J. Math. Soc. Japan Vol. 21, No. 1, 1969

On 12-manifolds of a special kind

Dedicated to Professor Atuo Komatu on his 60th birthday

By Seiya SASAO

(Received June 21, 1967) (Revised Aug. 1, 1967)

§1. Preliminary.

Let K be a simply connected CW-complex whose cohomology groups are as follows

 $H^{0}(K) = H^{4}(K) = H^{8}(K) = H^{12}(K) \cong Z$ and $H^{i}(K) = 0$ for other *i*.

In this paper we shall consider conditions under which K has a homotopy type of a compact C^{∞} -manifold without boundary. By using Novikov-Browder theory¹⁾ we can partially solve the above problem. By an orientation of K we mean a pair of generators of $H^{*}(K)$ and $H^{12}(K)^{2}$. Since K is homotopy equivalent to a CW-complex $S^4 \cup e^8 \cup e^{12}$ we can associate with K elements $\alpha \in \pi_7(S^4)$ and $\beta \in \pi_{11}(S^4 \cup e^8)$ which are ∂ -images of the generators of $\pi_8(K, S^4)$ and $\pi_{12}(K, S^4 \cup e^8)$ carried by the orientation of K respectively. Here ∂ denotes the boundary homomorphism: $\pi_8(K, S^4) \rightarrow \pi_7(S^4)$ and $\pi_{12}(K, S^4 \cup e^8) \rightarrow \pi_{11}(S^4 \cup e^8)$ respectively. Let $h: S^{\tau} \rightarrow S^{4}$ be the Hopf map and let τ be the element of $\pi_{7}(S^{4})$ such that $2[h] + \tau = [\iota_{4}, \iota_{4}]^{3}$. It is known that $\pi_{7}(S^{4})$ is isomorphic to the direct sum of Z and Z_{12} which are generated by [h] and τ respectively. Hence we can replace α by two integers a, b ($0 \le b \le 11$) such that $\alpha = a[h] + b\tau$. In this paper the case b=0 shall be treated in which cases we can replace β by numerical invariants. Let K_a be the CW-complex which is obtained by attaching e^{s} to S^{4} by a representative of a[h], and let $\varphi_{a}: K_{a} \rightarrow K_{1}$ be a map which is the identity on S^4 and of degree *a* on e^8 . Obviously, $K_1 = P_2(Q)$, the quaternion projective plane. Denote by ξ_1 ($S^{11} \rightarrow P_2(Q) = K_1$) the canonical S^3 bundle. Then let ξ_a be the bundle induced by φ_a , and by the same symbol ξ_a we denote also the total space of this bundle. We consider the group $\pi_{11}(K_a)$ and the diagram

¹⁾ Concerning Browder's theorem and another application, see [3] and [5].

²⁾ We suppose that an orientation of e^4 is fixed.

³⁾ [f] denotes the homotopy class of f, and [,] Whitehead product.

where the horizontal line is the homotopy exact sequence of the pair (K_a, S^4) , the vertical line is that of the bundle ξ_a and E is the suspension homomorphism which is an isomorphism and satisfies $\partial_a \circ i_a \circ E = \text{identity}$. We know that $\pi_{10}(S^3) \cong Z_{15}$, $\pi_{10}(S^4) \cong Z_{24} + Z_3$ generated by $[h] \circ E^3[h]$ and $\tau \circ E^3\tau$, and $\pi_{11}(K_a, S^4) \cong Z + Z_{24}$ generated by $[\chi_a, \iota_4]_r$ and $\chi_a \circ \tilde{h}$, where $\chi_a \in \pi_8(K_a, S^4)$ is the class of the characteristic map of the cell e^8 , $\partial \tilde{h} = E^3[h]$ for $\partial : \pi_{11}(D^8, S^7)$ $\cong \pi_{10}(S^7)$ and $[,]_r$ is the relative Whitehead product. Since the above E is an isomorphism $\pi_{11}(K_a)$ is isomorphic to the direct sum of $\pi_{10}(S^3)$ and $\text{Im } j_a = \text{Ker } \partial_a$. We have also $\partial_a[\chi_a, \iota_4]_r = -[\partial_a\chi_a, \iota_4] = -a[[h], \iota_4] = -2a([h] \circ E^3[h])$ by use of Lemma (4.6) of [2], and $\partial_a(\chi_a \circ \tilde{h}) = a([h] \circ E^3[h])$. Therefore the following lemma is obtained.

LEMMA 1.1. The group $\pi_{11}(K_a)$ is isomorphic to $Z_{15}+Z+Z\rho_a$. The summands are generated by elements μ_a , λ_a and ν_a respectively which are characterized as follows:

- i) μ_a is the i_a -image of a (fixed) generator of $\pi_{11}(S_4) \cong Z_{15}$
- ii) $\partial_a(\lambda_a) = \partial_a(\nu_a) = 0$

iii)
$$j_a(\lambda_a) = [\chi_a, \iota_4]_r + 2(\chi_a \circ \tilde{h}) \text{ and } j_a(\nu_a) = (24/\rho_a)(\chi_a \circ \tilde{h}), \text{ where } \rho_a = (24, a).$$

By virtue of this lemma we can associate numerical invariants (a, m, l, n), $(0 \le m < 15, 0 \le n < \rho_a)$, of integers with K where $\alpha = a[h]$ and $\beta = m \cdot \mu_a + l \cdot \lambda_a + n \cdot \nu_a$. We shall call K a complex of type (a, m, l, n). In [4] James has proved

LEMMA 1.2. If K is of type (a, m, l, n) then

$$e^4 \cup e^4 = ae^8$$
, $e^4 \cup e^8 = le^{12}$ in $H^*(K)$

where e^{4i} denotes the oriented generator carried by each cell.

For example, let $\mathcal{P}_3(Q)$ be the quaternion projective 3-space $P_3(Q)$ with the orientation $((e^4)^2, (e^4)^3)$. Then $\mathcal{P}_3(Q)$ is a complex of type (1, 0, 1, 0), because a = 1 = l by lemma 1.2 and m = 0. Here m = 0 follows from $\partial_a \circ \partial = 0$: $\pi_{12}(P_3(Q), P_2(Q)) \rightarrow \pi_{11}(P_2(Q)) \rightarrow \pi_{10}(S^3)$ and $\nu_1 = 0$.

It is important for our purpose that the Poincaré duality holds in $H^*(K)$, that is, $e^4 \cup e^8 = \pm e^{12}$. Thus the above lemma implies

PROPOSITION 1. If K is of type (a, m, l, n), then Poincaré duality holds in $H^*(K)$ if and only if $l = \pm 1$.

§2. Stable vector bundles over the complex K of type (a, m, l, n).

It is easily seen that a stable vector bundle over K is uniquely determined by it's Pontrjagin classes. In our case Pontrjagin classes may be considered as a triple (p_1, p_2, p_3) of integers. Then by an elementary argument of vector bundles (see [5]) we can show

LEMMA 2.1. There exist a basis of KO(K) $\xi_1(K)$, $\xi_2(K)$, $\xi_3(K)$ such that

$$\xi_1(K) = (2, a, \alpha(K)), \quad \xi_2(K) = (0, 6, \beta(K)), \quad \xi_3(K) = (0, 0, 240),$$

where $\alpha(K)$ and $\beta(K)$ are integers which are determined mod 240, up to homotopy type of K.

By using the product formula for Pontrjagin classes and Lemma 2.1 we obtain

PROPOSITION 2. A triple of integers (p_1, p_2, p_3) is Pontrjagin classes of a stable vector bundle over K if and only if

and

$$p_1 = 2r$$
, $p_2 = ar(2r-1) + 6s$

 $p_3 = 240t + s\beta(K) + r\alpha(K) + 12rls + 2alr(r-1) + alr(r-1)(r-2)4/3$

for some integers r, s, t.

Now we shall determine $\alpha(K)$ and $\beta(K)$. Since, for $k = 1, 2, 3, \pi_{N+4k-1}(S^N)^{4}$ is isomorphic to the cyclic group $Z\rho_k$ where $\rho_k = 24, 240, 504$ for k = 1, 2, 3respectively we can put $[f] = c[h_k]^{5}$ for a map $f: S^{N+4k-1} \rightarrow S^N$. Let Y_c be the *CW*-complex $S^N \cup e^{N+4k}$ which is obtained from attaching e^{N+4k} to S^N by f. Concerning $KO(Y_c)^{6}$ we have

LEMMA 2.2. There exist elements η_1^c , η_2^c of $KO(Y_c)$ whose Pontrjagin classes are

$$P_{N/4}(\eta_1^{c}) = (N/2-1)! e^{N}, \quad P_{N/4+k}(\eta_1^{c}) = \lambda_c e^{N+4k}$$
$$P_{N/4}(\eta_2^{c}) = 0, \quad P_{N/4+k}(\eta_2^{c}) = (N/2+2k-1)! a_k e^{N+4k}$$

where $a_k = 1$ for even k, $a_k = 2$ for odd k and $\lambda_c = (-1)^k c B_k (N/2 + 2k - 1) a_k^{\tau}$. And any η of KO(Y_c) is represented by a linear combination of η_1^c and η_2^c .

PROOF. Since the *J*-homomorphism $J: KO(S^{4k}) \to \pi_{N+4k-1}(S^N)$ is onto (k = 1, 2, 3) we may consider Y_c as the Thom complex of a *N*-vector bundle ξ over S^{4k} whose *k*-th Pontrjagin class is $a_k \cdot c \cdot (2k-1)!$. Then the proof is established by using the formula [1, Corollary 5.4].

By using Lemma 2.2 we can easily obtain

LEMMA 2.3. Let $\alpha \in \pi_{N+4k-1}(S^N)$ (k = 1, 2, 3). Then α is zero if and only if

- 4) N is sufficiently large and we suppose $N \equiv 0 \mod 8$.
- 5) h_k denotes a generator of $\pi_{N+4k-1}(S^N)$ and c is an integer.
- 6) $KO(Y_c)$ is the group consisted of stable vector bundles over Y_c .
- 7) B_k is the k-th Bernouille number.

 $P_{N/4+k}(\eta) \equiv 0 \mod (2k-1+N/2)! a_k$ for any η of $KO(Y_{\alpha})$, where Y_{α} means the complex $S^N \bigcup^{\alpha} e^{N+4k}$.

Now let Y be the CW-complex $S^* \bigcup^f e^{12} ([f] = (2l + (n24/(a, 24)h_1))$. Since K is of type (a, m, l, n) there exists a map $P: K \to Y$ such that the restriction $P | S^4$ is constant and P is of degree one on each cells e^8 , e^{12} . Therefore it is clear that $P_1(\xi_2(K))$, $P_2(\xi_2(K))$ coincide with those of the bundle induced by P from η_1^e in the case of Lemma 2.2, c = (2l + (n24/(a, 24))), k = 1 and N = 8. Hence we have

LEMMA 2.4. $\beta(K) = -10(2l + n24/(a, 24)) \mod 240.$

Next we shall determine $\alpha(K)$. Let $\mathcal{P}_n(Q)$ be the quaternion projective *n*-space with the orientation e^4 , $(e^4)^2$, \cdots , $(e^4)^n$. Since the tangent bundle of $\mathcal{P}_s(Q)$ has the cohomology class $1+14e^4+97e^8+428e^{12}+\cdots$ as it's total Pontrjagin class the restriction of it on $\mathcal{P}_s(Q)$ is represented by our notation such as

 $\tau(\mathcal{P}_{8}(Q))|\mathcal{P}_{3}(Q) = 7\xi_{1}(\mathcal{P}_{3}(Q)) + \xi_{2}(\mathcal{P}_{3}(Q)) \mod \xi_{3}(\mathcal{P}_{3}(Q)).$

Then we have

LEMMA 2.5. If K is of type $(a, 0, l, n) \alpha(K) \equiv 0 \mod 240$.

PROOF. If K is of type (1, 0, 1, 0) we may consider K as $P_3(Q)$. Therefore $\alpha(K) = 0$ by the above. Now if K is of type (a, 0, l, n) there exists a map; $F: K \to P_3(Q)$ such that F is of degree 1 on e^4 , a on e^8 and al on e^{12} respectively, because by easy computations it is seen that the composition map $i \cdot \varphi_a$ (defined in § 1) is extendable over K as above. Hence by comparing the Pontrjagin classes of $F^{-1}(\xi_1(P_3(Q)))$ with that of $\xi_1(K)$ we have $\alpha(K) = 0$.

Let φ be a correspondence: $\pi_{11}(K_a) \to Z_{240}$ defined by $\varphi(g) = \alpha(K)$, where K denotes the CW-complex which is obtained from attaching e^{12} to K_a by a map g of $\pi_{11}(K_a)$. It can be easily seen that φ is a homomorphism. By Lemma 2.5 we have that $\varphi(\lambda_a) = \varphi(\nu_a) = 0$. Hence the problem is to determine $\varphi(\mu_a)$. Consider the iterated suspension $E^{12}: \pi_{11}(S^4) \to \pi_{23}(S^{16}) = Z_{240}[\sigma]$. We suppose $E^{12}\alpha = m[\sigma]$ for $\alpha \in \pi_{11}(S^4)$ and let Y_{α} be the CW-complex $S^4 \bigcup^{\alpha} e^{12}$. Our problem is to find the third Pontrjagin class of an element ξ of $KO(Y_{\alpha})$ whose first Pontrjagin class is $2e^4$. By using the formula $chE^{12} = E^{12}ch$ and Lemma 2.2 (take $Y_m = E^{12}Y_{\alpha}$) we obtain $P_3(\xi) = me^{12} \mod 120e^{12}$. On the other hand, since $15\alpha = 0$, we have $15p_3(\xi) \equiv 0$, i. e. $15m \equiv 0 \mod 240$. Hence we have $p_3(\xi) \equiv me^{12} \mod 240$. By choosing the generator of $\pi_{11}(S^4)$ whose E^{12} -image is $16[\sigma]$ we obtain

LEMMA 2.6. $\varphi[\mu_a] = 16 \text{ and } \alpha(K) \equiv 16m \mod 240 \text{ if } K \text{ is of type } (a, m, l, n).$

§3. Reducibility of Thom complexes.

Let K be a CW-complex $S^4 \cup e^8 \cup e^{12}$ and let K_i be the 4*i*-skelton of K. Let ξ be a stable vector bundle over K and let T_{ξ} be the Thom complex of S. SASAO

 ξ . Now we may consider that T_{ξ} , $T_{\xi|k_2}$, $T_{\xi|k_1}$ have a *CW*-decomposition as follows

$$T_{\xi} = T_{\xi|k_2} \stackrel{\varphi}{\cup} e^{12+N}, \ T_{\xi|k_2} = T_{\xi|k_1} \cup e^{N+8}, \ T_{\xi} = T_{\xi|k_1} \cup e^{N+8} \cup e^{N+12}$$

Now we seek the conditions for reducibility of T_{ξ} , i.e. $\varphi = 0$. Let j_2 be the inclusion homomorphism : $\pi_{N+11}(T_{\xi|k_2}) \rightarrow \pi_{N+11}(T_{\xi|k_2}, T_{\xi|k_1}) = \pi_{N+11}(S^{N+8})$. By Lemma 2.3 $j_2(\varphi) = 0$ is equivalent to that $p_{N/4+8}(\eta) = 0 \mod (N/2+5)!2$ for any η of $KO(T_{\xi})$ such that $\eta | T_{\xi|k_1} = 0$. Under this condition there exists an element φ' of $\pi_{N+11}(T_{\xi|k_1})$ such that $i(\varphi') = \varphi$ where i is the inclusion homomorphism : $\pi_{N+11}(T_{\xi|k_1}) \rightarrow \pi_{N+11}(T_{\xi|k_2})$. Since we have that $\pi_{N+12}(T_{\xi|k_2}, T_{\xi|k_1}) = \pi_{N+12}(S^{N+8}) = 0$ i is a monomorphism. Thus $\varphi = 0$ is equivalent to $\varphi' = 0$. Let j_1 be the inclusion homomorphism : $\pi_{N+11}(T_{\xi|k_1}) \rightarrow \pi_{N+11}(T_{\xi|k_1}) \rightarrow \pi_{N+11}(T_{\xi|k_1}, S^N) = \pi_{N+11}(S^{N+8})$. Again by Lemma 2.3 $j_1(\varphi') = 0$ is equivalent to $p_{N/4+3}(\eta) = 0 \mod (N/2+5)!2$ for any η of $KO(T_{\xi})$ such that the restriction $\eta | S^N$ is trivial. Under these conditions $(j_2(\varphi) = j_1(\varphi') = 0)$ consider the part of the homotopy exact sequence of the pair $(T_{\xi|k_1}, S^N)$,

$$\pi_{N+12}(T_{\xi|k_1}, S^N) \xrightarrow{\longrightarrow} \pi_{N+11}(S^N) \xrightarrow{\longrightarrow} \pi_{N+11}(T_{\xi|k_1}).$$

Let φ'' be an element of $\pi_{N+12}(S^N)$ such that $i(\varphi'') = \varphi'$. Since ∂ is trivial, $\varphi' = 0$ is equivalent to $\varphi'' = 0$. And moreover $\varphi'' = 0$ is true if and olny if $p_{N/4+3}(\eta) = 0 \mod (N/2+5)! 2$ for any η of $KO(T_{\varepsilon})$ by Lemma 2.3. Thus we have

PROPOSITION 3. T_{ξ} is reducible if and only if $ch_{N/2+6}(\eta)$ is integral for all η of $KO(T_{\xi})$.

Now by the formula $ch \Phi_{KO}(\bar{\eta}) = \Phi_{\xi}(ch(\bar{\eta}) \cdot \hat{A}^{-1}(\xi))$ for $\bar{\eta} \in KO(K)^{8}$ we have $ch_{N/2+6}(\eta) = A_3m + A_2ch_2(\bar{\eta}) + A_1ch_4(\bar{\eta}) + ch_6(\bar{\eta})$ for some integer m and $\bar{\eta} \in KO(K)$ where $A_1 = -\hat{A}_1(\xi)$, $A_2 = \hat{A}_1(\xi)^2 - \hat{A}_2(\xi)$ and $A_3 = 2\hat{A}_1(\xi)\hat{A}_2(\xi) - \hat{A}_1(\xi)^3 - \hat{A}_3(\xi)^9$. Since $KO(T_{\xi})$ is one to one corresponded to KO(K) by Φ_{KO} the integrality of $ch_{N/2+6}(\eta)$ for all $\eta \in KO(T_{\xi})$ is equivalent to that of $A_3m + A_2ch_2(\bar{\eta}) + A_1ch_4(\bar{\eta})$ $ch_6(\bar{\eta})$ for all $\bar{\eta} \in KO(K)$. Any $\bar{\eta}$ of KO(K) is represented by a linear combination of $\xi_i(K)$ (i = 1, 2, 3) so that we can replace $\bar{\eta}$ by $\xi_i(K)$ (i = 1, 2, 3). On the ohter hand, from easy computation we have

$$\begin{split} ch_2(\xi_1(K)) &= 2e^4, & ch_2(\xi_2(K)) = 0, & ch_2(\xi_3(K)) = 0, \\ ch_4(\xi_1(K)) &= (a/6)e^8, & ch_4(\xi_2(K)) = -e^8, & ch_4(\xi_3(K)) = 0, \\ ch_6(\xi_1(K)) &= ((4al + 6\alpha(K))/6!)e^{12}, & ch_6(\xi_2(K)) = (\beta(K)/5!)e^{12}, & ch_6(\xi_3(K)) = 2e^{12} \\ \end{split}$$

Thus Proposition 3 is transformed to

PROPOSITION 3'. $T(\xi)$ is redusible if and only if the following three classes are all integer classes which are divisible by 2.

9) $\hat{A}_i(\xi)$ denotes *i*-th \hat{A} -genus.

⁸⁾ R-R theorem.

12-manifolds of a special kind

$$\hat{A}_3(\xi) + \hat{A}_1(\xi)^3 - 2\hat{A}_1(\xi)\hat{A}_2(\xi)$$
, $(\beta(K)/5!)e^{12} + \hat{A}_1(\xi)e^8$,

and

$$((4al+6\alpha(K))/6!)e^{12}-(a/6)\hat{A}_1(\xi)e^8+2(\hat{A}_1(\xi)^2-\hat{A}_2(\xi))e^4$$

Now let us put $p_1(\xi) = xe^4$, $p_2(\xi) = ye^8$, $p_3(\xi) = ze^{12}$. Then we have

$$\hat{A}_1(\xi) = (-x/24)e^4, \quad \hat{A}_2(\xi) = ((7ax-4y)/2^7 \cdot 45)e^8$$

and

$$\hat{A}_{3}(\xi) = ((44xyl - 16z - 31alx)/2^{10} \cdot 3^{3} \cdot 5 \cdot 7)e^{12}$$

In our case, by Proposition 2, Proposition 3 is transformed to

PROPOSITION 4. Let K be type of (a, m, l, n) and let ξ be $r\xi_k^1 + s\xi_k^2 + t\xi_k^3$. Then T_{ξ} is reducible if and only if the following relations are satisfied.

$$\begin{split} \beta(K) &= 10rl \mod 240 \\ 5ar^2(2-r) + 9alr + 6\alpha(K) + 4al + 6sl = 0 \mod 1440 \\ 35alr^3 - 21alr^2 + (14al + 126sl + 6\alpha(K))_r + 6s\beta(K) + 2^5 \cdot 45t \equiv 0 \mod 2^8 \cdot 3^4 \cdot 5 \cdot 7. \end{split}$$

At last for applications of Novikov-Browder theory we must find conditions under which index formula holds for ξ dual of ξ of KO(K), i.e.

$$I(K) = L_3(\tilde{p}_1, \tilde{p}_2, \tilde{p}_3) = (62\tilde{p}_3 - 13\tilde{p}_1\tilde{p}_2 + 2\tilde{p}_1^3)/3^5 \cdot 5 \cdot 7$$

Since I(K) = 0 is trivial in our case, from Proposition 2 and $\tilde{\xi} = -r\xi_1(K) - s\xi_2(K) - t\xi_3(K)$ for $\xi = r\xi_1(K) + s\xi_2(K) + t\xi_3(K)$ we can obtain

PROPOSITION 5. Index formula for $\tilde{\xi}$ is satisfied if and only if

$$140 a lr^{3} - 294 a lr^{2} + (124 a l + 180 \alpha(K) + 6^{2} \cdot 7^{2} \cdot s l)_{r} + 186 s\beta(K) + 2^{5} \cdot 3^{2} \cdot 5 \cdot 31t = 0.$$

Thus by combining Propositions 1, 2, 4 and 5 we can obtain an application of Browder theory to K.

Tokyo Women's Christian College

References

- [1] J.F. Adames, On the group J(X)-II, Topology, 3 (1965), 137-172.
- [2] W.D. Barcus and M.G. Barratt, On the homotopy classifications of the extensions of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74.
- [3] W. Browder, Homotopy types of differentiable manifolds, Topology colloquim Aarhus Chicago, 1962-1963.
- [4] I.M. James, Note on cup product, Proc. Amer. Math. Soc., 8 (1957), 374-383.
- [5] S. Sasao, An example for the theorem of W. Browder, J. Math. Soc. Japan, 17 (1965), 187-193.
- [6] H. Toda, Note on cohomology ring of certain spaces, Proc. Amer. Math. Soc., 14 (1963), 89-95.