A generalization of \mathbf{F}. Schur's theorem

By Alfred Gray

(Received Feb. 13, 1969)

The following theorem, due to F. Schur, is well-known:
Theorem A. Let M be a Riemannian manifold with $\operatorname{dim} M \geqq 3$. If the sectional curvature K of M is constant at each point of M, then K is actually constant on M.

There are several other theorems of this type; we mention a few of them.
Theorem B. Let M be an Einstein manifold, that is, assume the Ricci curvature of M is a scalar multiple λ of the metric tensor of M. If $\operatorname{dim} M \geqq 3$, then λ is constant.

Theorem C (Thorpe [2]). Let M be a Riemannian manifold with $\operatorname{dim} M$ $\geqq 2 p+1$. If the $2 p t h$ sectional curvature $\gamma_{2 p}$ is constant at each point of M, then $\gamma_{2 p}$ is constant on M.

Theorem D. Let M be a Kähler manifold with $\operatorname{dim} M \geqq 4$. If the holomorphic sectional curvature K_{h} is pointwise constant, then it is actually constant.

Theorem E (M. Berger, unpublished). Let M be a Riemannian manifold with metric tensor $g_{i j}$ and Riemann curvature tensor $R_{i j k l}$. Suppose

$$
\sum_{i, j, k} R_{i j k s} R^{i j k t}=\lambda g_{s t} .
$$

If $\operatorname{dim} M \geqq 5$, then λ is constant.
In this paper we prove a result (theorem 2) which includes theorems A, B, C , and D as special cases. Although theorem E is not a consequence of theorem 2 , it almost is, in the sense that it would be if a slightly different contraction were used.

We shall use the notation of [1]. Recall that a double form of type (p, q) is a function $\omega: \mathfrak{X}(M)^{p+q} \rightarrow \mathscr{F}(M)$ which is skew-symmetric in the first p variables and also in the last q variables. Here, as usual, $\mathfrak{X}(M)$ denotes the Lie algebra of vector fields on the C^{∞} manifold M and $\mathscr{F}(M)$ the ring of C^{∞} real valued functions on M. We write $\omega\left(X_{1}, \cdots, X_{p}\right)\left(Y_{1}, \cdots, Y_{q}\right)$ for the value of ω on $X_{1}, \cdots, X_{p}, Y_{1}, \cdots, Y_{q}$. If $p=q$ and

$$
\begin{array}{ll}
& \omega\left(X_{1}, \cdots, X_{p}\right)\left(Y_{1}, \cdots, Y_{p}\right)=\omega\left(Y_{1}, \cdots, Y_{p}\right)\left(X_{1}, \cdots, X_{p}\right) \\
\text { for } & X_{1}, \cdots, X_{p}, Y_{1}, \cdots, Y_{p} \in \mathfrak{X}(M),
\end{array}
$$

the double form ω is said to be symmetric.
Now assume that M has a Riemannian metric g, and let ∇ be the corresponding connection. Then if ω is a double form of type (p, p), so is $\nabla_{X}(\omega)$ for $X \in \mathfrak{X}(M)$ (see [1].). Furthermore a double form $D \omega$ of type $(p+1, q)$ is defined by

$$
(D \omega)\left(X_{1}, \cdots, X_{p+1}\right)=\sum_{j=1}^{p+1}(-1)^{j+1} \nabla_{X_{j}}(\omega)\left(X_{1}, \cdots, \hat{X}_{j}, \cdots, X_{p+1}\right) .
$$

Here D is an analog of the exterior derivative d; however, unlike d, D is not independent of ∇.

It will also be necessary to define the notion of the contraction operator C on double forms. If ω is a double form of type (p, q), then $C \omega$ is the double form of type ($p-1, q-1$) defined by

$$
(C \omega)\left(X_{1}, \cdots, X_{p-1}\right)\left(Y_{1}, \cdots, Y_{q-1}\right)=\sum_{i=1}^{n} \omega\left(X_{1}, \cdots, X_{p-1}, E_{i}\right)\left(Y_{1}, \cdots, Y_{q-1}, E_{i}\right)
$$

where $n=\operatorname{dim} M$ and $\left\{E_{1}, \cdots, E_{n}\right\}$ is any orthonormal frame field defined on an open subset of M. Then $C^{r}, r=0,1,2, \cdots$ are defined inductively. We shall agree that if $p=0$ or $q=0$, then $C \omega=0$.

We shall need the following result.
Theorem 1. Let A be a double form of type (p, q) such that $D A=0$. Then

$$
\begin{align*}
& \left(D C^{r} A\right)\left(U, X_{1}, \cdots, X_{p-r}\right)\left(Y_{1}, \cdots, Y_{q-r}\right) \tag{1}\\
& \quad=(-1)^{p-r} r \sum_{i=1}^{n} \nabla_{E_{i}}\left(C^{r-1} A\right)\left(U, X_{1}, \cdots, X_{p-r}\right)\left(Y_{1}, \cdots, Y_{q-r}, E_{i}\right)
\end{align*}
$$

for $U, X_{1}, \cdots, X_{p-r}, Y_{1}, \cdots, Y_{q-r} \in \mathfrak{X}(M)$, where $\left\{E_{1}, \cdots, E_{n}\right\}$ is a local orthonormal frame field on M.

Proof. We induct on r. The assumption $D A=0$ implies that (1) is true for $r=0$. Next suppose that (1) is true for general r. Then

$$
\begin{aligned}
0= & \left(C D C^{r} A\right)\left(U, X_{1}, \cdots, X_{p-r-1}\right)\left(Y_{1}, \cdots, Y_{q-r-1}\right) \\
& +(-1)^{p-r} r \sum_{i=1}^{n} V_{E_{i}}\left(C^{r} A\right)\left(U, X_{1}, \cdots, X_{p-r-1}\right)\left(Y_{1}, \cdots, Y_{q-r-1}, E_{i}\right) \\
= & \left(D C^{r+1} A\right)\left(U, X_{1}, \cdots, X_{p-r-1}\right)\left(Y_{1}, \cdots, Y_{q-r-1}\right) \\
& +(-1)^{p-r}(r+1) \sum_{i=1}^{n} \nabla_{E_{i}}\left(C^{r} A\right)\left(U, X_{1}, \cdots, X_{p-r-1}\right)\left(Y_{1}, \cdots, Y_{q-r-1}, E_{i}\right) .
\end{aligned}
$$

Hence (1) is true for $r+1$. This completes the proof.
If ω is a double form of type (p, q), then ω^{\prime} is a double form of type ($p+1, q-1$) defined by

$$
\omega^{\prime}\left(X_{1}, \cdots, X_{p+1}\right)\left(Y_{2}, \cdots, Y_{q}\right)=\sum_{j=1}^{p+1}(-1)^{j+1} \omega\left(X_{1}, \cdots, \hat{X}_{j}, \cdots, X_{p+1}\right)\left(X_{j}, Y_{2}, \cdots, Y_{q}\right)
$$

for $X_{1}, \cdots, X_{p+1}, Y_{2}, \cdots, Y_{q} \in \mathfrak{X}(M)$. We define a Riemannian double form (as in [1]) to be a symmetric double form such that $D \omega=\omega^{\prime}=0$.

The best known examples of Riemannian double forms are the metric tensor g (type (1,1)) and the Riemannian curvature tensor R (type (2,2)). (The Bianchi identities state that $R^{\prime}=D R=0$.) In [1] the notion of exterior products of double forms is defined. In particular $g^{p}=g \wedge \cdots \wedge g$ and $R^{p}=R \wedge$ $\cdots \wedge R$ (each p times) are double forms of types (p, p) and ($2 p, 2 p$) respectively.

We are now ready to prove our main result.
THEOREM 2. Let A and B be Riemannian double forms of types (p, p) and (r, r) respectively and assume that (a) B is parallel (that is $\nabla_{X} B=0$ for all $X \in \mathfrak{X}(M)$), (b) $C^{r-1} B=\alpha g$ for some $\alpha \in \mathscr{F}(M)$, not identically 0 , (c) $p<n=\operatorname{dim} M$, (d) there exist $\lambda \in \mathscr{F}(M)$ and an integer q such that for all $X_{1}, \cdots, X_{p-q} \in \mathfrak{X}(M)$ we have

$$
\left(C^{q} A\right)\left(X_{1}, \cdots, X_{p-q}\right)\left(X_{1}, \cdots, X_{p-q}\right)=\lambda\left(C^{r-p+q} B\right)\left(X_{1}, \cdots, X_{p-q}\right)\left(X_{1}, \cdots, X_{p-q}\right)
$$

Then λ is constant on M.
Proof. Since B is parallel, so is $C^{r-1} B$, and thus α is a nonzero constant. Furthermore $n \alpha=C^{r} B$. According to [1] condition (d) is equivalent to $C^{q} A$ $=\lambda C^{r-p+q} B$. Hence for $U \in \mathfrak{X}(M)$ we have

$$
\begin{aligned}
0 & =\left(D C^{p} A-D\left(\lambda C^{r} B\right)\right)(U) \\
& =p \sum_{i=1}^{n} \nabla_{E_{i}}\left(\lambda C^{r-1} B\right)(U)\left(E_{i}\right)-(U \lambda) C^{r} B \\
& =p \sum_{i=1}^{n}\left(E_{i} \lambda\right)\left(C^{r-1} B\right)(U)\left(E_{i}\right)-(U \lambda) C^{r} B \\
& =(p-n) \alpha(U \lambda) .
\end{aligned}
$$

Since U is arbitrary, it follows that λ is constant.
The following is an important special case of theorem 2.
Theorem 3. Let A be a Riemannian double form of type (p, p) with $p<n$ $=\operatorname{dim} M$, and assume that for some $q \leqq p-1$ and $\lambda \in \mathscr{F}(M)$ we have

$$
\left(C^{q} A\right)\left(X_{1}, \cdots, X_{p-q}\right)\left(X_{1}, \cdots, X_{p-q}\right)=\lambda g^{p-q}\left(X_{1}, \cdots, X_{p-q}\right)\left(X_{1}, \cdots, X_{p-q}\right)
$$

for all $X_{1}, \cdots, X_{p-q} \in \mathfrak{X}(M)$. Then λ is constant on M.
Proof. In theorem 2 we take $B=g^{p-q}$. We have the general formula

$$
C^{s} g^{t}=\frac{t!(n-t+s)!}{(t-s)!(n-t)!} g^{t-s}
$$

for all integers s and t with $0 \leqq s \leqq t$. Thus condition (b) of theorem 2 is satisfied. Furthermore g^{t} is parallel for all t (see [1]) and so condition (a) of theorem (2) holds. We conclude that λ must be constant.

We obtain theorems A and B from theorem 3 by taking $A=R$ and $q=0$
and 1, respectively. Theorem C is also obtained from theorem 3, using $A=R^{p}$, $q=0$.

Furthermore we have the following generalization of theorems A, B and C.
Theorem 4. Suppose $p<n, q<2 p-1$, and

$$
C^{q} R^{p}\left(X_{1}, \cdots, X_{2 p-q}\right)\left(X_{1}, \cdots, X_{2 p-q}\right)=\lambda g^{2 p-q}\left(X_{1}, \cdots, X_{2 p-q}\right)\left(X_{1}, \cdots, X_{2 p-q}\right)
$$

for all $X_{1}, \cdots, X_{2 p-q} \in \mathfrak{X}(M)$. Then λ is constant.
However, to prove theorem D we must use theorem 2 with $A=R, q=0$, and B defined by

$$
\begin{aligned}
B(W, X)(Y, Z)= & g(W, Y) g(X, Z)-g(W, Z) g(X, Y) \\
& +g(J W, Y) g(J X, Z)-g(J W, Z) g(J X, Y) \\
& +2 g(J W, X) g(J Y, Z)
\end{aligned}
$$

for $W, X, Y, Z \in \mathfrak{X}(M)$, where J denotes the almost complex structure of the Kähler manifold M. It seems plausible that an analog of theorem D holds for $2 p$ th holomorphic sectional curvature; however, the author has been unable to prove this.

University of Maryland

References

[1] A. Gray, Some relations between curvature and characteristic classes (to appear).
[2] J. Thorpe, Sectional curvatures and characteristic classes, Ann. of Math., 80 (1964), 429-443.

