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The following theorem, due to F. Schur, is well-known:
THEOREM A. Let $M$ be a Riemannian manifold with $\dim M\geqq 3$ . If the

sectional curvature $K$ of $M$ is constant at each point of $M$, then $K$ is actually
constant on $M$.

There are several other theorems of this type; we mention a few of them.
THEOREM B. Let $M$ be an Einstein manifold, that is, assume the Ricci

curvature of $M$ is a scalar multiple $i$ of the metric tensor of M. If $\dim M\geqq 3$ ,
then $\lambda$ is constant.

THEOREM $C$ (Thorpe [2]). Let $M$ be a Riemannian manifold with $\dim M$

$\geqq 2p+1$ . If the 2$pth$ sectional curvature $\gamma_{2p}$ is constant at each point of $M$, then
$r_{2p}$ is constant on $M$.

THEOREM D. Let $M$ be a Kahler manifold with $\dim M\geqq 4$ . If the holo-
morphic sectional curvature $K_{h}$ is pointwise constant, then it is actually constant.

THEOREM $E$ (M. Berger, unpublished). Let $M$ be a Riemannian manifold
with metric tensor $g_{ij}$ and Riemann curvature tensor $R_{ijkl}$ . Suppose

$\sum_{i,j,k}R_{ijks}R^{tjkt}=\lambda g_{st}$ .
If $\dim M\geqq 5$ , then $\lambda$ is constant.

In this paper we prove a result (theorem 2) which includes theorems $A,$ $B$ ,
$C$ , and $D$ as special cases. Although theorem $E$ is not a consequence of theorem
2, it almost is, in the sense that it would be if a slightly different contraction
were used.

We shall use the notation of [1]. Recall that a double form of type $(p, q)$

is a function to: $\mathfrak{X}(M)^{p+q}\rightarrow g(M)$ which is skew-symmetric in the first $p$ vari-
ables and also in the last $q$ variables. Here, as usual, $\mathfrak{X}(M)$ denotes the Lie
algebra of vector fields on the $C^{\infty}$ manifold $M$ and $g(M)$ the ring of $C^{\infty}$ real
valued functions on $M$. We write $\omega(X_{1}, \cdots , X_{p})(Y_{1}, \cdots , Y_{q})$ for the value of ru
on $X_{1},$ $\cdots$ , $X_{p},$ $Y_{1},$ $\cdots$ , $Y_{q}$ . If $p=q$ and

$\omega(X_{1}, \cdots , X_{p})(Y_{1}, \cdots , Y_{p})=\omega(Y_{1}, \cdots , Y_{p})(X_{1}, \cdots , X_{p})$

for
$X_{1},$ $\cdots\prime X_{p},$ $Y_{1},$ $\cdots\prime Y_{p}\in \mathfrak{X}(M)$ ,
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the double form $\omega$ is said to be symmetric.
Now assume that $M$ has a Riemannian metric $g$, and let $\nabla$ be the cor-

responding connection. Then if to is a double form of type $(p, p)$ , so is $\nabla_{X}(\omega)$

for $X\in \mathfrak{X}(M)$ (see [1]). Furthermore a double form $ D\omega$ of type $(p+1, q)$ is
defined by

$(D\omega)(X_{1\prime}\cdots X_{p+1})=\sum_{j=1}^{p-l}(-1)^{j+1}\nabla_{X_{j}}(\omega)(X_{1}, \cdots \hat{X}_{j}, \cdots*X_{p+1})$ .

Here $D$ is an analog of the exterior derivative $d$ ; however, unlike $d,$ $D$ is not
independent of $\nabla$ .

It will also be necessary to define the notion of the contraction operator $C$

on double forms. If $\omega$ is a double form of type $(p, q)$ , then $ C\omega$ is the double
form of type $(p-1, q-1)$ defined by

$(C\omega)(X_{1}, \cdots , X_{p-1})(Y_{1}, \cdots , Y_{q-1})=\sum_{t=1}^{n}\omega(X_{1}, \cdots , X_{p-1}, E_{i})(Y_{1}, \cdots , Y_{q-1}, E_{i})$

where $n=\dim M$ and $\{E_{1}, \cdots , E_{n}\}$ is any orthonormal frame field defined on an
open subset of $M$. Then $C^{r},$ $r=0,1,2,$ $\cdots$ are defined inductively. We shall
agree that if $p=0$ or $q=0$ , then $C\omega=0$ .

We shall need the following result.
THEOREM 1. Let $A$ be a double form of type $(p, q)$ such that $DA=0$ .

Then

(1) $(DC^{r}A)(U, X_{1}, \cdots , X_{p- r})(Y_{1}, \cdots , Y_{q- r})$

$=(-1)^{p- r}r\sum_{t=1}^{n}\nabla_{E_{i}}(C^{r-1}A)(U, X_{1}, \cdots , X_{p- r})(Y_{1}, \cdots , Y_{q- r}, E_{i})$

for $U,$ $X_{1},$ $\cdots$ , $X_{p- r},$ $Y_{1},$ $\cdots$ , $Y_{q-r}\in \mathfrak{X}(M)$ , where $\{E_{1}, \cdots , E_{n}\}$ is a local ortho-
normal frame field on $M$.

PROOF. We induct on $r$ . The assumption $DA=0$ implies that (1) is true
for $r=0$ . Next suppose that (1) is true for general $r$. Then

$0=(CDC^{r}A)(U, X_{1}, \cdots , X_{p- r-1})(Y_{1}, \cdots , Y_{q- r-1})$

$+(-1)^{p- r}r\sum_{t=1}^{n}\nabla_{E_{i}}(C^{r}A)(U, X_{1}, \cdots X_{p- r-1})(Y_{1}, \cdots, Y_{q- r-1}, E_{i})$

$=(DC^{r+1}A)(U, X_{1}, \cdots , X_{p- r-1})(Y_{1}, \cdots , Y_{q-r-1})$

$+(-1)^{p- r}(r+1)\sum_{i=1}^{n}\nabla_{E_{i}}(C^{r}A)(U, X_{1}, \cdots , X_{p-r-1})(Y_{1}, \cdots , Y_{q- r-1}, E_{i})$ .

Hence \langle 1) is true for $r+1$ . This completes the proof.
If to is a double form of type $(p, q)$ , then $\omega^{\prime}$ is a double form of type

$(p+1, q-1)$ defined by

$\omega^{\prime}(X_{1}, X_{p+1})(Y_{2}, Y_{q})=\sum_{j=1}^{p+1}(-1)^{j+1}\omega(X_{1}, \cdots,\hat{X}_{j}, \prime X_{p+1})(X_{j}, Y_{2}, Y_{q})$
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for $X_{1},$ $\cdots$ , $X_{p+1},$ $Y_{2}$ , $\cdot$ .. , $Y_{q}\in X(M)$ . We define a Riemannian double form (as

in [1]) to be a symmetric double form such that $D\omega=\omega^{\prime}=0$ .
The best known examples of Riemannian double forms are the metric

tensor $g$ (type (1, 1)) and the Riemannian curvature tensor $R$ (type (2, 2)). (The

Bianchi identities state that $R^{\prime}=DR=0.$) In [1] the notion of exterior pro-
ducts of double forms is defined. In particular $g^{p}=g\wedge\cdots\wedge g$ and $ R^{p}=R\wedge$

... $\wedge R$ (each $p$ times) are double forms of types $(p, p)$ and $(2p, 2p)$ respectively.
We are now ready to prove our main result.
THEOREM 2. Let $A$ and $B$ be Riemannian double forms of types $(p, p)$ and

$(r, r)$ respectively and assume that (a) $B$ is parallel (that is $\nabla_{X}B=0$ for all
$X\in \mathfrak{X}(M)),$ $(b)C^{r-1}B=\alpha g$ for some $\alpha\in 9(M)$ , not identically $0,$ $(c)p<n=\dim M$,

(d) there exist $\lambda\in S^{i}(M)$ and an integerq such that for all $X_{1},$ $\cdots$ , $ X_{p- q}\in \mathfrak{X}(M\rangle$

we have

$(C^{q}A)(X_{1}, \cdots , X_{p- q})(X_{1}, \cdots , X_{p- q})=\lambda(C^{r-p+q}B)(X_{1}, \cdots , X_{p- q})(X_{1}, \cdots , X_{p- q})$ .
Then $\lambda$ is constant on $M$.

PROOF. Since $B$ is parallel, so is $C^{r-1}B$ , and thus $\alpha$ is a nonzero constant.
Furthermore $n\alpha=C^{r}B$ . According to [1] condition (d) is equivalent to $C^{q}A$

$=\lambda C^{r-p+q}B$ . Hence for $U\in \mathfrak{X}(M)$ we have

$0=(DC^{p}A-D(\lambda C^{r}B))(U)$

$=p\sum_{\iota=1}^{n}\nabla_{E_{i}}(\lambda C^{r- 1}B)(U)(E_{i})-(U\lambda)C^{r}B$

$=p\sum_{\iota=1}^{\eta}(E_{i}\lambda)(C^{r- 1}B)(U)(E_{i})-(U\lambda)C^{r}B$

$=(p-n)\alpha(U\lambda)$ .
Since $U$ is arbitrary, it follows that $\lambda$ is constant.

The following is an important special case of theorem 2.
THEOREM 3. Let $A$ be a Riemannian double form of type $(p, p)$ with $p<n$

$=\dim M$, and assume that for some $q\leqq p-1$ and $\lambda\in q(M)$ we have

$(C^{q}A)(X_{1}, \cdots , X_{p- q})(X_{1}, \cdots , X_{p- q})=\lambda g^{p- q}(X_{1}, \cdots , X_{p- q})(X_{1}, \cdots , X_{p- q})$ ,

for all $X_{1},$ $\cdots$ , $X_{p-q}\in \mathfrak{X}(M)$ . Then $i$ is constant on $M$.
PROOF. In theorem 2 we take $B=g^{p- q}$ . We have the general formula

$C^{s}g^{t}=\frac{t!(n-t+s)!}{(t-s)!(n-t)!}g^{t- s}$

for all integers $s$ and $t$ with $0\leqq s\leqq t$ . Thus condition (b) of theorem 2 is
satisfied. Furthermore $g^{t}$ is parallel for all $t$ (see [1]) and so condition (a) of
theorem (2) holds. We conclude that $\lambda$ must be constant.

We obtain theorems A and $B$ from theorem 3 by taking $A=R$ and $q=0$
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and 1, respectively. Theorem $C$ is also obtained from theorem 3, using $A=R^{p}$ ,
$q=0$ .

Furthermore we have the following generalization of theorems $A,$ $B$ and C.
THEOREM 4. Suppose $p<n,$ $q<2p-1$ , and

$C^{q}R^{p}(X_{1}, \cdots , X_{2p- q})(X_{1}, \cdots , X_{2p- q})=ig^{2p- q}(X_{1}, \cdots , X_{2p- q})(X_{1}, \cdots , X_{2p- q})$

for all $X_{1}$ , , $X_{2p- q}\in \mathfrak{X}(M)$ . Then 2 is constant.
However, to prove theorem $D$ we must use theorem 2 with $A=R,$ $q=0$ ,

and $B$ defined by

$B(W, X)(Y, Z)=g(W, Y)g(X, Z)-g(W, Z)g(X, Y)$

$+g(JW, Y)g(JX, Z)-g(JW, Z)g(JX, Y)$

$+2g(JW, X)g(JY, Z)$

for $W,$ $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ , where $J$ denotes the almost complex structure of the
K\"ahler manifold $M$. It seems plausible that an analog of theorem $D$ holds for
2$pth$ holomorphic sectional curvature; however, the author has been unable to
prove this.
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