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This paper gives a sum theorem, a characterization theorem, a product
theorem and a coincidence theorem for the large (or equivalently strong)

inductive dimension of totally normal spaces. The definitions and notations
for the large and small inductive dimension can be seen in Nagata’s dimen-
sion theory [11]. The concept of the total normality was introduced by C.H.
Dowker in [1], offering a well designed class of spaces for considering the
large inductive dimension, as follows: A space $X$ is totally normal if i) $X$ is
normal and ii) for every open set $G$ of $X$ there exists a locally finite (in $G$)

collection of cozero-sets $\{G_{\alpha}\}$ with $UG_{\alpha}=G$ . We say that $G_{\alpha}$ is a cozero-set
if there is a real-valued continuous function $f_{\alpha}$ defined on the whole space
$X$ with $G_{\alpha}=\{x:f_{\alpha}(x)\neq 0\}$ . In [1] the following are proved:

(a) A hereditarily paracompact space is totally normal.
(b) A perfectly normal space is totally normal.
(c) There exists a totally normal space which is neither paracompact nor

perfectly normal.
(d) Every subset of a totally normal space is totally normal.
(e) If $X$ is a totally normal space, then the subset theorem and the sum

theorem for the large inductive dimension are true as follows: i) If $Y\subset X$,

then $IndY\leqq Ind$ X. ii) If $Y_{i},$ $i=1,2,$ $\cdots$ , are closed in $X$, then $Ind(\subset)Y_{i})$

$=\sup Ind$ Y.;.

All spaces considered in this paper are Hausdorff.
THEOREM 1. Let $X$ be a totally normal space having the weak topology1)

with respect to a closed covering $\{F_{\alpha} : \alpha\in A\}$ . If $IndF_{\alpha}\leqq n$ for each $\alpha\in A$ ,

then $IndX\leqq n$ .
PROOF (by double induction). The theorem is evidently true for the case:

1) According to K. Morita [7] a space $X$ has the weak topology with respect to
its closed covering $\{F_{\alpha} : \alpha\in A\}$ if the following condition is satisfied: A subset $S$ of $X$

is closed if and only if for an arbitrary subset $B$ of $A$ with $S\subset\cup\{F_{\alpha} ; \alpha\in B\},$ $S\cap F_{\alpha}$

is closed for each $\alpha\in B$ .
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$n=-1$ . Assume that the theorem is true for dimension $n-1$ . Let us prove
the theorem is true for dimension $n$ . Well order the index set $A$ such that $A$

consists of all ordinals $\alpha$ less than or equal to some fixed ordinal $\eta$ :

$A=\{\alpha:0\leqq\alpha\leqq\eta\}$ .
Let $S$ and $T$ be a disjoint pair of closed sets of $X$. Set

$K_{\alpha}=\bigcup_{\beta\leqq\alpha}F_{\beta}$ .

Let $(P_{\alpha})$ be the proposition such that there exists, for every $\beta\leqq\alpha$ , a triple of
sets $G_{\beta},$ $C_{\beta},$ $H_{\beta}$ satisfying the following six conditions:

(1) $\{G_{\beta}, C_{\beta}, H_{\beta}\}$ is disjoint.
(2) $K_{\beta}=G_{\beta}UC_{\beta}\cup H_{\beta}$ .
(3) Both $G_{\beta}$ and $H_{\beta}$ are open in $K_{\beta}$ .
(4) $S\cap K_{\beta}\subset G_{\beta}$ and $T\cap K_{\beta}\subset H_{\beta}$ .
(5) For every $\gamma\leqq\beta,$ $G_{\gamma}=G_{\beta}\cap K_{\gamma},$ $C_{\gamma}=C_{\beta}\cap K_{\gamma},$ $H_{\gamma}=H_{\beta}\cap K_{\gamma}$ .
(6) $IndC_{\beta}\leqq n--1$ .
Since $IndK_{0}=IndF_{0}\leqq n,$ $(P_{0})$ is evidently true. Let $\alpha$ be an ordinal with

$ 0<\alpha\leqq\eta$ . Assuming $(P_{\beta})$ for every $\beta<\alpha$ , let us prove $(P_{\alpha})$ . Set

$C=\cup\{C_{\beta} : \beta<\alpha\}$ .
Then $C$ is closed as follows. If $\beta<\alpha$ , then $C\cap K_{\beta}=C_{\beta}$ by (5). Since $C_{\beta}$ is
closed in $K_{\beta}$ by (1), (2) and (3), $C_{\beta}\cap F_{\beta}$ is closed in $F_{\beta}$ . Since $C_{\beta}\cap F_{\beta}=C\cap F_{\beta}$ ,
$C\cap F_{\beta}$ is closed in $F_{\beta}$ . Thus $C$ is closed in

$\bigcup_{\beta<\alpha}F_{\beta}$
and hence so in $X$ .

Since $C\cap F_{\beta}\subset C\cap K_{\beta}=C_{\beta},$ $IndC\cap F_{\beta}\leqq n-1$ by (6). Since $C$ has the weak
topology with respect to

$\{C\cap F_{\beta} : \beta<\alpha\}$ ,

we obtain
$IndC\leqq n-1$

by the induction hypothesis. Set

$G=U\{G_{\beta} : \beta<\alpha\}$ ,

$H=\cup\{H_{\beta} : \beta<\alpha\}$ ,

$K=U\{K_{\beta} : \beta<\alpha\}$ .
Then $G$ and $H$ are open in $K$ by (3) and

$K=GUCUH$
by (2). Moreover $\{G, C, H\}$ is disjoint by (1) and (4). It is evident that

$S\cap K\subset G$ and $T\cap K\subset H$ .
Since a totally normal space is hereditarily normal by (d) and $S\cup G$ and TU $H$
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are relatively closed sets in $X-C$ , there exist relatively open sets $P$ and $Q$ of
$X-C$ such that

$SUG\subset P,$ $TUH\subset Q,\overline{P}\cap\overline{Q}\subset C$ .
Since $P\cap(F_{\alpha}-K)$ and $Q\cap(F_{\alpha}-K)$ constitute a disjoint relatively closed

pair in $F_{\alpha}-K$, there exist, by (e), sets $G^{\prime},$ $C^{\prime}$ and $H^{\prime}$ satisfying the following
conditions:

(7) $F_{\alpha}-K=G^{\prime}UC^{\prime}UH^{\prime}$ .
(8) $\{G^{\prime}, C^{\prime}, H^{\prime}\}$ is disjoint.
(9) $G^{\prime}$ and $H^{\prime}$ are open in $F_{\alpha}-K$.
(10) $Ind$ $C’\leqq n-1$ .
Setting

$G_{\alpha}=G\cup G^{\prime}$ ,

$C_{\alpha}=CUC^{\prime}$ ,

$H_{\alpha}=HUH^{\prime}$ ,

let us prove $(P_{\alpha})$ . The conditions (1), (2), (4), (5), where $\beta’ s$ are replaced by
$\alpha’ s$ , are evidently true. Since $G_{\alpha}-K=G^{\prime},$ $G_{\alpha}-K$ is open in $F_{\alpha}-K$ by (9) and
hence open in $K_{\alpha}$ . Since

$G_{\alpha}=(G_{\alpha}-K)U(P\cap K_{\alpha})$ ,

then $G_{\alpha}$ is open in $K_{\alpha}$ . Analogously $H_{\alpha}$ is also open in $K_{\alpha}$ . Thus the condi-
tion (3) is satisfied for $\beta=\alpha$ . Since $IndC\leqq n-1$ and $IndC^{\prime}\leqq n-1$ by (10),
we get at once

$IndC_{\alpha}\leqq n-1$

by C. H. Dowker [1, 2.1]. Thus the condition (6) for $\beta=\alpha$ is also satisfied.
Now by transfinite induction $(P_{\alpha})$ is true for each $\alpha$ . Especially $(P_{\eta})$ is true.
$(P_{\eta})$ implies the existence of a closed set $C_{\eta}$ , with $IndC_{\eta}\leqq n-1$ , separating $S$

and $T$. Thus $IndX\leqq n$ and the induction on $n$ is completed. The proof is
finished.

By this theorem and (e) we get the following theorem without any change
of the proof given in K. Nagami [9, Lemma 2].

THEOREM 2. In a totally normal space $X$ the following are equivalent:
i) $IndX\leqq n$ .

ii) Every binary open covering of $X$ is refined by $a$ a-locally finite open
covering lt such that for each element $U$ of $\mathfrak{U}$

$IndB(U)\leqq n-1$ ,

where $B(U)$ indicates the boundary of $U$ .
According to K. Morita [8], a space $X$ is a $P(\mathfrak{m})$ -space if the following

condition is satisfied:
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If $\{G(\alpha_{1}\cdots\alpha_{i}):\alpha_{1}, \cdot.., \alpha_{i}\in\Omega\}$ is a collection of open sets of $X$ such that
the power of $\Omega,$ $|\Omega|$ , is at most $\mathfrak{m}$ and such that

$G(\alpha_{1}\cdots\alpha_{i})\subset G(\alpha_{1}\cdots\alpha_{i}\alpha_{i+1})$

for each sequence $\alpha_{1},$ $\alpha_{2},$
$\cdots$ then there exists a collection of closed sets

$\{H(\alpha_{1}\cdots\alpha_{i}) : \alpha_{1}, \alpha_{i}\in\Omega\}$

such that
$\bigcup_{i}H(\alpha_{1}\cdots\alpha_{i})=X$ whenever $\bigcup_{i}G(\alpha_{1}\cdots\alpha_{i})=X$ .

If a space $X$ is a $P(\mathfrak{m})$ -space for each power $\mathfrak{m}_{f}$ then $X$ is a P-space.
According to K. Nagami [10], a space $X$ is a $\Sigma$ -space if $X$ has a sequence

$t\mathfrak{F}_{i}=\{F_{i\alpha} : \alpha\in A_{i}\},$ $i=1,$ 2, }

of locally finite closed coverings of $X$ which satisfies the following condition:
If $ K_{1}\supset K_{2}\supset\ldots$ is a sequence of non-empty closed sets of $X$ such that

$K_{i}\subset C(x, \mathfrak{F}_{i})^{2)}$

for some point $x$ and for each $i$ , then $\cap K_{i}\neq\emptyset$ .
The above sequence is a $\Sigma$ -net of $X$. If $|A_{i}|\leqq \mathfrak{m}$ for each $i$ , then $such_{A}^{f}a$

$\Sigma$ -net is a $\Sigma(\mathfrak{m})$-net. A space is a $\Sigma(\mathfrak{m})$ -space if it has a $\Sigma(\mathfrak{m})$ -net. A spectral
$\Sigma$ -net is a $\Sigma$ -net $t\mathfrak{F}_{i}$ } such that

i) each $\mathfrak{F}_{i}$ is indexed as
$\mathfrak{F}_{i}=\{F(\alpha_{1}\cdots\alpha_{i}) : \alpha_{1}, \alpha_{i}\in\Omega\}$ ,

ii) $F(\alpha_{1}\cdots\alpha_{i})=\cup\{F(\alpha_{1}\cdots\alpha_{i}\alpha_{i+1}):\alpha_{i+1}\in\Omega\}$ for every sequence $\alpha_{1},$
$\cdots$ , $\alpha_{i}$ ,

$\alpha_{i+1}$ ,
iii) each $\mathfrak{F}_{i}$ is (finitely) multiplicative,
iv) for each point $x$ in $X$ there exists a sequence $\alpha_{1},$ $\alpha_{\underline{o}},$

$\cdots\in\Omega$ such that

$C(x, \mathfrak{F}_{i})=F(\alpha_{1}\cdots\alpha_{i})$

for each $i$ .
LEMMA. A $\Sigma(\mathfrak{m})$ -space has a spectral $\Sigma$ -net with $|\Omega|\leqq \mathfrak{m}$ .
This is K. Nagami [10, Lemma 1-4].

THEOREM 3. Let $X(\neq\emptyset)$ be a $P(m)$ -space and $Y$ a $\Sigma(\mathfrak{m})$ -space such that
$X\times Y$ is a hereditarily paracompact space3). Then

$Ind(X\times Y)\leqq IndX+IndY$ .
PROOF (by induction on $IndX+IndY$ ). When $IndX$ or $IndY$ is infinite,

2) $C(x, \mathfrak{F}_{i})$ denotes the intersection of all elements $F$ of $\mathfrak{F}_{i}$ with $x\in F$ .
3) Our proof needs merely the paracompactness of $X$ and $Y$ and the total nor-

mality of $X\times Y$ . But this condition automatically implies that $X\times Y$ is hereditarily
paracompact.
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the theorem is trivially true. Hence we prove the theorem for the case:
$IndX=m<\infty,$ $IndY=n<\infty$ . When $m+n=-1$ , $Y$ is empty. Hence the
theorem is true. Assume that the theorem is true for the case when $IndX$

$+IndY<k$ . Let $m+n=k$ . To apply Theorem 2 let $\mathfrak{G}$ be an arbitrary binary
open covering of $X\times Y$ . Let

$\{\mathfrak{F}_{i}=\{F(\alpha_{1}\cdots\alpha_{i}) : \alpha_{1}, \alpha_{\dot{t}}\in\Omega\}\}$

be a spectral $\Sigma$ -net of $Y$ such that $|\Omega|\leqq \mathfrak{m}$ . By K. Morita [8, Lemma to
Theorem 3.2, p. 22] there exists for each $i$ a locally finite open covering

$\mathfrak{D}_{i}=\{D(\alpha_{1}\cdots\alpha_{i}) : \alpha_{1}, \alpha_{i}\in\Omega\}$

of $Y$ such that
$F$( $\alpha_{1}\cdots$ a $i$) $\subset D(\alpha_{1}\cdots\alpha_{i})$

for each sequence $\alpha_{1},$ $\alpha_{2},$
$\cdots$ . Let

$\mathfrak{W}=\{U_{\lambda}\times V_{\lambda} : \lambda\in\Lambda(\alpha_{1} \alpha_{i})\}$

be the collection of all possible $U_{\text{{\it \^{A}}}}\times V_{\lambda}$ which satisfy the following conditions:
(1) Each $U_{\lambda}$ is an open set of $X$.
(2) Each $V_{\lambda}$ is an open set of $Y$ which admits a finite collection $\mathfrak{B}_{\lambda}$ of

open sets of $Y$ whose sum is $V_{\lambda}$ such that for each element $V$ in $\mathfrak{B}_{\lambda}$

$IndB(V)\leqq n-1$ .
(3) Each $U_{\lambda}\times \mathfrak{B}_{\lambda}<(refines)$ (S.

(4) $F(\alpha_{1}\cdots\alpha_{i})\subset V_{\lambda}\subset D(\alpha_{1}\cdots\alpha_{i})$ for each $\lambda\in\Lambda(\alpha_{1}\cdots\alpha_{i})$ .
Set

$U(\alpha_{1}\cdots\alpha_{i})=\cup\{U_{\lambda} : \lambda\in\Lambda(\alpha_{1}\cdots\alpha_{i})\}$ .
Then

$U(\alpha_{1}\cdots\alpha_{i})\subset U(\alpha_{1}\cdots\alpha_{i}\alpha_{i+1})$

for each sequence $\alpha_{1},$ $\alpha_{2},$
$\cdots$ Since $X$ is a normal $P(\mathfrak{m})$ -space, there exist

cozero-sets $C(\alpha_{1}\cdots\alpha_{i})$ such that
(5) $C(\alpha_{1}\cdots\alpha_{i})\subset U(\alpha_{1}\cdots\alpha_{i})$ ,
(6) $\bigcup_{i}U(\alpha_{1}\cdots\alpha_{i})=X$ implies $U_{i}C(\alpha_{1}\cdots\alpha_{i})=X$.
Let $C_{j}(\alpha_{1}\cdots\alpha_{i}),$ $j=1,2,$ $\cdots$ , be open sets of $X$ such that
(7)

$\bigcup_{j}C_{j}$
( $\alpha_{1}\cdots$ a $i$) $=C(\alpha_{1} \alpha_{i})$ ,

(8) $B(C_{j}(\alpha_{1}\cdots\alpha_{i}))\subset C(\alpha_{1}\cdots\alpha_{i})$ for each $j$ ,
(9) $IndB(C_{j}(\alpha_{1}\cdots\alpha_{i}))\leqq m-1$ for each $j$ .

Set
$\mathfrak{U}$ ( $\alpha_{1}\cdots$ a $i$) $=\{U_{\lambda} : \lambda\in\Lambda(\alpha_{1}\cdots\alpha_{i})\}$ .

Let
$11^{\prime}(\alpha_{1}\cdots\alpha_{i})=\{U_{\lambda}^{\prime} : \lambda\in\Lambda(\alpha_{1}\cdots\alpha_{i})\}$



Large inductive dimension of totally normal spaces 287

be a locally finite (in $U(\alpha_{1}\cdots\alpha_{i})$) open covering of $U(\alpha_{1}\cdots\alpha_{i})$ such that
(10) each $U_{\lambda}^{\prime}$ is contained in $U_{\lambda}$ ,

(11) $IndB^{\prime}(U_{\lambda}^{\prime})\leqq m-1$ , for each $\lambda$ , where $B^{\prime}(U_{\lambda}^{\prime})$ is the relative boundary
of $U_{\lambda}^{\prime}$ in $U(\alpha_{1}\cdots\alpha_{i})$ .

Set
(12) $U_{\lambda}^{j}=U_{\lambda}^{\prime}\cap C_{j}(\alpha_{1}\cdots\alpha_{i})$ ,

(13) $\mathfrak{U}_{j}(\alpha_{1}\cdots\alpha_{i})=\mathfrak{U}^{\prime}(\alpha_{1}\cdots\alpha_{i})|C_{j}(\alpha_{1}\cdots\alpha_{i})=\{U : \lambda\in\Lambda(\alpha_{1}\cdots\alpha_{i})\}$ .
Then $\mathfrak{U}_{j}(\alpha_{1} \alpha_{i})$ is locally finite in $X$. Moreover

(14) $IndB(U)\leqq m-1$

for each element $U$ in $\mathfrak{U}_{j}(\alpha_{1}\cdots\alpha_{i})$ . Set

$\mathfrak{H}_{\lambda}^{j}=U_{\lambda}^{j}\times \mathfrak{B}_{\lambda},$ $\lambda\in\Lambda(\alpha_{1}\cdots\alpha_{i})$ ,

$\mathfrak{H}^{j}(\alpha_{1}\cdots\alpha_{i})=U\{\mathfrak{H}_{\lambda}^{j} : \lambda\in\Lambda(\alpha_{1}\cdots\alpha_{i})\}$ ,

$\mathfrak{H}_{i}^{j}=\cup\{\mathfrak{H}^{j}(\alpha_{1}\cdots\alpha_{i}):\alpha_{1}, \cdots \alpha_{i}\in\Omega\}$ ,

$\mathfrak{H}=\cup\{\mathfrak{H}_{i}^{j} : i, j=1, 2, \}$ .
Since each $\mathfrak{H}_{i}^{j}$ is locally finite in $X\times Y,$ $\mathfrak{H}$ is a $\sigma$ -locally finite open collection
refining G. Moreover

$IndB(H)\leqq k-1$

for each element $H$ of $\mathfrak{H}$ by induction assumption.
To prove $\mathfrak{H}$ covers $X\times Y$ let $(x, y)$ be an arbitrary point of $X\times Y$ . Set

$C(y)=\cap C(y, \mathfrak{F}_{i})$ .
Since $C(y)$ is compact, there exist an open neighborhood $D$ of $x$ and a finite
collection

$\mathfrak{E}=\{E_{1}, E_{s}\}$

of open sets of $Y$ such that
(15) $\mathfrak{E}$ covers $C(y)$ ,

(16) $D\times \mathfrak{E}<\mathfrak{G}$ .
Set $E=UE_{i}$ . Let $\beta_{1},$ $\beta_{2}$ , $\cdot..\in\Omega$ be a sequence such that

$F(\beta_{1}\cdots\beta_{i})=C(y, \mathfrak{F}_{i})$

for each $i$ . Let $t$ be an integer such that

$F(\beta_{1}\cdots\beta_{t})\subset E$ .
Let $L_{1},$ $\cdots$ , $L_{s}$ be open sets of $Y$ such that
(17) $L_{i}\subset E_{i},$ $i=1,$ $s$ ,
(18) $F(\beta_{1}\cdots\beta_{t})\subset UL_{i}\subset E\cap D(\beta_{1} \beta_{t})$ ,

(19) $IndB(L_{i})\leqq n-1$ for each $i$ .
Set

$L=L_{1}U\cdots UL_{s}$ .
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Then $D\times L$ is an element of $\mathfrak{W}$ and $D\subset U(\beta_{1}\cdots\beta_{t})$ . Since $x$ was arbitrary,

$\bigcup_{i}U(\beta_{1}\cdots\beta_{i})=X$ .

Hence for some $u\geqq t$ and some $j$

$x\in C_{j}(\beta_{1}\cdots\beta_{u})$ .
Let $M_{1},$ $\cdots$ , $M_{s}$ be open sets of $Y$ such that

(20) $F(\beta_{1}\cdots\beta_{u})\subset\cup M_{i}\subset D(\beta_{1}\cdots\beta_{u})$ ,

(21) $M_{i}\subset L_{i},$ $i=1,$ $\cdots$ , $s$ ,
(22) $IndB(M_{i})\leqq n-1,$ $i=1,$ $\cdots$ , $s$ .

Set
$M=UM_{i}$ .

Then there exists a $\mu\in\Lambda(\beta_{1}\cdots\beta_{u})$ such that
(23) $D=U_{\mu}$ ,
(24) $M=V_{\mu}$,
(25) $\{M_{1}, M_{s}\}=\mathfrak{B}_{\mu}$ .

Thus
$(x, y)\in C_{j}(\beta_{1}\cdots\beta_{u})\times V_{/1}$ .

Let $\nu$ be an element of $\Lambda(\beta_{1}\cdots\beta_{u})$ such that $x\in U_{\nu}^{\prime}$ . Then $x\in U_{\nu}^{j}$ by (12).

Since $(x, y)$ is now contained in an element of $\mathfrak{H}_{u}^{j},$ $\mathfrak{H}$ is a covering of $X\times Y$ .
Since i) $\mathfrak{H}$ is already a-locally finite, ii) $\mathfrak{H}<\mathfrak{G}$ and iii) $IndB(H)\leqq k-1$ for each
$H\in \mathfrak{H}$ , then $Ind(X\times Y)\leqq k$ by Theorem 2. Thus the induction is completed
and the proof is finished.

COROLLARY 1. Let $X$ be a P-space and $Y$ a $\Sigma$ -space such that $X\times Y$ is a
hereditarily paracompact space. If $X$ or $Y$ is not empty, then

$Ind(X\times Y)\leqq IndX+IndY$ .
The coincidence of the large and small inductive dimension, $IndX=indX$,

has been proved for the following cases:
$(\alpha)$ Metric spaces with the star-finite property (K. Morita [6]).
$(\beta)$ Hereditarily paracompact spaces with the star-finite property (Y.

Katsuta [4]).
$(\gamma)$ Totally paracompact metric spaces (R. Ford [3]).
$(\delta)$ Order totally paracompact metric spaces (B. Fitzpatrick, Jr. and R.

Ford [2]).

Case $(\beta)$ is a generalization of Case $(\alpha)$ . Case $(\delta)$ is a generalization of
Cases $(\alpha)$ and $(\gamma)$ . A slight modification of total paracompactness yields the
concept of o-total paracompactness, which is a generalization of Cases $(\alpha),$ $(\beta)$

and $(\gamma)$ . Then we shall prove the equality between two inductive dimensions
for such class of spaces which are also totally normal.



Large inductive dimension of totally normal spaces 289

DEFINITION. A space $X$ is $\sigma$-totally paracompact if for every open base
$\mathfrak{G}$ of $X$ there exists a a-locally finite open covering $\mathfrak{H}$ of $X$ having the follow-
ing property:

For each element $H$ of $\mathfrak{H}$ there exists an element $G$ of $\mathfrak{G}$ such that $H\subset G$

and $B(H)\subset B(G)$ .
THEOREM 4. Let $X$ be a totally normal, $\sigma$ -totally paracompact space4). Then

$IndX=indX$ .
PROOF (by induction). It is almost evident that ind $X\leqq IndX$. So we

merely prove ind $X\geqq IndX$. When ind $ X=\infty$ , there is nothing to do. Con-
sider the case when ind $ X=n<\infty$ . Put the induction assumption that the
desired inequality is true for dimension $<n$ . To apply Theorem 2 let $\mathfrak{U}$ be
an arbitrary binary open covering of $X$. Since ind $X=n$ , there exists an open
base $\mathfrak{G}$ of $X$ such that ind $B(G)\leqq n-1$ for each element $G$ of G. Then by
induction assumption $IndB(G)\leqq n-1$ for each element $G$ of G. Let $\mathfrak{H}$ be a
$\sigma$ -locally finite open covering of $X$ such that for each element $H$ of $\mathfrak{H}$ there
exists an element $G$ of $\mathfrak{G}$ with $H\subset G$ and with $B(H)\subset B(G)$ . Then $\mathfrak{H}$ refines
11 and $IndB(H)\leqq n-1$ for each element $H$ of $\mathfrak{H}$ . Thus $IndX\leqq n$ by Theorem
2 and the induction is completed. The proof is finished.

COROLLARY 2. Let $X(\neq\emptyset)$ and $Y(\neq\emptyset)$ be spaces such that $x\times Y$ is totally
normal and $\sigma$ -totally paracompact. Then

$Ind(X\times Y)\leqq IndX+IndY$ .

PROOF. It is almost evident, by induction, that

ind $(X\times Y)\leqq indX+indY$ .
Hence

$Ind(X\times Y)\leqq IndX+IndY$

by Theorem 4.
This is a generalization of Y. Katsuta [4, Theorem 2].
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