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§1. Introduction.

Let us consider a kowalewskian

(L.1) Lu= (% )u+ PR t)(»aix)”(% Yu=r
where =
X=Xy, Xgy =+ 5 Xx) E R?,

0 \* 0 v 0 v2 0 v
(o) =Cae) o) (5™
v]=v, v+ e oy

and
a,,;(x, t) € B(R*+1,

We denote the principal part of L by L,:

a2 L= () B () (5p)
jEm—1

We look for a necessary condition in order that the Cauchy problem for
is well posed when has multiple characteristic roots with constant
multiplicity.

First we give

DerINITION 1.1. The Cauchy problem for (1.1) is said to be well posed in
L? sense in an interval [0, T if the following two conditions are satisfied.

(1) For any prescribed initial data ¥

1.3) ¥ = {(%)‘fuh:o: € ORI, j=0,1,2, -, m—1}

1) B(RF¥) is the class of functions f(x)=f(x,, ---, x;) such that their derivatives

('%)vf are bounded and continuous for |v|=0,1,2, ...
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and f=f(x, t) € £(L? ?, there exists a unique solution
1.4 u(x, ) € EXDTINEKDTL )N - NEPTALH

which takes the given initial data at ¢=0.
(2) The energy inequality holds, that is

w5) B(t: w) = Co(EQ: 0+ 1/(s)lds)

0=t=sT

holds for a constant C, which depends only on T, where

(1.6) Bt w) :’g H (Ag—t«)’u(t) “ ,

m=~j-1

Our purpose of this paper is to prove
THEOREM 1.1. Assume that the characteristic equation

.7 Lyx, t; 6 ="+ X a,x, )64 =0

AT
corresponding to (1.2) has real roots with constant® multiplicity. Moreover we
assume that there exists at least one root of (1.7) whose multiplicity is greater
than unity. Then the Cauchy problem for

1.8 (Lot+Bu=f

is not well posed in L? sense for any lower order operator B.

REMARK. In Theorem 1.1, we assume that (1.7) has real roots for any
real £:£0. We notice here that if the Cauchy problem for (1.1) is well posed
in L? sense, then the roots of (1.7) have to be real for any real &=0.
S. Mizohata [1] (also see P.D. Lax [2] and I. G. Petrowsky [3]) has already
proved this fact in the case of C«-topology.

Using a successive approximation, we can prove that if the Cauchy prob-
lem for (1.1) is well posed in L? sense, then it is also the case for (L+B)u=f
for any lower order operator B. Then to get our Theorem, we only have to
prove that there exists at least one lower order operator B such that the
Cauchy problem for (L,-~B)u=f is not well posed in L? sense.

2) 9% is the space of all functions u(x) such that («—(%)Vu(x)eLZ for jvi=m,

2
with the norm |u|2,= X —aa;)vu In addition, & (2p;7) is a class of functions
[yl =m L2
o
v(x,t) such that 9 v(x, t) is continuous with the topology of 977 for «=0,1, 2, ..., .

ot
3) This condition can be slightly weakened. See condition (II) in the following
text.
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To make clear our reasoning, we consider rather simplified formulation
of the problem as follows. First we formulate the following two conditions
on

(I) All roots of are real for any real & 0.

(II) There exist a neighbourhood 2, of (x, {)=(0, 0) and a neighbourhood
2, of &=£&,/1&| on the unit sphere |&|=1 such that can be written as

(1.9) Lo(x, 124, = (A—2)" IT(A—4;)

for (x, t, &) € 2,X2,, where {1;},#, are distinct roots of [1.7)

Now let us prove the following

THEOREM 1.2. Assume that (1.2) satisfies (I) and (II), then there exists a
lower ovder operator B such that the Cauchy problem for (L,+B)u=0 1s not
well posed in L* sense.

Here we give a simple but suggestive example (also see [4] and [5]).

ExaMPLE. Let us consider the Cauchy problem for

32

(1.10) Lju=—u=0.

It is well posed in the sense of Petrowsky [3] In fact for given initial data
u(0) =uy(x) € Cy and %u(O) =u,(x) € CP, ulx, t)=u,(x)+tu,(x) e Cs, is a uni-

que solution of and this is of course continuous with respect to the
given initial data. But the forward Cauchy problem for is not well

posed in L? sense. Because for given initial data »(0) = u,(x) € 9%: and %u(O)
=u,(x) € L? the solution u(x, t) = uy,(x)+tu,(x) is not in PL. for ¢ > 0.

We shall prove in §§ 3-4. The method of our proof is quite
similar to that of [1I]. But we are concerned there with some particular
pseudo-differential operators whose symbols have such a form as

(L11) Bz, )= hlx, ©)+hy(x, 18] P +hyx, 1€ 7 + -

where h;(x, &), 7=0,1, 2,3, ---, are symbols of Calderén-Zygmund and p is a
positive integer. In §2 we treat the class of pseudo-differential operators
attached with such symbols.
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constant encouragement, and also to Professor H. Kumano-go and Professor
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§2. Pseudo-differential operators.

2.1. An algebra P of pseudo-differential operators.

In this paragraph we shall define an algebra of pseudo-differential opera-
tors which are similar to those of Kohn-Nirenberg [107], Yamaguti [5].

2.1.1. Pseudo-differential operators of type P.

We consider a class of symbols:

@) h(x, &) = hlx, )+, O)1E177 +hy(x, OIE] 77 4 -

which satisfy the following two conditions (P.1) and (P.2):

(P.1) Using the notation of A.P. Calderdn-A. Zygmund [97, h;(x, &) is of
class C¥, = +co for j=0,1,2,3, -

(P.2) Setting

0 y
2.2 = 9 ,
( ) MH" IuIZ_S)ZIc .r&‘-??}"l,lpf =1 ( 8{: ) h](x’ E) !
a power series
o A
23) > My
i=0

has a non-zero radius of convergence. We denote it by ¢, =¢,(H). In
and p is a positive integer.

We shall write for convenience as
1 2
H~H+HA™? +H,A"? 4 -

where /A is Fourier inverse image of || and H, is a singular integral operator
of Calderdn-Zygmund corresponding to the symbol h(x, &).
Let us define a C> function $(£) by

1 [§lzR+1
0 [éI=R
127©=z0 R=[§I=R+1,

o=
2.4

where R >¢,(H)"!. We denote by y a pseudo-differential operator defined by
Gu)® =7(&a for ue L% where # is Fourier image of u.

Consider the class of all functions 7(&) defined as above for R > ¢(H)™*
and denote it by I'(H).

Now let us define a pseudo-differential operator H; by

(2.5) H=3 H,.r/l‘f?, rel(H),
j=0

and for u e L?

26) Hyu= [ e#i=%h(x, OPO#ES -
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We denote the symbol of H, by o(H;), namely o(H;) = h(x, £)7(£).

DEFINITION 2.1. Let A(x, &) be a symbol satisfying the conditions (P.1) and
(P.2). We call a pseude-differential operator H, defined by (2.5) and (2.6) “a
pseudo-differential operator of type P .

First we get

LEMMA 2.1. A pseudo-differential operator H, of type P is a bounded
operator in L2

Proor. Taking u & L¥(R*), we have

| Hulle S 31 HG A yulss

co ___7.7; co _‘,j,
<c 3 M, |74 Pull S e 5 MR 7 ulis
= j=

Here we give an important example of a pseudo-differential operator of
type P.

ExamMrLE 21. Hy=y(1+A4)"" is of type P. In fact, we get by Taylor’s
expansion formula

A+1EDT =& A= & HIE1 2+ )

and thus ¢(H;) = (1+4|&])"'7(&) satisfies the conditions (P.1) and (P.2).
2.1.2. Orders of pseudo-differential operators.
Now let us define the orders of pseudo-differential operators generally.
DEFINITION 2.2. We say that H is a pseudo-differential operator of order
—7, if for any u = L? H satisfies the following :

@7 |HA™U| 22 = Crllullze,

where C, is a constant independent of u.
REMARK 1. By this definition we may say that

H® =3 Hyd™ 7
j=n

is a pseudo-differential operator of type P of order —n/p. Then for sufficiently
large n, H™ is a bounded operator in L2

REMARK 2. Let a{x, D) be a pseudo-differential operator of type P of
order —7. Then we have for any u = L?

la(x, D)a,ul| < const. n="|u||* .

LEMMA 22. For any y,el'(H) and y,eI'(H), (H;,—Hy,) is a pseudo-
differential operator of order —oo, then of course is a bounded operator in L2
Proof is easy and is omitted.

4y The definition of «, is given in 2.2.2. See page 176.



Cauchy problem for equations with multiple characteristic roots 169

Now we can define a pseudo-differential operator (H o K); of type P which

is attached to a symbol A(x, &)k(x, &), where o(H;)=h(x, &)7(&) and o(Ky)
= k(x, £)7(6). In fact, a product of two Puiseux series is also a Puiseux series

and has a radius of convergence which is equal to the minimum of two radius
of convergence corresponding to

> My,e? and 3 Mge?.
=0 j=0

By this remark, we have the following

LEMMA 2.3.° Let Hy and K, are two pseudo-differential operators of type
P, then (HyK;—(H o K)/)A® is of order zero.

ProoF. Let us denote the equality modulo bounded operators in L? by =.
Taking the Remark 1 into account, we have

HK: A= HT(K0+K1(TA p)+ -+ K- (A p ))A
= A+ - KA

=(Hyy+ - +Hp (4™ p ))A(K0r+ KA 7 ))

(
=S H G A DK A7 9) 4
i+ 5=0
z(p 1) J
= 3 HK(TA X )/1
0

i+ j=
2(p—1) T
= 2 o KpAG A~ #)

=S H 0 KpAGa™ 5y = (H o KA

=

2.1.3. Now let us prove a fundamental Lemma with respect to pseudo-

differential operators of type P.
LEMMA 24. (1) Suppose that inef [ ho(x, E)|=0>0. If the support of @&

€ L? lies outside of the ball |E|< R (R > ¢, (H)™), then we have
0 A

@ Ve = (-5 — R ¢, 3 M ,R77 ) ulz2,
j=1

where ¢, and ¢, are constants independent of R and u.
(2) In thecase p=2, suppose Re hy(x, £)=0 and inf Re h,(x, &)=06>0. Let
z.¢

5) In general, we should have to prove for Hy, and Hy,, but in view of
2.2, without loss of generality, we may assume that y; = y,.

6) Of course HyK; is no longer a pseudo-differential operator of type P. Also see
Lemma 2.8
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{#,(&)} be an arbitrary sequence of L* whose supports lie between two concentric
Spheres |E]l=cn and |E|=cn (¢; < ¢y, n=1,2,3,---). Then we have

28 Re (Hy Atn, 1) = c5n ? a3z,

for n=n,. Where ( , ) means the inner product of L? and c, is a constant
independent of n. Ref means a real part of f.
Proor. (1) First we get

o _J.
| Hrull = | Hoyul — EHHJ'(TA 2uf .
On the other hand, using Lemma 2.1 of [67, we get
[Hoyul = |Ho Ay A0

= S AG A —Clya-u)

= 0 jul—CR|ul,

and thus we get (1).
(2) For any integer n, we get

_1 o S
Re (HyAuy,, uy) ZRe (Hy(y A ?)Aug, un)— 3 |(Hi(r A ?)Au,, u,)].
j=2
Now we shall show that the first term of the right-hand side is greater than
1—-1
Cn P ||uglze

for some positive constant C which is independent of »n™.

A

Hop A P, )= CHy A7) 3270 2) )
+(Hl7,/1‘é’(‘—}1{) U, A‘%’(l“}l;‘) TRCE

IO B S WS &
A pseudo-differential operator [H,, /12(l P)]/N(l v) is of order —1/p, that
is a bounded operator in L% On the other hand, we get by the assumption

1 A1 1

Re (Hyy A% %)y, 4309wy = S a0 s,
thus our assertion is clarified. By this fact we have

Re (Hy Ay, ) 2 '™ 2 = 35 |GH,Gr 4™ #) A, ).

7) We refer readers to of [1].
8) Let A and B be two operators. We denote the commutator AB—BA by [A4, B].
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Finally we can easily see that the last term of the right-hand side is

dominated by
O unlis

where C’ is a constant which is independent of n. Thus we get (2) for suf-
ficiently large n.

2.1.4. An algebra P.

In this paragraph we define an algebra P of pseudo-differential operators
which contains pseudo-differential operators of type P.

DEFINITION 2.3. We say that a pseudo-differential operator H belongs to
a class P if for any s there exists a pseudo-differential operator H{ of type
P such that (H—H{) is of order —s, that is for any u = L?

IKH—H@) AUl 2 = cllull e

with a constant ¢ independent of u.

REMARK 3. By this definition we easily see that

(1) If H belongs to the class P, then for a(x) € B(R*), a(x)H also belongs
to P.

(2) Let h be a distribution such that whose Fourier image ﬁ(é) is infinitely
differentiable in RZ —{0} and homogeneous of degree zero. For any H of the
class P, Hh also belongs to P.

Now we shall show that the class P is closed with respect to the com-
mutator operation with 4. First we get

LEMMA 2.5 Let a(x) be a function of B(R¥), then the commutator [a(x), A]
belongs to the class P.

Proor. First we decompose A :

A=A+, =A—A4+74, y € I'(H®
then we get [a(x), 4] =[ax), 4,1+[a(x), 4,]. Evidently [a(x), 4,] is of order

— 00,
Now let us show that
N AR S P eD)
2.10) L), 4]= 5 SDMUED )y 1B,

1=l I<q !

where B, is of order —(g—k—1).

From this fact our lemma is immediate. In fact, for a given integer s,
if we take ¢ as g=~Fk+14s, B, is of order —s and [a(x), 4,]—B, is a pseudo-
differential operator of type P.

Take u = 9%, then we have

9) We refer readers to of [6].
10) For convenience we use y&I'(H). Of course y may be replaced by any func-
tion with the similar property.
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[v[+1
Ba= 3 U™ fa,te ) AG—)x—)u(dy
By Hausdorff-Young’s inequality, we get

| Boullze = cllu] el (x” Al 1 -

Now let us examine ||x*/4,||;: more precisely. By Fourier transform we get

va/lzlécj‘

(5 ) G@leb|de,  i=q

Now we have

DG ©1ED :O<l§§q(é)@§‘ TENWDE "] Ei)+|y§liq?(§)(1)§l &D.

By the definition of 7(¢), the first term of the right-hand side defines a pseudo-
differential operator of order —oco. Next the last term of the right-hand side
defines a pseudo-differential operator of order —(g—k—1). In fact, since we
have

P HGHES AR EFICTHESS
we get
| A%51x2 A, | < e[ 7(§)[€] 1 < oo

In the same way we get

| x| 22427 (x" 4,))

< o [#(®)| | +--2dg < o0

In the sequel, we get

J‘JAq-k—1(xu/12)ldx:flxlél... dx_}_j‘lxl;l... dx

[

Ix|2s+2 .

scfr@lglragf  detefr@lel-a-def

lziz1

Thus || A9 %*(x*4,)||z1 < +co, and this proves that B, is a pseudo-differential
operator of order —(g—Fk—1).

Now we return to our lemma. In (2.9), the first term is obviously of type
P. Finally, for any s given if we take g as ¢g—k—1=s, then B, is of order
—s. Thus our proof is complete.

COROLLARY 1. Let h be a distribution mentioned in Remark 3. Then
[a(x), h] belongs to a class B, where a(x) is a function of class 3.

COROLLARY 2. Let H be a singular integral operator of Calderén-Zygmund
whose symbol is of class Cg, B=+oo. Then [H, A] belongs to the class P.

ProOF. First we develop the symbol o(H)=h(x, &) as follows:
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h, =D+ 58 0T anl®)

where {f/n,m({:)} are spherical harmonics of order n. Now applying
2.5 term by term, we get
LEMMA 2.6. If Hy is of type P, then [Hy, A] belongs to the class P.
PrOOF. For any given number s, we decompose H; into

HT — Hr,0+H(s_1) s

where H®® is of order —(s—1) and H,;, is a finite sum of {Hj(r/l"]?)} (see
Remark 1).

Now we get [Hy, A]1=[H;,, AJ+[H* ", A], and evidently [H“"?, 4] is of
order —s.

Finally we see that

[Hr Al= 3 [H, A1G A7)

belongs to the class P. In fact, by Corollary 2 to Lemma 2.5 [H;, A7] belongs
to the class P for j=0,1,2, ---,j,. Thus [Hy,, A7 belongs to the class P.

By the following theorem, we know that a class P is closed with respect
to the operation to take commutator with A.

THEOREM 2.1. If a pseudo-differential operator H belongs to B, then LH, A7]
also belongs to P.

PrRoOF. For any given number s, there exists a pseudo-differential operator
H®-Y of type P such that (H—H®-Y) is of order —(s—1).

Now we get [H, AJ=[H—H*->, A]+[H“*», A7, and evidently [H—H“"", 4]
is of order —s. Finally, by Lemma 2.6 [H*-?, 47 belongs to P.

Now let us prove that the class P is an algebra. First we prove the
following

LEMMA 2.7. Let H and K are singular integral operators of Calderdén-
Zygmund. Then (HK—H o K) belongs to the class P.

Proor. Using a development of symbols by spherical harmonics, we only
have to prove our lemma in the simplest case such that o(H)=a,(x)h and
o(K) = a,(x)k, where h and k are distributions mentioned in Remark 3. Taking
Corollary 1 to Lemma 2.5 and Remark 3 into account, the proof is easy.

LEMMA 2.8. Let Hy and K; are pseudo-differential operators of type P, then
H,K; belongs to the class P.

Proor. For a given s, we can decompose H; and K, into Hy= Hy,+H*®
and K; = K;,+K®, respectively, where H® and K are of order —s, and

_J. _J.
H;, and K, are finite sum of {H;y4 {,} and {K,yA »}, respectively.
Now we see

Hy Ky = Hy oKy, o+ HK; - Hy ( KO+ HOK® .
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Evidently the last three terms of the right-hand side are of order —s. Finally
let us prove that the first term of the right-hand side belongs to the class P.
In fact, we see

finite i A
Hy oKy = 3 (Hip 4™ 7) Ky 4™ )
i+ j=

1 -t I
= DHGA P E—Kyd wrd e
S H K~ Hoo K™

—itd
+XH o Kprid 7.

By the second and the last terms of the right-hand side belong
to the class P. Finally by Corollary 2| to Lemma 2.5, the first term of the
right-hand side belongs to a class P.

In the sequel, we get the following theorem and thus we see that a class
P of pseudo-differential operators is an algebra.

THEOREM 2.2. Let H and K are pseudo-differential operators of a class P,
then HK also belongs to a class P.

Proor. For a given s, there exist H{® and K{ of type P such that
H—-H® and K—K{ are of order —s. Now we have

HK = HEK—K)+(H—H)K P+ HPKP
ESEDIES IR

First it is evident that I is of order —s. Next by Lemma 2.8, II] belongs
to the class P. Finally we have

II A8 =(H—H®KP s = (H—HP) A A~K P A°

and A-*K®A* is a bounded operator in L2 Thus IJ is of order —s, and we
get our theorem.

2.2. Class (H) of pseudo-differential operators.

2.2.1. We treat some elementary pseudo-differential operators of the form

@11 a(x, D)=_3 a (D)

where a,(x) € B(R*) and ¢;(x) are distributions belonging to @} ®.
DEFINITION 2.4. The Fourier image $(§) of ¢(x) = Dj is said to be a
hypoelliptic symbol if it satisfies the following two conditions:
(H) (&) is locally bounded and infinitely differentiable outside of some
compact set, say |§|=R.

11) @, is a dual space of 9%, = M D,

m=1
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(H,) There exists a positive integer s such that D%¢(&) is summable for
{€l=R if [y|=s.

DEFINITION 2.5. The pseudo-differential operator a(x, D) defined by (2.11)
is said to be of class (H) if $,(&) is a hypoelliptic symbol for all .

Let ¢(D) be a pseudo-differential operator of class (H), and b(x) € B(R").
Now we consider the commutator [6(x), ¢(D)]. Using 7(¢) previously defined'?,
we decompose ¢(£) as

$(&) =1A—-7ENFE)+7(8)S(),
which gives the corresponding decomposition
P(0) = P(0)+$,(x), $.(E)=7(E)P(E)s

Then we have
[o(x), p(D)]=[b(x), P(D)]+Lb(x), p(D)].

Evidently [b(x), ¢,(D)] is a bounded operator.
LEMMA 2.9.

S |v]+41 Dyb(X) v
(2.12) [b(x), $:(D)] =IE1(~1) 1 (@D +B,
where B, is a bounded operator in L* and its operator norm is estimated by

c|b(0)| as(| D*¢ (&) 1+ D¥**°6 ,(E)]] 11)*®

where ¢ is a constant independent of b and ¢,.
Proor. Take u(x) € 9%, then we have

[b(x), §,Tu= [ (b))~ b (x—Iu()dy .

Now by Taylor’s formula ,

ey — o (=1 1) » v (= ) . W
b(x)—b(y)=—(2 —D”b(x)(x—) +Z_ b.(x, M(E—Y)),
then we have

50, ¢.Ju= B -0 Db 3oy

+ 3 DT (5 ey, yu()dy

lvi=s
Denoting the operator of the last term of the right-hand side by B, we
get (2.12).
Now we consider one of the last terms. Using Hausdorff-Young’s in-

12) See the footnote 10).
13) |b(x)]gs is defined by |b(x)|gs= sup _|D*b(x)]|.
{y|ss, xRk
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equality, its operator norm is estimated by

Sup |bul”xp¢1”L1: IU!:S.

By Fourier transform we get

|2 < ¢ [ 1D°6,(&)|d& =l D*illus -
Then

| llzn = [12°6, | dx

:jleiéllxugblldx_{_j'lzlél Ixu¢1ldx

=D @t 1D lnf e

thus we get our lemma.

We define the orders of pseudo-differential operators of class (H) and give
some remarks concerned with them.

DEFINITION 2.6. A pseudo-differential operator ¢(D) of class (H) is said
to be of order ¢(>0) if for any u < L?

#(D)u]|-; < const. uf,.
By this definition, we see easily that ¢(D) is of order one if

| $(&)] < const. (1+[&]).

Moreover if |D:$(€)| < const. for |v|=1, then the commutator [b(x), #(D)] is
of order 0.

2.2.2. A pseudo-differential operator a, of class (H).

Here we shall give an important example of pseudo-differential operator
of class (H). This is originally considered by S. Mizohata (see [7], [1], etc.).

Let &(&) be a infinitely differentiable function with a compact support
which lies in a neighbourhood of &, 0 not contains £§=0. Moreover let &(§)
takes the value 1 in a neighbourhood of £, and 0 < a(6) < 1. We define @,(&)

by 6‘”(5):‘5(7{2 —), then &,(&) is a hypoelliptic symbol whose support lies in a

neighbourhood of ng&,.
If we define a pseudo-differential operator «,(D) by

<
(2.13) an(Dyu — a,(O)mE), ux)eLl?,
then a,(D) is of class (H).

14) Of course this condition is not necessary for &(&) to be a hypoelliptic symbol.
But we assume this for a convenience of an actual use in the following paragraphs.
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Finally we notice that
2.14 Dran@l= ()"
(2.14) | Dzan(®l = C(—;

where C is a constant which is independent of n.

§3. Fundamental inequality.

Before the proof of we shall give a differential inequality.

First we consider an approximation to the operator L,+B. In the assump-
tion (JI), we assumed &, 0. Then without losing generality, we may assume
that the first component £§° of &, is non-zero: for example we consider the
case £,=(1, -+, ®).

Let us take

G B=b( aax : )

as a lower order operator where b is a non-zero real constant. We define its

size later.
m-1

Setting U =‘(u(x, t), %ru(x, B, -, '*Batmi'l u(x, 1)), we consider an equi-
valent system to (L,+B)u=0:

32 -éat—U =A(x t; —-a%‘) U
where
i 0, 1, -,0, 0
A(nt 5)= S0l

aj:|u12=ja”’m—j(x’ t)<‘78697 y'

Now we consider a localization of [3.2). We take an infinitely differentiable

function JB(x) which has a compact support contained in £, and takes the
value 1 in a neighbourhood of x=0.

Apply B(x) to [3.2), then

@3 2 (puy=A@U)+18, AW
where
6, A1U = BYAU)— AGB@U)

This is the first localization.
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Next we apply a, defined in §2 (2.2.2) to [(3.3):

(34) 7%* an(BU) = Aay(BU)+Lan, ANBU)+au(p, AIU)

where
Lan, AJU = a, ,(AU)— Ala,u) .

Now we apply a pseudo-differential operator F,(4) of class (H):

{i( 4+ 0
E (A) = {(4+1)me
0, T
to [3.4). Then we get' a first order system
35) S Enttn(BU) = En AL Eners(BUY)

+lom, AEGZIEN(BU)+an((B, AEZIELU)

Here we observe matrices [«a,, AE;!] and [, AE;!] precisely. All the entries
except the m'® row are zero. On the other hand each entry of the m'* row

of AE;! is a pseudo-differential operator of class (H). In view of
we can see easily

LemMA 3.1. [a, AE;T] and [B, AE;'] are both bounded operators in
(L¥R®)™. Moreover, there exists a constant ¢ which is independent of n such

that
ICan, AE;N]IZc.

Now we can express by pseudo-differential operators:
d

3.7 v Vo=IHo+H)AV +B,V,+F,
where
0, 7, 0,---,0 : 0
o= 0, eeeeee , 0,1 and I, =
s Pgey =+ 5 1y by, 0, -+, 0

O'(hj) = '—'iaj(x, t; §)|5l~j ) G(bo) = __bE{n—I[El -

and B, is a pseudo-differential operator of order zero of class (H), and finally

15) Since all entries of [a,, A] and [8, A] except the m!* row are zero, and more-
over the operator a, is commutative with 4, then we can easily see that E,[a,, AU
= [anx AE;LIJEmU: and Eman([ﬁ’ A]U) = an([ﬁ’ AEq_nlemU)
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Fn = [am AE;LI:IEm(‘BU)+an([,Br AE;Ll]EmU) .
Denoting 4,+4%, by 4, 4 is obviously a pseudo-differential operator of type P.
By Lemma 3.1, we get the following
LEMMA 3.2. There exists a positive constant ¢ independent of U and n,

such that
IB.Vat+Foll Ec|ELU | .

Now we consider to diagonalize the matrix o(4). Consider
3.8) P(x, t;1&, 2) =det (AI—a(4))

= A"ay(x, £ 1E8)A™ 4 o Fap(x, ;1) FbEEY T E .

where &/ =§&/|&|. Let us notice that the last term is b(&,/|&)™*|&]"% In
other words, this is a function of homogeneous degree zero multiplied by |&|-%.
Since b is non-zero, we can get roots of P(x,t;i&)=0 in Puiseux series for
|&| sufficiently large and (x, ¢, &) e Q2,X2,:

. d E’L(r_l) 4
3.9) Are=2A(x, t;1EN+ e ? ci(x, t; ENer
=1
where ¢=|&|"%, r=1, 2, .-, p. Let us notice here that there exists a constant
0 such that
(3.10) lex, 15 60N[=0>0.

In the same way, perturbed roots A4,. corresponding to the distinct roots
{Ag+1-p} Of det (AI—o(4,) =0 are expressed by Taylor series in e=|&|™*:

(3.11) Zq,s - Zq—p+1+ i C;;Z)(xl t 5 Sl)en
n=1

q:p—l_l! p+2; ey W

For (x,t; &) e R,x£,, (3.9 and are symbols which satisfy (P.1) and (P.2)
in § 2. We shall show it in Appendix.

As previously mentioned, and are defined only for (x,1;é&")
€ 2,x2,. We shall extend the definition of [3.9) and [3.1I) in the whole space
RE X {[£]=1}x[0, T7], [0, T"]C 2y N\ Ri.

Since {2;(x,t; &)} are smooth in (x,¢, &), we may assume the condition
dD) in §1 for (x,t; &) e 2/x 2] where 2/ 02, and 2/ 2,.

Let p(x)eC>= be a function defined in the whole R* which keep 2, in-
variant, moreover p(x) is contained in 2} for any x. Next let s(¢)e C> be a
transformation on |&|=1 into 2] which keeps £, invariant.

Now we replace x and & in (3.9-(3.11) by p(x) and s(&’) respectively.
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Then
(3.12) cP(x, t; EN=cP(p(x), t; s(&")

is defined in the whole space R% X {|&]=1}Xx[0, T"], for j=1,2, .-, m; n=1,
2,3, .
We denote Vandermode matrix

1 -, 1
'zl,e Xm,e
Be o M
:Z',L;l: Tty 277;:_51
by ¢(J1,). Now let us condider ¢(J1,)"* = (%) where 4;; is (ji)-cofactor

of ¢(1,). Since det a(ﬂzl):g(li,e—zj,s), we can write (i, j)-entry of ¢(J1,)"! as

(3.13) 617D (x, £ EN el (x, £ EVET 4 ),

where e=|£&|"* and r;;=0, and

(3.14) P, 15 €+ e (x, 15 ENe T+ -

is a symbol which satisfies the conditions (P.1) and (P.2) in § 2. We see easily

p—1

b
Now we define ¢(J0) by

(3.15) o) =67 - o@) ",

then each entry of ¢(J1) satisfies the conditions (P.1) and (P.2) of symbol in
§2. Some entries of ¢(J1), however, begin with positive power of ¢=|&|"%.
Especially we notice here that there exists a positive constant ¢ such that

3.16) cim(n, t5 80|28, =12, -, m.

that maxr; ;=
¥

Let us denote by 9; a pseudo-differential operator associated with

Avye 0
o@=| - J

0 Amye
Thus introducing 7 defined in §2, we see by
(3-17) 327:_9[7‘/1 = (327 o ﬂy)/l = (37 o ._q[)rA

= (_q) ) 572)7»/1 = _‘D;»EYZT/I = _@7/1317 ’

here we mean by = the equality modulo bounded operators in L% Defining
R;. by o(R;,)=2;(x,t; &), we can write 9; as
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Ry .r 0
Qr :[ | . : J
0 Ryl

In the sequel, we get from [3.7) and [(3.17)

@318 V= DAY\ AT VoA By Vit Ty BV AT F
where B, is a bounded operator in L? and J2; is a pseudo-differential operator

defined by

o) =— S o).

By Lemma 2.1l 7, and 97 are bounded operators in L2
Setting 7, V, = W,, we get from [(3.18)

(319 e W= Do AW o4 By Ty BV ek T F

Now we look at the exact representation of c,(x,¢; &) in [(3.9):

)|

m—p+1 4

1;12 (21 - Zj)

J

(3.20) cy(x, t; &)=

pz2,

where 4, -+, An-ps+; are characteristic roots of o(4,).
Since p is greater than 2, taking b conveniently there exists at least one
integer, we denote it by r,, in (1, 2, ---, ) such that

(321) Jnf Reexp —2;1 (r—D)ei(x, 15 €2 6,> 0,

for some constant d,.
For a convenience of reasoning, we assume that r,=1, that is

3.22) ( in;f) Rec,(x,t,&)=0,>0.
Z,8,&
Now let us define S,(t) by
(3.23) SaO= WOl
where W means the i-th component of W,(1).
We set
@329 (T B1+ By 430 ) Vo +- I Fy = Go(t)
then we get by Lemma 3.2
(3.25) 1G.Oll = CIER(DU ||«

If we define W, by
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(3.26) Wa(t) = anTl En(A)(BU) ,

then we see by the definition of a, that

(3:27) supp [ F.L Wa(x, 1] Csupp [2a(8)]

for any ¢ in [0, T]. By (3.25)-(3.27) and by [Lemma 24, we have that
(3.28) Re (R, 7 AWL®O+CLE), WP©)

= e~ | WO = | En( DU |

for sufficiently large n, where ¢, and ¢’ are constants independent of n. On
the other hand, in view of we get

(3.29) W PO - WO < I ELDU],

of course ¢ is a constant which is independent of .
Now we get by (3.28) and |(3.29) that

d 1--L

(3.30) Sz e P SO —a| En(DU |1®

for n>n, and 0=t < T7, where ¢, and ¢, are constants which are independent
of n.
The inequality is fundamental in our proof of

§4. Proof of Theorem 1.2.

We shall prove by contradiction. Therefore we assume that
the Cauchy problem for (L,+B)u=0 is well posed in L? sense for any lower
order differential operator B. Then the energy inequality holds.

Let ¢(&) be an infinitely differentiable function with a compact support
such that supp[¢(§)]C {§; a(©)=1}. We define $,(§) by

4D $a(&)=PE—(n—1)&0),

then ¢,(&) has a compact support in a neighbourhood of n&,, We denote the
Fourier inverse image of ¢,(&) by ¢,(x).
Now let us consider the Cauchy problem

(Ly+Bu=0

a'm.—Z am-—l
u)= - = Fpzg Um0 = 0, =i %m0 = Pu(®)

“.2)

for B defined by [3.1), and n=1,2, 3, ---.
By our assumption the Cauchy problem (4.2) is well posed in L? sense,
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then we have a solution u,(x, t) such that

Un(x, t) € ENDTEHNEDLED N - NEFTL?)
0=t=T)
n=1,2, -
Taking U, ="(u,(x, 1), Wu,,(x, B, -, ~§tgﬂ%un(x, 1)) for U in(3.2), we also
get a differential inequality for

(4.3) Wit) =9 Vo = Ty En( D) atn(BU ) «

On the other hand we can prove the following

LEMMA 4.1. There exists a constant ¢ which is independent of n such that
| En(DUL| = c.

Proor. By the definition of E,(4) we get

ummwm=§§—%‘%ww

m-j-1

un

=l gnClze -

at Im-j-l

On the other hand, by the definition gbn(x):e“"‘l’fo'%(x), s0 we have

IEn(DU| = cl|gn@] = c| Pl = ¢«
By this Lemma and (3.30), we get

d

(44) L Sz e,

for n>n, where ¢, and ¢ are constants which are independent of n. Inte-
grating (4.4) by ¢, we get

4.5) Sa() = econ p tsS (())_{_u__ = econ L phy,

Cyn 1’

for 0t TV,
In view of Lemma 3.2 and Lemma 4.1, we see easily that
(4.6) Sn(t) = constant independent of n;

Next we can get the following

LEMMA 4.2. There exists a positive constant 0, which is independent of n
such that

%) S.(0)= 5, -

If this Lemma is established, our proof of [Theorem 1.2 is immediate. In fact,
by this Lemma and [(4.6), we get from



184 T. KAaNO

(4.10) C2 Suh)Z 8,0 7L (L2
con P

for 05t TV,
As n tends to infinity, is apparently a contradiction unless t=0. Thus
the proof of is complete.
Finally we give a proof of

First of all we prove that there exists a constant ¢ independent of n such
that

@11 (Bl 2 c—0(—) -

In fact,

|en(BP = || Bletndll — ICetn, B1all
and by the last term of the right-hand side is of order 1/n. Next
by the definition of ¢,, we see that a,¢,=¢,, then we get
| B(andpud] = | Bdull = 1Bl = .

Now let us prove [(4.7).
Setting I, = (n;), W,(0) can be written as

0 3
@.12) wO=n| i |= [nma,g(ﬁsbn) J
(B LTmmn(BPn)

where {n,,} are pseudo-differential operators of type P. By we
get

nanta B9l 2= (= R’ 5 MojaumR 7 ) (B0

where R-' is smaller than the radius of convergence of the symbol of n,,,
and ¢ and ¢’ are constants which are independent of n. Thus for sufficiently

large R, we get
2
4.13) SFOERAS PREYRI

Now follows by [(4.IT) and [4.13)

Appendix

As mentioned in § 3, here in Appendix we consider a perturbation to the

characteristic roots of a(4(,).
1. We denote the characteristic roots of L, by A, -+, An-ps, then the
characteristic roots of ¢(4,) are given by
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A=y, o Apepri=1An-pry 1=+ —1.
Consider now
(G2)) P(x, t;1&, 2)=det (AI—o(H))
=2A"ta,(x, t; &A1 e

+an(x, 5 1ENFOEEY™ &I
where

a;(x, t;1&") :lvlzzjav,m—j(x: nagy”,  &=£&/161.
Under the conditions (I) and (II) we can write as follows.
(A P(if):<z—jl)p]]q-_&-l1: (A—2)—b(&"e,
where

N &\ _ -1
b(g)—«_b(tflfélf and 6—-[5' .
Setting p=1—1, we get from (A.l)
(A2) " (e G 1) = bE0s

If we denote the fundamental symmetric functions with respect to (1,—4,), -,

(A= Ap-pry) DY @o, @y, -+, Gpp-y. Then a;(x, t; &) is analytic in & except £=0
and infinitely differentiable in (x, #) for j=0,1, ---, m—p—1. Finally
dozdo(x:t§5/)¢0, (x’t»E/)EQOXQI'
Now we can write (A.2) in the following form:
(A3) PPlgt-8y et e ey P ™) = B(Ee
If we put
¢(/f‘ X, t: E/) - d0+dlﬁ+ ‘{‘dm—p—lﬂm_p-l‘!"ﬂm_p ’

then for sufficiently small |z| we see
@G 7,1, 801z DL 0.

Then ¢(u: x,t, &)=¢(p: x,t, £)* is regular as a function of g in a neigh-
bourhood of p=0.
Setting b(£)e =2z?, we have from (A.3)

p="V¢ z

where we mean by ?+/¢ one of its determinations.
Since z=0 yields =0, we get ¢ in a power series of z in a neighbour-
hood of z=0.
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By Lagrange’s inversion formula, we get

(A4) o :Elg+5222+
= 01571; _{—6257? -+ .-

where

| T I S el
(A.5) = V@ I[(5,) dwintenr]

S B 2,1, )P
=[*VbE) I dz.
[PVbED) "5 " = L

In (A.5) we take for radical ?+/b(£’) one of its determinations.
Thus we can express p-perturbed roots corresponding to i, as follows:

~ 27,”:,(1_1) oo .
(A.6) Aje=A1+e P > calx, 8, ENe P,
n=1
j:1,2,"',p-

2. Now we show that (A.6) satisfies the conditions (P.1) and (P.2) in §2.
(1) By the definition, it is evident that ¢(u; x,t, &) is in B,, and infinitely
differentiable in Rf{—{0}. Moreover

G wt ez 15l 20, @ enenxe,

for sufficiently small g. Then for sufficiently small é > 0,
[bENT? £ PCx 1,80

n Jt’ =" _‘—‘—h—’_ﬂd

el 1, £ 2w §1c1=5 g ¢
is infinitely differentiable in (x, {) under the sign of integration. Let us fix
this 0. The derivatives of ¢,(x, t, &’) in (x, f) of any order are evidently C*
in R§—{0}. Thus for any n=0

cn<x,v t S/)EC%: ﬁ:+00.

(2) Next we prove that

> Mcnsn
n=0
has a positive radius of convergence where

Mo, = X2 sup | Dicq(x, t, £N)].

K _lvlgzk (%,t,8)€ Q0% 21
First we see that
(A7) Dicat, 1, €)= - 3 ()Dygebeys - Dt § PEHLENT 4

2m lal=1v] 1¢1=6 Cn
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We denote the right-hand side as
(A'7)l 27” 2( )Qv ' Qzu

then we have for |[£|=1
A8 Qv éCv-a&lb(i)‘l‘j{j,

where C,_, is a positive constant.
On the other hand, we have

IDEGC; 2,1, ENSCa (1,1, ENER,X 2, [£]21

where C, is a constant depending on « and d,(x, t, £). Then we get

Quscf MG nt O

w=s b 17
(A9)
< Z”C . 5n1( ICH) , (5t ENeR,X2,
GER
From (A.7)-(A.9), we get
(A10) | Dgea, t, )1 =) (RLEEPLY 5 5

(x;tlé,)EQOX‘QI’ lElgly

where C, is a constant depending on v and a4,(x, ¢, &).
In the sequel, we have

(A1) Mo, = K() (2L 3

| @,

for some positive constant K.
Denoting the right-hand side of (A.11) by N,, the power series

£ e
converges for -
(A.12) el < (. 2|b($’)l ol )7 o
Thus

§0M0n5"

converges for (A.12).
3. By the same reasoning as in the preceding paragraph

G Ao =Topurt B0 80", @=L, m),
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also satisfy the conditions (P.1) and (P.2) in §2.
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