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Introduction.

This paper was written motivated by Manin’s recent paper [4] in which
he suggested the importance of Tamagawa number of the dual torus of the
Neron-Severi group of a rational surface, in connection with the {-function
of the surface. But in this paper we shall deal with arbitrary dimensional
algebraic varieties without the restriction of the rationality and define some
birational invariant of them. When we consider only the rational varieties,
we can define the birational invariant using only the Neron-Severi groups of
them but for arbitrary algebraic varieties we must take into account the
contributions of the Albanese varieties of them.

Since we use the arguments developed in T. Ono’s paper [6], we have to
restrict the basic field 2 to a field of dimension one.

Let k£ be a field of dimension one i.e. either a finite algebraic number
field or an algebraic function field of one variable over a finite field. Let V
be a complete non-singular algebraic variety defined over k. Let N°V) be
the torsion free part of the Neron-Severi group of V (i.e. N*(V)=D(V)/D(V);
D(V) is the group of all divisors on V and D, is the group of torsion divisors),
and A be the Albanese variety of V defined over k. Let Hom (4, A) be the
finite type Z-free module of all the rational homomorphisms from A to A.
Then the birational invariant (V) of V over k will be defined by

wlV)=h(V)/i(V),

he V) (N (V)

" hi(Hom (4, A2’ 1,(Hom (4, A)¥*
where Al and i, are the notations used in (see §3). When V is a rational
variety, the Albanese variety A vanishes and p,(V) depends only on N°(V).
In §2 and §3 we show that A;(V°(V)) and (N°(V)) are birational invariant
over k. (See and [Proposition 6). Since the Albanese variety A
attaches to V birational-invariantly, we see that y,(V) is a birational invariant
of V over k. The reason why we have considered the contributions of the

i(V)=
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Albanese variety (i.e. hi(Hom (4, 4)) and iy(Hom (4, A))) is not to make g,
birational invariant, but to make it fulfil the fundamental equalities which
are also true for the Tamagawa number of algebraic groups, namely

VX V)= (V) (V") and  p (Ripo(V)) = p(V),

where V and V'’ are complete non-singular algebraic varieties defined over
k, k/k, is a finite separable algebraic extension and R, is the k/k,-trace of
V (see §4). Under the same situation we shall also prove

(VX V) =h(V) - V), Ry (R V) = (V)
and
(VX V) =0(V) - i (V) Ueo(Riseo(V) = (V) .

(See and 4).

§1. Notations and preliminaries.

In this section we define some notations which we use all through this paper
and recall some facts about the Galois modules.

Let & be a field (which will be restricted to a field of dimension one in
§3 and §5) and V be an algebraic variety defined over k. For the divisor
groups of ¥ we use the following notations.

D(V); the group of all divisors on V.

D,(V); the group of all divisors on V which are linearly equivalent to

zero, i.e. the divisors of rational functions on V.
D,(V); the group of divisors on V which are algebraically equivalent to
Zero.
D(V); the group of divisors on V which are torsion equivalent to zero,
i.e. the divisors whose some integer multiples are in D, (V).
This group can be identified with the numerical equivalence group if V is
complete non-singular projective variety. (See p. 329, (C) [11).

N(V)=D(V)/D,V); Neron-Severi group.

N°(VY=D(V)/D,V); torsion free part of Neron-Severi group.

Let £ be the algebraic closure of the field 2 and K be an intermediate
field between k and 2 (i.e. kC KC Q). We denote the Galois group of £ over
K by g(2/K). By D(V), (xesp. D(V)g, Du(V)g, D(V),) we denote the sub-
group of D(V) (resp. D(V), D,(V), D,(V)) consisting of those elements which
are rational over £. Then obviously g(£2/K) operates on D(V)g, D(V)g, Do(V)g
and D(V), making them g(£/K)-modules. We know that N(V)=D(V),
/Do(V)g and N(V)=D(V)a/Di(V)y and g(£2/K) also acts on them, making
them g(&/K)-modules. By D(V), (resp. D(V)x, D V)x, D(V)k, N(V)g,
N°(V)x) we denote the subgroup of D(V)y (resp. d(V)g, Do(V)g, DAV),,
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N(V), N°(V)) consisting of g(£2/K) invariant elements. If K is a normal
extension of %, then the Galois group g(K/k) of the extension K/k operates on
D(V)x, D(V)g, Du(V)k, D(V)k, N(V)g and N°(V)x making them g(K/k)-
modules.

Let P be the Picard variety of V defined over the field .. Then we have
an isomorphism ¢: D,(V)/D(V)= P, which has the following properties.
1) If a divisor X in D,(V) is rational over a field %’ containing k, then the
image @(CI(X)) of the class CI(X) of X in D, (V)/D,(V) is a rational point
of P over k. 2) If a point a of P is rational over a field k&’ containing &,
then there exists a divisor X in Dy(V), such that o(Ci(X))=a. 3) ¢ is
compatible with the specialization over 2. We call the isomorphism with these
properties the canonical isomorphism.

Here we recall some facts about the Galois modules and its cohomology
groups. Let G be a finite group and H be its subgroup. Let E be a H-module
(i.e. an abelian group on which the group H acts as group of automorphisms).
Then we define the G-module MZ(E) as the submodule of Hom, (Z[G], F)
such that f(gh)=h"'f(g) for he H, g G, fe Hom, (Z[G], E). The structure
of G-module on M#(E) is defined by (gf)(g")=f(glg’) for g, g’ =G. If we
associate to fe MZ(E) its value at the neutral element of G, we get a homo-
morphism #: M7 — E which is compatible with the natural injection of H in
G (i.e. 6 is an H-homomorphism, because 0 f)=h-0Mh1f)=h({(h"1f)(e))
= h( f(h) = f(e)=0(f)).

LEMMA 1. Using the above notations, we have the isomorphism of G-modules

Z[G] @ B = MY(E).

PrOOF. To an element g&@m in left side we associate an element f in
right side such that f(g)=m, f(gh)y=h'-m and f(g’)=0 for he H, g’ gH.
By this mapping the isomorphism of Lemma is given. Q.E.D.

LEMMA 2. The homomorphism 0 induces an isomorphism

HYG, MEE) = HYH, E) g=0.

ProoF. First we notice that M¥Z is an exact functor from the category of
H-modules to the category of G-modules. Since Hom is a left exact functor,
we have only to show that a surjective homomorphism p: E— E’ of H-modules
induces a surjective homomorphism p*: ME(E)— MEZ(E’). For an element f
of M¥(E") and the left representatives g,, ---, g, of the right cosets G/H (i.e.
G=gH+ --- +g,H), we select elements ¢; (t=1, ---, n) of E such that p(e,)
=f"(g) =1, --,n). If weput f(g)=¢e; and f(g;h)=h"'e; (=1, ---, n), then
f defines an element of MZ(E) and we have p*( f)=f’. Thus p* is surjective.
On the other hand we show that # induces an isomorphism #* : Hom® (B, M¥(E))
> Hom# (B, E) for a G-module B. For an element a« of Hom¢ (B, MZ(F)) and
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h in H, we have [(a-6)"1(b)=h[(a-8)(h 'b)]=h[(ath'b))(e)]= h[(a(®)(M)]
=lab)e)]=(a-6)(b). Hence we have a -6 Hom” (B, E). For an element
in HomZ (B, E), put (a()(e)=p®) and (a®)(g)="(a(g'b))(e) for all beB
and g G. Then « defines an element of Hom¢ (B, M¥(FE)) because we have
(afON(g)y=(g- a(g™'b)(g") = (algb)(g'g") = (a(b))(g’), and we have §*(a)
= f8. Therefore 6* is surjective. The injectivity of #* is clear. Therefore

by standard comparison theorem we get the Q.E.D.
The divisor group D(V)g can be written as the direct sum Iggle- X,

where & ranges over all the prime rational divisors on V over k and X’s are
the prime rational components of & over K. When K is a finite Galois ex-
tension of % and G is its Galois group, we denote by G: the subgroup of G
consisting of those elements which make invariant one fixed components of &.
(If we replace the fixed component of & by another one, then G; will be

replaced by a conjugate subgroup of G: in G). If we have G=g,G:+g,Gs
+ -+ +g,G;, we have the isomorphism of G-modules HGZ-X: ERZ-(X)“
Xe i=1

= 7[G/G:]= M%(Z), where Z is the additive group of rational integers on
which G acts trivially. The isomorphism is given by (X)¢i—a;=g;Gs < af;
a¥(g:h) =1, a¥(gh)=0 (i#Jj, he H). Therefore by Lemma I, we have
HY(G, XHeZ. X)=HYGs, Z)=0 and HYG, D(V)g)=0.

§ 2. The birational invariance of the first cohomology of divisor groups.

In this section we consider the Galois cohomology of the divisor groups
defined in section 1 and prove the birational invariance of the first cohomology
of them.

Let V and V’ be complete non-singular algebraic varieties defined over
the field 2 and g be a birational morphism from V’ to V defined over k.
The assumption “ non-singular ” is necessary for g to induce a natural iso-
morphism of the Picard groups of V and V’. (See the last paragraph of p.
152 of [2]. Let S be the set of all prime rational divisors on V over k¢ which
vanish under the morphism g. Namely, S consists of all prime rational divisors
on V/ over %k such that the set theoretic images of them by g have codi-
mensions larger than 1. Let K be a finite normal extension of £ and X be
the Z-free module generated by all the rational prime components of the
divisors of S over K (i.e. Xy :SLIS AIEIEZ- X). We consider the homomorphisms

between D(V’) and D(V) induced by the birational mapping g. Let I, be
the graph of gon V/X V. For a divisor X in D(V), we define a divisor g*(X)
in D(V’) by g*(X)=pry [[,-(V'xX)]. Since g is a birational morphism
and V'’ is complete non-singular, g*(X) is defined for every X in D(V) and
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we get a homomorphism g*: D(V)— D(V’). Since g is defined over £k, g*
induces a homomorphism g*: D(V)x— D(V ') which commutes with the action
of the Galois group G of the extension K/k. Let D(V’)S be the subgroup of
divisors in D(V’) which are free from the components (over ) of the prime
divisors in S and P: D(V')— D(V’)S be the natural projection. Let V be the
subset of V on which the birational mapping g! is everywhere defined. Then
V is Zariski k-open subvariety of V. Since V is non-singular, g! is defined
along the subvarieties of codimension one. Therefore V— V is k-closed subset
with codimension larger than one and we have D(V)=D(V) by natural in-
jection. If we put V' =g V), then g is everywhere biregular on V' and V'
is a k-open subvariety of V’. By natural identification we have D(V’)c D(V").
Since g is not biregular along the components of the prime divisors in S, we
also have D(V")c D(V/)S. Since S contains of all the vanishing prime divisors,
we get D(V')=D(V")S. 1f we denote by F the birational and biregular mor-
phism from V' to V, z induces the isomorphism g*: D(V)= D(V")=D(V')S,
which commutes with the projection P. Thus we get the commutative dia-
grams
* *

@ D(V)=D(V) D), D(V)g=D(V)k DCV7)

N AN A

D(VH=D(V")s D(V")=D(V %

where g*(X)=pry'[I'z- (VxX)] for Xe D(V) and g(¥V)=prs[ [z (T X X)]
for ¥ D(V'). Clearly g* is an injection. It is also clear that for a rational
function f on V and f-g on V/ we have g*((f))=(f-g), where (*) means the
divisor of function *. We define the divisor groups of V’ restricted to D(V’)S
by DV =DVNegN\D(V)S and DV =D,(V)xkN\D(V")S. And also we
define a restricted group D(V)§ in D(V)g by D(VYE={(N|fe KV), (f-g)
=g* e D(V"s}. Then we get the homomorphisms of divisor groups which
commute with the action of G.

The natural injection D(V")§— D(V’)g induces an isomorphism

¢ I: DOV D(VNE > D(V)g/D(V)g .
The injection D(V)x— D(V")g induces the isomorphisms

3 J: DV)g/D(V)g —— DV g/ DV i,

¢y J3: D(V)g/D(V)§ —— D(V)/D(V')E .

The isomorphism g*: D(V)gx-—= D(V’)§ induces an isomorphism

'6) I5: D(V)x/DAV)E > D(V)Z/ DV .
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REMARK. For the natural surjection h: D(V)g/D(V)E—D(V)g/D(V)g
J+-h and I.I5 are not necessarily coincides, because the kernel of the homo-
morphism D(V/)x— D(V)E/D(V")§ defined by the projection P is D(V)ER 2«
and not D,(V')g.

By the relation D(V)END(V)x=D/(V")§ and (2) we get the commutative
diagram of G-modules with the exact rows and columns;

©) 0 0
0 — D(V)R/ DV —— D(V)Z/D(VIE — 0
0 —— D(V/DV"E —— D(V)k/D(V)E — D(V")g/D(V")x — 0
0 —— D(V)/D(V)E — D(V)/D (V) — 0
0 0

Taking the cohomology groups of the diagram (6), we get the commutative
diagram with the exact rows and columns;

@ 0 0
0 — H™(G, I( V’)I*El/Dz( VN — H™G, D( V’)i;Dl( VNiH)—0
0—H™G, D( V/)Ki/Dl( VIR — H™(G, D( V/)Ki/Dl( VN — H™G, D( V/)Kl/Dl<V/)K) -0
0— H™(G, DL(V’)Kj/DL(V’)é) — H"(G, D(V’){/D(V’)}}'} —_— é
0 0

where the exactness of the central row and column follows from the iso-
morphism on the sides.
ProroOSITION 1.

HY(G, DV)x/DV)®) = H'G, DV)/ DV =H'G, )=0.

Proor. By the diagram (6) and the canonical isomorphisms D,(V)g
=D(V)g=D(V)g and D(V)r=D(V)EP 2k, we obtain the isomorphisms of
G-modules D,(V)g/D(V)8=D,(VNk/D(VNE=D(V )/ D(VN§=2 k. Since we
have Y,=11 II Z- X and XILZ- X=MGE(Z) (see the last paragraph of §1),

8 Xeg
we get HY(G, 2 x)=0. Thus Proposition is proved. Q.E.D.
LEMMA 3. Let us have a commutative diagram of modules with the exact
rows
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A B C D E

lZa l b l c lzd l e

A/ B/ C/ D/ E/
where a and d are isomorphisms. i) If b is injective, then c¢ 1is injective.
ily If ¢ is surjective, then b 1is surjective. iii) If b is surjective and e is
injective, then c¢ is surjective.

PROPOSITION 2. The homomorphisms j,: H™G, D(V)g/D(V)x)— H*(G,
D(V)k/D(V')g) and j3: HYG, D(V)x/DV)H—H™G, D(V)x/DV")D, which
are induced by J and JS respectively, are injective for every n=0.

PrOOF. We have the commutative diagram of G-modules

® D(V)k!Dy(V ) = D(V%/D(V )%

S~

D(V )x/Di(V i

and get the commutative diagram

'S

©  HXG, D(V)s/DLV)) = H™G, D(V")%/D(V")%)

N A

H™G, D(V )x/D(V )k

Since i§ is an isomorphism, j§ is injective for every n=0. On the other hand
by the commutative diagram with the exact rows

0 —— DV )/ DV )& —— D(V )/ DV )& — D(V )x/Di(V )g — 0
(10) 2| 4 | s | 7
0—— D(V")g/D(VNE—— D(V)k/D(V)E— D(V)k/D(V')g — 0,
we deduce the commutative diagram with the exact rows |
H™G, DV )x/ DV ) — H™G, D(V )x/D(V ) —— H™G, D(V )x/ DLV )x)
. | i |
H™G, DV")x/DLV")§)— H™(G, D(V)/DV")D — H™G, D(V)x/ DV ")k)
—— H"XG, DV )&/ DV ) —— H™™G, D(V )/ DV )D
| awn | 7
— H™NG, D(V")k/D(V)g) — H" (G, D(V")k/ DV ")E)
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Since j$ is injective for every n=0, j, is injective for every n=0 by
Q. E.D.

PROPOSITION 3. The following conditions are equivalent; a) j§ is an iso-
morphism, b) j, is an isomorphism, ¢) HYG, 2g)=0.

Proor. Since we have D(V)EN2Yx=0, we have the isomorphisms
D(V)/D(VNE=[DVNED 21/ DLVIE=[DVIE/D(VHEID 2k and H™G,
D(Vk/D(VE=H™G, DIVNE/D(VNHPDHYG, Xg). Therefore by the dia-
gram (9) the conditions a) and c) are equivalent. The equivalence of a) and
b) follows from Lemma 3, Proposition 2 and diagram (13). Q.E.D.

Thus we get

THEOREM 1 (I).

jvi HYG, D(V)x/DV)g) — H (G, D(V")x/Di(V')k)

is_an isomorphism.

This follows immediately from and 3.

Since we assumed that V and V’ are non-singular, the injection J: D(V)g
/D(V)x— D(V)g/D(V")g induces the isomorphism of the Picard groups of V
and V’, (See p. 152 of [2]). Namely we have the isomorphism

12) J: D(V)g/D(V)x —=> D(V)x/ DV
and an injection
13) Jo: DIV)k/Do(V)g — D(V)k/Do(V)i -

PROPOSITION 4. The homomorphism Jun: H™G, D(V)g/D(V)x)— H"(G,
D(VNg/D(VNk), induced by J,, is injective for every n=0 and is an isomorphism
if and only if we have H™(G, 2 x)=0.

PrOOF. By the commutative diagram with the exact rows

0 —— Do(V )/ DV )g — DV )x/ DV )x — DV )/ DoV )x — 0
1 2 e | 7 | /o
0—— Do(VNg/D(V)g — D(V)g/ DV )k — D(V")k/Do( Vg —0
we deduce the commutative diagram with the exact rows
H™G, Do(V )/ DIV )) — H™G, D(V )/ DV ) ) — H™(G, D(V )/ Do(V &)
| s | 7o | o
H™G, Do(V")g/ DLV g) — H™G, D(V") e/ D(V") ) — H™(G, D(V")x/ Do(V')x)
—— H™ UG, Do(V )/ DV )g) —— H™* G, D(V )x/ DV )x)
j T l Jne1
— H™XG, D V") x/ DV") ) — H™*(G, D(V")/ D(V")x) -
Since j, is injective for every n =0, j,, is injective for every n =0 by



592 M. Miwa

The second assertion follows from Lemma 3 and [Proposition 3 with the dia-
gram (15).

Thus we get

THEOREM 1 (a).

Jaxt HYG, D(V)x/Do(V)i) = HYG, D(V") /Dol V"))

is an isomorphism.

LEMMA 4. The injection g* induces an isomorphism J': D(V)x/DoV)x
= Di(V)k/DV")k and an injection J,: D(V)x/DV)g— D(V")g/D(V )g-

Proor. The injection g*: D(V)x— D(V’)g induces the isomorphisms
D(V)g=> Dy (Vg and Do(V)x = Do(V)g. Therefore we have D¥ = g*(D,(V)g)
CD(V)g. If we have a divisor Y in g*(D(V)x) "DV g, there exists a
divisor X in D(V)g such that g*(X)=Y and g*(mX)=mY € D, (V') for some
integer m. Hence we have mX € D (V) and X € D(V)k. Therefore we obtain
g* DV N\ D(VHg=g*(D,(V)g). The natural injection DV )g— D(V g
induces an injection i: D(V)x/g¥(D(V)g)— D(V)/g*(D{(V)g). On the other
hand, by the diagram (1) we have g*(D(V)x)N2x=0 and g*(D(V)x)® X
=D(V")g. Therefore D(V')g/g*(D(V)x) =2 is a torsion free module but
D:(VNg/g*(D(V)g) is a torsion module. Thus we must have g*(D,(V)g)
=DV g. This proves Lemma 4. Q.E.D.

PROPOSITION 5. The homomorphism j,,: H™G, D(V)xg/D(V)x)=> H™G,
D(VNg/D(Vk), induced by J, is injective for every n=0 and is an isomorphism
if and only if we have HYG, X g) =0.

PrROOF. By the commutative diagram with the exact rows

0—— DUV )g/Do(V )g — D(V )/ DoV ) — D(V )g/ DV )g — 0
16) s | |

0—— D(V)x/Du(V)g — D(V")/ Do V)x — D(V)e/ DV ) — 0
we deduce the commutative diagram with the exact rows.

an
HYG, DAV )/ Dol V ))—H(G, DOV )e/ DV ))— H(G, D(V )/ DLV )
| it | i | i
HG, DAV")x/ Do V")) = H™(G, D(V e/ Do V")) — H(G, D(V' )/ DLV )
—— H(G, DAV )/ DV ))— H™(G, DV )/ DV D)
| ks | donss
—— H™(G, DAV )/ Dol V) — H™ G, D(V)x/ Dl V) -

Since j,, is injective for every n =0, j;, is injective for every n=0 by
The second assertion follows from and with the
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diagram (17).
THEOREM 1 (7).
Jus HYG, DV )/ DV )x) = HYG, D(V")x/ D(V")k)
1S an isomorphism.

Now we consider the following conditions for a normal extension K of
the field %.

(s.1) LD(V)a/DV)glx = D(V)x/Di(V )k -

(s.a) N(V)=D(V)g/Do(V)g=D(V )i/ DoV )t -
(. 1) N(V)=D(V)g/D(V)g=D(V)x/DV )k -
By the commutative diagram with the exact rows

)

00— Da(V)K/Dz(V)K - D(V)K/DL(V)K - D(V)K/Da(V)K —0

L l 1

0 ——[Do(V)o/ DAV )glx — [D(V) o/ DV )glx — [D(V)g/Da(V)glx

(where the vertical arrow on the left side of the diagram is an isomorphism
by the theory of Picard variety), we deduce that the condition (s.a.) implies
the condition (s.l). Since N(V) and N°(V) are the finitely generated modules,
there exists a finite normal extension of % which satisfies the conditions (s. a.)
and (s.1.).

THEOREM 2. Let k be a field and K be a finite normal extension of k.
Let V and V'’ be the complete non-singular algebraic varieties defined over k
and g be a birational morphism from V’ to V defined over k. If K satisfies
the condition (s.a.) for V and V', then g induces the isomorphisms;

19) HYG, [D(V)o/D(V)glx) = HNG, [D(V")g/DV")glx) »

(20) HYG, N(V))= HY{G, N(V")).

If K satisfies the condition (s.t) for V and V', then g induces the isomorphism
1) HY(G, N(V)) = HY(G, N (V).

§3. Definition of the birational invariant ;.

Let us define the birational invariant y, of algebraic variety. Since we
have to use the theory of Tamagawa number of algebraic torus, which is
developed by T. Ono [6], we restrict the basic field & to a field of dimension
one i. e, either a finite algebraic number field or an algebraic function field
of one variable over a finite field. First we define two symbols 4} and i, after
the paper [6] Let K be a finite normal extension of 2 and G be its Galois
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group. Let M be a finite type Z-free G-module. Let Ix be the group of ideals
of K and Cg be its class group. Then we have the exact sequences,

(22) 0— K¥—— g ——Crp——0.
(23)  0—> Hom, (M, K*) —> Homy (M, I) — Hom, (M, Cx) — 0.

Taking the cohomology groups of (23), we get the exact sequence
a
249 Hom€ (M, Iy) — HomS|(M, Cx) — HY(G, Hom, (M, K*))

b
- HI(G’ Homz (M’ IK)) .
We define the notations A4} and i, by

(25) hi(M)=[HYG, M)],
(26) u(M) = [Ker (0)]=[Cok ()],

where [*] means the cardinal number of *, which is assured to be finite by
Nakayama’s duality. (See p. 53 of [6]).

Let A and B be the abelian varieties defined over 2 and Hom (A4, B) be
the set of all the rational homomorphisms from A to B. Then it is well
known that Hom (4, B) is a finite type Z-free module and there exists a finite
normal extension K of % over which all the elements of Hom (4, B) are defined.
In this case we say that Hom (4, B) splits over K or K is a splitting field of
Hom (4, B). (When the normal extension K/k satisfies the condition (s.t.) of
§2 we say also that N%V) splits over K or K is a splitting field of N°(V)).
Then the Galois group G of the extension K/k operates on Hom (A4, B) so
that Hom (A4, B) becomes a finite type Z-free G-module and we can define
hi(Hom (A4, B)) and i,(Hom (4, B)). In the following we denote by A the dual
abelian variety of A.

Let V be a complete non-singular algebraic variety defined over & and A(V)
be the Albanese variety defined over k. (We can select an Albanese variety
of V defined over k. (See Remark of p. 52 [2]).) Let K be a finite normal
extension of % satisfying the following condition.

(S) N%(V) and Hom (A(V), A(V)) split over K.

We define the number p; by

hN(VY) | _i(Hom (A(V), A(V )+

@0 mlVI= 5 NV hi(Hom (A(V), AV )™
or
(V)= RV iV,
where
(V)= hA(N (V) (V)= BNV )

hi(Hom (A(V), A(V )’ (MHom (A(V), A(V )
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REMARK. As far as we consider the finite normal extension satisfying
the condition (S), hi, hy, i i, and g, are independent of the choice of the
fileld K. (See pp. 56-58 [6]).

LEMMA 5. Let K be a finite normal extension of k and k'’ be an intermediate
field between k and K. We denote the Galois groups of the extension K/k and
K/k' by G and H respectively. Let E be a finite tvpe Z-free H-module. Then
we have 1,(ME(E))=1(E).

Proor. We have the natural isomorphism, by Lemma 1,

HYG, Hom, (ME(E), K*))= HYG, Homz (Z[G]Qzm E, K*))
= HY(G, Homy 4, (Z[G], Homy, (E, K*)))
= HYG, Hom, (E, K*)).
Similarly we have
HYG, Hom, (ME(E), Iy))= HYG, Hom, (E, Iy)).

From these isomorphisms Lemma follows. Q.E.D.
PROPOSITION 6. The notations being as itn Theovem 2, we have

NV ) =i (V).

Proor. By Lemma 3, we have N(V/)=N%V){H Y. Since we have seen
Z'K:EIE[SMgE(Z), we have ik(ZK):EI;gike(Z)zl’ where k; is the fixed subfield
of K under G:. Therefore we get i, (NU(V)) =i (N°(V")). Q.E.D.

THEOREM 3. Let V and V' be the complete nonsingular algebraic vavieties
defined over k with birational morphism from V' to V defined over k. Then we
have p (V)= p (V")

§4. Divisorial correspondences of product varieties.

In this section we consider the divisorial correspondences of product
varieties which we need to prove the important properties, of y;, similar to
the case of the Tamagawa numbers. Therefore in this section we take an
arbitrary basic field £ dropping the assumption of dimension one.

Let V, and V, be the complete non-singular algebraic varieties defined
over k and A,, A, respectively be the Albanese varieties defined over 2. Then
we have the exact sequence (see p. 155 [27])

@8  0—s DV DAV IX DV DAV, — D(Vx VDLV X V)

P "
— HOII] (Al, A2) — O »

where 7 is the injection induced by the projections p;: V,xV,—V,; (i1=1,2)
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and p is a homomorphism defined as follows. Let @, be the canonical map-
ping from V, into its Albanese variety A, and ¢, a canonical isomorphism
Dy(V)/D(Vy)= A, For adivisor X in D(V,XV,), the image 2y = p(CI(X)) of
the class CI(X) in D(V,X V,)/D(V,XV,) is defined by

(29) Ax(3.(P)—,(Q) = o(CILX(P)—X(Q)]) for P,QeV,,

where X:-(PXV)=PxX(P) and X-(QXV,)=0QxX(Q) will be defined for
some divisor in CI(X). Since i induces the isomorphism Dy (V,))/D,(V,)
XDVy)/D(Vy)= Dy(V,XV,)/D(V,XxV,) and Hom(A,, 4,) is a torsion free
modaule, i induces also an isomorphism D,(V,)/D (V)X D{(V,)/D(V)=>D{(V,X V)
/D(V,XxV,). Therefore we get the exact sequence

(30) 0 —— D(V )/ DV ) X D(V3)/ DV 5) — D(V X V3)/ DV X V)

— Hom (4,, 4,) — 0,
or

l p A
629 00— N*(V)XN*(Vy) — NV, X V;) — Hom (4,, 4,) — 0.

Let K be a finite normal extension of & over which N%V)), N%V,),
NYV,xV, and Hom(A4,, A,) split and moreover V, and V, have rational
points P, and P, respectively. We denote the Galois group of the extension
K/k by G. We show that the exact sequence (31) splits as a sequence of G-
modules. The injection ¢ clearly commutes with the action of G. For the
surjection p, we select a representative X, of a class C(X) of N°(V,;XV,), in
D(V, X V,)x and a pair of independent generic points P and Q of V, over K.
Then X(P) and X(Q) are defined. Since the mapping (P, Q)— (,(P)—&,(Q))
can be assumed to be defined over k£ and ¢, commutes with the action of G,
we get the following equation by acting an element g of G on the equation [(29).
(32) 25(8(P)— Q) = CILX*(P)— X5(Q)]) -
Therefore we get A1%2=1y¢. This shows the commutativity of p with the
action of G. Let us define a projection P from N°(V,XV,) onto N°(V.)y
X N°(V,) such that P-i=indentity on N°(V,)XN°V,) and P commutes with
the action of G. For a class C(X) in N%V,XxV,) represented by a divisor X
in D(V,XV,)x such that X.(P,XV,)=P,XX(P,) and X-(V,XP)=X(P,)XP,
are defined, we put P(C(X))=(C(X(P,)), C(X(P,))), where C(X(P))) (resp. C(X(P,))y
is the class in N°(V,) (resp. N%(V))) represented by X(P,) (resp. X(P,)). Then
for an element g of G, we have P(C(X))® =(C(X4(P¥)), C(X4(P#))) and P(C(X?))
=(C(X5(P,)), C(Xe(PY)). Since X*(P;) and X?(P¥) are algebraically equivalent,
we have C(X4(P#)) = C(X4(P,)) (i=1, 2) and we get P(C(X))* = P(C(X)?). Hence
P commutes with the action of G. The relation P-i=identity is trivial. Thus.
we have proved the assertion on the splitting of the sequence (31).

Using the induction on the number of the factors in the product, we cam
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prove

PROPOSITION 7. Let V; (i=1,2,---,n) be a finite number of complete non-
singular algebraic varieties defined over a field k and A; (1=1, 2, ---, n) be the
Albanese varieties defined over k respectively. Let K be a finite normal extension

13
of k over which NVi) G=1,--,m), N(I Vi) A<i,<n, 1sk=n) and

Hom (A4,, flj) (i <j) split and moreover V, 1=1, -+, n) have rational points P,
@i=1, -+, n) respectively. We denote the Galois group of the extension K/k by
G. Then the following exact sequence of G-modules splits

\ i n o\ D ;
B3 00— @ N(Vy— N(II Vi) — @ Hom(4;, 4)—0.
i=1 =1 v

vJ

The surjection p is defined as follows. Let ¢;: V;— A; be the canonical mapping
and ¢;: D(V)/D(V )= A, be the canonical isomorphism. Let C(X) be a class

in N°(1I V,) represented by a divisor X in D(ILV,) and P, Q be points of
i=1 =1
V. We may assume that X - ( II PeX VX V;)=II PyXX;; and X;;-(PXV))

K4, § K
= PXX;(P), Xij- QX V)=0QXX;{(Q) are defined. Then we put
(34) PCXY) = (o) A, ),

UP (P~ PQ) = ¢ CILX(P)— X @),
and we have the isomorphism of G-modules,
o n ' ~ n o ' . A'
(35) N(ILV:) =[ &NV | @[ @ Hom (4, 4)].
REMARK. In Proposition 7 if we replace K by a splitting field of
N("v,) A=i;<n, 1=k=n) and Hom (A, A)), (i<j), then the following
i=1

exact sequence splits.

0 §7BL1N(V¢)——~+ N(Hl V,) — @ Hom (4, 4)— 0.
i= i= 2
If moreover V; 1=1, ---, n) have rational points over the basic field k, then
the following exact sequence of G-modules splits.

0—— & DV )i/ DAV e~ D(11V2) / Di(T1Vs) ~— @ Hom (A, A)—0.

Next we deal with the £k/k,-trace of algebraic varieties. Let us start
with the definition. Let k, be a field and % be a finite separable extension
of k.. For an algebraic variety V defined over %, the k/k,-trace R, (V) is
defined as follows. Let {o,=1d., o, ---,0,} be the set of all distinct iso-
morphisms of & over %, R, (V)=W is an algebraic variety defined over &,
with a morphism p: W—V defined over %2 such that the morphism
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(38) P=1"1X oo Xpod: W — VoIX ... X V04

is an isomorphism. The existence and the uniqueness (up to isomorphisms
over k) of Ry, (V) are assured in [13] Ry, (V)= W has the universal map-
ping property. Namely, if there exists an algebraic variety X and a morphism
r: X— V defined over k then there exists a unique morphism b: X— W such
that r=p-b. Let A and B be the Albanese varieties of ¥V and W defined
over k and k, respectively. Then there exists a unique morphism ¢: B—A
defined over k& and we have the commutative diagram

p j)”lx Xptfd
(39) WV, W " VX e X V4
G[_}l q ¢l l qle e xqad l ¢01X xsﬁdd
B— A B A% ... X A%

where ¢ and ¢ are canonical mappings. Since p°1X --- X p“d is an isomorphism,
g°tx .-+ X¢°¢ is also isomorphism (birational biregular mapping). Therefore
we have B = R, (A).

REMARK. Adding some constant we can assume that ¢ is a homomorphism.
If there is an abelian variety C defined over k2, and a homomorphism
s: C— A defined over k&, then we have a unique homomorphism ¢: C— B defined
over k (put ¢=(g°X --- Xg°d)1.(s71X -+ Xs74)) such that we have ¢g-c=s.
Therefore we can consider B as the k/k,trace of A in the similar sense of
Chow.

We prove a for the later use.

LEMMA. The notations being as above, we have the G-isomorphism

Hom (B, B)= @1 Hom (A%, A%5).
i,j=

PrOOF. Since we have the isomorphism @ =(g¢?*X --- X¢%?): B— A% X --.

% A% and Q = (§°1 - X§°¥): A1 ... X A= B, we can define an isomorphism

d [N A ~
of modules w: Hom (HA‘”‘, HA”J‘)L Hom (B, B) by w(l)=(Q-2-Q. Since
=1 ji=1
d d . ~
the permutations of the factors of [T A% and ] A’¢ are identified, Q and Q
=1 i=1

commute with the action of G. Therefore we have [w()J¥=[Q-1-Q]*
=0 - 2*-Q=w(2%) for every g in G and hence w is a G-isomorphism. Q. E.D.

Now we assume that V is a complete non-singular algebraic variety
defined over k. Let K, be the Galois closure of %2 over k, and K be a finite
normal extension of %, containing K, over which N%(W), NO(H V"l;) 1=y
<d, 1<k=<d) and Hom (A4°¢, A"J) (I1=i<j=d) split and moreover V has a
rational point P. We denote the Galois group of the extension K/k, by G,
that of K/k by H. We have the exact sequence of Z-modules
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g i a P ~
(40) 0— & NY(Voi) —> N"(II Vi) — @ Hom (47, A7) — 0.
=1 i=1 1<j

2| pe
NW)
We consider the structure of G-module in N° ﬁV”i) asifollows. Extending
i=1
o, 1=1,2,..,d) to the automorphisms of K/k, we consider o;/’s as the

elements of G. Then we have G=o0,H+ --- +0,H. The multiplication of an
element g in G, on the left side, induces a permutation of the coset space

G/H ie. g-oH=0,,H For a divisor X in D(IIV*) we have (X)*
=1 K

eD(f] V"g<i>) . Identifying the permutation of the factors of the product,

=t % d ) q

we have D(II V"i> :D(II V”g‘“) and (X)geD<H V"t) . We can also
i=1 K i=1 K a i=1 K

consider the structure of G-modules in @ N%(V?) and @ Hom (47, A°%) by
i=1 i<

natural way. -
REMARK. In @ Hom (4°, A°) we have identified Hom (A%, 4%) and
g
Hom (A%, A’%) by the isomorphism A—‘1 (where ‘A means the transpose of ).
N°(W) has a natural G-module structure. First we show that by these
structures of G-modules the homomorphisms in the sequence (40) are all G-

homomorphisms. Since we indentified the permutations of the factors in the

4
product JI V°i, we have P*=(P*)¢* for all g in G. The commutativity of i

$=1

with the action of G is clear. Therefore we consider the homomorphism p. By

p is defined, for a class C(X) of N“(Id[ V"i> represented by a divisor X
=1
in D(TIV*¢) and points P,, Q; of V,, by
i=1 K

(41 PCXN=C(-, 2, ),
X (@7i(P)—¢7UQ;)) = ¢”i(Cl [X‘L]<P‘L)_X‘L](Q’L):D ’
where ¢: V— A is the canonical mapping, ¢ : D,(V)/D(V)=> A is the canonical

isomorphism (¢% : D,(V°i)/D(V°i)= A° is also a canonical isomorphism) and
X;; is defined by X-( IT P’ XV, x V)= TI P’¢xX;;. It is no loss of gener-

ki, j ki, j
ality to assume P;’s, );’s to be the independent generaric points of V,’s over

k. Put
(42) @-:(9501’ e, ¢‘7d) s @:(SDUI’ e, ¢0d)’
P:(Ply "':Pd)’ Q:(Qp""Qd)’

X0 =8 X, X(X)= (X, -, Xo(X)).
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Then we can write the formulas in a united form

(43) PCXONDP)—P(Q) = D(CILX (X )P)—X(X)Q)]) -

Since we have identified the permutations of the factors of the product, we
have @* =@, @¢=¢@ for g in G and we may also assume P:=P, Q*=Q.
Operating an element g in G on the equality we get

44 [p(CXNIHOWP)—D(@) = D(CILX(X)*(P)— X (X )*(@)]) -
On the other hand we have
(45) pCX)EDP)—D(Q)) = D(CILX (X5 P)— X (X)Q)T) -

In order to see that p commutes with the action of G, it is sufficient for us
to show that the component (X;;)* of X(X)? and the component (X%),¢zc;, Of
X (X*) are algebraically equivalent.

i.e. (X gcirgcsy = Drvoexyed[ X8+ ( [I PoeVoew X VIew)]
kFg()g(h)
= pryewyy g X8+ ( II P%® X VIigw X Vogw)]
kFi, j

= Ppryfew ygW[ X8 - ( I P" k8 X Vogw X Voew)]
ki, §

= (PryoiyoLX-CIL PPEeX Vo Vo)D)
2%

= (p ry(fixyﬂ'j[X . (kl'_i[y Porx Voix V"j):])g
= (Xij)g

where go;=o0,4,h' and = means the algebraic equivalence. Next we show
that the exact sequence (41) applies as a sequence of G-modules. We define

a projection P: N"(Id[ V“i> — é N°(V°%) such that P-i=identity on é NO(Ve9),
i=1 i=1 i=1

as follows,

(46) PCX) =, XY, =)

where C(X) is a class in N"(ﬁ V‘”’) represented by a divisor X in D(ﬁ Vw)
i=1 i=1
such that X-(I;IP"’CX V"i):gP”kxXi (1£i<d) are defined and C(X,) is
kFi =2

the class in N°(V??) represented by X;. Then the relation P.i=identity is
trivial. On the other hand we have (Xg)i:prvai[Xg-[gP”kx V9] and
k=
(X108 =(Phog1[ X- ( TI P8I ®XVTIONNE= Py, [ X5 -(TT PPk X V7))
g~ W)#g~1(:) ki
for g < G, where g7'o, = 0,105, Hence (X?); and (X,-1,,)¢ are algebraically
equivalent and we get C((X?),) = C(X,-14,)%, P(C(X®)= P(C(X))¢. Thus we get
PROPOSITION 8. Let k, be a field and k be a finite separable extension of
k, with the Galois closure K, Let V be a complete non singular algebraic
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variety defined over k and W= Ry, (V) be the k/kytrace of V. Let A be the
Albanese variety of V defined over k. Let o,, -, 04 be the set of all distinct iso-
morphisms of k over ky and K be a finite normal extension of k, containing

K, over which N*(T1V*) (A<i;<d, 1<k=d), N'(W) and Hom (A%, A7)
=1
(1=i<jgd) split. We denote the Galois group of the extension K/k, by G
and that of K/k by H. Then the following exact sequence of G-modules splits
@ 0— & Ny — N*(JT V1) — @ Hom (4°, A7) — 0
i=1 i=1 i<y
K
N(W)

and we have the isomorphisms
(48) éla N(Vory= MEN(V)), ié Hom (A7, A°)= MZHom (4, A)).
i=1 =1

PrROOF. We have only to prove (48). By Lemma 1, it is sufficient to prove
the isomorphisms a) Z[L G &z N( V)géN"( Voiyand b) Z[G]Q®zmHom(4, A)
i=1

a -
= (p Hom (A%, A%%). For an element g®n in the left side of a), we put
i=1

f(g®n)=n® and for an element g® A in the left side of b), we put f/(g® )
=A% Then f and f give the desired G-isomorphisms.

§5. Fundamental equality of p,.

In this section we prove the fundamental equalities of gy, h, and i;. In
order to do this we again restrict the basic field to a field of dimension one.

THEOREM 3. Let V, and V, be complete non-singular algebraic varieties
defined over k. Then we have the equalities.

(49) hi(V X V) =h(V) - hi(Vy) s
(50) (VX V) =i (V) - i(Vy),
(51) (Vi X V)= pu (V) (V).

PrOOF. Let A, and A, be the Albanese varieties of V, and V, respectively
defined over 2. Then A,XA, is the Albanese variety of V,xXV, By the
equality Hom (A4,%X A4,, A, x A4,)= & Hom (A, A)) and Proposition 7 we have

2,j=1
RN (VX V) B
hi(Hom (A, % A,, A, x A2

_ RUN(V)) - RAN(V ) - hi(Hom (A, 4,)

~ hi(Hom (A,, A))"* - hi(Hom (A,, A,))"* - hi(Hom (A,, Ay))

h (VX Vy) =
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- hk( Vl) : hk’( Vz) .

For the equality [(50), we notice that we have i (MPN)=i (M) i (N) for
finite type Z-free G-modules M and N. Then the equality will be proved
by the same way as the case of h,. Thence by the definition of g, the equality
is clear.

THEOREM 4. Let k, be a field of dimension one and k a finite separable
extension of ko Let V be a complete non-singular algebraic variety defined
over k. Then we have the equalities

(52) hie (R V) = hi( V),
(53) LR V) =1(V),
6L #ko(Rk/ko(V)) = /Jk(V) .

PrROOF. Let W=R,;, (V) and A, B be the Albanese varieties of V, W
respectively defined over k, k., Then by the definition and Proposition 8 we
have

hkg(Rk/ko( V)= hko( W)
hi (N (W) -
R VI%OW(HO?IT(B, B’))1/2

L(E V) -hiy(@ Hom (4", A7)

ity Hom (4%, 29)"" - hty( Hom (4%, 4%)

_ i (MEWNV )

L (M%(Hom (4, A))"*
_ N V)
" hi(Hom (4, A))v

:hk(V) ’

where the notations G, H, 0;’s are taken over from Proposition 8. Since we
have 1, (ME(E))=1i(E) for a finite type Z-free H-module E, we can prove the

equality (53) by the same way as the case of h, and the equality (54) follows
from the definition of p,. Q.E.D.

University of Tokyo
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