On 12-manifolds of a special kind

Dedicated to Professor Atuo Komatu on his 60th birthday

By Seiya SASAO

(Received June 21, 1967)
(Revised Aug. 1, 1967)

§ 1. Preliminary.

Let K be a simply connected $C W$-complex whose cohomology groups are as follows

$$
H^{0}(K)=H^{4}(K)=H^{8}(K)=H^{12}(K) \cong Z \quad \text { and } \quad H^{i}(K)=0 \quad \text { for other } i
$$

In this paper we shall consider conditions under which K has a homotopy type of a compact C^{∞}-manifold without boundary. By using Novikov-Browder theory ${ }^{1)}$ we can partially solve the above problem. By an orientation of K we mean a pair of generators of $H^{8}(K)$ and $H^{12}(K)^{2)}$. Since K is homotopy equivalent to a $C W$-complex $S^{4} \cup e^{8} \cup e^{12}$ we can associate with K elements $\alpha \in \pi_{7}\left(S^{4}\right)$ and $\beta \in \pi_{11}\left(S^{4} \cup e^{8}\right)$ which are ∂-images of the generators of $\pi_{8}\left(K, S^{4}\right)$ and $\pi_{12}\left(K, S^{4} \cup e^{8}\right)$ carried by the orientation of K respectively. Here ∂ denotes the boundary homomorphism: $\pi_{8}\left(K, S^{4}\right) \rightarrow \pi_{7}\left(S^{4}\right)$ and $\pi_{12}\left(K, S^{4} \cup e^{8}\right) \rightarrow \pi_{11}\left(S^{4} \cup e^{8}\right)$ respectively. Let $h: S^{7} \rightarrow S^{4}$ be the Hopf map and let τ be the element of $\pi_{7}\left(S^{4}\right)$ such that $2[h]+\tau=\left[\epsilon_{4}, c_{4}\right]^{3)}$. It is known that $\pi_{7}\left(S^{4}\right)$ is isomorphic to the direct sum of Z and Z_{12} which are generated by [h] and τ respectively. Hence we can replace α by two integers $a, b(0 \leqq b \leqq 11)$ such that $\alpha=a[h]+b \tau$. In this paper the case $b=0$ shall be treated in which caser. we can replace β by numerical invariants. Let K_{a} be the $C W$-complex which is obtained by attaching e^{8} to S^{4} by a representative of $a[h]$, and let $\varphi_{a}: K_{a} \rightarrow K_{1}$ be a map which is the identity on S^{4} and of degree a on e^{8}. Obviously, $K_{1}=P_{2}(Q)$, the quaternion projective plane. Denote by $\xi_{1}\left(S^{11} \rightarrow P_{2}(Q)=K_{1}\right)$ the canonical S^{3} bundle. Then let ξ_{a} be the bundle induced by φ_{a}, and by the same symbol ξ_{a} we denote also the total space of this bundle. We consider the group $\pi_{11}\left(K_{a}\right)$ and the diagram

1) Concerning Browder's theorem and another application, see [3] and [5].
2) We suppose that an orientation of e^{4} is fixed.

3) $[f]$ denotes the homotopy class of f, and $[$,$] Whitehead product.$

where the horizontal line is the homotopy exact sequence of the pair (K_{a}, S^{4}), the vertical line is that of the bundle ξ_{a} and E is the suspension homomorphism which is an isomorphism and satisfies $\partial_{a} \circ i_{a} \circ E=$ identity. We know that $\pi_{10}\left(S^{3}\right) \cong Z_{15}, \pi_{10}\left(S^{4}\right) \cong Z_{24}+Z_{3}$ generated by $[h] \circ E^{3}[h]$ and $\tau \circ E^{3} \tau$, and $\pi_{11}\left(K_{a}, S^{4}\right) \cong Z+Z_{24}$ generated by $\left[\chi_{a}, \iota_{4}\right]_{r}$ and $\chi_{a} \circ \tilde{h}$, where $\chi_{a} \in \pi_{8}\left(K_{a}, S^{4}\right)$ is the class of the characteristic map of the cell $e^{8}, \partial \tilde{h}=E^{3}[h]$ for $\partial: \pi_{11}\left(D^{8}, S^{7}\right)$ $\cong \pi_{10}\left(S^{7}\right)$ and $[,]_{r}$ is the relative Whitehead product. Since the above E is an isomorphism $\pi_{11}\left(K_{a}\right)$ is isomorphic to the direct sum of $\pi_{10}\left(S^{3}\right)$ and $\operatorname{Im} j_{a}=\operatorname{Ker} \partial_{a}$. We have also $\partial_{a}\left[\chi_{a}, \iota_{4}\right]_{r}=-\left[\partial_{a} \chi_{a}, \iota_{4}\right]=-a\left[[h], \iota_{4}\right]=-2 a\left([h] \circ E^{3}[h]\right)$ by use of Lemma (4.6) of [2], and $\partial_{a}\left(\chi_{a} \circ \tilde{h}\right)=a\left([h] \circ E^{3}[h]\right)$. Therefore the following lemma is obtained.

Lemma 1.1. The group $\pi_{11}\left(K_{a}\right)$ is isomorphic to $Z_{15}+Z+Z \rho_{a}$. The summands are generated by elements μ_{a}, λ_{a} and ν_{a} respectively which are characterized as follows:
i) μ_{a} is the i_{a}-image of a (fixed) generator of $\pi_{11}\left(S_{4}\right) \cong Z_{15}$
ii) $\partial_{a}\left(\lambda_{a}\right)=\partial_{a}\left(\nu_{a}\right)=0$
iii) $j_{a}\left(\lambda_{a}\right)=\left[\chi_{a}, \iota_{4}\right]_{r}+2\left(\chi_{a} \circ \tilde{h}\right)$ and $j_{a}\left(\nu_{a}\right)=\left(24 / \rho_{a}\right)\left(\chi_{a} \circ \tilde{h}\right)$, where $\rho_{a}=(24, a)$.

By virtue of this lemma we can associate numerical invariants (a, m, l, n), $\left(0 \leqq m<15,0 \leqq n<\rho_{a}\right)$, of integers with K where $\alpha=a[h]$ and $\beta=m \cdot \mu_{a}+$ $l \cdot \lambda_{a}+n \cdot \nu_{a}$. We shall call K a complex of type (a, m, l, n). In [4] James has proved

Lemma 1.2. If K is of type $(a, m, l, n$) then

$$
e^{4} \cup e^{4}=a e^{8}, \quad e^{4} \cup e^{8}=l e^{12} \quad \text { in } H^{*}(K)
$$

where e^{42} denotes the oriented generator carried by each cell.
For example, let $\mathscr{P}_{3}(Q)$ be the quaternion projective 3 -space $P_{3}(Q)$ with the orientation $\left(\left(e^{4}\right)^{2},\left(e^{4}\right)^{3}\right)$. Then $\mathscr{P}_{3}(Q)$ is a complex of type ($1,0,1,0$), because $a=1=l$ by lemma 1.2 and $m=0$. Here $m=0$ follows from $\partial_{a} \circ \partial=0: \pi_{12}\left(P_{3}(Q)\right.$, $\left.P_{2}(Q)\right) \rightarrow \pi_{11}\left(P_{2}(Q)\right) \rightarrow \pi_{10}\left(S^{3}\right)$ and $\nu_{1}=0$.

It is important for our purpose that the Poincare duality holds in $H^{*}(K)$, that is, $e^{4} \cup e^{8}= \pm e^{12}$. Thus the above lemma implies

Proposition 1. If K is of type (a, m, l, n), then Poincaré duality holds in $H^{*}(K)$ if and only if $l= \pm 1$.

§ 2. Stable vector bundles over the complex K of type (a, m, l, n).

It is easily seen that a stable vector bundle over K is uniquely determined by it's Pontrjagin classes. In our case Pontrjagin classes may be considered as a triple $\left(p_{1}, p_{2}, p_{3}\right)$ of integers. Then by an elementary argument of vector bundles (see [5]) we can show

Lemma 2.1. There exist a basis of $K O(K) \xi_{1}(K), \xi_{2}(K), \xi_{3}(K)$ such that

$$
\xi_{1}(K)=(2, a, \alpha(K)), \quad \xi_{2}(K)=(0,6, \beta(K)), \quad \xi_{3}(K)=(0,0,240),
$$

where $\alpha(K)$ and $\beta(K)$ are integers which are determined $\bmod 240$, up to homotopy type of K.

By using the product formula for Pontrjagin classes and Lemma 2.1 we obtain

Proposition 2. A triple of integers $\left(p_{1}, p_{2}, p_{3}\right)$ is Pontrjagin classes of a stable vector bundle over K if and only if
and

$$
p_{1}=2 r, \quad p_{2}=\operatorname{ar}(2 r-1)+6 s
$$

$$
p_{3}=240 t+s \beta(K)+r \alpha(K)+12 r l s+2 a \operatorname{lr}(r-1)+\operatorname{alr}(r-1)(r-2) 4 / 3
$$

for some integers r, s, t.
Now we shall determine $\alpha(K)$ and $\beta(K)$. Since, for $k=1,2,3, \pi_{N+4 k-1}\left(S^{N}\right)^{4}$ is isomorphic to the cyclic group $Z \rho_{k}$ where $\rho_{k}=24,240,504$ for $k=1,2,3$ respectively we can put $[f]=c\left[h_{k}\right]^{5)}$ for a map $f: S^{N+4 k-1} \rightarrow S^{N}$. Let Y_{c} be the $C W$-complex $S^{N} \cup e^{N+4 k}$ which is obtained from attaching $e^{N+4 k}$ to S^{N} by f. Concerning $K O\left(Y_{c}\right)^{6)}$ we have

Lemma 2.2. There exist elements $\eta_{1}^{c}, \eta_{2}^{c}$ of $K O\left(Y_{c}\right)$ whose Pontrjagin classes are

$$
\begin{aligned}
& P_{N / 4}\left(\eta_{1}^{\mathrm{c}}\right)=(N / 2-1)!e^{N}, \quad P_{N / 4+k}\left(\eta_{1}^{\mathrm{c}}\right)=\lambda_{c} e^{N+4 k} \\
& P_{N / 4}\left(\eta_{2}^{c}\right)=0, \quad P_{N / 4+k}\left(\eta_{2}^{c}\right)=(N / 2+2 k-1)!a_{k} e^{N+4 l c}
\end{aligned}
$$

where $a_{k}=1$ for even $k, a_{k}=2$ for odd k and $\lambda_{c}=(-1)^{k} c B_{k}(N / 2+2 k-1) a_{k}{ }^{7)}$. And any η of $K O\left(Y_{c}\right)$ is represented by a linear combination of η_{1}^{c} and η_{2}^{c}.

Proof. Since the J-homomorphism $J: K O\left(S^{4 k}\right) \rightarrow \pi_{N+4 k-1}\left(S^{N}\right)$ is onto $(k=1$, 2,3) we may consider Y_{c} as the Thom complex of a N-vector bundle ξ over $S^{4 k}$ whose k-th Pontrjagin class is $a_{k} \cdot c \cdot(2 k-1)!$. Then the proof is established by using the formula [1, Corollary 5.4].

By using Lemma 2.2 we can easily obtain
Lemma 2.3. Let $\alpha \in \pi_{N+4 k-1}\left(S^{N}\right)(k=1,2,3)$. Then α is zero if and only if
4) N is sufficiently large and we suppose $N \equiv 0 \bmod 8$.
5) h_{k} denotes a generator of $\pi_{N+4 k-1}\left(S^{N}\right)$ and c is an integer.
6) $K O\left(Y_{c}\right)$ is the group consisted of stable vector bundles over Y_{c}.
7) B_{k} is the k-th Bernouille number.
$P_{N / 4+k}(\eta) \equiv 0 \bmod (2 k-1+N / 2)!a_{k}$ for any η of $K O\left(Y_{\alpha}\right)$, where Y_{α} means the complex $S^{N} \cup \bigcup^{\alpha} e^{N+4 k}$.

Now let Y be the $C W$-complex $S^{8} \cup^{f} e^{12}\left([f]=\left(2 l+\left(n 24 /(a, 24) h_{1}\right)\right.\right.$. Since K is of type (a, m, l, n) there exists a map $P: K \rightarrow Y$ such that the restriction $P \mid S^{4}$ is constant and P is of degree one on each cells e^{8}, e^{12}. Therefore it is clear that $P_{1}\left(\xi_{2}(K)\right), P_{2}\left(\xi_{2}(K)\right)$ coincide with those of the bundle induced by P from $\eta_{\mathrm{i}}^{\mathrm{c}}$ in the case of Lemma 2.2, $c=(2 l+(n 24 /(a, 24))), k=1$ and $N=8$. Hence we have

Lemma 2.4. $\beta(K)=-10(2 l+n 24 /(a, 24)) \bmod 240$.
Next we shall determine $\alpha(K)$. Let $\mathscr{Q}_{n}(Q)$ be the quaternion projective n-space with the orientation $e^{4},\left(e^{4}\right)^{2}, \cdots,\left(e^{4}\right)^{n}$. Since the tangent bundle of $\mathscr{P}_{s}(Q)$ has the cohomology class $1+14 e^{4}+97 e^{8}+428 e^{12}+\cdots$ as it's total Pontrjagin class the restriction of it on $\mathscr{R}_{3}(Q)$ is represented by our notation such as

$$
\tau\left(\mathscr{P}_{8}(Q)\right) \mid \mathscr{P}_{3}(Q)=7 \xi_{1}\left(\mathscr{P}_{3}(Q)\right)+\xi_{2}\left(\mathscr{P}_{3}(Q)\right) \quad \bmod \xi_{3}\left(\mathscr{P}_{3}(Q)\right)
$$

Then we have
Lemma 2.5. If K is of type $(a, 0, l, n) \alpha(K) \equiv 0 \bmod 240$.
Proof. If K is of type ($1,0,1,0$) we may consider K as $P_{3}(Q)$. Therefore $\alpha(K)=0$ by the above. Now if K is of type ($a, 0, l, n$) there exists a map; $F: K \rightarrow P_{3}(Q)$ such that F is of degree 1 on e^{4}, a on e^{8} and al on e^{12} respectively, because by easy computations it is seen that the composition map $i \cdot \varphi_{a}$ (defined in $\S 1$) is extendable over K as above. Hence by comparing the Pontrjagin classes of $F^{-1}\left(\xi_{1}\left(P_{3}(Q)\right)\right)$ with that of $\xi_{1}(K)$ we have $\alpha(K)=0$.

Let φ be a correspondence : $\pi_{11}\left(K_{a}\right) \rightarrow Z_{240}$ defined by $\varphi(g)=\alpha(K)$, where K denotes the $C W$-complex which is obtained from attaching e^{12} to K_{a} by a map g of $\pi_{11}\left(K_{a}\right)$. It can be easily seen that φ is a homomorphism. By Lemma 2.5 we have that $\varphi\left(\lambda_{a}\right)=\varphi\left(\nu_{a}\right)=0$. Hence the problem is to determine $\varphi\left(\mu_{a}\right)$. Consider the iterated suspension $E^{12}: \pi_{11}\left(S^{4}\right) \rightarrow \pi_{23}\left(S^{16}\right)=Z_{24}[\sigma]$. We suppose $E^{12} \alpha=m[\sigma]$ for $\alpha \in \pi_{11}\left(S^{4}\right)$ and let Y_{α} be the $C W$-complex $S^{4} \cup^{\alpha} e^{12}$. Our problem is to find the third Pontrjagin class of an element ξ of $K O\left(Y_{\alpha}\right)$ whose first Pontrjagin class is $2 e^{4}$. By using the formula $c h E^{12}=E^{12} c h$ and Lemma 2.2 (take $Y_{m}=E^{12} Y_{\alpha}$) we obtain $P_{3}(\xi)=m e^{12} \bmod 120 e^{12}$. On the other hand, since $15 \alpha=0$, we have $15 p_{3}(\xi) \equiv 0$, i. e. $15 m \equiv 0 \bmod 240$. Hence we have $p_{3}(\xi) \equiv m e^{12}$ $\bmod 240$. By choosing the generator of $\pi_{11}\left(S^{4}\right)$ whose E^{12}-image is $16[\sigma]$ we obtain

Lemma 2.6. $\varphi\left[\mu_{a}\right]=16$ and $\alpha(K) \equiv 16 m \bmod 240$ if K is of type (a, m, l, n).

§ 3. Reducibility of Thom complexes.

Let K be a $C W$-complex $S^{4} \cup e^{8} \cup e^{12}$ and let K_{i} be the $4 i$-skelton of K. Let ξ be a stable vector bundle over K and let T_{ξ} be the Thom complex of
ξ. Now we may consider that $T_{\xi}, T_{\xi \mid k_{2}}, T_{\hat{\xi} \mid k_{1}}$ have a $C W$-decomposition as follows

$$
T_{\xi}=T_{\xi \mid k_{2}} \cup^{\varphi} e^{12+N}, T_{\xi \mid k_{2}}=T_{\xi \mid k_{1}} \cup e^{N+8}, T_{\xi}=T_{\xi \mid k_{1}} \cup e^{N+8} \cup e^{N+12} .
$$

Now we seek the conditions for reducibility of T_{ξ}, i. e. $\varphi=0$. Let j_{2} be the inclusion homomorphism : $\pi_{N+11}\left(T_{\xi \mid k_{2}}\right) \rightarrow \pi_{N+11}\left(T_{\hat{\xi} \mid k_{2}}, T_{\left.\xi \mid k_{2}\right)}\right)=\pi_{N+11}\left(S^{N+8}\right)$. By Lemma $2.3 j_{2}(\varphi)=0$ is equivalent to that $p_{N / 4+3}(\eta)=0 \bmod (N / 2+5)!2$ for any η of $K O\left(T_{\xi}\right)$ such that $\eta \mid T_{\xi_{\mid k_{1}}}=0$. Under this condition there exists an element φ^{\prime} of $\pi_{N+11}\left(T_{\xi \mid k_{1}}\right)$ such that $i\left(\varphi^{\prime}\right)=\varphi$ where i is the inclusion homomorphism: $\pi_{N+11}\left(T_{\xi \mid k_{1}}\right) \rightarrow \pi_{N+11}\left(T_{\hat{\xi} \mid k_{2}}\right)$. Since we have that $\pi_{N+12}\left(T_{\xi \mid k_{2}}, T_{\xi \mid k_{1}}\right)=\pi_{N+12}\left(S^{N+8}\right)=0$ i is a monomorphism. Thus $\varphi=0$ is equivalent to $\varphi^{\prime}=0$. Let j_{1} be the inclusion homomorphism : $\pi_{N+11}\left(T_{\xi\left|k_{1}\right|}\right) \rightarrow \pi_{N+11}\left(T_{\xi|k| k}, S^{N}\right)=\pi_{N+11}\left(S^{N+8}\right)$. Again by Lemma $2.3 j_{1}\left(\varphi^{\prime}\right)=0$ is equivalent to $p_{N / 4+3}(\eta)=0 \bmod (N / 2+5)!2$ for any η of $K O\left(T_{\xi}\right)$ such that the restriction $\eta \mid S^{N}$ is trivial. Under these conditions ($j_{2}(\varphi)$ $=j_{1}\left(\varphi^{\prime}\right)=0$) consider the part of the homotopy exact sequence of the pair $\left(T_{\xi \mid k_{1}}, S^{N}\right)$,

$$
\pi_{N+12}\left(T_{\xi \mid k_{1} 1}, S^{N}\right) \underset{\partial}{\longrightarrow} \pi_{N+11}\left(S^{N}\right) \underset{i}{\longrightarrow} \pi_{N+11}\left(T_{\xi| |_{1} 1}\right)
$$

Let $\varphi^{\prime \prime}$ be an element of $\pi_{N+12}\left(S^{N}\right)$ such that $i\left(\varphi^{\prime \prime}\right)=\varphi^{\prime}$. Since ∂ is trivial, $\varphi^{\prime}=0$ is equivalent to $\varphi^{\prime \prime}=0$. And moreover $\varphi^{\prime \prime}=0$ is true if and olny if $p_{N / 4+3}(\eta)$ $=0 \bmod (N / 2+5)!2$ for any η of $K O\left(T_{\xi}\right)$ by Lemma 2.3. Thus we have

Proposition 3. T_{ξ} is reducible if and only if $c h_{N / 2+6}(\eta)$ is integral for all η of $K O\left(T_{\xi}\right)$.

Now by the formula $\operatorname{ch} \Phi_{K O}(\bar{\eta})=\Phi_{\xi}\left(\operatorname{ch}(\bar{\eta}) \cdot \hat{A}^{-1}(\xi)\right)$ for $\bar{\eta} \in K O(K)^{8)}$ we have $c h_{N / 2+6}(\eta)=A_{3} m+A_{2} c h_{2}(\bar{\eta})+A_{1} c h_{4}(\bar{\eta})+c h_{6}(\bar{\eta})$ for some integer m and $\bar{\eta} \in K O(K)$ where $A_{1}=-\hat{A}_{1}(\xi), A_{2}=\hat{A}_{1}(\xi)^{2}-\hat{A}_{2}(\xi)$ and $A_{3}=2 \hat{A}_{1}(\xi) \hat{A}_{2}(\xi)-\hat{A}_{1}(\xi)^{3}-\hat{A}_{3}(\xi)^{9}$. Since $K O\left(T_{\xi}\right)$ is one to one corresponded to $K O(K)$ by $\Phi_{K O}$ the integrality of $c h_{N / 2+6}(\eta)$ for all $\eta \in K O\left(T_{\xi}\right)$ is equivalent to that of $A_{3} m+A_{2} c h_{2}(\bar{\eta})+A_{1} c h_{4}(\bar{\eta})$ $c h_{6}(\bar{\eta})$ for all $\bar{\eta} \in K O(K)$. Any $\bar{\eta}$ of $K O(K)$ is represented by a linear combination of $\xi_{i}(K)(i=1,2,3)$ so that we can replace $\bar{\eta}$ by $\xi_{i}(K)(i=1,2,3)$. On the ohter hand, from easy computation we have

$$
\begin{array}{lll}
c h_{2}\left(\xi_{1}(K)\right)=2 e^{4}, & c h_{2}\left(\xi_{2}(K)\right)=0, & c h_{2}\left(\xi_{3}(K)\right)=0, \\
c h_{4}\left(\xi_{1}(K)\right)=(a / 6) e^{8}, & c h_{4}\left(\xi_{2}(K)\right)=-e^{8}, & c h_{4}\left(\xi_{3}(K)\right)=0, \\
c h_{6}\left(\xi_{1}(K)\right)=((4 a l+6 \alpha(K)) / 6!) e^{12}, & c h_{6}\left(\xi_{2}(K)\right)=(\beta(K) / 5!) e^{12}, & c h_{6}\left(\xi_{3}(K)\right)=2 e^{12} .
\end{array}
$$

Thus Proposition 3 is transformed to
Proposition 3'. $T(\xi)$ is redusible if and only if the following three classes are all integer classes which are divisible by 2.
8) $R-R$ theorem.
9) $\hat{A}_{i}(\xi)$ denotes i-th \hat{A}-genus.

$$
\hat{A}_{3}(\xi)+\hat{A}_{1}(\xi)^{3}-2 \hat{A}_{1}(\xi) \hat{A}_{2}(\xi), \quad(\beta(K) / 5!) e^{12}+\hat{A}_{1}(\xi) e^{8}
$$

and

$$
((4 a l+6 \alpha(K)) / 6!) e^{12}-(a / 6) \hat{A}_{1}(\xi) e^{8}+2\left(\hat{A}_{1}(\xi)^{2}-\hat{A}_{2}(\xi)\right) e^{4} .
$$

Now let us put $p_{1}(\xi)=x e^{4}, p_{2}(\xi)=y e^{8}, p_{3}(\xi)=z e^{12}$. Then we have

$$
\hat{A}_{1}(\xi)=(-x / 24) e^{4}, \quad \hat{A}_{2}(\xi)=\left((7 a x-4 y) / 2^{7} \cdot 45\right) e^{8}
$$

and

$$
\hat{A}_{3}(\xi)=\left((44 x y l-16 z-31 \text { alx }) / 2^{10} \cdot 3^{3} \cdot 5 \cdot 7\right) e^{12} .
$$

In our case, by Proposition 2, Proposition 3 is transformed to
Proposition 4. Let K be type of (a, m, l, n) and let ξ be $r \xi_{k}^{1}+s \xi_{k}^{2}+t \xi_{k}^{3}$.
Then T_{ξ} is reducible if and only if the following relations are satisfied.

$$
\begin{aligned}
& \beta(K)=10 r l \quad \bmod 240 \\
& 5 a r^{2}(2-r)+9 a l r+6 \alpha(K)+4 a l+6 s l=0 \quad \bmod 1440 \\
& 35 a l r^{3}-21 a l r^{2}+(14 a l+126 s l+6 \alpha(K))_{r}+6 s \beta(K)+2^{5} \cdot 45 t \equiv 0 \quad \bmod 2^{8} \cdot 3^{4} \cdot 5 \cdot 7 .
\end{aligned}
$$

At last for applications of Novikov-Browder theory we must find conditions under which index formula holds for $\tilde{\xi}$ dual of ξ of $K O(K)$, i. e.

$$
I(K)=L_{3}\left(\tilde{p}_{1}, \tilde{p}_{2} \tilde{p}_{3}\right)=\left(62 \tilde{p}_{3}-13 \tilde{p}_{1} \tilde{p}_{2}+2 \tilde{p}_{1}^{3}\right) / 3^{5} \cdot 5 \cdot 7 .
$$

Since $I(K)=0$ is trivial in our case, from Proposition 2 and $\tilde{\xi}=-r \xi_{1}(K)-s \xi_{2}(K)$ $-t \xi_{3}(K)$ for $\xi=r \xi_{1}(K)+s \xi_{2}(K)+t \xi_{3}(K)$ we can obtain

Proposition 5. Index formula for $\tilde{\xi}$ is satisfied if and only if

$$
140 a l r^{3}-294 a l r^{2}+\left(124 a l+180 \alpha(K)+6^{2} \cdot 7^{2} \cdot s l\right)_{r}+186 s \beta(K)+2^{5} \cdot 3^{2} \cdot 5 \cdot 31 t=0 .
$$

Thus by combining Propositions 1, 2, 4 and 5 we can obtain an application of Browder theory to K.

Tokyo Women's Christian College

References

[1] J.F. Adames, On the group $J(X)$-II, Topology, 3 (1965), 137-172.
[2] W.D. Barcus and M.G. Barratt, On the homotopy classifications of the extensions of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74.
[3] W. Browder, Homotopy types of differentiable manifolds, Topology colloquim Aarhus Chicago, 1962-1963.
[4] I. M. James, Note on cup product, Proc. Amer. Math. Soc., 8 (1957), 374-383.
[5] S. Sasao, An example for the theorem of W. Browder, J. Math. Soc. Japan, 17 (1965), 187-193.
[6] H. Toda, Note on cohomology ring of certain spaces, Proc. Amer. Math. Soc., 14 (1963), 89-95.

