpha}(x, y)=H_{\alpha}^{x}\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y}$ is $\alpha$ -harmonic in $\chi\in D$ for each $y\in D$ .
Its non-negativity is due to Lemma 7.2 (i).

Condition (G. b). Take a compact set $K$ of $D$ . In view of Lemma 7.2 (iii),

$\sup_{x\in D,y\equiv K}R_{\alpha}(x, y)\leqq\sup_{\xi\Leftarrow M,y\in K}\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y}(\xi)\leqq(1\vee\frac{1}{\alpha})\sup_{\xi\in M,y\in K}\hat{H}_{\alpha}^{y}(\xi)<+\infty$ .

Symmetry. $R_{\alpha}(x, y)=(\hat{H}_{\alpha}^{x},\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y})_{Jf}^{\prime}$ is symmetric in $x,$ $y\in D$ , since $\tilde{R}^{\alpha}$ is
symmetric on $L^{2}(M)^{\prime}$ .

Conservativity. By Lemma 7.3, identity (7.8) and Lemma 7.2 (ii),

$\alpha R_{\alpha}1_{D}(x)=\alpha\int_{D}(\hat{H}_{\alpha}^{x},\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y})_{M}^{\prime}dy$

$=\alpha(\hat{H}_{\alpha}^{x},\tilde{R}^{\alpha}(\hat{H}_{\alpha}1_{D}))_{M}^{\prime}=(\hat{H}_{\alpha}^{x},\tilde{R}^{\alpha}U_{\alpha}^{\prime}1_{M})_{M}^{\prime}$

$=H_{\alpha}^{x}1_{M}(x)=1-\alpha G_{\alpha}^{0}1_{D}(x)$

and, therefore, $\alpha G_{\alpha}1_{D}(x)=1,$ $x\in D$ .
Resolvent equation. By making use of the resolvent equation for $G_{\alpha}^{0}$ and

$\backslash equation(4.5)$ , we can see that

$G_{\alpha}(x, y)-G_{\beta}(x, y)+(\alpha-\beta)\int_{D}G_{\alpha}(x, z)G_{\beta}(z, y)dz$

is equal to

(7.10) $(\hat{H}_{\alpha}^{x},\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y})_{M}^{\prime}-(\hat{H}_{\alpha}^{x},\tilde{R}^{\beta}\hat{H}_{\beta}^{y})_{M}^{\prime}$

$+(\alpha-\beta)\int_{D}(\hat{H}_{\alpha}^{x},\tilde{R}^{\alpha}\hat{H}_{\alpha}^{z})_{M}^{\prime}(\hat{H}_{\beta}^{z},\tilde{R}^{\beta}\hat{H}_{\beta}^{y})_{M}^{\prime}dz$

$+(\alpha-\beta)\int_{D}(\hat{H}_{\alpha}^{x},\tilde{R}^{\alpha}\hat{H}_{\alpha}^{t})_{M}^{\prime}G_{\beta}^{0}(z, y)dz$ .

By virtue of Lemma 7.3 and equations (4.5) and (4.6), (7.10) is seen to be iden-
tical with

(7.11) $(\hat{H}_{a}^{x},\tilde{R}^{\alpha}\hat{H}_{\beta}^{y})_{M}^{\prime}-(\hat{H}_{\alpha}^{x},\tilde{R}^{\beta}\hat{H}_{\beta}^{y})_{M}^{\prime}+(\hat{H}_{\alpha}^{x},\tilde{R}^{\alpha}(U_{\alpha}^{\prime}-U_{\beta}^{\prime})\tilde{R}^{\beta}\hat{H}_{\beta}^{y})_{M}^{\prime}$
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which vanishes according to Lemma 7.2 (iv).
PROOF OF THEOREM 7.1 (ii). Set $\ovalbox{\tt\small REJECT}_{\alpha}^{\prime}=H_{\alpha}(\mathscr{Z}_{M})=\{u;u=H_{\alpha}\varphi, \varphi\in g_{M}\}$ and

$\mathcal{E}^{\prime.\alpha}(u, v)=\mathcal{E}_{M}^{[\alpha]}(\gamma u, \gamma v)$ for $u,$ $v\in\ovalbox{\tt\small REJECT}_{\alpha}^{\prime}$ . It suffices to prove that $(\ovalbox{\tt\small REJECT}_{\alpha}^{\prime}, \mathcal{E}^{\gamma.\alpha})$ coincides
with the space $(\mathscr{X}_{\alpha}, \mathcal{E}^{\alpha})$ . Space $(\ovalbox{\tt\small REJECT}_{\alpha}^{\prime}, \mathcal{E}^{\gamma.\alpha})$ is a real Hilbert space since $(S^{7_{M}}, \mathcal{E}_{M}^{[\alpha]})|$

is. We can see that $R_{\alpha}f,$ $f\in B(D)$ , belongs to $\ovalbox{\tt\small REJECT}_{a}^{\prime}$ and satisfies

(7.12) $\mathcal{E}^{\gamma,\alpha}(R_{\alpha}f, v)=(f, v)_{D}$ for every $v\in\ovalbox{\tt\small REJECT}_{a}^{\prime}$ .
Indeed, according to Lemma 7.3, $R_{\alpha}f(x)=H_{\alpha}^{x}(\tilde{R}^{\alpha}\hat{H}_{\alpha}f)$ . Hence R. $f\in\ovalbox{\tt\small REJECT}_{\alpha}^{\prime}$ and

$\mathcal{E}^{\prime,0}(R_{\mathfrak{a}}f, H_{\mathfrak{a}}\psi)=\mathcal{E}_{M}^{[\alpha]}(\tilde{R}^{a}\hat{H}_{o}f, \psi)$

$=(\hat{H}_{\alpha}f, \psi)_{M}^{\prime}=(f, H_{\alpha}\psi)_{D}$ for $\psi\in g_{M}$ .
Evidently, $R.f,$ $f\in B(D)$ , is an element of $\ovalbox{\tt\small REJECT}_{\alpha}$ and equation (7.12) is still

valid if $\mathcal{E}^{\prime,\alpha}$ is replaced by $\mathcal{E}^{\alpha}$ and $\ovalbox{\tt\small REJECT}_{\alpha}^{\prime}$ , by $\ovalbox{\tt\small REJECT}_{\alpha}$ . Thus, $R_{\alpha}(B(D))$ being dense in
both spaces $\ovalbox{\tt\small REJECT}_{\alpha}^{\prime}$ and $\ovalbox{\tt\small REJECT}_{o},$ $(\ovalbox{\tt\small REJECT}_{\alpha}^{\prime}, \mathcal{E}^{\gamma.\sigma})$ must be identical with $(\ovalbox{\tt\small REJECT}_{\sigma}, \mathcal{E}^{a})$ .

\S 8. A class of diffusions including the reflecting Brownian motion.

In the preceding sections we have established a one-to-one correspondence
between the class $G$ of symmetric resolvent densities and the class of pairs
$(\mathscr{Z}_{M}, N)$ satisfying conditions (B. 1), (B. 2) and (B. 3).

Denote by $G_{1}$ the totality of $G_{\alpha}(x, y)$ in $G$ such that the corresponding
form $N(, )$ vanishes identically on the corresponding space $g_{M}$ . According to
those arguments in the preceding two sections, we can assert as follows.

THEOREM 8.1.
(i) There is $a$ one-to-one correspondence between the class $G_{1}$ and the class

of function spaces $q_{H}$ satisfying
$(B_{1}.1)$ $q_{M}$ contains every constant function on $M$ and $gr_{M}$ is a linear sub-

space of $H_{M}$ .
$(B_{1}.2)$ $gr_{M}$ is closed with the norm $D(, )+\lambda(, )_{M}^{\prime}$ for a $\lambda>0$ .
$(B_{1}.3)$ Every normal contraction of an element of $q_{M}$ is also an element

of $S^{7_{M}}$ .
(ii) A linear space $gr$ of functions on $D$ with a bilinear form $\mathcal{E}(, )$ is the

refinement22) of a Dirichlet space associated with an element of $G_{1}$ if and only

if $\mathscr{Z}$ contains every constant function on $D,$ $BLD_{0}\subset g\subset BLD\wedge,$
$\mathcal{E}(u, u)=(u, u)_{D,1}$

for every $u\in \mathscr{Z},$ $g$ is closed with norm $\mathcal{E}^{o}(u, u)=(u, u)_{D,1}+\alpha(u, u)_{D}$ for an $\alpha>0$ ,

and finally, every normal contraction of an element of $q$ is also an element
of $q$ .

(iii) For any element $G_{\alpha}(x, y)$ of $G_{1}$ , the function $u=G_{o}f(f\in B(D),$ $\alpha>0\rangle$

belongs to the space $BLD\wedge$ and

22) See (4.18).
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(8.1) $(u, u)_{D,1}+\alpha(u, u)_{D}=(u, f)_{D}$ .

PROOF. Conditions $(B_{1}.1),$ $(B_{1}.2)$ and $(B_{1}.3)$ of the first assertion are noth-
ing but conditions (B. 1), (B. 2) and (B. 3) with $N(, )=0$ . Suppose that a space
$(9, \mathcal{E})$ satisfies all conditions of statement (ii). Set $q_{M}=\gamma \mathcal{G}$ . Owing to Theo-
rem 3.4, $H_{\alpha}(g_{M})$ is the projection of $(q, \mathcal{E}^{\cap})$ to the space $BLD_{\alpha,h}\wedge$ and $g_{M}$ is
closed with norm $D(, )+U_{\alpha}(, )$ . Hence, $\mathscr{Z}_{M}$ satisfies conditions $(B_{1}.1)$ and $(B_{1}.2)$

(see the argument preceding Lemma 7.1). The same procedure as in Lemmas
5.2 and 5.3 can be applied to obtain the property $(B_{1}.3)$ for $g_{M}^{23)}$ . Let $G_{\alpha}(x, y)$

be the element of $G_{1}$ which corresponds to this $q_{M}$ by means of assertion (i).
Then, by virtue of Theorem 4.3 and 7.1, we can see that $(\mathscr{Z}, (, )_{D,1})$ is the
refinement of the Dirichlet space associated with this $G_{a}(x, y)$ . Property (iii)

follows from statement (ii).
Our main interest of this section lies on those Markov processes associated

with elements of $G_{1}$ As was seen in the final argument of section 1, all the
results of section 3 in the article [15] are valid for every resolvent of the
class $G$ .

Further, as far as the elements of the class $G_{1}$ are concerned, all the
statements of [15; Section 4] are valid, since we never used in [15] any special
property of the resolvent density of the refiecting barrier Brownian motion
expect the above idensity (8.1) (see [15; (4.11)]). Thus, we have the following
generalization of [15; Theorem 2].

THEOREM 8.2. For each element $G_{\alpha}(x, y)$ of $G_{1}$ , there exists a diffusion
process (a strong Markov process with continuous paths) $X=(X_{t}, P_{x}, x\in D^{*})$ on
an extended state space $D^{*}$ and $X$ has properties $(X.1),$ $(X.2)$ and (X.3) men-
tioned in the final part of section 1.

Here are two extreme cases of elements in $G_{1}$ .
(I). Resolvent density of the reflecting Brownian motion. This resolvent

$G_{\alpha}(x, y)=G_{\alpha}^{0}(x, y)+R_{\alpha}(x, y)$ was defined in [15] by means of the equation

(8.2) $(R_{\alpha}(x, ),$ $v)_{D,1}+\alpha(R_{\alpha}(x, ),$ $v)_{D}=v(x)$

for every $ v\in BLD_{\alpha,h}\wedge$ . This is fitted for the case that $q_{M}=H_{M}$ and $ q=BLD\wedge$ .
Indeed, the same procedure as in the proof of [15; Lemma 2.10] is applicable
to get from (8.2) the following equation for $R_{\alpha}f,$ $f\in B(D)$ ,

(8.3) $(R_{a}f, v)_{D,1}+\alpha(R_{\alpha}f, v)_{D}=(f, v)_{D}$

for all $ v\in BLD_{\alpha_{J}h}\wedge$ . Equation (8.3) implies that the Dirichlet space $gr$ associated
with the resolvent satisfying (8.2) is just the space $BLD\wedge$ . Note that the result

23) All assertions of Lemma 5.2 and 5.3 are still valid when we replace $S^{i}$ by the
space in the latter statement of Theorem 8.1 (ii) and $\mathcal{E}^{\alpha}(, ),$ by $(, )_{D,1}+\alpha(, )_{D}$ . Thus,
$g_{M}(=\gamma 9)$ is a Dirichlet space associated with a resolvent on $L^{2}(M)^{\prime}$ .



88 M. FUKUSHIMA

in the preceding section gives another method to construct the resolvent den-
sity satisfying $(8.2)^{24)}$ .

The boundary condition (6.8) for $u\in G_{\alpha}(L^{2}(D))$ is now

(8.4) $D(\gamma u, \psi)+(\frac{1}{2}\Delta u,$ $H\psi)_{D}=0$ for every $\psi\in H_{M}$ .
Formula (8.4) means that $u\in G_{\alpha}(L^{2}(D))$ has, as its generalized normal deriva-
tive of Doob [7] (in a slightly modified sense), a function identically vanishin $g$

on the boundary $M$.
(II). The case when $g_{M}$ is trivial. Let $9^{t_{M}}$ be the set of all constant func-

tions on M. $S^{i_{M}}$ satisfies conditions $(B_{1}.1),$ $(B_{1}.2)$ and $(B_{1}.3)$ of Theorem 8.1
trivially. The corresponding resolvent in $G_{1}$ is

(8.5) $G_{\alpha}(x, y)=G_{\alpha}^{0}(x, y)+\frac{\Pi}{\alpha}\alpha\frac{)\Pi\alpha}{\alpha’ 1D}(\Pi)_{D}$ .
with $\Pi_{\alpha}(x)=H_{\alpha}1_{M}(x)^{25)}$ . In fact, by Definition 7.1, $R_{\alpha}(x, y)$ is equal to $H_{a}^{x}\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y}$

with $\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y}$ in $g_{M}$ satisfying equation (7.4) for $\varphi=\hat{H}_{\alpha}^{y}$ . Hence $\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y}$ is a con-
stant and

$\tilde{R}^{\alpha}\hat{H}_{\alpha}^{y}=\frac{(\hat{H}_{\alpha}^{y},1_{M})_{M}^{\prime}}{U_{\alpha}(1_{M},1_{M})}=\frac{\Pi}{\alpha(\Pi}\alpha\frac{(y)}{\alpha’ 1)_{D}}$ .

By virtue of Theorem 8.2, the corresponding process $X$ to (8.5) is a diffusion.
However, it may generally include branching points on $D^{*}-D$ in Ray’s sense26).

Suppose that, the relative boundary $\partial D$ of $D$ is so smooth that $G_{\alpha}^{0}(x, y)\rightarrow 0$

and $\Pi_{\alpha}(x)\rightarrow 1$ (a $>0$) as $x$ goes out of any compact subset of $D$ . Then, the
Martin-Kuramochi type completion $D^{*}$ of $D$ with respect to $\{G_{1}(x, y)\}$ of (8.5)
is just the one point compactification $DU\{\infty\}$ of $D$ and the extended resolvent
density is given by

$\lambda 8.6)$ $G_{\alpha}(\{\infty\}, y)=\lim_{x\rightarrow\{\infty\}}G_{\alpha}(x, y)=\frac{\Pi_{\alpha}(y)}{\alpha(\Pi_{\alpha},1_{D})_{D}}$ , $\alpha>0$ .

Hence, owing to Theorem 3.3, the measure $\alpha G_{o}(\{\infty\}, y)dy$ converges on $DU\{\infty\}$

to the $\delta$ -measure concentrated at $\{\infty\}$ as $\alpha$ tends to infinity. Thus, we can
conclude, under the assumption on the smoothness of $D$ , that to the resolvent
\langle 8.5) corresponds a continuous Hunt process on $DU\{\infty\}$ (including no branch-
ing point).

Finally, we note that, besides above extreme cases (I) and (II), there may

24) Cf. [14].
25) The space $\mathscr{D}=G_{\alpha}(L^{2}(D))$ for this resolvent is characterized as follows. $u\in 9$

if and only if $u\in 9(\Delta),$ $u$ has a constant boundary function and $\int_{D}\Delta u(x)dx=0$ .
26) Cf. [15].
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be many elements of $G_{1}^{27)}$ . For instance,
(III) Brownian motion on a torus. Consider an open square $D=\{(x_{1}, x_{2})$ ;

$0<x_{i}<1,$ $i=1,2$ } $\subset R^{2}$ . The Martin boundary $M$ of $D$ consists of all its
sides. Put

$ff_{M}^{T}=\{\varphi\in H_{M}$ ; $\varphi((x_{1},0))=\varphi((x_{1},1))$ and

$\varphi((0, x_{2}))=\varphi((1, x_{2}))$ $\mu$ -almost everywhere}.

$q_{M}^{T}$ satisfies conditions $(B_{1}.1),$ $(B_{1}.2),$ $(B_{1}.3)$ of Theorem 8.1. Therefore, we can
associate an element, say $G_{\alpha}^{*}(x, y)$ , of the class $G_{1}$ with the space $S^{7_{M}^{T}}$ . Let us
show that the corresponding diffusion in Theorem 8.2 is the Brownian motion
on the torus $K=[0,1$) $\times[0,1$). Denote the resolvent density of the latter by
$G_{\alpha}^{T}(x, y)^{28)}$ . Since the Martin-Kuramochi type completion of the domain $D$ with
respect to functions $\{G_{1}^{T}(\cdot, y), y\in D\}$ is just the torus $K$, it suffices for us to

show that $G_{\alpha}^{*}(x, y)=G_{\alpha}^{T}(x, y),$ $x,$ $y\in D$ . $u(x)=\int_{D}G_{\alpha}^{T}(x, y)f(y)dy$ , with $f((x_{1}, x_{2}))$

$=f_{1}(x_{1})\cdot f_{2}(x_{2}),$ $f_{i}\in C_{0}(0,1),$ $i=1,2$ , has the following properties.
(T.1) $u$ and its first derivatives can be continuously extended to $[0,1]\times[0,1]$ ,
periodically such as $u((x_{1},0))=u((x_{1},1)),$ $u((O, x_{2}))=u((1, x_{2})),$ $u_{x_{2}}((x_{1},0))=$

$u_{x_{2}}((x_{1},1)),$ $u_{x_{1}}((0, x_{2}))=u_{x_{1}}((1, x_{2}))$ , for every $\chi_{1},$ $\chi_{2}\in[0,1]^{29)}$ .

(T.2) $\frac{1}{2}(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}})u(x)=\alpha u(x)-f(x)$ , $x\in D$ .

Hence, $u\in 9(\Delta)$ and $\gamma u\in g_{M}^{p}$ . Further,

$D(\gamma u, \psi)+(\frac{1}{2}\Delta u,$ $H\psi)_{D}=(H(\gamma u), H\psi)_{D,1}+\frac{1}{2}(\Delta u, H\psi)_{D}$

$=\int_{M}\frac{\partial u}{\partial n}(\xi)\psi(\xi)\sigma(d\xi)=0$ for any $\psi\in q_{M}^{T30)}$ .

Thus, by Theorem 6.2, we have $u=G_{\alpha}^{*}f$ and consequently, $G_{\alpha}^{*}(x, y)=G_{\alpha}^{T}(x, y)$ ,
$x,$ $y\in D$ .

27) It is plausible that the class $G_{1}$ is characterized by a family of partitions of
the boundary $M$.

28) $G_{\alpha}^{T}(x, y)$ is the Laplace transform of the transition density $p(t, x, y)=$

$\sum_{r’\iota,n=-\infty}^{\infty}g(t, x, (y_{1}+m, y_{2}+n))$ . Here, $g(t, x, y)$ is the two dimensional Gauss kernel.

29) $u_{x_{i}}$ denotes the derivative of $u$ with respect to the variable $x_{i}(i=1,2)$ .
30) The second equality for $\psi\in H_{M}$ is obtained in the similar manner as [15; foot-

note 5]). $\mathfrak{n}$ denotes the normal and $\sigma$ denotes the linear Lebesgue measure on M. $\sigma$ is
absolutely continuous with respect to the measure $\mu$ .
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\S 9. Cases of a circular disk and an interval.

(I) The case of a circular disk.
Let us examine the case when $D$ is an open disk of radius 1. The Martin

boundary $M$ of $D$ is, in this case, identified with its circle whose points can
be characterized by the parameter $\theta;0\leqq\theta<2\pi$ . The Feller kernel $U(, )$ is a
constant multiple of $\frac{1}{1-\cos(\theta-\theta^{\prime})}$ and the space $H_{M}$ is given by

(9.1) $H_{M}=\{\varphi\in L^{2}(d\theta)$ ; $D(\varphi, \varphi)$

$=C\int_{0^{2\pi}}\int_{0^{2\pi}}(\varphi(\theta)-\varphi(\theta^{\prime}))^{2}\frac{d\theta d\theta^{\prime}}{1-\cos(\theta-\theta^{\prime})}<+\infty\}$ ,

$C$ being a positive constant.
Suppose that the functions $\sin\theta$ and $\cos\theta$ belong to the space $\mathscr{Z}_{M}$ of Theo-

rem 5.2. Then, by making use of formula (5.4), the bilinear form $N(, )$ of
this theorem can be expressed explicitly as follows. For any continuously
differentiable function $\varphi\in q_{M}$ ,

(9.2) $N(\varphi, \varphi)=\int_{0^{2\pi}}\varphi^{\prime}(\theta)^{2}v(d\theta)+\int_{0^{2\pi}}\int_{0^{2\pi}}(\varphi(\theta)-\varphi(\theta^{\prime}))^{2}\Phi(d\theta, d\theta^{\prime})$ ,

where, $v$ is a finite measure on $M$ and $\Phi$ is a symmetric Radon measure on
$M\times M$ off the diagonal such that, for any $\delta>0$ ,

(9.3) $\int\int_{|e^{i\theta}-e^{i\theta^{\prime}}|>\delta}\Phi(d\theta, d\theta^{\prime})<+\infty$ ,

(9.4) $\int\int_{|e^{i\theta}-e^{i\theta^{\prime}}|\leqq\delta}(1-\cos(\theta-\theta^{\prime}))\Phi(d\theta, d\theta^{\prime})<+\infty$ .

We note that the convergence condition (9.4) for the Levy measure $\Phi$ may
not be satisfied in general3l). For instance, choose a measurable function $a(\theta)$

bounded below and above by strictly positive constants and set

$\Phi^{\#}(\theta, \theta^{\prime})=\frac{1}{(1-\cos(\theta-\theta^{\prime}))(1-\cos(\underline{\theta}+_{2}\underline{\theta^{\prime}}))}$
,

$ N^{*}(\varphi, \varphi)=\int_{0^{2\pi}}\varphi^{\prime}(\theta)^{2}a(\theta)d\theta+\int_{0^{2\pi}}\int_{0^{2\pi}}\#$ ,

$9^{i_{M}}\#=$ { $\varphi\in H_{M}$ ; $\varphi$ is absolutely continuous and $N^{*}(\varphi,$ $\varphi)$ is finite}.

The space $ q_{M}\#$ is non-trivial, since it contains the function $\sin^{2}\theta$ . The measure

31) In this sense, our boundary condition (6.8) for the disk is never included by
the Wentzell boundary condition [23].
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$\Phi^{\#}(\theta, \theta^{\prime})d\theta d\theta^{\prime}$ satisfies condition (9.3), but does not satisfy (9.4). However, the
pair $(q_{M}\# , N^{\#})$ clearly satisfies conditions (B. 1), (B. 2) and (B. 3), and hence, on
account of Theorem 7.1, we can construct a resolvent $G_{\alpha}(x, y)$ of the class $G$

which corresponds to this pair (in the manner of Theorem 5.2). I don’t know
whether the closed disk $\overline{D}$ is identified with the state space $D^{*}$ (the Martin-
Kuramochi type completion of $D$ with respect to $G_{1}(x, y))$ on which the asso-
ciated strong Markov process moves.

(II) One-dimensional case.
In this case, $D$ is a finite open interval $(a, b)$ and the Martin boundary

consists of two points $a$ and $b$ . We can express explicitly all the resolvents
in the class $G$ .

$(II_{1})$ The case when $q_{M}$ is trivial; circular Brownian motion.
This is one-dimensional case of section 8 (Il). The corresponding resolvent

is expressed as (8.5). The boundary condition is $u(a)=u(b)$ and $u^{\prime}(a)=u^{\prime}(b)^{32)}$ .
The corresponding process is a conservative diffusion on the one-point com-
pactification of $(a, b)$ and, as one easily sees, it is nothing but the Brownian
motion on a circle.

$(1I_{2})$ The case when $g_{M}$ is non-trivial.
The space $q_{M}$ satisfying (B. 1) and (B. 2) necessarily consists of all func-

tions on $\{a, b\}$ . $N(\varphi, \varphi)$ satisfying (B. 2) and (B. 3) is written as
(9.5) $N(\varphi, \varphi)=\kappa(\varphi(a)-\varphi(b))^{2}$

with a non-negative constant $\kappa$ . Thus, this case is completely determined by
each $\kappa\geqq 0$ . Take a $\kappa\geqq 0$ . By means of one-dimensional Brownian measure
and Brownian hitting time to $a$ and $b$ , we set $H_{\alpha}^{x}(a)=E_{x}(e^{-c\iota\sigma_{a}} ; \sigma_{a}<\sigma_{b})$ and
$H_{\alpha}^{x}(b)=E_{x}(e^{-\alpha\sigma_{b}} ; \sigma_{b}<\sigma_{a}),$ $a<x<b$ . Rewriting formulae (7.4) and (7.5), we can
derive the following expression of the corresponding resolvent density.

(9.6) $G_{\alpha}(x, y)=G_{\alpha}^{0}(x, y)+(H_{\alpha}^{x}(a), H_{\alpha}^{x}(b))\Lambda^{\alpha}\left(\begin{array}{l}H_{\alpha}^{y}(a)\\H_{\alpha}^{y}(b)\end{array}\right)$ ,

where $\Lambda^{\alpha}$ is the inverse of the regular matrix

(9.7) $\ovalbox{\tt\small REJECT}^{\alpha}=(U^{ab}-+\kappa+U^{aa},-U^{ab}-\kappa+U_{a}^{ab})$ .

Here, $U^{ab}=U(a, b)\mu(\{a\})\mu(\{b\}),$ $U_{a}^{aa}=U_{a}(a, a)\mu(\{a\})\mu(\{a\})$ and so $on^{33)}$ . Theorem

32) See footnote 25).

33) $U_{\alpha}^{ab}=U_{\alpha}^{ba}=\frac{b-a}{2}$ ( $1-\sqrt{2_{\alpha}}$ cosech $\sqrt{2\alpha}(b-a)$ ),

$U_{a}^{aa}=U_{a}^{bb}=\frac{b-a}{2}$ ( $\sqrt{2_{\alpha}}$ coth $\sqrt{2_{\alpha}}(b-a)-1$) and

$U^{ab}=U^{ba}=\frac{b-a}{2}$ .
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6.2 states that $u\in G_{\alpha}(L^{2}(a, b))$ if and only if (1) $u\in 9(\Delta),$ (2) $u(x)$ has limits
at $a$ and $b$ and

$2(u(a)-u(b))(U^{ab}+\kappa)+\int_{a^{b}}\Delta u(x)H_{0}^{x}(a)dx=0$

$-2(u(a)-u(b))(U^{ab}+\kappa)+\int_{a^{b}}\Delta u(x)H_{0}^{x}(b)dx=0$ .

It is easy to see that these conditions (1) and (2) are equivalent to the follow-
ing simple conditions: (1)i $u,$

$u^{\prime}$ and $u^{\prime\prime}$ are square integrable. Here $u^{\prime}$ and
$u^{\prime\prime}$ are the Radon-Nikodym derivatives. (2) $u$ and $u^{\prime}$ have limits at $a$ and $b$

and
$u^{\prime}(a)+(u(b)-u(a))\kappa=0$

$u^{\prime}(b)+(u(a)-u(b))\kappa=0$ .

Thus, as for the one-dimensional case, the boundary condition (6.8) is
reduced to Feller’s one [12] applied to the class $G$ .

Tokyo University of Education
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