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In [3] C. Faith and E. A. Walker gave a characterization of a left artinian
ring in terms of module theories. That is, a ring $B$ is left artinian if and
only if every injective left B-module is a direct sum of injective hulls of
simple left B-modules. Under the assumption that a ring $B$ is commutative,
P. V\’amos investigated in [9] some conditions for $B$ to be locally artinian.
One part of this paper is concerned with these results, that is, we give some
conditions for a commutative ring $R$ such that there exists a finitely generated
injective R-module. The details are the following: Let $R$ be a commutative
ring with the noetherian total quotient ring. Then we have the followings:
(1) There is a torsion-free and finitely generated injective R-module if and
only if there exists a maximal ideal $\mathfrak{M}$ in $R$ such that $R_{JJt}$ is an artinian local
ring (Theorem 1). (2) There is a cyclic injective R-module if and only if
there exists a maximal ideal $\mathfrak{M}$ in $R$ such that $R_{\mathfrak{M}}$ is a self-injective artinian
local ring (Theorem 3).

The other part of this paper is concerned with the ring property of an
injective hull of a commutative ring. Let $B$ be a ring and let $E_{B}(B)$ be an
injective hull of $B$ . Then we call $E_{B}(B)$ a B-algebra only when $E_{B}(B)$ (identi-
fying $B$ with its canonical image in $E_{B}(B))$ has a B-algebra structure and the
multiplication between an element of $B$ and an element of $E_{B}(B)$ as a B-algebra
coincides with the multiplication as a B-module. In [7] B. L. Osofsky gave
an example of a non commutative ring $B$ whose injective hull is not a B-
algebra. Even when a ring is commutative, such a ring exists (Theorem 4).
Now we give here a necessary and sufficient condition for a commutative
ring of special type such that its injective hull is an R-algebra. The result
is the following: Let $R$ be a commutative ring whose total quotient ring is
artinian. Then an injective hull of $R$ can be made into an R-algebra if and
only if the total quotient ring of $R$ is a self-injective ring (Theorem 6).

In this paper we assume always that a ring is commutative and has a
unit element and a module is unitary. Let $R$ be a ring. We denote an injec-
tive hull of an R-module $M$ by $E_{R}(M)$ , the set of all the regular elements
($=non$ zero-divisors) in $R$ by $S(R)$ , and the total quotient ring of $R$ by $Q(R)$ .
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If it is clear from context we sometimes denote by $S$ (resp. $Q$) instead of $S(R)$

(resp. $Q(R)$). Terminologies and notations are due to [1] and [5].

The author wishes to express his heartfelt thanks to Professor Y. Nakai
for his kind advices and valuable suggestions.

\S 1. Existence of an injective module of finite type.

First we observe the properties of an injective hull of a simple module
over a noetherian local ring.

LEMMA 1. Let $R$ be a noetherian local ring with the maximal ideal M.
Then the following conditions are equivalent.

(1) $R$ is an artinian local ring with $\mathfrak{M}^{n}=0$ for some $n>0$ .
(2) $A_{n}=E_{R}(R/\mathfrak{M})$ , where $A_{i}=\{x\in E_{R}(R/\mathfrak{R}?)|\mathfrak{M}^{i}x=0\}$ .
(3) $E_{R}(R/\mathfrak{M})$ is a finitely generated R-module.
PROOF. The equivalence of (1) and (3) follows from Theorem 5 of [8].

(1) $\rightarrow(2)$ : This is trivial. (2) $\rightarrow(1)$ : Assume that $A_{n}=E_{R}(R/\mathfrak{M})$ and $A_{n}\neq A_{n-1}$ .
Now, if $\mathfrak{M}^{n}\neq 0$, then there is an R-homomorphism $f$ of $Rx(0\neq x\in \mathfrak{M}^{n})$ into
$E_{R}(R/\mathfrak{M})$ defined by $f(x)=y$ , where $y\in A_{1}=\{z\in E_{R}(R/\mathfrak{M})|\mathfrak{M}z=0\}$ . Since
$E_{R}(R/\mathfrak{M})$ is injective, there is an R-homomorphism $g$ of $R$ into $E_{R}(R/\mathfrak{M})$ such
that the restriction of $g$ to $Rx$ is $f$. Set $g(1)=a$ . Then $y=f(x)=g(x)=xa$

and $x\in \mathfrak{M}^{n}$ , and so $xa=0$ . This is impossible. Thus $\mathfrak{M}^{n}=0$ .
When $R$ is a noetherian ring, in [6] E. Matlis showed that $E_{R}(R/\mathfrak{P})$

$\cong E_{R}\mathfrak{P}(R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}})$ as an R-module and as an $R_{\mathfrak{P}}$ -module for any prime ideal $\mathfrak{P}$

of $R$ . We can now omit the condition that $R$ is noetherian.
LEMMA 2. Let $R$ be a ring and $\mathfrak{P}$ be a prime ideal of R. Then $E_{R}(R/\mathfrak{P})$

$\cong E_{R}\mathfrak{P}(R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}})$ as an $R(R_{\mathfrak{P}})$-module.
PROOF. We first prove that $E_{R}(R/\mathfrak{P})$ can be regarded as an $R_{\mathfrak{P}}$ -module.

For any $r\in R-\mathfrak{P}$ we define an R-homomorphism $T_{r}$ : $E_{R}(R/\mathfrak{P})\rightarrow E_{R}(R/\mathfrak{P})$ by
$T.(x)=rx$ for all $x$ in $E_{R}(R/\mathfrak{P})$ . Then $T_{r}$ is a monomorphism. In fact, if
$rx=0(0\neq x\in E_{R}(R/\mathfrak{P}))$ , then $Rx\cap R/\mathfrak{P}\neq 0$ because $E_{R}(R/\mathfrak{P})$ is an essential
extension of $R/\mathfrak{P}$ and $r(Rx\cap R/\mathfrak{P})=0$ . Since $\mathfrak{P}$ is a prime ideal of $R$ , this
is impossible. Thus $Ker(T_{r})=0$ .

As $E_{R}(R/\mathfrak{P})$ is an indecomposable injective R-module by Theorem 2.4 of
[6] and as $T_{\gamma}$ is a monomorphism, $T_{r}$ is an automorphism. For any $r\in R-\mathfrak{P}$

and for any $x\in E_{R}(R/\mathfrak{P})$ , there is only one element $y$ in $E_{R}(R/\mathfrak{P})$ such that
$ry=x$ . Therefore $E_{R}(R/\mathfrak{P})$ can be regarded as an $R_{\mathfrak{P}}$ -module. Next we show
that $E_{R}(R/\mathfrak{P})$ is injective as an $R_{\mathfrak{P}}$ -module. Let $\mathfrak{A}$ be any ideal of $R_{\mathfrak{P}}$ and
let $f\in Hom_{R}(\mathfrak{A}, E_{R}(R/\mathfrak{P}))$ . Then $f$ can be regarded as an R-homomorphism.
As $E_{R}(R/\mathfrak{P})$ is injective as an R-module, there is an R-homomorphism $g$ of
$R_{\mathfrak{P}}$ into $E_{R}(R/\mathfrak{P})$ such that the restriction of $g$ to $\mathfrak{A}$ is $f$ $g$ can be regarded
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as an $R_{\mathfrak{P}}$ -homomorphism which is an extension of $f$ because for any $r\in R-\mathfrak{P}$ ,
$T_{r}$ is an automorphism. Thus $E_{R}(R/\mathfrak{P})$ is injective as an $R_{\mathfrak{P}}$ -module. Consider
an injective hull $E_{R}\mathfrak{P}(R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}})$ in $E_{R}(R/\mathfrak{P})$ of $R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}}$ , as an $R_{\mathfrak{P}}$ -module. Then
since $E_{R}(R/\mathfrak{P})$ is an indecomposable injective R-module and since any $R_{\mathfrak{P}}-$

module can be regarded as an R-module, we have $E_{R}(R/\mathfrak{P})=E_{R}\mathfrak{P}(R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}})$ .
The proof is completed.

Let $R$ be a ring and let $M$ be an R-module. Then $M$ is said to be torsion-
free in case for any element $x$ in $M$ and for any element $s$ in $S(R),$ $sx=0$

implies $x=0$ , and $M$ is said to be torsion in case for any $x$ in $M$ there is an
element $s$ in $S(R)$ such that $sx=0$ .

It is easily seen that for any R-module $M,$ $t(M)=\{x\in M|sx=0$ for some
$s$ in $S(R)$ } is a unique maximal submodule of $M$ which is torsion (this sub-
module of $M$ is called the torsion submodule of $M$ and is denoted by $t(M))$ ,

and that $M$ is torsion-free if and only if $t(M)=0$ . For any R-module $M,$ $M$

is called a divisible R-module if $sM=M$ for all $s$ in $S(R)$ .
Let $M$ be an R-module. Then, if $M$ is injective, $M$ is divisible. It is

easily seen that if $M$ is a torsion-free and divisible R-module, then $M$ can be
regarded as a $Q(R)$-module.

THEOREM 1. Let $R$ be a ring with the noetherian total quotient ring. Then
there is a torsion-free and finitely generated injective R-module if and only if
there exists a maximal ideal $\mathfrak{M}$ in $R$ such that $R_{\mathfrak{M}}$ is an artinian local ring.

PROOF. If $R_{\mathfrak{M}}$ is an artinian local ring for some maximal ideal $\mathfrak{M}$ in $R$ ,

then by Theorem 5 of [8] $E_{R}(R/\mathfrak{M})$ is a finitely generated R-module. On the
other hand, as $\mathfrak{M}R_{\mathfrak{M}}$ is nilpotent, $\mathfrak{M}$ is not a regular ideal of $R$ , and so $S(R)$

$\subseteqq R-\mathfrak{M}$ . Thus $E_{R}(R/\mathfrak{M})$ is torsion-free because $E_{R}(R/\mathfrak{M})\cong E_{R_{\mathfrak{M}}}(R_{\mathfrak{M}}/\mathfrak{M}R_{\mathfrak{M}})$ by

Lemma 2.
Assume that there is a torsion-free and finitely generated injective R-

module $M$. Then $M$ can be regarded as a $Q(R)$-module and it is injective as
a $Q(R)$ -module by Lemma 2.1 of [5]. Since $Q=Q(R)$ is a noetherian ring,
using Proposition 3.1 of [6], $M$ can be expressed as follows:

$M=\Sigma\oplus E_{Q}(Q/\mathfrak{P}_{i}^{\prime})$ ,

where $\mathfrak{P}_{i}^{\prime}$ is a prime ideal of $Q$ for all $i$ . Thus $E_{Q}(Q/\mathfrak{P}_{t}^{\prime})$ is finitely generated
as an R-module, a fortiori as a Q-module. Furthermore, $\mathfrak{P}_{i}=\mathfrak{P}_{i}^{\prime}\cap R$ is not
regular, and so the quotient field of $Q/\mathfrak{P}_{i}^{\prime}$ is equal to that of $R/\mathfrak{P}_{i}$ . On the
other hand, by Theorem 3.4 of [6],

$A_{1}=\{x\in E_{Q}(Q/\mathfrak{P}_{i}^{\prime})|x\mathfrak{P}_{i}^{\prime}=0\}$

is isomorphic to the quotient field of $Q/\mathfrak{P}_{i}^{\prime}$ as a vector space. Moreover $A_{1}$

is finitely generated as a Q-module because $Q$ is noetherian and $A_{1}$ is a sub-
module of a finitely generated R-module $E_{Q}(Q/\mathfrak{P}_{t}^{\prime})$ . Thus the quotient field of
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$Q/\mathfrak{P}_{i}^{\prime}$ is integral over $Q/\mathfrak{P}_{i}^{\prime}$ , and hence $\mathfrak{P}_{i}^{\prime}$ is a maximal ideal of $Q$ . From the
facts that $A_{n}/A_{n- 1}$($A_{j}=\{x\in E_{Q}(Q/\mathfrak{P}_{i}^{\prime})|x(\mathfrak{P}_{i}^{\prime})^{j}=0\},$ $A_{n}=E_{Q}(Q/\mathfrak{P}_{i}^{\prime})$ , and $A_{n}\neq A_{n-1}$)

is a finite dimensional vector space over $Q/\mathfrak{P}_{i}^{\prime}$ and is a finitely generated
R-module, and that the quotient field of $R/\mathfrak{P}_{i}$ is equal to $Q/\mathfrak{P}_{i}^{\prime}$ we have that
the quotient field of $R/\mathfrak{P}_{i}$ is integral over $R/\mathfrak{P}_{i}$ . Hence $\mathfrak{P}_{i}$ is a maximal ideal
of $R$ .

Next, let us prove that $R_{\mathfrak{P}_{i}}$ is artinian. Since $E_{Q}(Q/\mathfrak{P}_{t}^{\prime})=E_{Q_{\mathfrak{P}_{i}}},(Q_{\mathfrak{P}_{i}^{\prime}/\mathfrak{P}_{i}^{\prime}Q_{\mathfrak{P}_{i}^{\prime}}\rangle}$

by Lemma 2, $Q_{\mathfrak{P}_{i}^{\prime}}$ is an artinian local ring by Lemma 1. Furthermore, $Q_{\mathfrak{P}_{i}^{\prime}}\supseteqq R_{\mathfrak{P}_{i}}$

and $S(R)\subseteqq R-\mathfrak{P}$ and so, we have $R_{\mathfrak{P}_{i}}=Q_{\mathfrak{P}_{i}^{\prime}}$ .
Next let us consider a condition for a ring $R$ that the torsion submodule

of any finitely generated injective R-module is zero.
LEMMA 3. Let $M$ be a cyclic module over a ring R. Then the torsion sub-

module of $M$ is isomorphic to $(\mathfrak{A}Q\cap R)/\mathfrak{A}$ , where $M=R/\mathfrak{A}$ .
A torsion R-module is of bounded order in case it is annihilated by some

element in $S(R)$ .
LEMMA 4. Let $x=(x_{i})_{x=1,2,\cdots,n}$ be a finite set of zero-divisors in a ring $R$ .

Then the torsion submodule of $R/Rx_{i}$ is of bounded order if and only if the
set $F_{x}=\{(Rx:Rs)|s\in S(R)\}$ satisfies the maximal condition, where $Rx=\Sigma Rx_{i}$ .

PROPOSITION 1. Let $R$ be a ring with the noetherian total quotient ring
and assume that for any finite set $x=(x_{i})_{i=1,2,\cdots,n}$ of zero-divisors in $R$ , the set
$F_{x}=\{(Rx:Rs)|s\in S(R)\}$ satisfies the maximal condition. Then the torsion sub-
module of any finitely generated R-module is of bounded order.

PROOF. Let $M=R/\mathfrak{A}$ , where $\mathfrak{A}$ is an ideal of $R$ . If $\mathfrak{A}$ is a regular ideal
of $R$ , then $t(M)$ is of bounded order. Assume that $\mathfrak{A}$ is not regular. Then
$\mathfrak{A}Q$ is a proper ideal of $Q$ and it is finitely generated since $Q$ is noetherian.
We may assume that $\mathfrak{A}Q=Qy_{1}+Qy_{2}+\cdots+Qy_{n}$ any $y_{i}\in \mathfrak{A}$ for all $i$ . Now, by
Lemma 3 $(\mathfrak{A}Q\cap R)/\mathfrak{A}$ is the torsion submodule of $R/\mathfrak{A}$ . By the assumption
and by Lemma 4, $(\mathfrak{A}Q\cap R)/\Sigma Ry_{i}$ is of bounded order.

But $(9IQ\cap R)/\mathfrak{A}$ is a homomorphic image of $(\mathfrak{A}Q\cap R)/\Sigma Ry_{i}$ , and so $(\mathfrak{A}Q\cap R)$

$/\mathfrak{A}$ is of bounded order. Therefore the torsion submodule of any cyclic R-
module is of bounded order. Let $M$ be a finitely generated R-module with
the generators $z_{1},$ $z_{2},$

$\cdots$ $z_{t}$ . If $t=1$ , then the proposition is true. Assume
that for any R-module generated by at most $t-1$ elements the proposition is
true. Consider the following exact sequence:

$0\rightarrow Rz_{1}\rightarrow M\rightarrow M/Rz_{1}\rightarrow 0$ .
Then we have the exact sequence: $0\rightarrow t(Rz_{1})\rightarrow t(M)\rightarrow t(M/Rz_{1})$ with $t(Rz_{1})$

and $t(M/Rz_{1})$ being of bounded order by the induction hypothesis. Thus $t(M)$

is of bounded order.
THEOREM 2. Let $R$ be a ring with the noetherian total quotient ring and
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assume that for any finite set $x=(x_{i})_{i=1,2,\ldots,n}$ of zero-divisors in $R$ , the set
$F_{x}=\{(Rx:Rs)|s\in S(R)\}$ satisfies the maximal condition. Then there is a finitely
generated injective R-module if and only if there exists a maximal ideal $\mathfrak{M}$ of
$R$ such that $R_{\mathfrak{M}}$ is artinian local.

PROOF. By Proposition 1, the torsion submodule of any finitely generated
R-module is of bounded order. Furthermore, the torsion submodule of any
divisible R-module is also divisible. Hence the torsion submodule of any
finitely generated injective R-module is zero, and so every finitely generated
injective R-module is always torsion-free. From this we have the result by
Theorem 1.

If $R$ is a noetherian ring, then for every finitely generated R-module $M$,
$t(M)$ is of bounded order. Thus we have the following corollary.

COROLLARY 1. Let $R$ be a noetherian ring. Then there is a finitely gen-
erated injective R-module if and only if there is a maximal ideal $\mathfrak{M}$ in $R$ such
that $R_{\mathfrak{M}}$ is artinian local.

If $R$ is an integral domain, then the torsion submodule of any finitely
generated R-module is of bounded order. For any proper prime ideal $\mathfrak{P}$ of
$R,$ $R_{\mathfrak{P}}$ is not artinian. Hence we have the following corollary.

COROLLARY 2. Let $R$ be an integral domain. Then if there is a finitely
generated injective R-module, $R$ is a field.

The author does not know whether there is a ring $R$ such that there is
a finitely generated injective R-module which is not torsion-free and not cyclic.

\S 2. Existence of a cyclic injective module.

In this section, we investigate the conditions for a ring over which there
is a cyclic injective module.

LEMMA 5. Let $R$ be a ring and let $\mathfrak{A}$ be an ideal of R. Suppose that $R/\mathfrak{A}$

is divisible as an R-module. Then $R/\mathfrak{A}$ is a torsion-free R-module.
PROOF. If $\mathfrak{A}$ is a regular ideal of $R$ , then $R/\mathfrak{A}$ is divisible and a torsion

R-module of bounded order, and so $R/\mathfrak{A}=0$ . If $\mathfrak{A}$ is not a regular ideal of $R$ ,

then $S(R)\subset R-\mathfrak{A}$ and hence, for any $s$ in $S(R)$ the class $\overline{s}$ in $R/\mathfrak{A}$ containing
$s$ is not zero in $R/\mathfrak{A}$ . By the assumption $\overline{s}(R/\mathfrak{A})=R/\mathfrak{A}$ for any $s$ in $S(R)$ .
Thus $\overline{s}$ is invertible in $R/\mathfrak{A}$ . Hence $R/\mathfrak{A}$ is torsion-free as an R-module.

THEOREM 3. Let $R$ be a ring with the noetherian total quotient ring. Then
there is a cyclic injective R-module if and only if there exists a maximal ideal
$\mathfrak{M}$ in $R$ such that $R_{\mathfrak{M}}$ is a self-injective artinian local ring.

PROOF. Assume that $R_{\mathfrak{M}}$ is a self-injective artinian local ring for some
maximal ideal $\mathfrak{M}$ in $R$ . Then $R_{\mathfrak{M}}$ is a finitely generated R-module. In fact,
set $A_{i}=\{x\in R_{\mathfrak{M}}|\mathfrak{M}^{i}R_{\mathfrak{M}}x=0\}$ . Then, by Theorem 1, $A_{n}=R_{\mathfrak{M}}$ for some posi-
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tive integer $n$ and A. is a finitely generated $R_{\mathfrak{M}}$-module for $i=1,2,$ $\cdots$ , $n$ , and
so $A_{i}/A_{i- 1}$ is finitely generated as an $R_{\mathfrak{M}}/\mathfrak{M}R_{\mathfrak{M}}(=R/\mathfrak{M})$-module for $i=1,2,$ $\cdots,$

$n$ .
Thus, $R_{\mathfrak{M}}$ is a finitely generated R-module.

Set $\mathfrak{A}=$ { $x\in R|xr=0$ for some $r$ in $R-\mathfrak{M}$ }. Since $R_{\mathfrak{M}}$ is noetherian and
it is finitely generated as an $R/\mathfrak{A}$-module, by Theorem 2 of [2], $R/\mathfrak{A}$ is a
noetherian ring. Furthermore, for any $a\in \mathfrak{M}$ , there is a positive integer $m$

such that $a^{m}\in \mathfrak{A}$ . In fact, since $R_{\mathfrak{R}t}$ is artinian local, $\mathfrak{M}^{m}R_{\mathfrak{M}}=0$ for some
positive integer $m$ , and hence, there is an $r$ in $R-\mathfrak{M}$ such that $ra^{m}=0$ .
Therefore $a^{m}\in \mathfrak{A}$ . From the above remarks, $\mathfrak{M}/\mathfrak{A}$ is nilpotent, and so, $R/\mathfrak{A}$

is an artinian local ring because $\mathfrak{M}/\mathfrak{A}$ is a maximal ideal of $R/\mathfrak{A}$ . Thus $R/\mathfrak{A}$

$\cong R_{\mathfrak{M}}$ , that is, $R_{\mathfrak{M}}$ is a cyclic R-module.
Hence $R_{\mathfrak{M}}$ is a cyclic injective R-module.
Conversely, assume that there is a cyclic injective R-module $M$ and let

$M=R/\mathfrak{A}$ ($\mathfrak{A}$ : an ideal of $R$). Then $R/\mathfrak{A}$ can be regarded as a Q-module by
Lemma 5 and the canonical map $f:R\rightarrow R/?t$ is uniquely extended to a Q-
homomorphism $h$ : $Q\rightarrow R/2)_{\backslash }^{\prime}$ . Set $\mathfrak{B}=Ker(h)$ . Then, by Lemma 2.1 of [5],
$Q/\mathfrak{B}$ is injective as a Q-module. Moreover, $Q/\mathfrak{B}$ is a self-injective noetherian
ring. In fact, for any $g\in Hom_{Q/\mathfrak{B}}(\mathfrak{C}/\mathfrak{B}, Q/\mathfrak{B})$ ( $\mathfrak{C}$ : any ideal of $Q$ containing B),

there is a $Q/\mathfrak{B}$-homomorphism $k$ which is an extension of $g$ because $g$ can
be regarded as a Q-homomorphism of $\mathfrak{C}/\mathfrak{B}$ into $Q/\mathfrak{B}$ and $Q/\mathfrak{B}$ is injective as
a Q-module.

Thus, by Lemma 2.8 of [5], we can express $Q/\mathfrak{B}$ as follows,

$Q/\mathfrak{B}=Q_{1}\oplus Q_{2}\oplus\cdots\oplus Q_{n}$ (as a ring),

where $Q_{i}$ is a self-injective artinian local ring for $i=1,2,$ $\cdots$ , $n$ . In this case,
$Q_{i}$ is an indecomposable injective Q-module for all $i$ .

Set $\mathfrak{D}^{\prime}=Q_{2}\oplus\cdots\oplus Q_{n}$ and set $\mathfrak{M}^{\prime}=\mathfrak{M}^{\prime\prime}\oplus Q_{2}\oplus\cdots\oplus Q_{n}$ , where $\mathfrak{M}^{\prime\prime}$ is the
maximal ideal of $Q_{1}$ . Then $Q_{1}=(Q/\mathfrak{B})/\mathfrak{D}^{\prime}$ and $\mathfrak{D}^{\prime}$ is an irreducible $\mathfrak{M}^{\prime}$ -primary
ideal of $Q/\mathfrak{B}$ because $(Q/\mathfrak{B})/\mathfrak{D}^{\prime}$ is an indecomposable injective $Q/\mathfrak{B}$-module.
Let $\mathfrak{D}=h^{-1}(\mathfrak{D}^{\prime})$ and let $\mathfrak{M}=h^{-1}(\mathfrak{M}^{\prime})$ . Then $\mathfrak{M}$ is a maximal ideal of $Qand\mathfrak{D}$

is an irreducible $\mathfrak{M}$-primary ideal of $Q$ . Furthermore, $Q_{1}=(Q/\mathfrak{B})/\mathfrak{D}^{\prime}\cong Q/\mathfrak{D}$ ,

$Q/\mathfrak{D}\cong E_{Q}(Q/\mathfrak{M})$ by Theorem 2.4 of [6] because $Q/\mathfrak{D}$ is an indecomposable
injective Q-module, and by Lemma 2, $Q/\mathfrak{D}=E_{Q_{\mathfrak{M}}}(Q_{\mathfrak{M}}/\mathfrak{M}Q_{\mathfrak{M}})$ , and hence QM is
artinian local by Lemma 1 since $Q/\mathfrak{B}$ is a cyclic injective Q-module.

Now, $Q/\mathfrak{D}\rightarrow Q_{\mathfrak{M}}/\mathfrak{D}Q_{\mathfrak{M}}$ is monomorphic and $Q/\mathfrak{D}(\cong E_{Q_{iD1}}(Q_{\mathfrak{M}}/\mathfrak{M}Q_{\Psi}))$ is an
indecomposable injective $Q_{\mathfrak{M}}$-module. Thus $Q/\mathfrak{D}=Q_{\mathfrak{M}}/\mathfrak{D}Q_{\mathfrak{M}}$ . Since $Q_{JJt}$ is
artinian local and $Q/\mathfrak{D}=Q_{\mathfrak{M}}/\mathfrak{D}Q_{\mathfrak{M}}$ is injective as a $Q_{\mathfrak{M}}$-module by Lemma 2,
we have $\mathfrak{D}Q_{\mathfrak{M}}=0$. Thus $Q_{\mathfrak{M}}$ is a self-injective artinian local ring.

Now, set $\mathfrak{M}\cap R=\mathfrak{P}$ . Then $\mathfrak{P}$ is not regular because $R/\mathfrak{P}\subseteqq Q/\mathfrak{M}$ is torsion-
free. From this, the quotient field of $R/\mathfrak{P}$ is equal to $Q/\mathfrak{M}$ . On the other
hand, since $E_{Q}(Q/\mathfrak{M})$ is a finitely generated R-module, by the same method
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as in the proof of Theorem 2, $\mathfrak{P}$ is a maximal ideal of $R$ . Moreover, $S(R)$

$\subseteqq R-\mathfrak{P}$ , and $R_{\mathfrak{P}}\rightarrow Q_{\mathfrak{M}}$ is monomorphic, and so, $R_{\mathfrak{P}}=Q_{\mathfrak{M}}$ . Thus $R_{\mathfrak{P}}$ is injective
as an R-module and is artinian local. By Lemma 2, $R_{\mathfrak{P}}$ is a self-injective
artinian local ring. The proof is completed.

COROLLARY 3. Let $R$ be a ring. Then the following conditions are equiva-
lent.

(1) $R$ is a self-injective artinian ring.
(2) $Q(R)$ is a noetherian ring and for any simple R-module $M,$ $E_{R}(M)$ is

cyclic as an R-module.
PROOF. (1) $\rightarrow(2):Itisimmediate$ . (2) $\rightarrow(1):AssumethatQ(R)isnoetherian$

and, for any simple R-module, its injective hull is cyclic as an R-module. Let
$M(\cong R/\mathfrak{M})$ be any simple R-module. Then, as is shown in proof of Theorem
3, $R_{\mathfrak{M}}$ is a self-injective artinian ring, and so $R$ is a self-injective noetherian
ring. Therefore, $R$ is a self-injective artinian ring.

REMARK. There exists a ring, which is not artinian, such that $E_{R}(M)$ is

a cyclic R-module for any simple R-module M. $\ln$ fact, set $R=\prod_{i=1}^{\infty}K_{i}$ , where

$K_{i}$ is a field for $i=1,2$ , $\cdot$ ... Then, for any maximal ideal $\mathfrak{M},$ $R_{\mathfrak{M}}$ is a field
which is isomorphic to $E_{R}(R/\mathfrak{M})$ as an R-module. Let us show that $R_{\mathfrak{M}}$ is a
field for any maximal ideal $\mathfrak{M}$ in $R$ . Now, it is sufficient to show that for
any $x(=(x_{i}))$ in $\mathfrak{M}$ , there is an element $r$ in $R-\mathfrak{M}$ such that $rx=0$ . Set
$r_{i}=0$ if $i\in\{i\in I|x_{i}\neq 0\}=D(x),$ $r_{i}\neq 0$ in $K_{i}$ if $i\in ED(x)$ . Then $x+r(r=(r_{i}))$

is a unit element in $R$ and $x\in \mathfrak{M}$ , and hence $r\not\in \mathfrak{M}$ . Furthermore, we have
$rx=0$ . Hence $R_{\mathfrak{M}}$ is a field.

\S 3. The ring properties of injective hulls.

Next we observe the ring property of an injective hull of a commutative
ring. Let $R$ be a ring and let $M$ be an R-module. Then the socle of $M$ is
defined by the sum of all simple submodules of $M$. Thus the socle of a ring
$R$ is a direct sum of all distinct minimal ideals of $R$ .

LEMMA 6. Let $R$ be an artinian local ring. Then $R$ is self-injective if and
only if the socle of $R$ is simple.

PROOF. If $R$ is self-injective, then by Proposition 3.1 of [6] $R=E_{R}(R/\mathfrak{M})$

($\mathfrak{M}$ is the maximal ideal of $R$ ) since $R$ is indecomposable as an R-module.
Thus by Theorem 3.4 of [6] the socle of $R$ is equal to $A_{1}(=\{x\in R|x\mathfrak{M}=0\})$

$\cong R/\mathfrak{M}$ . Conversely, assume that the socle of $R$ is simple. Then $A_{i}=\{x$

$\in E_{R}(R/\mathfrak{M})|x\mathfrak{M}^{i}=0\}\supseteqq \mathfrak{M}^{n- i}$ ($\mathfrak{M}^{n}\neq 0$ and $\mathfrak{M}^{n+1}=0$) and by Lemma 1 of [8]
$A_{i+1}/A_{i}\cong \mathfrak{M}^{i}/\mathfrak{M}^{i+1}$ as a vector space over $R/\mathfrak{M}$ . Furthermore, $R$ is an essential
extension of the socle of $R$ , and so $E_{R}(R/\mathfrak{M})\cong E_{R}(R)$ . Hence $E_{R}(R)$ has the
same length as $R$ . Thus $R=E_{R}(R)$ .
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PROPOSITION 2. Let $R$ be a ring with the noetherian total quotient ring.
Then $R$ can be embedd-d into a direct sum of finitely many self-injective artinian
local rings, which is an essential extension of $R$ .

PROOF. Let (0) $=\mathfrak{D}_{1}\cap \mathfrak{D}_{2}\cap\cdots\cap \mathfrak{D}_{n}$ ($\mathfrak{D}_{i}$ : $\mathfrak{P}_{i}$ -primary) be an irredundant
irreducible primary decomposition of (0) in the total quotient ring $Q$ of $R$ .
Then by Theorem 2.3 of [6], we have $E_{Q}(Q)=\Sigma\oplus E_{Q}(Q/\mathfrak{D}_{i})$ .

On the other hand, $E_{Q}(Q/\mathfrak{P}_{i})=E_{Q}(Q/\mathfrak{D}_{i})$ by Proposition 3.1 of [6], and
$E_{Q}(Q/\mathfrak{P}_{i})\cong E_{Q}(Q_{\S 3_{i}}/\mathfrak{P}_{i}Q_{\mathfrak{P}_{i}})\mathfrak{P}_{i}$ by Lemma 2, for all $i$ .

Furthermore, by Proposition 3.1 of [6], $E_{Q_{\mathfrak{P}_{i}}}(Q_{\mathfrak{P}_{i}}/\mathfrak{P}_{i}Q_{\mathfrak{P}_{i}})=E_{Q_{\mathfrak{P}_{i}}}(Q_{\mathfrak{V}_{i}}/\mathfrak{D}_{i}Q_{\mathfrak{P}_{i}})$ .
Since by Lemma 2.1 of [5], $E_{R}(R)=E_{Q}(Q)$ , we have $E_{R}(R)=\Sigma\oplus E_{Q}(Q_{\mathfrak{P}_{i}}$

$/\mathfrak{P}_{i}Q_{\mathfrak{P}_{i}})$ . Thus $\Sigma\oplus Q_{\mathfrak{P}_{i}}/\mathfrak{D}_{i}Q_{\mathfrak{P}_{i}}$ is an essential extension of $R$ because we can
embed $R$ in $\Sigma\oplus Q_{\mathfrak{P}_{i}}/\mathfrak{D}_{i}Q_{\mathfrak{P}_{i}}$ . Moreover by Lemma 6 $Q_{\mathfrak{P}_{i}}/\mathfrak{D}_{i}Q_{\mathfrak{P}_{i}}$ is a self-
injective artinian local ring for all $i$ .

EXAMPLES. (1) Let $R$ be an integral domain. Then an injective hull of
$R$ is isomorphic to the quotient field of $R$ . Thus $E_{R}(R)$ can be made into an
R-algebra and $R$ is contained in the center of $E_{R}(R)$ . (2) Let $R$ be a ring and
$M\supset N$ be R-modules. Then $M$ is called a rational extension of $N$ in case for
any endomorphism $f$ of $M$, if $f$ is trivial on $N$, then $f$ is trivial. Now, if
$E_{R}(R)$ is a rational extension of $R$ , then $E_{R}(R)$ can be taken into an R-algebra
and moreover, $R$ is contained in the center of $E_{R}(R)$ . In fact, since $E_{R}(R)$ is
a rational extension of $R$ , any R-homomorphism of $R$ into $E_{R}(R)$ can be
uniquely extended to an R-endomorphism of $E_{R}(R)$ . Thus $Hom_{R}(E_{R}(R), E_{R}(R))$

$\cong Hom_{R}(R, E_{R}(R))\cong E_{R}(R)$ . The canonical embedding $\varphi$ of $R$ into $Hom_{R}(E_{R}(R)$ ,
$E_{R}(R))$ is given by $\varphi(r)=T_{r}$ , where $T_{\gamma}$ is defined by $T_{R}(x)=rx$ for all $x$ in
$E_{R}(R)$ . Hence $R$ is contained in the center of $E_{R}(R)$ .

LEMMA 7. Let $R$ be a noetherian local ring and suppose that the socle of
$R$ is not simple. Then $E_{R}(R)$ can not be made into an R-algebra.

PROOF. Let $S_{1}$ and $S_{2}$ be two distinct simple submodules of $R$ . Then
$E_{R}(S_{1})$ is a direct summand of $E_{R}(R)$ . Set $S_{1}=Rx_{1}$ and set $S_{2}=Rx_{2}(x_{1}, x_{2}\in R)$ .
Let $f_{i}\in Hom_{R}(Rx_{1}\oplus Rx_{2}, E_{R}(Rx_{1}))$ such that $f_{i}(x_{i})=x_{1}$ and $f_{i}(x_{j})=0$ if $i\neq j$ ,

for $i,$ $j=1,2$ . Then there is $g_{i}\in Hom_{R}(R, E_{R}(Rx_{1}))$ such that the restriction
of $g_{i}$ to $Rx_{1}\oplus Rx_{2}$ is $f_{i}$ , for $i=1,2$ . Set $g_{i}(1)=a_{i}$ for $i=1,2$ . Then $x_{1}a_{1}=x_{1}$

$=x_{2}a_{2}$ and $x_{1}a_{2}=x_{2}a_{1}=0$ . Hence $(x_{2}a_{2})\cdot a_{1}=x_{1}\cdot a_{1}=x_{1}\neq 0$ , but $a_{2}\cdot(x_{2}a_{1})=a_{2}\cdot 0$ ,

and so $E_{R}(R)$ can not be made into an R-algebra because $E_{R}(Rx_{1})$ is a direct
summand of $E_{R}(R)$ .

THEOREM 4. Let $R$ be an artinian local ring. Then an injective hull of $R$

can be made into an R-algebra if and only if $R$ is a self-injective ring.
PROOF. If $R$ is not self-injective, then the socle of $R$ is not simple by

Lemma 6. Thus by Lemma 7, $E_{R}(R)$ can not be made into an R-algebra.
The converse is trivial.
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Let $R$ be a ring, $\mathfrak{P}$ a prime ideal, and let $M$ be an R-module. Then let
us call the socle of $M_{\mathfrak{P}}$ the socle of $M$ at $\mathfrak{P}$ .

THEOREM 5. Let $R$ be a ring with the noetherian total quotient ring. Then
if an injective hull of $R$ can be regarded as an R-algebra, then the socle of
$Q=Q(R)$ at any prime ideal of $Q$ is simple or empty.

PROOF. Suppose that the socle of $Q$ at some prime ideal $\mathfrak{P}$ of $Q$ is not
simple and not empty, then there are two elements $x_{1},$ $x_{z}$ in $Q$ such that
$Qx_{1}\cap Qx_{2}=0$ and the annihilator ideal of $Qx_{i}$ is equal to $\mathfrak{P}$ for $i=1,2$ . In
fact, since the socle of $Q_{\mathfrak{P}}$ is not simple and not empty, there are at least
two simple submodules $S_{1},$ $S_{2}$ in $Q_{\mathfrak{P}}$ . Thus there are $y_{1},$ $y_{2}$ in $Q$ such that
$Q_{\mathfrak{P}}y_{i}=S_{i}$ for $i=1,2$ . Since $\mathfrak{P}$ is finitely generated, there is an $r$ in $Q-\mathfrak{P}$ such
that $r\mathfrak{P}y_{i}=\mathfrak{P}ry_{i}=0$ for $i=1,2$ , and so $\chi_{i}=ry_{i}(i=1,2)$ answer the question.

Let $f_{1}$ and $f_{2}$ be two Q-homomorphism of $Qx_{1}+Qx_{2}$ into $E_{Q}(Qx_{1})$ defined
by $f_{1}(x_{1})=f_{2}(x_{2})=x_{1}$ and $f_{1}(x_{2})=f_{2}(x_{1})=0$ . Since $E_{Q}(Qx_{1})$ is injective, there is
a Q-homomorphism $g_{i}$ of into $E_{Q}(Qx_{1})$ such that the restriction of $g_{i}$ to $Qx_{\iota}$

$+Qx_{2}$ is $f_{i}$ for $i=1,2$ . Set $g_{i}(1)=a_{i}$ for $i=1,2$ . Then $x_{1}a_{1}=x_{2}a_{2}=x_{1}$ and
$x_{1}a_{2}=x_{2}a_{1}=0$ . Now, we have $(x_{2}a_{2})\cdot a_{1}=x_{1}\cdot a_{1}=x_{1}$ and $a_{2}\cdot(x_{2}a_{1})=a_{2}\cdot 0=0$.
Thus $E_{Q}(Q)$ can not be made into a Q-algebra since $E_{Q}(Qx_{1})$ is a direct sum-
mand of $E_{Q}(Q)$ . Therefore $E_{R}(R)$ can not be made into an R-algebra. This
is a contradiction to the hypothesis that $E_{R}(R)$ is an R-algebra.

Let $R$ be a ring with the total quotient ring which is artinian. Then we
call such a ring a $(qa)$-ring. It is well known that if $R$ is noetherian then $R$

is a $(qa)$-ring if and only if the prime divisors of (0) in $R$ are all minimal.

THEOREM 6. Let $R$ be a $(qa)$-ring. Then an injective hull $E_{R}(R)$ of $R$ cart

be made into an R-algebra if and only if $E_{R}(R)=Q(R)$ .
PROOF. Assume that $E_{R}(R)$ is an R-algebra. As $E_{R}(R)$ is a torsion-free

and divisible R-module, $E_{R}(R)$ can be regarded as a Q-module, and hence $E_{R}(R)t$

is injective as a Q-module by Lemma 2.1 of [5]. On the other hand, $Q$ is an
essential extension of $R$ , and so we have $E_{R}(R)=E_{R}(Q)$ . Furthermore by
Lemma 2.1 of [5] $E_{R}(R)=E_{Q}(Q)$ . Since $R$ is a $(qa)$-ring, we may write
$Q=\Sigma\oplus Q_{i}$ , where $Q_{i}$ is artinian local for all $i$ . Thus $E_{Q}(Q)\cong\Sigma\oplus E_{Q}(Q_{i})|$

$=\Sigma\oplus E_{Q_{i}}(Q_{i})$ .
If $Q_{i}$ is not a self-injective artinian local ring, then by Lemma 6 there are

at least two distinct minimal ideals $S_{1},$ $S_{2}$ in $Q_{i}$ , a fortiori, of $Q$ . Thus there
are two elements $x_{1},$ $x_{2}$ in $Q_{i}$ such that $Qx_{j}=S_{j}$ for $j=1,2$ . By the same
method as in proof of Theorem 5, we can find two elements $a_{1},$ $a_{2}$ in $ E_{Q}(Qx_{1}\rangle$

such that $x_{1}a_{1}=x_{2}a_{2}=x_{1}$ and $x_{1}a_{2}=x_{2}a_{1}=0$ . Now, we have $(x_{2}a_{2})\cdot a_{1}=x_{1}\cdot a_{\iota}$

$=x_{1}$ and $a_{2}\cdot(x_{2}a_{1})=a_{2}\cdot 0=0$ . Thus $E_{Q}(Q)$ can not be made into a Q-algebra
because $E_{Q}(Qx_{1})$ is a direct summand of $E_{Q}(Q)$ . Thus $E_{R}(R)=E_{Q}(Q)$ can not
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be taken into $an_{-}^{*}R$-algebra. This is a contradiction. The converse is trivial.
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