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\S 1. Introduction.

In this paper, we study $PL$ embeddings of spheres with codimension two
in terms of regular neighborhoods and exteriors.

In \S 2 we list and prove several fundamental facts about $PL$ embeddings
with codimension two.

We define an n-knot manifold $M$ to be a closed $(n+2)$ -manifold such that
$H_{*}(M)\cong H_{*}(S^{n+1}\times S^{1})$ and $\pi_{1}(M)$ has an element whose normal closure equals
$\pi_{1}(M)$ ([12], p. 229).

We clarify in \S 3 a connection among n-knots, n-knot manifolds and
(abstract) regular neighborhoods of $(n+1)$ -spheres with codimension two. In
particular, it is shown that $PL$ n-knot manifolds always bound some regular
neighborhoods of $(n+1)$ -sphefes and that there are at most two distinct $PL$

homeomorphism classes of regular neighborhoods of $(n+1)$ -spheres with codi-
mension two having $PL$ homeomorphic boundaries, provided $n\geqq 3$ (see

Theorem 3.11).

In \S 4, we investigate the local flatness of a $PL$ embedding of $S^{n}$ with
codimension two by means of the homotopy type of the boundary of the
regular neighborhood. In fact, we show that if it is l-flat and if the boundary
of the regular neighborhood is homotopically equivalent to $S^{n}\times S^{1}$ , then it is
actually locally flat, provided $n\geqq 4$ (see Corollary 4.6). For each $n\geqq 5$ , there
is, however, a 2-flat locally knotted embedding of an n-sphere with codimension
two whose regular neighborhood has the boundary which is homeomorphic to
$S^{n}\times S^{1}$ (see Corollary 4.10). As by-products of the argument, we can prove
that if a manifold pair $(N^{n+2}, bN^{n+2})$ is homotopically equivalent to $(S^{n}\times D^{2}$ ,
$S^{n}\times S^{1})$ for $n\geqq 4$ , then $N$ is homeomorphic to $S^{n}\times D^{2}$ . Thus Hauptvermutung
for $S^{n}\times D^{2}(n\geqq 4)$ is true. (Note that $\pi_{1}(S^{n}\times D^{2})=\{1\},$ $\pi_{1}(S^{n}\times S^{1})\cong Z.$) We
find two inequivalent n-disk knots having homeomorphic exteriors and knotted
$(n+2, n)$ -ball pairs in the standard $(n+2, n)$ -sphere pair for $n\geqq 4$ . (See Corol-
laries 4.5, 4.9 and 4.11). We also state the unknotting Theorem for n-disk
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knots for $n\geqq 4$ .
In \S 5, we give a necessary and sufficient condition for that regular neigh-

borhoods of n-spheres with codimension two can be embedded in the $(n+2)-$

sphere in terms of slice knots (see Theorem 5.1). We show that two smooth
n-knots are diffeomorphic if and only if they are $PL$ homeomorphic. Thus
the smooth n-knot cobordism group $C^{n}$ and the $PL$ n-knot cobordism group
$C_{PL}^{n}$ are connected in the following exact sequence:

$0\rightarrow C^{n}\rightarrow C_{PL}^{n}\rightarrow\theta_{n}(\partial\pi)\rightarrow 0$ for $n\geqq 7$

and $C^{n}\cong C_{PL}^{n}$ for $n\leqq 6$ ,

\langle see Corollary 5.3). Finally, we deduce that regular neighborhoods of a $(2m-1)-$

sphere with codimension two can be embedded in the $(2m+1)$ -sphere and that
for each $m\geqq 1$ there is a regular neighborhood of a $2m$-sphere with codimension
two which cannot be embedded in the $(2m+2)$ -sphere (see Theorem 5.5).

\S 2. Preliminaries.

We refer the reader to the notes of Zeeman [30] and Noguchi [23] for
basic facts and tools about $PL$ manifolds and embeddings with codimension
two. We restrict ourselves in the category of polyhedra covered by rectilinear
locally finite simplicial complexes and piecewise linear $(PL)$ maps. Thus all
maps are to be $PL$ and all manifolds are to be compact, oriented and $PL$ ,
unless otherwise mentioned. In particular, homeomorphisms between manifolds
are to be orientation preserving, and open subsets of manifolds which turn
out to be open submanifolds are to be of the induced orientation.

For a manifold $M$, by Int $M$ and $bM$ we shall denote the interior and the
boundary of $M$, respectively.

Let $f:M\rightarrow W$ and $g:M\rightarrow W^{\prime}$ be embeddings from a manifold $M$ into
manifolds $W$ and $W^{\prime}$ , respectively. We shall say that $f$ and $g$ are equivalent
if there is a homeomorphism $h:W\rightarrow W^{\prime}$ such that $h\circ f=g$ . The equivalence
of embeddings is clearly an equivalence relation. The equivalence class of $f$

will be denoted by $\{f\}$ . We shall say that $f$ and $g$ are micro-equivalent if
there exist derived neighborhoods $N$ of $f(M)$ in $W$ and $N^{\prime}$ of $g(M)$ in $W^{\prime}$ so
that $f:M\rightarrow N$ and $g:M\rightarrow N^{\prime}$ are equivalent (for derived neighborhoods, see
[30]). By the uniqueness of derived neighborhoods, the micro-equivalence of
embeddings is an equivalence relation, and the equivalence implies the micro-
equivalence. The micro-equivalence class of $f$ will be denoted by $\mu\{f\}$ .
Following Gluck [4], by an exterior of an embedding $f:M\rightarrow W$ we shall mean
the closure of the complement of a derived neighborhood of $f(M)$ in $W$.
Again by the uniqueness of derived neighborhoods, exteriors of equivalent
embeddings are homeomorphic. It is to be noted that if $E$ is an exterior of
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$f$, then $E$ is a deformation retract of $W-f(M)$ .
Let $f:M\rightarrow W$ be an embedding from an n-manifold $M$ into an $(n+p)-$

manifold $W$. We shall say that $f$ is flat at a point $x\in M$, if there are open
neighborhoods $U$ of $\chi$ in $M$ and $V$ of $f(x)$ in $W$ so that $f|U:U\rightarrow V$ and $\times 0^{p}$ :
$U\rightarrow U\times R^{p}$ are equivalent, where $R^{p}$ is the euclidean $p$-space, $0^{p}$ is the origin,
$\times 0^{p}$ stands for the embedding $x\downarrow\rightarrow(x, 0^{p})$ and $U\times R^{p}$ has the product orientation.
If $f$ is flat at every point of $M$, then we shall call $f$ to be locally flat. In case
$p\geqq 3$ , it follows from Zeeman’s unknotting Theorem [29] that the embedding
$f$ is locally flat if and only if it is proper; that is to say, $f(bM)\subset bW$ and
$f(IntM)\subset IntW$. However, we shall mainly concern ourselves with the case
of codimension $p=2$ , in which the embedding might fail to be locally flat.

The following existence and uniqueness Theorem of normal 2-disk bundles
for locally flat embeddings with codimension two guarantees us that we can
treat them in the same way as smooth ones.

PROPOSITION 2.1. Locally flat embeddings of manifolds with codimension
two have unique $(PL)$ normal 2-disk bundles which triangulate vector bundles.
(For the proof, see [27].)

By $D^{n}$ and $S^{n}$ we shall denote the standard $PL$ n-disk that is the n-fold
cartesian prodact of the closed interval $D=[-1,1]$ , and the standard $PL$

n-sphere $bD^{n+1}$ , respectively. Following Kervaire [12], by an n-knot and n-disk
knot we shall mean locally flat embeddings $f:S^{n}\rightarrow S^{n+2}$ and $g:D^{n}\rightarrow D^{n+z}$ ,

respectively. Note that from definition of local flatness, if $g$ is locally flat,
then $g$ is proper. The equivalence classes of $f$ and $g$ will be called the knot
and disk knot types, respectively. The following Corollary, which follows from
Proposition 2.1, ensures that the knot and disk knot have collars (see [27] and
$[1\theta J)$ .

COROLLARY 2.2. For any knot $f:S^{n}\rightarrow S^{n+2}$ , there is an embedding $F:S^{n}$

$\times D^{2}\rightarrow S^{n+2}$ such that $F(x, 0^{2})=f(x)$ for $x\in S^{n}$ . For any disk knot $g:D^{n}\rightarrow D^{n+2}$ ,

there is an embedding $G:D^{n}\times D^{2}\rightarrow D^{n+2}$ such that $G(x, 0^{2})=g(x)$ for $x\in D^{n}$ and
$G(D^{n}\chi D^{z})\cap bD^{n+2}=G(bD^{n}\times D^{2})$ .

By $K_{PL}^{n}$ and $D_{PL}^{n}$ we shall denote the sets of n-knot and n-disk knot types,
respectively. By $K_{PL}^{\prime n}$ and $D_{PL}^{\prime n}$ we shall denote the sets of homeomorphism
classes of locally flat $(n+2, n)$ -sphere and -ball pairs respectively. Then maps
$K_{PL}^{n}\rightarrow K_{PL}^{\prime n}$ and $D_{PL}^{n}\rightarrow D_{PL}^{\prime n}$ are defined by

$\{f : S^{n}\rightarrow S^{n+2}\}\mapsto\{(S^{n+2}, f(S^{n}))\}$ and $\{g:D^{n}\rightarrow D^{n+2}\}\vdash*\{(D^{n+2}, g(D^{n}))\}$ ,

where {X} stands for the class of $X$. These maps are clearly surjective.
Moreover, by Gugenheim’s Theorem, if two sphere (or ball) pairs $(S^{n+2}, f(S^{n}))$

and $(S^{n+2}, f(S^{n}))$ (or $(D^{n+2},$ $g(D^{n}))$ and $(D^{n+2},$ $g(D^{n}))$) are homeomorphic, then
$f^{-1}f^{\prime}$ : $S^{n}\rightarrow S^{n}$ (or $g^{-1}g^{\prime}$ : $D^{n}\rightarrow D^{n}$) is isotopic to the identity. It follows that
by Corollary 2.2 this isotopy may be covered by an ambient isotopy of $S^{n+2}$
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(or $D^{n\cdot!- 2}$) and hence that $f$ and $f^{\prime}$ (or $g$ and $g^{\prime}$ ) are equivalent. Therefore,
the maps $K_{PL}^{n}\rightarrow K_{P^{n}L}^{\prime}$ and $D_{PL}^{n}\rightarrow D_{PL}^{\prime n}$ are bijections. Thus Noguchi’s notions
of n-knots and n-nodes are essentially the same as ours of n-knots and n-disk
knots, respectively. In the following we shall often identify n-knot or n-disk
knot types with homeomorphism classes of locally flat $(n+2, n)$ -sphere or ball
pairs, respectively.

Now we turn to investigate the singularity of a proper embedding $\varphi:M\rightarrow W$

from an n-manifold $M$ into an $(n+2)$ -manifold $W$. A point $x\in M$ at which
$\varphi$ fails to be locally flat will be called a singular point of $\varphi$ . By $S(\varphi)$ we shall
denote the set of all singular points of $\varphi$ . Then $S(\varphi)$ is clearly invariant under
the micro-equivalence class of $\varphi$ . Let $K$ and $L$ be triangulations of $M$ and
$W$ respectively such that $\varphi:K\rightarrow L$ is simplicial. For each point $\chi\in M$, let the
link $lk(x, K)$ (or $lk(\varphi(x),$ $L)$) be of the orientation coherent with one of $st(x, K)$

(or $st(\varphi(x),$ $L)$) which determines that of $M$ (or $W$ ). Thus we have an (oriented)
$(n+1, n-1)$ -elementary ($i.e$ . sphere or ball) pair $(lk(\varphi(x), L),$ $\varphi(lk(x, K)))$ , whose
homeomorphism class will be called the singularity of $f$ at $x$ and denoted by
$\sigma(\varphi, x)$ . The pseudo-radial projection argument guarantees us that $\sigma(\varphi, x)$ is
determined independently from the choice of triangulations $K$ and $L$ and
that $x\in M-S(\varphi)$ if and only if $\sigma(\varphi, x)$ is the trivial type, that is to say, $\sigma(\varphi, x)$

contains the standard elementary pair $(bD^{n+2}, bD^{n}\times 0^{2})$ or $(D^{n+1}, D^{n-1}\times 0^{2})$ .
Following Noguchi [20], we may describe the singularity in terms of the dual
cell pair. For a simplex $\triangle$ of $K$, by V and $\square $ we denote the cells dual to $\triangle$

and $\varphi(\triangle)$ in $K$ and $L$ , respectively. Recall that
(1) the elementary pair $(lk(\varphi(x), L),$ $\varphi(lk(x, K)))$ is homeomorphic to the join

pair $b\varphi(\triangle)*(b\Pi, b\varphi(\nabla))$ , and that
(2) if $\triangle^{\prime}$ is a face of $\triangle$ , then $\square \subset b\coprod^{\prime}$ and $\nabla\subset b\nabla^{\prime}$ .
It follows from (1) that the singularity $\sigma(\varphi, x)$ of $\varphi$ at a point $x$ of Int $\triangle$

is simplicially stable in the sense that $\sigma(\varphi, x)=\sigma(\varphi, y)$ for $ y\in Int\triangle$ . This
implies that if Int $\triangle\cap S(\varphi)\neq\emptyset$ , then Int $\triangle\subset S(\varphi)$ . Moreover, if Int $\triangle\subset S(\varphi)$ ,
then by (1) $(b\coprod, b\nabla)$ is non-trivial, and hence by (2) $(b\coprod^{\prime}, b\nabla^{\prime})$ must be also
non-trivial for any face $\triangle^{\prime}\subset\triangle$ . This implies that if Int $\triangle\subset S(\varphi)$ , then
$\triangle\subset S(\varphi)$ . Therefore, $S(\varphi)$ is a subpolyhedron of $M$ covered by a subcomplcx
of $K$. Now we have the following:

PROPOSITION 2.3 (Noguchi [20] and [23]). Let $\varphi:M\rightarrow W$ be a proper
embedding of an n-manifold $M$ into an $(n+2)$ -manifold W. If $K$ and $L$ are
triangulations of $M$ and $W$, respectively, such that $\varphi:K\rightarrow L$ is simplicial, then
the set $S(\varphi)$ is an underlying set of an at most $(n-2)$ -dimensional subcomplex
of $K$.

In [20], Noguchi defined a 2-dimensional integral cohomology class $\chi(\varphi)$

$\in H^{2}(M)$ for a proper embedding $\varphi:M\rightarrow W$ with codimension two which is
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invariant under the micro-equivalence class of $\varphi$ . We shall call the class $\chi(\varphi\rangle$

to be the Euler class of $\varphi$ . In fact, if $\varphi$ is locally flat, then $\chi(\varphi)$ coincides.
with the Euler class of a normal bundle for $\varphi$ . Putting $\sigma(\varphi)=\{(x, \sigma(\varphi, x))|x$

$\in S(\varphi)\}$ we shall call $\sigma(\varphi)$ to be the singularity of $\varphi$ . We shall call an embed-
ding $\varphi:M\rightarrow W$ with codimension two to be k-flat, if $\varphi$ is proper and if $S(\varphi)$

is of dimension $\leqq k-1$ . The following was also proved by Noguchi [21] (see

also [19] and [20]).

PROPOSITION 2.4 (Noguchi). Two l-flat embeddings $\varphi:M\rightarrow W$ and $\psi$ ::
$M\rightarrow W^{\prime}$ are micro-equivalent if and only if $\sigma(\varphi)=\sigma(\psi)$ and $\chi(\varphi)=\chi(\psi)$ .

In the rest of the section we establish a $PL$ version of ([12], Lemma II. 2):

and characterize exteriors of n-knots in algebraic terms. Let $G$ be a group..
For a subset $A$ of $G$ , the normal closure of $A$ , written $(A)$ , will mean the
smallest normal subgroup of $G$ containing $A$ . An element $\xi$ of $G$ will be
called a weight element of $G$ , if the normal closure $(\xi)$ of $\xi$ equals $G$ . Let $M$

be a proper n-submanifold of an $(n+2)$ -manifold $W$. Taking triangulations $K$

and $L$ of $M$ and $W$, respectively, such that $K$ is a subcomplex of $L$ , let $C$ be $\cdot$

the cell dual to an n-simplex of $K$ in $L$ . Then $(C, bC)\subset(W, W-M)$ . Let
$a:S^{1}\rightarrow W-M$ be an embedding such that $a(S^{1})=bC$ . Taking a base point
$z_{0}\in S^{1}$ , let $a(z_{0})=x_{0}$ be the base point in $W-M$, and $\alpha$ the homotopy class of
the map $a$ . Then we have:

THEOREM 2.5 (Kervaire [12]). Assume that $M$ is connected. Then Kernel $(i_{\#})$

$=(\alpha)$ , where $i:(W-M, x_{0})\rightarrow(W, x_{0})$ is the inclusion map.
COROLLARY 2.6. Assume that $M$ is connected and that $W$ is simply con-

nected. Then $\pi_{1}(W-M, x_{0})=(\alpha)$ .
PROOF OF THEOREM 2.5. Since $bC$ bounds a 2-disk $C$ in $W$, or $i_{\#}\alpha=1$ ,

it follows that $(\alpha)\subset Kerne1(i_{\#})$ . To see that Kernel $i_{\#}\subset(\alpha)$ , let $b:(S^{1}, z_{0})$

$\rightarrow(W-M, x_{0})$ be a representative of an element $\beta\in Kernel(i_{\#})$ . If $M$ is locally
flat in $W$, then by Proposition 2.1 and by the transversal approximation
Theorem [30], we may prove that $\beta\in(\alpha)$ in a quite similar manner as the
proof of ([12], Lemma II.2). Now suppose that $M$ is not locally flat. Then
from Proposition 2.3 the set $S(\varphi)$ of singular points of the inclusion map
$\varphi:M\rightarrow W$ is an underlying set of a proper subcomplex of $K$. Taking the
second barycentric derived neighborhoods $U$ and $V$ of $S(\varphi)$ in $K$ and $L$ ,

respectively, we put $W_{\rho}=\overline{W-V}$ and $M_{0}=\overline{M-U}$. Notice that $W_{0}\supset a(S^{1})=bC$

and that by the statements (1) and (2) above, $\varphi|M_{0}$ : $M_{0}\rightarrow W_{0}$ is locally flat.
Since $M$ is connected, it follows from Proposition 2.3 that $M-S(\varphi)$ and hence
$M_{0}$ are connected. Therefore the map $a$ : $(S ‘, z_{0})\rightarrow(W_{0}-- M_{0}, x_{0})$ represents a
weight element of $\pi_{1}(W_{0}-M_{0}, x_{0})$ . On the other hand, $\pi_{1}(W_{0}-M_{0}, x_{0})$ is iso-
morphic with $\pi_{1}(W-M, x_{0})$ , since $W_{0}$– $M_{0}=W-$ ($MU$ Int $V$ ) is a deformation
retract of $W-M$. Therefore, $\alpha$ is a weight element of $\pi_{1}(W-M, x_{0})$ . This
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completes the proof of Theorem 2.5.
THEOREM 2.7. Let $V$ be a closed $(n+2)$-manifold which is a union of two

$(n+2)$-manifolds $N$ and $E$ such that $E\cap N=bE=bN$, and that $N$ is a regular
neighborhood of an n-sphere $\Sigma$ . Assume $n\geqq 2$ . Then $V$ is a homotopy $(n+2)-$

sphere (necessarily $(n+2)$-sphere for $n\geqq 3$) if and only if
(1) $H_{*}(E)\cong H_{*}(S$ ’

$)$ , and
(2) there is a weight element $\alpha\in\pi_{1}(bE)$ such that $(i_{\#}\alpha)=\pi_{1}(E)$ , where

$i:bE\rightarrow E$ is the inclusion map.
Note that $S^{n}\times D^{2}$ is a regular neighborhood of $S^{n}\times 0^{2}$ . Thus we have a

characterization of exteriors of n-knots $(n\geqq 3)$ in algebraic terms.
COROLLARY 2.8. Assume $n\geqq 3$ . Then an $(n+2)$-manifold $E$ is homeo-

morphic to an exterior of some n-knot if and only if
(1) $bE$ is homeomorphic to $S^{n}\times S^{1}$ ,

(2) $H_{*}(E)\cong H_{*}(S^{1})$ , and
(3) $(i_{*}\alpha)=\pi_{1}(E)$ for a generator $\alpha$ of $\pi_{1}(bE)\cong Z$.
REMARK. By [5] and [18], exteriors of n-knots have unique smoothings,

since they are $(n+2)$-submanifolds of the $(n+2)$-sphere and since $H_{*}(E)\cong H_{*}(S^{1})$ .
PROOF OF THEOREM 2.7. Since $\Sigma$ and $bN$ are deformation retracts of $N$

and $ N-\Sigma$ respectively, it follows that $N$ is simply connected and hence from
Corollary 2.6 that $\pi_{1}(bN)$ has a weight element $\alpha$ . Hence from Van Kampen
Theorem and Corollary 2.6 $\pi_{1}(V)=1$ if and only if $\pi_{1}(E)=(i_{\#}\pi_{1}(bE))=(i_{\#}\alpha)$

for some weight element $\alpha$ of $\pi_{1}(bE)$ . Observing the Mayer-Vietoris sequence:

$...\rightarrow H_{k+1}(V)\rightarrow H_{k}(bE)\rightarrow H_{k}(E)+H_{k}(N)\rightarrow H_{k}(V)\rightarrow\cdots$

and the homology exact sequence of the pair $(E, bE)$ together with the Poincar\’e
duality $H_{k}(E, bE)\cong H^{n+2- k}(E)$ , we may easily see that $H_{*}(E)\cong H_{*}(S^{1})$ if and
only if $V$ is a homology $(n+2)$ -sphere. Now the conclusion follows from the
Hurewicz and Whitehead Theorems. In particular, it is to be noted that by
$PL$ Smale theory $V$ is actually an $(n+2)$ -sphere, provided $n\geqq 3$ . This completes
the proof of Theorem 2.7.

\S 3. Some constructions.

Fixing a point $u\in S^{n}$ , by $J\zeta_{u}^{n}$ we shall denote the set of equivalence classes
of embeddings of $S^{n}$ into $S^{n+2}$ which are known to be locally flat at all points
of $S^{n}$ except for the point $u$ . In the following we shall identify $S^{n}$ with an
n-sphere formed from $D^{n}$ by attaching a cone $u^{*}S^{n-1}$ , where $\partial D^{n}=S^{n-1}$ . For
an n-disk knot $g:D^{n}\rightarrow D^{n+2}$ we define an embedding $u^{*}g:S^{n}\rightarrow S^{n+2}$ by $u^{*}g|D^{n}$

$=g$ and $u^{*}g|u^{*}S^{n-1}=u^{*}(g|S^{n-1})$ , where $u^{*}(g|S^{n-1})$ is the usual cone extension
of $g|S^{n-1}$ from $u$ . Thus if $g|S^{n-1}$ : $S^{n-1}\rightarrow S^{n+1}$ is unknotted, then $\{u^{*}g\}\in K_{PL}^{n}$

$\subset f\zeta_{u}^{n}$ and if $g|S^{n-1}$ : $S^{n-1}\rightarrow S^{n+1}$ is knotted, then $u^{*}g\in\sigma x_{u}^{n}-K_{PL}^{n}$ and $\sigma(u^{*}g, u)$
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$=\{g|S^{n-1}\}$ . We define a map $j_{n}$ : $D_{PL}^{n}\rightarrow X_{u}^{n}$ by $j_{n}\{g\}=\{u^{*}g\}$ for $\{g\}\in D_{PL}^{n}$ .
LEMMA 3.1. The map $j_{n}$ : $D_{PL}^{n}\rightarrow X_{u}^{n}$ is well-defined and bijective. Moreover,

$j_{n}$ preserves exteriors, that is to say, for any n-disk knot $g:D^{n}\rightarrow D^{n+2}$ , the
exteriors $E(g)$ and $E(u^{*}g)$ are homeomorphic.

PROOF OF LEMMA 3.1. Suppose that we are given a second n-disk knot
$g^{\prime}$ : $D^{n}\rightarrow D^{n+2}$ which is equivalent to $g$. If $G:D^{n+2}\rightarrow D^{n+2}$ is an equivalence,
then $u^{*}G:S^{n+2}\rightarrow S^{n+2}$ defined by $u^{*}G|D^{n+2}=G$ and $u^{*}G|u^{*}S^{n+1}=u^{*}(G|S^{n+1})$ is
an equivalence between $u^{*}g$ and $u^{*}g^{\prime}$ . Hence $j_{n}$ is well defined. Let $N$ be a
derived neighborhood of $g(D^{n})$ in $D^{n+2}$ . Then $u^{*}S^{n+1}UN$ turns out to be a
derived neighborhood of $u^{*}g(S^{n-1})Ug(D^{n})$ in $S^{n+2}$ . Since $S^{n+2}-$ ( $u^{*}S^{n+1}$ UN)
$=\overline{D^{n+2}-N,}$ it follows that $E(u^{*}g)=E(g)$ . Thus $j_{n}$ preserves exteriors. To
see the injectivity of $j_{n}$ , suppose that there is an equivalence $H:S^{n+2}\rightarrow S^{n+2}$

from $u^{*}g$ to $u^{*}g^{\prime}$ for $\{g\},$ $\{g^{\prime}\}\in D_{PL}^{n}$ . From the invariance of singularities
under equivalence and the fact that $(S^{n+1}, g(S^{n-1}))$ has a compatible collar in
$(D^{n+2}, g(D^{n}))$ , we may assume that $H(u^{*}S^{n+1}, u^{*}g(S^{n-1}))=(u^{*}S^{n+1}, u^{*}g^{\prime}(S^{n-1}))$ .
Then the equivalence $H:S^{n+2}\rightarrow S^{n+2}$ gives rise to an equivalence $H|D^{n+2}$ :
$D^{n+2}\rightarrow D^{n+2}$ from $g$ to $g^{\prime}$ . Therefore $j_{n}$ is injective. Let $\varphi:S^{n}\rightarrow S^{n+2}$ be a
representative of an element of $J\zeta_{u}^{n}$ . Taking a star pair $(st(\varphi(u), S^{n+2}),$ $\varphi(st(u$ ,
$S^{n})))$ , we put $(A, B)=\overline{(S^{n+2}-st(\varphi(u),S^{n+2})},\overline{\varphi(S^{n})-\varphi(st(u,S^{n})))}$. Then $(A, B)$ is
a locally flat $(n+2, n)$ -disk pair. Since $\varphi(S^{n})-u$ is locally flat in $S^{n+2}-u$ , we
may assume that $\varphi(D^{n})=B$ . Hence $\varphi|D^{n}$ : $D^{n}\rightarrow A$ is an n-disk knot and
$\varphi|S^{n-1}$ : $S^{n-1}\rightarrow bA=lk(\varphi(u), S^{n+2})$ is an $(n-1)$ -knot whose type is just $\sigma(\varphi, u)$ .
Therefore, $j_{n}\{\varphi|D^{n}\}=\{\varphi\}$ which implies that $j_{n}$ is surjective. This completes
the proof of Lemma 3.1.

By $N_{u}^{n}$ we shall denote the set of micro-equivalence classes of proper
embeddings of $S^{n}$ with codimension two which are known to be locally flat at
every point of $S^{n}$ except for the point $u$ . Then from ([20], Lemma 1), the
singularity $\sigma(\varphi, u)$ of a representative $\varphi:S^{n}\rightarrow W$ of an element of $N_{u}^{n}$ at $u$ is
considered as an element of $K_{PL}^{n-1}(=K_{PL}^{\prime n-1})$ and invariant under the micro-
equivalence class $\mu\{\varphi\}$ of $\varphi$ . We define a map $\sigma_{n}$ : $N_{u}^{n}\rightarrow K_{PL}^{n-1}$ by $\sigma_{n}(\mu\{\varphi\})$

$=\sigma(\varphi, u)$ .
LEMMA 3.2. The map $\sigma_{n}$ ; $N_{u}^{n}\rightarrow K_{PL}^{n-1}$ is surjective for $n\geqq 1$ and injective

for $n\geqq 3$ .
PROOF OF LEMMA 3.2. Let $f:S^{n-1}\rightarrow S^{n+1}$ be an $(n-1)$ -knot. From Corol-

lary 2.2 there is an embedding $F:S^{n- 1}\times D^{2}\rightarrow S^{n+1}$ such that $F(x, 0^{2})=f(x)$ for
$x\in S^{n-1}$ . Form an $(n+2)$ -manifold $N=u^{*}S^{n+1}U(D^{n}\times D^{2})$ from a cone $u^{*}S^{n+1}$

by attaching $D^{n}\times D^{2}$ by the embedding $F$, and define an embedding $\varphi:S^{n}\rightarrow N$

by $\varphi|u^{*}S^{n-1}=u^{*}f$ and $\varphi(x)=(x, 0^{2})$ for $x\in D^{n}$ , where $u^{*}f$ is the cone extension
of $f$ from the point $u$ . Then $\varphi$ is of at most one singularity $\sigma(\varphi, u)=\{f\}$ at $u$ .
Hence $\mu\{\varphi\}\in N_{u}^{n}$ and $\sigma_{n}\{\varphi\}=\{f\}$ . This implies that $\sigma_{n}$ is surjective. From
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Corollary 2.4 the micro-equivalence class $\mu\{\varphi\}\in N_{u}^{n}$ is completely determined
by $\sigma(\varphi, u)=\sigma_{n}\{\varphi\}$ , since $\chi(\varphi)\in H^{2}(S^{n})=0$ for $n\geqq 3$ . Therefore, $\sigma_{n}$ is injective
for $n\geqq 3$ . This completes the proof of Lemma 3.2.

For an n-knot $f:S^{n}\rightarrow S^{n+2}$ , by a weighted exterior $E$ of $f$, we shall mean
an exterior $E$ of $f$ together with the generator of $H_{1}(E)$ whose linking number
with $f(S^{n})$ in $S^{n+2}$ equals 1. In the following, by an exterior of a knot we
shall mean its weighted exterior and by a homeomorphism between exteriors
of knots a homeomorphism between them preserving the distinguished gen-
erators.

By $E_{PL}^{n}$ , we shall denote the set of homeomorphism classes of exteriors
of n-knots. Recall that the homeomorphism class of an exterior $E(f)$ of an
embedding $f$ is invariant under the equivalence class of $f$. Thus we define a
map $e_{n}$ : $K_{PL}^{n}\rightarrow E_{PL}^{n}$ by $e_{n}\{f\}=\{E(f)\}$ for $\{f\}\in K_{PL}^{n}$ . Then $e_{n}$ is obviously
surjective. Our oriented version of ([11], Theorem F) is as follows.

PROPOSITION 3.3. The map $e_{\pi}$ : $K_{PL}^{n}\rightarrow E_{PL}^{n}$ is surjective, and if $n\geqq 2$ , then
$\# e_{n}^{-1}\{E\}\leqq 2$ for $\{E\}\in E_{PL}^{n}$ .

Here, for a set $X,$ $\# X$ stands for the number of elements of $X$. As an
implication of ([11], Theorem C) we have:

PROPOSITION 3.4. Every homeomorphism of $S^{n}\times S^{1}$ is extendable to a homeo-
morphism of $D^{n+1}\times S^{1}$ sending $(0^{n+1}\times S^{1},0^{n+1}\times p)$ onto itself, provided $n\geqq 2$ ,
where $0^{n+1}$ is the center of $D^{n+1}$ and $pis$ a point of $S$ ‘. (See also [2] and [24].)

Now suppose that we are given a pointed n-knot manifold $(M, x_{0})$ and a
weight element $\alpha$ of $\pi_{1}(M, x_{0})$ . (For the definition of a knot manifold, see
Introduction). Since $M$ is orientable, we may take an embedding $G:(D^{n+1}\times S^{1}$ ,
$(0^{n+1}, p))\rightarrow(M, x_{0})$ such that $G|(0^{n+1}\times S^{1},0^{n+1}xp)$ represents $\alpha$ . By $M_{\alpha}$ we shall
denote a manifold $M_{\alpha}=M-G(IntD^{n+1}\times S^{1})$ , together with the generator of
$H_{1}(M_{\alpha})$ represented by $\alpha$ .

PROPOSITION 3.5 (M. Kervaire). Assume $n\geqq 3$ . Then $M_{\alpha}$ is homeomorphic
to, an exterior of an n-knot.

For the proof, see ([12], pp. 229-230) and refer to Corollary 2.8. Further
we show the following:

LEMMA 3.6. Let $(M, x_{0})$ and $(L, y_{0})$ be pointed n-knot manifolds. Assume
$n\geqq 2$ . Given weight elements $\alpha\in\pi_{1}(M, x_{0})$ and $\beta\in\pi_{1}(L, y_{0})$ , then $M_{\alpha}$ and $L_{\beta}$

are homeomorphic if and only if there is a homeomorphism $h:(M, x_{0})\rightarrow(L, y_{0})$

such that $ h_{\#}\alpha=\beta$ , where $h_{\#}$ : $\pi_{1}(M, x_{0})\rightarrow\pi_{1}(L, y_{0})$ is the isomorphism induced
from $h$ .

PROOF OF LEMMA 3.6. Let $G:D^{n+1}\times S^{1}\rightarrow M$ and $H:D^{n+1}\times S^{1}\rightarrow L$ be the
embeddings defining $M_{\alpha}$ and $L_{\theta}$ , respectively. Thus $M_{\alpha}UG(D^{n+1}\times S^{1})=M$

and $L_{\beta}UH(D^{n+1}\times S^{1})=L$ . To see the necessity, suppose that there is a homeo-
morphism $g:M_{\alpha}\rightarrow L_{\beta}$ . From Proposition 3.4, $H^{-1}\circ g\circ G|S^{n}\times S^{1}$ is extendable
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to a homeomorphism of $D^{n+1}\times S$ ‘ sending $(0^{n+1}\times S^{1},0^{n+1}xp)$ onto itself. It
follows that $g$ is extendable to a homeomorphism $h:(M, x_{0})\rightarrow(L, y_{0})$ so that
$h_{\#}\alpha=\beta^{\pm 1}$ . However, $h_{*}:$ $H_{1}(M_{\sigma})\rightarrow H_{1}(M_{\beta})$ sends the generator represented by
$\alpha$ to the generator represented by $\beta$ . Therefore, we have $ h_{\#}\alpha=\beta$ . Conversely,
suppose that there is such a homeomorphism $h$ . Notice that two embeddings
from $S^{1}$ into $L$ are isotopic, if they are homotopic, since $n+2\geqq 2\cdot 1+2$ . Hence
by the uniqueness of regular neighborhoods we may assume that $h\circ G(D^{n+1}\times S’)$

$=H(D^{n\cdot\vdash 1}\times S^{1})$ , and hence $h(M_{\alpha})=L_{\beta}$ . Therefore, $M_{\alpha}$ and $L_{\beta}$ are homeomorphic.
This completes the proof of Lemma 3.6.

In view of Lemma 3.6, we define a weighted n-knot manifold to be a triple
$(M, x_{0}, \alpha)$ consisting of a pointed n-knot manifold $(M, x_{0})$ and a weight element
$\alpha$ of $\pi_{1}(M, x_{0})$ . A second weighted n-knot manifold $(L, y_{0}, \beta)$ is isomorphic to
$(M, x_{0}, a)$ , if there is a homeomorphism $h:(M, x_{0})\rightarrow(L, y_{0})$ , called an isomor-
phism, such that $ h_{\#}a=\beta$ . By $M_{PL}^{n}$ we shall denote the isomorphism classes
of weighted n-knot manifolds. We will define a map $i_{n}$ : $E_{PL}^{n}\rightarrow M_{PL}^{n}$ for $n\geqq 2$ .
To do this, let $E$ be an exterior of an n-knot. Taking a homeomorphism
$g:S^{n}\times S^{1}\rightarrow bE$ such that $g|(0^{n}, 1)\times S^{1}$ represents the distinguished generator
of $H_{1}(\partial E)\cong H_{1}(E)$ , form a closed $(n+2)$-manifold $M=E\cup(D^{n+1}\times S^{1})$ from the

$g$

disjoint union of $E$ and $D^{n+1}\times S^{1}$ by identifying their boundaries under the
homeomorphism $g$ . Letting $G:D^{n\prime\vdash 1}\times S^{1}\rightarrow M$ be the natural embedding and
$x_{0}=G(0^{n+1}\times p)$ , we denote by $\alpha$ the homotopy class of $G|(0^{n+1}\times S^{1},0^{n+1}\times p)$ in
$\pi_{1}(M, x_{0})$ . Then we have the following:

LEMMA 3.7. Assume $n\geqq 2$ . Then $(M, x_{0}, a)$ is a weighted n-knot manifold.
PROOF OF LEMMA 3.7. First, since $n+2\geqq 4$, by the general position argu-

ment we have $\pi_{k}(M, M-G(0^{n+1}\times S‘))=0$ for $k\leqq 2$ , and hence $\pi_{1}(M)\cong\pi_{1}(E)$ .
Secondly, observing the Mayer-Vietoris sequence:

$\rightarrow H_{k+1}(M)\rightarrow H_{k}(bE)\rightarrow H_{k}(E)+H_{k}(D^{n+1}\times S^{1})\rightarrow H_{k}(M)\rightarrow\ldots$

together with the isomorphism $H_{*}(E)\cong H_{*}(S$ ’
$)$ and $H_{*}(bE)\cong H_{*}(S^{n}\times S^{1})$ , we

obtain $H_{k}(M)\cong H_{k}(E)=0$ for $2\leqq k\leqq n$ . Therefore, from Poincar\’e duality, we
may conclude that $M$ is an n-knot manifold. Moreover, since $\pi_{1}(M)\cong\pi_{1}(E)$

and since $\pi_{1}(bE)=\pi_{1}(S^{n}\times S^{1})\cong\pi_{1}(D^{n+1}\times S^{1})\cong Z$, it follows from Corollary 2.8
that $G|(0^{n+1}\times S^{1},0^{n+1}\times p)$ represents a weight element of $\pi_{1}(M, x_{0})$ . This
completes the proof of Lemma 3.7.

Suppose that $E^{\prime}$ is homeomorphic to $E$ and that $(L, y_{0}, \beta)$ is obtained from
$E^{\prime}$ by the construction above. Then $M_{\alpha}=M-G(IntD^{n+1}\times S^{1})=E$ and $L_{\beta}=L$

$-H(IntD^{n+1}\times S^{1})=E^{\prime}$ are homeomorphic, where $H:D^{n+1}\times S^{1}\rightarrow L$ is the natural
embedding. It follows from Lemma 3.6 that $(M, x_{0}, a)$ and $(L, y_{0}, \beta)$ are iso-
morphic. Therefore, we may define the map $i_{n}$ : $E_{PL}^{n}\rightarrow M_{PL}^{n}$ for $n\geqq 2$ by $i_{n}\{E\}$

$=\{M, x_{0}, \alpha\}$ for $\{E\}\in E_{PL}^{n}$ , where $\{M, x_{0}, a\}$ denotes the isomorphism class of



Higher dimensional $PL$ knots and knot manifolds 467

\langle $M,$ $x_{0},$ $\alpha$). The following is an implication of Proposition 3.5 and Lemma 3.6.
PROPOSITION 3.8. Assume $n\geqq 2$ . The map $i_{n}$ : $E_{PL}^{n}\rightarrow M_{PL}^{n}$ is injective for

$n\geqq 2$ and bijective for $n\geqq 3$ .
Putting $b_{n+1}=i_{n}\circ e_{n^{O}}\sigma_{n+1}$ : $N_{u}^{n+1}\rightarrow M_{PL}^{n}$ for $n\geqq 2$ , we have the following

implication of Lemma 3.2, Propositions 3.3 and 3.8.
PROPOSITION 3.9. The map $b_{n+1}$ : $N_{u}^{n+1}\rightarrow M_{PL}^{n}(n\geqq 2)$ is surjective for $n\geqq 3$

and $\# b_{n+1}^{-1}\{M, x_{0}, a\}\leqq 2$ for $n\geqq 2$ .
We shall mean by an (abstract) regular neighborhood of an n-sphere a

manifold $N$ such that there exists an n-sphere $\Sigma$ in Int $N$ so that $N$ collapses $\Sigma$ .
By $\mathfrak{R}_{PL}^{n}$ we shall denote the set of homeomorphism classes of regular neigh-

borhoods of n-spheres with codimension two. Notice that by the uniqueness
of regular neighborhoods two proper embeddings $\varphi:S^{n}\rightarrow W$ and $\psi:S^{n}\rightarrow W^{f}$

are micro-equivalent then regular neighborhoods $N(f)$ and $N(g)$ of $\varphi(S^{n})$ and
$\psi(S^{n})$ in $W$ and $W^{\prime}$ , respectively, are homeomorphic. Thus we define a natural
map $p_{n}$ ; $N_{u}^{n}\rightarrow yt_{PL}^{n}$ by $p_{n}(\mu\{\varphi\})=\{N(\varphi)\}$ for $\mu\{\varphi\}\in N_{u}^{n}$ . Then we prove the
following:

LEMMA 3.10. The map $p_{n}$ : $N_{u}^{n}\rightarrow \mathcal{J}l_{PL}^{n}$ is surjective. More precisely, given a
regular neighborhood $N$ of the n-sphere $\Sigma$ with codimension two, then there is
an embedding $\varphi:S^{n}\rightarrow N$ such that $\mu\{\varphi\}\in N_{u}^{n}$ and $N$ is a regular neighborhood

of $\varphi(S^{n})$ .
PROOF OF LEMMA 3.10. Let $N$ be a regular neighborhood of an n-sphere

$\Sigma$ with codimension two. Let $K$ and $L$ be triangulations of $\Sigma$ and $N$ respec-
tively such that $K$ is a subcomplex of $L$ . Let $v$ be the barycenter of an
n-simplex of $K$. Taking first barycentric subdivision $(L^{\prime}, K^{\prime})$ of $(L, K)$ , let V

and $\square $ be the n- and $(n+2)$-cells dual to $v$ in $K^{\prime}$ and $L^{\prime}$ , respectively, and $N^{\prime}$

the second barycentric derived neighborhood of $\Sigma$ in $N$ with respect to $(L, K)$ .
Put $\overline{N^{\prime}-\coprod}=B$ and $\overline{\Sigma-\nabla}=A$ . Then $(N^{\prime}, \Sigma)$ is decomposed into two $(n+2, n)-$

disk pairs $(\Pi, \nabla)$ and $(B, A)$ . Since $v$ is the barycenter of an n-simplex of $K$,

and since $\Sigma$ is flat at each point of the interior of each n-simplex of $K$, it
follows that $(\square , \nabla)$ is a trivial disk pair and hence that $(bB, bA)$ is a locally
flat sphere pair. Taking homeomorphism $g:u^{*}S^{n+1}\rightarrow B$ and $ h:D^{n}\rightarrow\nabla$ and
putting $f=g^{-1}\circ h|S^{n-1}$ : $S^{n-1}\rightarrow S^{n+1}$ , we define an embedding $\varphi:S^{n}\rightarrow N^{\prime}$ by
$\varphi|D^{n}=j\circ h$ and $\varphi|u^{*}S^{n-1}=g\circ(u^{*}f)$ , where $j:\nabla\rightarrow\square $ is the inclusion map.
Then $\mu\{\varphi\}\in N_{u}^{n},$ $\sigma(\varphi, u)=\{bB, bA\}$ and $p_{n}\mu\{\varphi\}=\{N^{\prime}\}$ . Since $N^{\prime}$ is a regular
neighborhood of $\Sigma$ in $N$, it follows that $N^{\prime}$ is homeomorphic with $N$. There-
fore, $p_{n}\mu\circ\{\varphi\}=\{N\}$ . This completes the proof of Lemma 3.10.

By $\ovalbox{\tt\small REJECT}_{PL}^{n}$ we shall denote the set of homeomorphism classes of n-knot
manifolds. We define a natural map $q_{n}$ : $M_{PL}^{n}\rightarrow.\mathscr{R}_{PL}^{n}$ and for $n\geqq 2$ a boundary
map $b_{n+1}$ : $\Re_{PL}^{n+1}\rightarrow \mathscr{R}_{PL}^{n}$ by $q_{n}\{M, x_{0}, a\}=\{M\}$ and $b_{n+1}\{N\}=\{bN\}$ for $\{M, x_{0}, a\}$

$\in M_{PL}^{n}an\mathfrak{a}\{N\}\in\Re_{PL}^{n+1}$ , respectively. Finally we define a map $\mu_{n}:.x_{u}^{n}\rightarrow N_{u}^{n}$ by
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$\mu_{n}\{\varphi\}=\mu\{\varphi\}$ for $\{\varphi\}\in JC_{u}^{n}$ , where $\mu\{\varphi\}$ denotes the micro-equivalence class
of $\varphi$ .

We must show that the map $b_{n+1}$ is well-defined; that is to say, if $N$ is a
regular neighborhood of an $(n+1)$ -sphere with codimension two, then the bound-
ary $bN$ is an n-knot manifold. For this, we assume $n\geqq 2$ . By Lemma 3.10
we may take an embedding $\varphi:S^{n+1}\rightarrow N$ such that $N$ is a regular neighborhood
of $\varphi(S^{n\cdot!- 1})$ with codimension two and that $\mu(\varphi)\in N_{u}^{n+1}$ . Moreover, in the proof
of Lemma 3.10, we have seen that $N$ is obtained from an $(n+3)$ -ball $B$ by
attaching a handle $\square =(D^{n+1}\times D^{2})$ of index $n+1$ along the n-sphere $\partial A\subset\partial B$ .
Therefore, the boundary $bN$ is obtained from the exterior of the knot
$\sigma_{n+1}\{\mu(\varphi)\}$ and $D^{n+1}\times S^{1}$ by identifying their boundaries. Thus $b_{n+1}\{N\}=\{bN\}$

$=q_{n}\circ i_{n}\circ e_{n}\circ\sigma_{n+1}\{\mu(\varphi)\}$ . From this observation and by definition of maps in-
volved, it is not hard to see that the following diagram commutes.

$\partial_{n+1}$
$e_{n}$

$D_{PL}^{n+1}\rightarrow K_{PL}^{n}\rightarrow E_{PL}^{n}$

$(*)$

$ j_{n+1}\downarrow$

$\mu_{n+1}1_{b_{n+1}}^{\sigma_{n+1}}$
$\downarrow j_{n}(n\geqq 2)$

$cx_{u}^{n+1}\rightarrow N_{u}^{n+1}\rightarrow M_{PL}^{n}$

$\mathfrak{R}_{PL}^{n+1}\downarrow p_{n+1_{\rightarrow^{-}}\theta_{n\dashv 1}}\ovalbox{\tt\small REJECT}_{PL}^{q_{n}}\downarrow|n$

Consequently, we have the following three theorems:
THEOREM 3.11. The map $b_{n+1}$ : $\Re_{PL}^{n+1}\rightarrow\ovalbox{\tt\small REJECT}_{PL}^{n}$ is well-defined for $n\geqq 2$ , surjec-

tive for $n\geqq 3$ and $\# b_{n+1}^{-1}\{M\}\leqq 2$ for $n\geqq 2$ .
THEOREM 3.12. Assume $n\geqq 4$ . A compact $(n+2)$ -manifold is homeomorphic

to a regular neighborhood of an n-sphere $\Sigma$ if and only if
(1) $bN$ is an $(n-1)$ -knot manifold, and
(2) $N$ is of the same homotopy type as $S^{n}$ .
THEOREM 3.13. Assume $n\geqq 4$ . A compact $(n+2)$-manifold $E$ is homeo-

morphic to an exterior of some embedding $\varphi:S^{n}\rightarrow S^{n+2}$ if and only if
(1) $bE$ is an $(n-1)$ -knot manifold,
(2) $H_{*}(E)\cong H_{*}(S^{1})$ , and
(3) for some weight element $a$ of $\pi_{1}(bE),$ $i_{\#}a$ is a weight element of $\pi_{1}(E)$ ,

where $i:bE\rightarrow E$ is the inclusion map.
COROLLARY 3.14. Assume $n\geqq 4$ . Then a compact $(n+2)$ -manifold $E$ is

homeomorphic to an exterior of some n-disk knot $g:D^{n}\rightarrow D^{n+2}$ if and only if
$E$ satisfies the conditions (1), (2) and (3) in Theorem 3.13.

PROOF OF THEOREM 3.11. Since by Proposition 3.9 $b_{n+1}$ is surjective for
$n\geqq 3$ and $q_{n}$ is obviously surjective, it follows from commutativity of the
diagram $(*)$ that $b_{n-\downarrow\cdot 1}$ is surjective for $n\geqq 3$ . To see that $\# b_{n+1}^{-1}\{M\}\leqq 2$ for
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each n-knot manifold $M(n\geqq 2)$ , let $(M, x_{0}, \alpha)$ be a weighted n-knot manifold.
By Proposition 3.9 and Lemma 3.10, there are at most two embeddings $\varphi_{i}$ :
$S^{n+1}\rightarrow N_{i},$ $i=1,2$ such that $\mu\{\varphi_{i}\}\in N_{u}^{n+1},$ $i=1,2,$ $b_{n+1}(\mu\{\varphi_{1}\})=b_{n+1}(\mu\{\varphi_{2}\})$ and
$\mu\{\varphi_{1}\}\neq\mu\{\varphi_{2}\}$ , since $n\geqq 2$ . Assuming $ b_{n+1}^{-1}\{M\}\neq\emptyset$ , let $N$ be a representative
of an element of $b_{n+1}^{-1}\{M\}$ and $h:bN\rightarrow M$ a homeomorphism. By Lemma 3.10
we may take an embedding $\varphi:S^{n+1}\rightarrow N$ such that $b_{n+1}(\mu\{\varphi\})=\{bN, y_{0}, \beta\}$ . If
we put $h(y_{0})=x_{0}$ and $ h_{\#}\beta=\alpha$ , then we have a weighted n-knot manifold
$(M, x_{0}, a)$ such that $\{M, x_{0}, a\}=\{bN, y_{0}, \beta\}$ . Therefore the embedding $\varphi$ is
micro-equivalent to either $\varphi_{1}$ or $\varphi_{2}$ above, and hence $N$ is homeomorphic with
either $N_{1}$ or $N_{2}$ . This completes the proof of Theorem 3.11.

PROOF OF THEOREM 3.12. The necessity follows from Theorem 3.11 and
from the fact that $N$ collapses the n-sphere $\Sigma$ . To see the sufficiency, let $N$

be a compact $(n+2)$ -manifold satisfying (1) and (2). Since $N$ is simply con-
nected and since $n+2>2\cdot 2+1$ , we may take an embedding $G:(D^{n}\times D^{2}, D^{n}\times S^{1})$

$\rightarrow(N, bN)$ such that $G|0^{n}\times S^{1}$ represents a weight element of $\pi_{1}(bN)$ and
$B\cap bN=T$, where $B=G(D^{n}\times D^{2})$ and $T=G(D^{n}\times S’)$ . If we put $E=\overline{bN-T}$,
$A=\overline{N-B}$ and $U=G(S^{n-1}\times D^{2})$ , then since $n\geqq 4$ from Proposition 3.5 $E$ is an
exterior of an $(n-1)$ -knot, and hence that $bA=EUU$ is an $(n+1)$ -sphere.
Since $N,$ $B$ and $A\cap B=U$ are simply connected, it follows from Van Kampen
Theorem that $A$ is simply connected. Further, we will show that $A$ is an
$(n+2)$ -disk. To do this, first, observing the Mayer-Vietoris sequence:

$\partial_{n}$

$\rightarrow H_{k}(U)\rightarrow H_{k}(A)+H_{k}(B)\rightarrow H_{k}(N)\rightarrow H_{k-1}(U)\rightarrow\cdots$ ,

we have $H_{k}(A)=0$ for $k\neq n,$ $n-1$ , since $H_{k}(B)=0$ for $k\geqq 1,$ $ H_{k}(N)\cong H_{k}(S^{n}\rangle$

and $H_{k}(U)\cong H_{k}(S^{n-1})$ . Secondly, by Poincar\’e duality and the universal coeffi-
cient theorem, we have

$H_{n}(A)\cong H^{2}(A, \partial A)\cong H^{2}(A)=0$

and
$H_{n-1}(A)\cong H^{8}(A, \partial A)\cong H^{8}(A)=0$ ,

since $A$ is at least 2-connected and by the exact sequence

$0\rightarrow Z\rightarrow Z\rightarrow H_{n-1}(A)\rightarrow 0$

the free part of $H_{n-1}(A)$ equals zero. Thus $A$ is a compact contractible $(n+2)-$

manifold such that $bA$ is an $(n+1)$ -sphere. By $PL$ Smale theory, we conclude
that $A$ is an $(n+2)$ -disk, since $n\geqq 4$ . Identifying $A$ with the cone $a^{*}(bA)$ , we
may consider of $N=AUB$ as a regular neighborhood of $a^{*}G(S^{n-1}\times 0)U$

$G(D^{n}\times 0)$ . This completes the proof of Theorem 3.12.
PROOF OF THEOREM 3.13. The necessity follows from Theorem 2.7. To

see the sufficiency, suppose that we are given an $(n+2)$ -manifold $E$ satisfying
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the conditions (1), (2) and (3). From Theorem 3.11 $bN$ bounds a regular neigh-
borhood of an n-sphere $\Sigma$ such that $bE=bN$. Then by Theorem 2.7 $V=EUN$
is an $(n+2)$ -sphere and the embedding $S^{n}\rightarrow\Sigma\subset N\subset EUN\rightarrow S^{n+2}$ is the re-
quired one. This completes the proof of Theorem 3.13.

PROOF OF COROLLARY 3.14. Notice that Lemma 3.1 ensures that the set
of homeomorphism classes of exteriors of embeddings from $S^{n}$ into $S^{n+2}$ equals
the set of homeomorphism classes of exteriors of n-disk knots. Thus the
necessity follows from Theorem 3.13. To see the sufficiency, let $\varphi:S^{n}\rightarrow S^{n+2}$

be an embedding and $N$ a regular neighborhood of $\varphi(S^{n})$ in $S^{n+2}$ . Then by
Lemma 3.10 we may take an embedding $\psi:S^{n}\rightarrow S^{n+2}$ such that $N$ is a regular
neighborhood of $\psi(S^{n})$ in $S^{n+2}$ and $\{\psi\}\in\sigma X_{u}^{n}$ . Hence $\varphi$ and $\psi$ have the same
exterior $S^{n\cdot\triangleright 2}\overline{-N}$. Therefore, the conclusion again follows from Theorem 3.13.
This completes the proof of Corollary 3.14.

\S 4. Singularities and the boundaries of regular neighborhoods.

In [20], Noguchi showed that the relative connected sum operation makes
the set $K_{PL}^{\prime n}(=K_{PL}^{n})$ into an abelian semi-group. In the quite similar manner
we may show that the relative boundary connected sum operation makes the
set $D_{PL}^{\prime n}(=D_{PL}^{n})$ into an abelian semi-group. These semi-groups $K_{PL}^{n}$ and $D_{PL}^{\eta}$

have the zero-elements that are the trivial knot and disk knot types, respec-
tively. We define a linear map $\partial_{n+1}$ : $D_{PL}^{n+1}\rightarrow K_{PL}^{n}$ by $\partial_{n+1}\{g:D^{n+1}\rightarrow D^{n+3}\}=$

$\{g|S^{n} : S^{n}\rightarrow S^{n+2}\}$ . A subset $A$ of an abelian semi-group $S$ with the zero-
element $0$ is positive if for each non-zero-element $x\in A,$ $x+y\neq 0$ for any $y\in S$.
From Schubert-Mazur Theorem ([25] and [17]) and Wall’s result ([27], p. 6,
Remark), we have the following:

PROPOSITION 4.1 (Schubert-Mazur). $K_{PL}^{n}$ is positive for $n\neq 2$ .
In order to deduce the analogous result for $D_{PL}^{n}$ , we must investigate $\partial_{n}^{-1}(0)$ ,

where $0$ is the identity of $K_{PL}^{n-1}$ . It is easily seen that $j_{n}(\partial_{n}^{-1}(0))=K_{PL}^{n}(\subset(x_{u}^{n})$

and $j_{n}|\partial_{n}^{-1}(0):\partial_{n}^{-1}(0)\rightarrow K_{PL}^{n}$ is a linear bijection. Let $d$ and $d^{\prime}$ be two n-disk
knot types such that $d+d^{\prime}=0$ in $D_{PL}^{n}$ . Since $\partial_{n}(d+d^{\prime})=\partial_{n}d+\partial_{n}d^{\prime}=0$ , it fol-
lows from Proposition 4.1 that $\partial_{n}d$ and $\partial_{n}d^{\gamma}$ equal $0$ for $n\neq 3$, and hence that
$d$ and $d^{\gamma}$ belong to $\partial_{n}^{-1}(0)$ for $n\neq 3$ . Hence $D_{PL}^{n}-\partial_{n}^{-1}(0)$ is positive for $n\neq 3$ .
Further, if $d\in\partial_{n}^{-1}(0)$ , then $d^{\prime}\in\partial_{n}^{-1}(0)$ , and $j_{n}(d)$ and $j_{n}(d^{\prime})$ belong to $K_{PL}^{n}$ . Since
$j_{n}(d)+j_{n}(d^{\prime})=j_{n}(d+d^{\prime})=0$ in $K_{PL}^{n}$ , it follows from Proposition 4.1 that $j_{n}(d)=0$

for $n\neq 2$ , and hence that $d=0$ for $n\neq 2$ , since $j_{n}$ is bijective. This implies
that $\partial_{n}^{-1}(0)$ is positive for $n\neq 2$ . Thus we conclude the following:

COROLLARY 4.2. $D_{PL}^{n}$ is positive for $n\neq 2,3$ and $D_{PL}^{2}-\partial_{2}^{-1}(0)$ and $\partial_{3}^{-1}(0)$ are
positive.

We prove the following:
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THEOREM 4.3. Let $N$ be a regular neighborhood of an n-sphere $\Sigma$ with
codimension two. Assume that $\Sigma$ is flat at each point of $\Sigma$ except for one point
$ u\in\Sigma$ , and that $n\geqq 4$ . Then $\Sigma$ is locally flat if and only if there is a p-con-
nected map $a:S^{1}\rightarrow bN$ for such an integer $p$ that $n\leqq 2p\leqq 2(n-1)$ . In particular,
if $bN$ is homotopically equivalent to $S^{n}\times S^{1}$ , then $\Sigma$ is locally flat in $N$.

PROOF OF THEOREM 4.3. The necessity is obvious by Corollary 2.2. To
prove the sufficiency, it suffices to show that the inclusion map $\varphi;\Sigma\rightarrow N$ is
locally flat, or $\sigma(\varphi, u)$ is trivial. If we put $bN=M$, then $\pi_{1}(M)\cong\pi_{1}(S^{1})\cong J$,
since $p\geqq 2$ and $a:S^{1}\rightarrow M$ represents a generator $a$ of $J$, where $J$ is the multi-
plicative infinite cyclic group. By the unknotting theorem of $(n-1)$ -knots due
to Levine [16], Kervaire [12] and Wall [26] (in particular, for $n=4$ , see [27]),
it is only necessary to be sure that the exterior $M_{\alpha}$ of the singularity $\sigma(\varphi, u)$

is of the same homotopy type as $S^{1}$ . Taking embeddings $G:D^{n}\times S$ $‘\rightarrow M$ and
$H:D^{n}\times S^{1}\rightarrow M$ such that $G|0^{n}\times S^{1}$ and $H|0^{n}\times S^{1}$ are homotopic to the map $a$ ,

we put $G(D^{n}\times S^{1})=U,$ $H(D^{n}\times S^{1})=V,$ $E=\overline{M-V}$ and $F=\overline{M-U}$ . Then $E$ and
$F$ are homeomorphic to $M_{\alpha}$ and we may assume that $ U\cap V=\emptyset$ . We will
show that $U$ is a deformation retract of $E$. Since $a:S^{1}\rightarrow M$ is $p$-connected,
and since $\pi_{k}(M, E)\cong\pi_{k}(M, M-H(0^{n}\times S’))=0$ for $k+1\leqq n$ , it follows that
$G|0^{n}\times S^{1}$ : $0^{n}\times S^{1}\rightarrow E$ is $p$-connected, or $\pi_{k}(E, U)=0$ for $k\leqq p$ . In the same
way we have $\pi_{k}(F, V)=0$ for $k\leqq n-p\leqq p$, since $n\leqq 2p$ . Let $\hat{M}$ be the uni-
versal covering of $M$. Then the portions $\hat{E}$ and $O$ over $E$ and $U$ are also the
universal coverings of $E$ and $U$ , respectively, since the inclusion maps $E\rightarrow M$

and $U\rightarrow M$ induce isomorphisms of the fundamental groups. Thus we may
identify $H_{k}(\hat{E},\hat{U})$ with $H_{k}(E, U;Z[J])$ , where $Z[J]$ is the integral group ring
over $J$. From excision and Poincar\’e duality we have

$H_{k}(\hat{E},\hat{U})\cong H_{k}(E, U;Z[J])\cong H_{k}(W, bU_{j}Z[J])$

$\cong H^{n+1- k}(W, bV;Z[J])\cong H^{n+1- k}(F, V;Z[J])$ ,

where $W=E\cap F$, and hence $bW=bUUbV$. Since $(F, V)$ is $(n-p)$ -connected,
it follows that

$H_{k}(\hat{E}, U)\cong H^{n\cdot\vdash 1- k}(F, V;Z[J])=0$ for $k\geqq p+1$ .
From Hurewicz Theorem, we have $\pi_{k}(E, U)\cong\pi_{k}(\hat{E},\hat{U})\cong H_{k}(\dot{\hat{E}}, 0)=0$ for
$k\geqq p+1$ . Therefore $U$ is a deformation retract of $E$ . This completes the
proof of Theorem 4.3.

COROLLARY 4.4. Let $M$ be a closed m-manifold. Assume $m\geqq 5$ . Then $M$

is homeomorphic to $S^{m-1}\times S^{1}$ if and only if $M$ is homotopically equivalent to
$S^{m-1}\times S^{1}$ . (Refer [1].)

COROLLARY 4.5. Let $N$ be a compact n-manifold. Assume $n\geqq 6$. Then $N$

is homeomorphic to $S^{n-2}xD^{2}$ if and only if $Nis$ of the same homotopy type as
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$S^{n-2}$ and $bN$ is homotopically equivalent to $S^{n-2}\times S^{1}$ .
PROOF OF COROLLARIES 4.4 AND 4.5. The necessity of each corollary is

trivial. Suppose that $M$ is of the same homotopy type as $S^{m-1}\times S^{1}$ . Since $M$

is an $(m-2)$ -knot manifold and $m-2\geqq 3$ , it follows from Theorem 3.11 that
$M$ bounds a regular neighborhood $N$ of an $(m-1)$-sphere with codimension
two. Therefore, in order to prove Corollary 4.4, it suffices to prove Corollary
4.5. Let $N$ be a compact $(m+1)$ -manifold such that $bN$ is homotopically equi-
valent to $S^{m-1}\times S^{1}$ and $N$ is of the same homotopy type as $S^{m-1}$ . Then from
Theorem 3.12, $N$ is a regular neighborhood of an $(m-1)$ -sphere. Further, by
Lemma 3.10, there is an embedding $\varphi:S^{m-1}\rightarrow N$ such that $N$ is a regular
neighborhood of $\varphi(S^{n-1})$ and $\mu\{\varphi\}\in N_{u}^{m-1}$ . Since $bN$ is homotopically equivalent
to $S^{m-1}\times S$ ‘, it follows from Theorem 4.3 that $\varphi$ is locally flat. Therefore, by
Proposition 2.3, $N$ is homeomorphic to $S^{m-1}\times D^{2}$ , since $H^{2}(S^{m- 1})=0$ for $m\geqq 4$ .
This completes the proof of Corollaries 4.4 and 4.5.

COROLLARY 4.6. Let $\varphi:S^{n}\rightarrow W^{n+2}$ be a proper embedding of $S^{n}$ with codi-
mension two. Assume that $\varphi$ is l-flat and that $n\geqq 4$ . If the boundary $bN$ of
a regular neighborhood $N$ of $\varphi(S^{n})$ in $W$ is homotopically equivalent to $S^{n}\times S^{1}$ ,

then $\varphi$ is locally flat.
PROOF OF COROLLARY 4.6. By Lemma 3.10, we may take an embedding

$\psi:S^{n}\rightarrow N$ such that $\mu\{\psi\}\in N_{u}^{n}$ and $N$ is a regular neighborhood of $\psi(S^{n})$ .
Letting $u_{1},$ $\cdots$ , $u_{m}\in S^{n}$ be the singular points of $\varphi$ , then we have $\sigma(\psi, u)$

$=\sigma(\varphi, u_{1})+\cdots+\sigma(\varphi, u_{m})$ , see [22].

Since $bN$ is homotopically equivalent to $S^{n}\times S^{1}$ , it follows from Theorem
4.3 that $\sigma(\psi, u)=0$, and that by Proposition 4.1, $\sigma(\varphi, u_{1})=$ $=\sigma(\varphi, u_{m})=0$ .
Therefore, $\varphi$ is locally flat. This completes the proof of Corollary 4.6.

Further, we have the following unknotting theorem.
COROLLARY 4.7. Assume $n\geqq 4$ . Then an n-disk knot $g:D^{n}\rightarrow D^{n+2}$ is un-

knotted, if an exterior $E$ of $g$ is of the homotopy type of $S^{1}$ and $\pi_{1}(bE)\cong\pi_{1}(E)$ .
PROOF OF COROLLARY 4.7. In order to prove Corollary 4.7, by Lemma 3.1,

it suffices to show that $j_{n}(g)$ is trivial. Since $E$ is homeomorphic to an ex-
terior of $j_{n}(g)$ , if $\pi_{k}(S^{1})\cong\pi_{k}(bE)$ for all $k\leqq p,$ $n\leqq 2p$ , then by Theorem 4.3
$j_{n}(g)\in K_{PL}^{n}$ . In fact, from the assumption $\pi_{1}(bE)\cong\pi_{1}(E)$ , by taking the uni-
versal covering space of $(E, bE)$ and by applying Poincar\’e duality in the same
way as the proof of Theorem 4.3, we have

$\pi_{k}(E, bE)=0$ for all $k\leqq n$ .
Since $E$ is of the homotopy type of $S$ ‘ and $n\geqq 4$, it follows that $\pi_{k}(S^{1})\cong\pi_{k}(bE)$

for all $k\leqq n-1$ , hence $j_{n}(g)\in K_{PL}^{n}$ and that by Levine’s unknotting theorem
[16] $j_{n}(g)$ is trivial, completing the proof.

In order to ensure that the condition $\pi_{1}(bE)\cong\pi_{1}(E)$ is necessary, we con-
struct a remarkable n-disk knot for each $n\geqq 4$ .
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THEOREM 4.8. For each $n\geqq 4$ , there is an n-disk knot $g:D^{n}\rightarrow D^{n+2}$ such
that an exterior $E$ of $g$ is homeomorphic to a product space $S^{1}\times W$ of a circle
$S^{1}$ and a compact contractible manifold $W$ such that $\pi_{1}(bW)$ is the binary ico-
sahedral group.

Therefore, there is a non-trivial n-disk knot whose exterior is of the same
homotopy type as $S$ ‘.

REMARK. In the footnote on page 730 in [8], the unknotting theorem for
n-disk knots is incomplete.

PROOF OF THEOREM 4.8. Let $G$ be the binary icosahedral group, that is
to say, a group with a presentation $(a, b;a^{4}=bab, b^{2}=aba)$ . According to
Newman [28], for each integer $n\geqq 5$ , there is a compact contractible n-mani-
fold $W^{n}$ such that $bW^{n}$ , say $M$, is a homology sphere whose fundamental
group $\pi_{1}(M)$ equals $G$ . Letting $E=S^{1}\times W^{n}$ , we will show that $E$ is an exterior
of an $(n-1)$ -disk knot $g:D^{n- 1}\rightarrow D^{n+1}$ for $n-1\geqq 4$ . To do this, by Corollary
3.14, it is only necessary to be sure that

(1) $bE=S^{1}\times M$ is an $(n-2)$ -knot manifold,
(2) $H_{*}(E)\cong H_{*}(S^{1})$ and
(3) $(i_{\#}a)=\pi_{1}(E)$ for some weight element $a$ of $\pi_{1}(bE)$ .

Since $S^{1}\times W$ is of the same homotopy type as $S^{1}$ and $M$ is a homology $(n-1)-$

sphere, we have
$H_{*}(E)\cong H_{*}(S^{1})$ and $H_{*}(bE)=H_{*}(S^{1}\times M)\cong H_{*}(S^{1}\times S^{n-1})$ .

From the identity $b=(b^{-1}ab)a$ , we conclude that $a$ is a weight element of $G$ .
Thus if $t$ is a generator of $J$, we have a weight element $(t, a)=\alpha\in J\times G$ of
$J\times G\cong\pi_{1}(bE)=\pi_{1}(S^{1}\times M)$ . Since $i_{\#}$ : $\pi_{1}(bE)(\cong J\times G)\rightarrow\pi_{1}(E)(\cong J)$ is given by
the projection onto the first factor $J\times G\rightarrow J$, it follows that $i_{\#}\alpha=i_{\#}(t, a)=t$ is
a weight element of $J$. Hence $E$ satisfies the conditions (1), (2), and (3). It
follows from Corollary 3.14 that $E$ is homeomorphic to an exterior of some
$(n-1)$ -disk knot $g:D^{n- 1}\rightarrow D^{n+1}$ , since $(n-1)\geqq 4$ . This completes the proof of
Theorem 4.8.

From Theorem 4.8, we deduce the following three corollaries:
COROLLARY 4.9. For each integer $n\geqq 4$ , there are two inequivalent n-disk

knots whose exteriors are homeomorphic.
REMARK. As is seen from the proof, the exteriors of the disk knots are

homeomorphic to $S^{1}\times W$ in Theorem 4.8.
COROLLARY 4.10. For each integer $n\geqq 5$ , there exists a 2-flat embedding

$\varphi:S^{n}\rightarrow S^{n+2}$ such that a regular neighborhood of $\varphi(S^{n})$ in $S^{n+2}$ is homeomor-
phic to $S^{n}\times D^{2}$ and the exterior is homeomorphic to $D^{n+1}\times S^{1}$ .

This ensures that in general we cannot distinguish local flatness of em-
beddings by means of the homeomorphy types of the boundaries of their
regular neighborhoods. For an n-disk knot $g:D^{n}\rightarrow D^{n+2}$ , we have an $(n+1)-$
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disk knot $g\times D:D^{n+1}\rightarrow D^{n+3}$ by $g\times D(x, u)=(g(x), u)$ for $(x, u)\in D^{n}\times D$ . Thus
we define a linear map $\times D:D_{PL}^{n}\rightarrow D_{PL}^{n+1}$ by $\times D\{g\}=\{g\times D\}$ . Noguchi pro-
posed a problem whether this map $\times D$ is injective or not. The following

answers this in the negative:
COROLLARY 4.11. For each integer $n\geqq 4$ , there exists a knotted n-disk knot

$g:D^{n}\rightarrow D^{n+2}$ such that $g\times D$ is unknotted.
In particular, $g\times D|S^{n}$ : $S^{n}\rightarrow S^{n+2}$ is unknotted. However, the unknotted

sphere pair $(S^{n+2}, (g\times D)(S^{n}))$ is just the double of the locally flat knotted ball
pair $(D^{n+2}, g(D^{n}))$ . Thus this also answers ([8], Question 3) in the negative.
The first such answer was given by Hudson and Sumners [9].

PROOF OF COROLLARY 4.9. For each $n\geqq 4$ , let $E$ denote the $(n+2)$ -mani-
fold $S^{1}\times W^{n+1}$ obtained in Theorem 4.8. Taking a base point $x_{0}\in bE$ , we
identify $\pi_{1}(bE, x_{0})$ with $J\times G$ . By the identity $a=b^{-2}\cdot(aba^{-1})\cdot(a^{-1}ba)\cdot b,$ $b$ is a
weight element of $G$ . Thus $J\times G$ has at least two weight elements $a=(t, a)$

and $\beta=(t, b)$ . Notice that there is no automorphism $\theta:J\times G\rightarrow J\times G$ such that
$\theta a=\beta$ , since $a^{5}=b^{3}$ , and hence that weighted $(n-1)$ -knot manifolds $(bE, x_{0}, a)$

and $(bE, x_{0}, \beta)$ are not isomorphic. On the other hand, as is seen in the proof
of Theorem 4.8, $E$ satisfies the conditions (1), (2), and (3) in Theorem 3.13. It
follows from Theorem 3.13 and Lemma 4.1 that there exist two n-disk knots
$g:D^{n}\rightarrow D^{n+2}$ and $h:D^{n}\rightarrow D^{n+2}$ such that exteriors of $g$ and $h$ are homeomorphic
to $E$ and that $b_{n}\circ\mu_{n}\circ j_{n}\{g\}=\{bE, x_{0}, \alpha\}$ anct $b_{n}\circ\mu_{n}\circ j_{n}\{h\}=\{bE, y_{0}, \beta\}$ . Thus
$g$ and $h$ should not be equivalent, since $(bE, x_{0}, \alpha)$ and $(bE, y_{0}, \beta)$ are not iso-
morphic. This completes the proof of Corollary 4.9.

PROOF OF COROLLARY 4.10. For each $n\geqq 5$ , let $g:D^{n- 1}\rightarrow D^{n+1}$ and $E$

denote the $(n-1)$ -disk knot obtained in Theorem 4.8 and its exterior. By
$\varphi:S^{n}\rightarrow S^{n+2}wedenotethesuspension(u*g)*S^{0}:S^{n}\rightarrow S^{n+2}ofu*g:S^{n-1}\rightarrow S^{n+1}$ ,

where $S^{0}=\{x, y\}$ . Thus $S(\varphi)=u*S^{0}$ and $\varphi$ is 2-flat, since $g|S^{n-2}$ : $S^{n-2}\rightarrow S^{n}$

is knotted. We take collar neighborhood $(E\times D)$ of $E$ in $E*S^{0}$ naturally. We
will show that $(E\times D)$ is homeomorphic to an exterior of $\varphi:S^{n}\rightarrow S^{n+2}$ . For
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this it suffices to show that $S^{n+2}\overline{-(E\times D}$) $\searrow\varphi(S^{n})$ , where $\backslash $ stands for collaps-
ing. Observe that if we put $N=S^{\overline{n+1}}-E$, then

(i) $N$ is a regular neighborhood of $u*g(S^{n-1})$ in $S^{n+1}$ ,
(ii) $S^{n+2}-Int(E\times D)=N*S^{0}U(E*S^{0}-(E\times IntD))$

$=N*S^{0}U(E\times(-1))*xU(E\times 1)*y$ ,
and

(iii) $N*S^{0}\cap((E\times(-1))*xU(E\times 1)*y)=(bE\times(-1))*xU(bE\times 1)*y$ .
Since $(bE\times(-1))*x$ and $(bE\times 1)*y$ are subcones of $(E\times(-1))*x$ and $(E\times 1)*y$

respectively and since $N\backslash u*g(S^{n-1})$ , it follows that

$S^{n+2}-$ Int $(E\times D)\backslash N*S^{0}$ $(u*g(S^{n-1}))*S^{0}=\varphi(S^{n})$ .
Hence $N$ is a regular neighborhood of $\varphi(S^{n})$ in $S^{n+2}$ , and $E\times D$ is homeomor-
phic to an exterior of $\varphi:S^{n}\rightarrow S^{n+2}$ . Since $W\times D$ is a compact contractible
manifold with simply connected boundary $b(W\times D)$ and since $n+1\geqq 6$, it is an
$(n+1)$ -ball. Therefore, $E\times D=S^{1}\times W\times D$ is homeomorphic to $S^{1}\times D^{n+1}$ , and
by Corollary 4.5 the regular neighborhood $\overline{S^{n+2}-(E\times D}$) is homeomorphic to
$S^{n}\times D^{2}$ . Thus $\varphi$ is the required embedding. This completes the proof of
Corollary 4.10.

PROOF OF COROLLARY 4.11. For each $n\geqq 4$ , let $g:D^{n}\rightarrow D^{n+2}$ and $E$ be the
n-disk knot obtained in Theorem 4.8 and its exterior, respectively. Then
$g\times D:D^{n+1}\rightarrow D^{n+3}$ has an exterior $E\times D$ which is homeomorphic to $S^{1}\times D^{n+2}$ .
By Lemma 3.1, $u*(g\times D):S^{n+1}\rightarrow S^{n+3}$ is at most l-flat and has an exterior
$E\times D$ , which is homeomorphic to $S^{1}\times D^{n+2}$ . It follows that by Corollary 4.6
$u*(g\times D)$ is locally flat and hence that by unknotting theorem, $u*(g\times D)$ is
unknotted. Therefore, $g\times D$ is unknotted. This completes the proof of Corol-
lary 4.11.

\S 5. Which regular neighborhoods of $S^{n}$ with codimension two can be
embedded in $S^{n+2}$?

An n-knot will be called a slice n-knot, if its knot type belongs to the
image of $\partial_{n+1}$ : $D_{PL}^{n+1}\rightarrow K_{PL}^{n}$ . By $C_{PL}^{n}$ we shall denote the n-knot cobordism
group defined by Noguchi [22]. Thus we have an exact sequence of abelian

semi-groups:
$D_{PL}^{n+1}\rightarrow K_{PL}^{n}\partial_{n+1}\rightarrow^{r_{n}}C_{PL}^{n}\rightarrow 0$

, where $r_{n}$ is the natural linear map.
Putting $\gamma_{n+1}=q_{n}\cdot i_{n}\cdot e_{n}\cdot\partial_{n+1}$ : $D_{PL}^{n+1}\rightarrow\ovalbox{\tt\small REJECT}_{PL}^{n}$ , we shall say that an n-knot manifold
$M$ is obtained from a slice n-knot, if $\{M\}\in Image\gamma_{n+1}$ . First, we extend Fox-
Milnor Theorem ([3] or [22], Theorem 3) in the following form:

TEOREM 5.1. Let $N$ be a regular neighborhood of an n-sphere with codi-
mension two. Assume $n\geqq 3$ . Then there exists an embedding $\Phi:N\rightarrow S^{n+2}$ if
and only if $bN$ is obtained from a slice $(n-1)$ -knot.
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PROOF. Suppose that there is an embedding $\Phi:N\rightarrow S^{n+2}$ . We may take
an embedding $\varphi:S^{n}\rightarrow N$ such that $\mu\{\varphi\}\in \mathfrak{R}_{u}^{n}$ and such that $p_{n}(\mu\{\varphi\})=\{N\}$ ,

since $n\geqq 3$ . Hence $\{\Phi\circ\varphi\}\in\sigma x_{u}^{n}$ and $p_{n}\circ\mu_{n}\{\Phi\circ\varphi\}=p_{n}(\mu\{\varphi\})=\{N\}$ . Thus
from the commutative diagram $(*)$ in \S 3, we have $\gamma_{n}(j_{n}^{-1}\{\Phi\circ\varphi\})=\{bN\}$ .
Therefore $bN$ is obtained from a slice $(n-1)$ -knot. Conversely, suppose that
$bN$ is obtained from a slice $(n-1)$ -knot. Then there is an embedding $\psi:S^{n}$

$\rightarrow S^{n+2}$ such that $\{\psi\}\in J\zeta_{u}^{n}$ and $\gamma_{n}\circ j_{n}^{-1}\{\psi\}=\{bN\}$ . Taking an exterior $E$ of
$\psi:S^{n}\rightarrow S^{n+2}$ , we form a closed $(n+2)$ -manifold $V=EUN$. Then, by Theorem
2.7 and Corollary 2.8, $V$ is an $(n+2)$ -sphere. Therefore $N$ can be embedded in
an $(n+2)$ -sphere. This completes the proof of Theorem 5.1.

For our purpose we must compute the group $C_{PL}^{n}$ . To do this, in view
of Kervaire’s result ([12], Theorem III. 6) it is sufficient to clarify the connec-
tion between our $(PL)$ n-knots and smooth n-knots. Here a smooth n-knot
means a smooth $(n+2, n)$ -sphere pair $(S^{n+2},\tilde{S})$ . The diffeomorphism class of
a smooth n-knot $(S^{n+2},\tilde{S})$ , written $\{S^{n+2},\tilde{S}\}$ , will be called the smooth n-knot
type. A smooth n-disk knot means a smooth $(n-\vdash 2, n)$ -disk pair $(D^{n+2},\tilde{D})$ such
that $b\tilde{D}\subset bD^{n+2}$ , Int $\tilde{D}\subset IntD^{n+2}$ and $\tilde{D}$ intersects transversally to $bD^{n+2}$ . The
diffeomorphism class of a smooth n-disk knot $(D^{n+2},\tilde{D})$ , written $\{D^{n+2},\tilde{D}\}$ , will
be called the smooth n-disk knot type. By $K_{0}^{n}$ and $D_{0}^{n}$ we shall denote the sets
of smooth n-knot and -disk knot types, respectively. Then the relative (boun-
dary) connected sum operation makes the set $K^{n_{0}}(D_{0}^{n})$ into an abelian semi-
group. We define a linear map $\partial_{n}$ : $D_{0}^{n}\rightarrow K_{0}^{n-1}$ by $\partial_{n}\{D^{n+2},\tilde{D}\}=\{S^{n+1}, b\tilde{D}\}$ . It
is observed that Kervaire’s smooth n-knot cobordism group $C^{n}$ is defined so

$r_{n}$

that the following sequence of abelian semi-groups is exact: $D_{0}^{n+1}\rightarrow K_{0}^{n}\rightarrow C^{n}$

$\rightarrow 0$ , where $r_{n}$ is the natural linear map. Notice that given a smooth n-knot
$(S^{n+2},\tilde{S})$ or $- \mathfrak{c}$] $isk$ knot $(D^{n+2},\tilde{D})$ , then we have unique n-knot $t(S^{n+2},\tilde{S})$ or -disk
knot $t(D^{n+2},\tilde{D})$ up to homeomorphism by triangulating smoothly $(S^{n+2},\tilde{S})$ or
$(D^{n+2},\tilde{D})$ . Thus we define maps $t_{n}$ : $K^{n_{0}}\rightarrow K_{PL}^{n}$ and $t_{n}$ : $D_{0}^{n}\rightarrow D_{PL}^{n}$ by $t_{n}\{S^{n+2},\tilde{S}\}$

$=\{t(S^{n+2},\tilde{S})\}$ and $t_{n}\{D^{n+2},\tilde{D}\}=\{t(D^{n+2},\tilde{D})\}$ , respectively. Then we have the
following theorem:

THEOREM 5.2. (1) The map $t_{\pi}$ : $K_{0}^{n}\rightarrow K_{PL}^{n}$ is injective and (2) the map
$t_{n}$ : $D_{0}^{n}\rightarrow D_{PL}^{n}$ is bijective.

In other words, two smooth n-knots (or -disk knots) are diffeomorphic if
they are homeomorphic. The proof of Theorem 5.2 is postponed at the end
of the section. Thus the map $t_{n}$ : $K_{0}^{n}\rightarrow K_{PL}^{n}$ gives rise to a monomorphism
$t_{n}$ : $C^{n}\rightarrow C_{PL}^{n}$ , since a diagram

$r_{n}$

$D_{0}^{n+1}\downarrow t_{n+}\rightarrow^{1}K_{0}^{n}\downarrow^{1}t_{n}\rightarrow C^{n}r_{n}$

$\rightarrow 0$

commutes.
$D_{PL}^{n+1}\rightarrow K_{PL}^{n}\rightarrow C_{PL}^{n}\rightarrow 0$
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Further, we will define a map $S_{n}$ ; $C_{PL}^{n}\rightarrow\theta_{n}(\partial\pi)\cap\Gamma_{n}$ , where $\theta_{n}(\partial\pi)$ and $\Gamma_{n}$ are
the groups of smooth homotopy n-spheres bounding smooth compact paralleliz-
able manifolds and smoothings compatible with $S^{n}$ . For this, let $f:S^{n}\rightarrow S^{n+2}$

be an n-knot. Since $f(S^{n})$ has a collar neighborhood in $S^{n+2}$ , it follows from
([15], Theorem 6.3) that there is a smooth manifold pair $(S^{n+2},\tilde{S})$ compatible
with $(S^{n+2}, f(S^{n}))$ . Then by([13], Appendix, Theorem I)Sbe1ongs to $\theta_{n}(\partial\pi)\cap\Gamma_{n}$ .
Moreover, from ([7], Theorem 7.1) the diffeomorphism class $\{\tilde{S}\}$ of $\tilde{S}$ is uni-
quely determined by the knot cobordism class $[f]$ of the n-knot $f:S^{n}\rightarrow S^{n+2}$ .
Thus the map $S_{n}$ ; $C_{PL}^{n}\rightarrow\theta_{n}(\partial\pi)\cap\Gamma_{n}$ is defined by $s_{n}[f]=\{\tilde{S}\}$ . Again by
\langle $[13]$ , Appendix, Theorem l) the map $S_{n}$ \ddagger $C_{PL}^{n}\rightarrow\theta_{n}(\partial\pi)\cap\Gamma_{n}$ turns out to be an
epimorphism. Therefore, we may conclude the following:

COROLLARY 5.3. There is an exact sequence:

$0\rightarrow C^{n}\rightarrow^{t_{n}}C_{PL}^{n}\rightarrow\theta_{n}(\partial\pi)\cap\Gamma_{n}\rightarrow 0$ .
Here note that $\Gamma_{n}=0(n\leqq 6)$ and $\theta_{n}(\partial\pi)=\theta_{n}(\partial\pi)\cap\Gamma_{n}$ for $n\geqq 7$ . From

\langle $[14]$ , Theorem 5.1), ([12], Theorem III. 6) and ([13], p. 265), we have the fol-
lowing:

COROLLARY 5.4. (1) The group $C^{n}$ is of finite index in $C_{PL}^{n},$ (2) $C_{PL}^{2m}=0$ for
$m\geqq 1$ and (3) $C_{PL}^{2m-1}$ has an element of infinite order for each $m\geqq 1$ .

Now we have the following result:
THEOREM 5.5. (1) Every regular neighborhood of $(2m-1)$ -spheres with codi-

mension two can be embedded in $S^{2m+1}$ for $m\geqq 1$ . (2) For each $m\geqq 1$ , there
exists a regular neighborhood of $S^{2m}$ with codimension two that cannot be em-
bedded in $S^{2m+2}$ .

PROOF. By Corollary 5.4, $\partial_{n+1}$ : $D_{PL}^{n+1}\rightarrow K_{PL}^{n}$ is surjective, if $n=2m$ and not
surjective, if $n=2m-1$ . Therefore, by Propositions 3.3 and 3.8 $\gamma_{n+1}$ is surjec-
tive, if $n=2m\geqq 4$ and not surjective, if $n=2m-1\geqq 3$ . Thus in case $2m>$

$2m-1\geqq 3,$ (1) and (2) follow from Theorem 5.1 together with Theorem 3.11.
In case $2m-1=1$ , then a regular neighborhood of $S^{1}$ with codimension two is
homeomorphic to $S^{1}\times D^{2}$ , and hence embeds in $S^{8}$ . In case $2m=2$ , then we
may construct a locally flat embedding $f:S^{2}\rightarrow N^{4}$ such that $N$ is a regular
neighborhood of $f(S^{2})$ and the Euler class $\chi(f)\neq 0$ . Since if $N^{4}$ embeds in $S^{4}$ ,
then $\chi(f)=0$ , it follows that $N^{4}$ cannot be embedded in $S^{4}$ . This completes
the proof of Theorem 5.5.

An implication of Theorem 5.5, (1) is the following:
COROLLARY 5.6. Let $N$ be a regular neighborhood of a $(2m-1)$ -sphere $\Sigma$

with codimension two. Then $(N\times D, \Sigma\times O)$ is homeomorphic to $(S^{2m-1}\times D^{3}$ ,
$S^{2m-1}\times 0^{s})$ . (Refer to ([23], 3.10, Remark 3)).

PROOF. By Theorem 5.5, we may assume that $N$ is a submanifold of
$S^{2m+1}$ , and $he\overline{|}\urcorner ce$ that $N$ is a regular neighborhood of the n-sphere $\Sigma$ in $S^{2m+1}$ .
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If we identify $S^{2m+1}$ with $S^{2m+1}\times 0\subset S^{2m+1}\times D\subset S^{2m+2}$ , then $N\times D$ turns out to
be a regular neighborhood of $\Sigma\times 0$ in $S^{2m+2}$ . Since $\Sigma$ is of codimension 3 in
$S^{2m+2}$ , it follows from Zeeman’s unknotting theorem [29] and uniqueness of
regular neighborhoods that $(N\times D, \Sigma\times 0)$ is homeomorphic to $(S^{2m-1}\times D^{3}$ ,
$S^{2m-1}x0^{3})$ . This completes the proof of Corollary 5.6.

Now we turn to prove Theorem 5.2.
PROOF OF THEOREM 5.2. First, we prove the surjectivity of $t_{n}$ : $D_{0}^{n}\rightarrow D_{PL}^{n}$ .

Let $g:D^{n}\rightarrow D^{n+2}$ be an n-disk knot type. Then by Corollary 2.2 there is an
embedding $G:D^{n}\times D^{2}\rightarrow D^{n+2}$ such that $G(D^{n}\times 0^{2})=g(D^{n})$ and $G(S^{n-1}\times D^{2})$

$=G(D^{n}\times D^{2})\cap S^{n+1}$ . By applying Cairns-Hirsch Theorem in the relative case
([5], Theorem 2.5 and Remark) twice, we have a smooth n-disk knot $(D^{n+2},\tilde{D})$

whose smooth triangulation is homeomorphic to $(D^{n+2}, g(D^{n}))$ . Hence $t_{n}$ : $D_{0}^{n}$

$\rightarrow D_{PL}^{n}$ is surjective. Secondly, to see the injectivity of $t_{n}$ ; $K_{0}^{n}\rightarrow K_{PL}^{n}$ , suppose
that we are given two smooth n-knots $(S^{n+2},\tilde{S}_{1})$ and $(S^{n+2},\tilde{S}_{2})$ . Then, letting
$\tilde{E}_{1}$ and $\tilde{E}_{2}$ be the complements of open tubular neighborhoods of $S_{1}$ and $\tilde{S}_{2}$ in
$S^{n+2}$ respectively, we consider of $(S^{n+2},\tilde{S}_{1})$ and $(S^{n+2},\tilde{S}_{2})$ as to be formed from $\tilde{E}_{1}$

and $E_{2}$ by attaching $(S^{n}\times D^{2}, S^{n}\times 0^{z})$ under diffeomorphisms $f_{1}$ : $S^{n}\times S^{1}\rightarrow b\tilde{E}_{1}$

and $f_{2}$ : $S^{n}\times S^{1}\rightarrow b\tilde{E}_{2}$ . Thus $(S^{n+2},\tilde{S}_{1})=(\tilde{E}_{1}\cup S^{n}\times D^{2}, (S^{n}\times 0^{2}))$ and $(S^{n+2},\tilde{S}_{2})$

$f_{1}$

$=(\tilde{E}_{2}\cup S^{n}\times D^{2}, (S^{n}\times 0^{2}))$ . Further, suppose that $(S^{n+2},\tilde{S}_{1})$ and $(S^{n+2},\tilde{S}_{2})$ are
$(PL)h^{2}omeomorphicf$ Then by the uniqueness of regular neighborhoods we
may take a $PR$ homeomorphism $h:(S^{n+2},\tilde{S}_{1})\rightarrow(S^{n+2},\tilde{S}_{2})$ so that $h(\tilde{E}_{1})=\tilde{E}_{2}$ (for
PR-homeomorphisms, see [7]). Since $H_{*}(\tilde{E}_{1})=H_{*}(S$ ’

$)$ $an\mathfrak{a}H^{k}(S^{1} ; \Gamma_{k})=0$ for
$k\geqq 1$ , it follows from Munkres-Hirsch obstruction theory ([18] and [6]) that
$h|\tilde{E}_{1}$ is concordant to a diffeomorphism. Hence we may assume that
$h:E_{1}\rightarrow\tilde{E}_{2}$ is a diffeomorphism. By [2] and ([24], Theorem $C$ for $n\leqq 4$), the
obstructions to extending a diffeomorphism $f_{2}^{-1}\circ h\circ f_{1}$ : $S^{n}\times S^{1}\rightarrow S^{n}\times S^{1}$ to one
of $(S^{n}\times D^{2}, S^{n}\times 0^{2})$ onto itself lie in the groups $\Gamma_{n+2}$ and $\pi_{1}(SO_{n+1})=Z_{2}$ . How-
ever, as in the proof of ([2], Corollary 3), the one corresponding to an element
of $\Gamma_{n+2}$ vanishes. Since $h:(S^{n+2},\tilde{S}_{1})\rightarrow(S^{n+2},\tilde{S}_{2})$ is a PR-homeomorphism it
follows that $f_{2}^{-1}\circ h\circ f_{1}$ is extendable to a PR-homeomorphism of $(S^{n}\times D^{2}, S^{n}\times 0^{2})$ .
Thus another corresponding to an element of $\pi_{1}(SO_{n+1})$ vanishes, for, other-
wise, $f_{2}^{-1}\circ h\circ f_{1}$ : $S^{n}\times S^{1}\rightarrow S^{n}\times S^{1}$ cannot be extended to a PR-homeomorphism
of $(S^{n}\times D^{2}, S^{n}\times 0^{2})$ , see [11]. Therefore, the diffeomorphism $h|\tilde{E}_{1}:\tilde{E}_{1}\rightarrow\tilde{E}_{2}$

extends to a diffeomorphism $h^{\prime}$ : $(S^{n+2},\tilde{S}_{1})\rightarrow(S^{n+2},\tilde{S}_{2})$ and hence $(S^{n+2},\tilde{S}_{1})$ and
$(S^{n+2},\tilde{S}_{2})$ are diffeomorphic. Thus $t_{n}$ : $K_{0}^{n}\rightarrow K_{PL}^{n}$ is injective. Thirdly, to see
the injectivity of $t_{n}$ : $D_{0}^{n}\rightarrow D_{PL}^{n}$ , suppose that we are given two smooth n-disk
knots $(D^{n+2},\tilde{D}_{1})$ and $(D^{n+2},\tilde{D}_{2})$ . Then, letting $\tilde{E}_{1}$ and $E_{2}$ be the closures of
the complements of tubular neighborhoods of $\tilde{S}_{1}$ and $\tilde{S}_{2}$ in $S^{n+2}$ respectively,
we think of $(D^{n+2},\tilde{D}_{1})$ and $(D^{n+2},\tilde{D}_{2})$ as formed from $E_{1}$ and $\tilde{E}_{2}$ by attaching
$(D^{n}\times D^{2}, D^{n}\times 0^{2})$ by appropriate smooth embeddings $g_{1}$ : $D^{n}\times S^{1}\rightarrow b\tilde{E}_{1}$ and
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$g_{2}$ : $D^{n}\times S^{1}\rightarrow b\tilde{E}_{2}$ . Thus $(D^{n+2},\tilde{D}_{1})=(E_{1}\bigcup_{g_{1}}D^{n}\times D^{2}, (D^{n}\chi 0^{2}))$ and $(D^{n+2},\tilde{D}_{2})=$

$(E_{2}\cup D^{n}\times D^{2}, (D^{n}\times 0^{2}))$ . Further, suppose that $(D^{n+2},\tilde{D}_{1})$ and $(D^{n+2},\tilde{D}_{2})$ are
$gp$

$(PL)$ homeomorphic. Then by the uniqueness of relative regular neighborhoods
we may take a PR-homeomorphism $h:(D^{n+2},\tilde{D}_{1})\rightarrow(D^{n+2},\tilde{D}_{2})$ so that $h(\tilde{E}_{1})=\tilde{E}_{2}$ .
Since $h((D^{n}\times D^{2}), (D^{n}\times 0^{2}))=((D^{n}\times D^{2}), (D^{n}\times 0^{2}))$ and $h|(D^{n}\times D^{2})$ is concordant
to the identity keeping $S^{n-1}\times D^{2}UD^{n}\times 0^{2}$ setwise fixed modulo orientation
reversing PR-homeomorphisms of $(D^{n}\times 0^{2})$ and $(0^{n}\times D^{2})$ , (see [11]), we may
assume that $h|((D^{n}\times D^{2}), (D^{n}\times 0^{2}))$ is a diffeomorphism. By Munkres-Hirsch
obstruction theory, the obstructions approximating the PR-homeomorphism
$h|\tilde{E}_{1}$ : $E_{1}\rightarrow\tilde{E}_{2}$ by a diffeomorphism $h^{\gamma}$ : $E_{1}\rightarrow\tilde{E}_{2}$ relative to $(D^{n}\times S^{1})\subset b\tilde{E}_{1}$ lie in
the cohomology groups $H^{k}(E_{1}, (D^{n}\times S^{1});\Gamma_{k})$ . However, by a short calculation
we have $H^{k}(E_{1}, (D^{n}\times S^{1}))=0$ for $k\geqq 0$ , and hence the universal coefficient
theorem $H^{k}(E_{1}, (D^{n}\times S^{1});\Gamma_{k})=0$ for $k\geqq 0$ .

It follows that there is a diffeomorphism $h^{\prime\prime}$ : $(D^{n+2},\tilde{D}_{1})\rightarrow(D^{n+2},\tilde{D}_{2})$ such
that $h^{\prime\prime}|(D^{n}\times D^{2})=h|(D^{n}\times D^{2})$ . Therefore, $(D^{n+2},\tilde{D}_{1})$ and $(D^{n+2},\tilde{D}_{2})$ are diffeo-
morphic. Thus $t_{n}$ ; $D_{0}^{n}\rightarrow D_{PL}^{n}$ is injective. This completes the proof of Theo-
rem 5.2.

Tokyo Metropolitan University
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