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Throughout this paper, let G be any locally compact abelian group and
G its dual. We denote by A(G) the Banach algebra consisting of the Fourier
transforms of all complex-valued functions on G that are absolutely summable
with respect to the Haar measure of G [2].

N. Th. Varopoulos proved in that every totally disconnected Kronecker
subset of G is a set of spectral synthesis (an S-set) for the algebra A(G).
On the other hand, every compact (Hausdorff) space is homeomorphic to a
Kronecker subset of some compact abelian group (see [Theorem %). The main
purpose of this paper is to show that every Kronecker set is an S-set.

DEFINITION 1. A compact subset K of the group G is called a quasi-
Kronecker set, provided that: For each ¢ >0 and each real continuous func-
tion h on K (h e Cg(K)), there exists a character y e G such that

sup | exp [T A(x)]—(x, ) <e.

It is then easy to see that:

(i) Every quasi-Kronecker set is independent;

(ii) A Kronecker set is a quasi-Kronecker set;

(iii) If K is a quasi-Kronecker subset of G, then we have |u| = 2|.. for
all p= M(K). In particular, every quasi-Kronecker set is a Helson set.

The following theorem seems to be well-known. But the author does not
know any literature about it; hence we give here a complete proof of it.

THEOREM 2. There exists a compact abelian group which contains a quasi-
Kronecker set that is not a Kronecker set. Every compact space is homeomorphic
to a Kronecker subset of some compact abelian group.

Proor. Suppose that X is a compact space, and that ¢ and b are two
constants such that 0 <a <b <1, and take any subset F' of Cr(X) such that:

.0 We have a< f<b for all fe F;
2.2) The functions in F separate points of X.

Let us then denote by & the set of all functions in Cz(X) expressible as a
finite product of elements in F, and let
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2.3) G= Hg_T(g) (T(g)=T for all g ),

where T denotes the one-dimensional torus (the circle group). Thus every
point » of G has the form

2.4 p=(0(gNe=e  (p(g)e T(g) for all g F),
and for every y G there exist integers n,, My, -+, N and functions g, g,, -+, g
of & such that
k
(2.5) (b, 7*)21:111 {plgpt™ (pE6).

We now define a mapping ¢ from X into G by
(2.6 t()=(xp[2ri g(X)De=a (x& X).
It is then trivial that ¢ is a homeomorphism from X onto K=#(X). If he

Cp(K), then there exists h’ < Cr(X) such that 2z h'(x)=h(t(x)). If ye G has.
the form [2.5), we see from that

| exp [ AQx)]—(x), 7))
= | exp [27m1 h'(x)]—exp [27ti§)1 n;gx)]|

< 27| h(x)— é 1, 22)] (re X).

Thus, in order to prove that K is a quasi-Kronecker set, it suffices to apply
an analogous argument as in [2: p. 104].

Suppose now that X is homeomorphic to 7T, and that s is a homeomorphism
of K onto T. It then follows from and that

inf {sup |s(p)—(p, )1} = inf {sup|s(p)—exp[ig(p)]l}

7EG pzZK gECR(K) p=K

= inf {sup|z—exp[ih(2)]]|}>0.
hECR(T) z2=T
Thus K is not a Kronecker set although it is a quasi-Kronecker set, and this
establishes the first statement.
Suppose again that X is any compact space, and let & in be the set
of all complex-valued functions g C(X) with |g| =1. Defining a mapping 7
from X into G by

X)) t()=(g))e=e (x€X),

one can now easily show that z is a homeomorphism from X onto K= z(X),.
and that K is a Kronecker set of G.

This completes the proof.

We now introduce some notations. For any closed subset E of G, let us
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denote by :
I(Ey={fe A(G): f=0o0n E};

I(E)y={fe A(G): Ensupp f=0};
J(E)=the closure of I(E).

Thus I(E) (resp. J(E)) is the largest (resp. the smallest) closed ideal in A(G)
whose zero-set is E. We also denote by PM(E) the spacejof all pseudo-
measures P on G with supp PC E, and for any P< PM(E) P will be always
chosen to be continuous if this is possible, where P denotes the bounded Borel
function on G corresponding to P. We call E an SH-set if and only if E is
both an S-set and a Helson set. [t is trivial that this condition is equivalent
to the one PM(E)= M(E), and that such a set is a set of spectral resolution
(an SR-set) [1]

Now, for any fe A(G) let a(f, E) be the set of all points x< G at which
J/ does not belong to J(E) locally, and put

O'(E):f \J o(f; E).

=I(E)
It is well-known (2], that o(E) is a union of perfect subsets of 0F (the
boundary of E), and that E is an S-set if and only if o(E) is empty. One
can also show that ¢(E) is closed if G is metrizable.

LEMMA 3. Suppose that E is the union of two S-sets E, and E, of G, then
we have o(EYC 0E,NOE,N0E. In particular, it follows that E is an S-set if
either 0E, NOE, N OE contains no perfect subset or there exists a C-set C such
that 0E,NO0E,N0EC CCE.

Proor. It is trivial that o(E)C0E. To show that every function of I(E)
belongs to J(E) locally at any point in the complement of E, N E,, take feI(E)
and x € E\(E, N E,) arbitrarily. Without loss of generality, we may assume
that xe E,. Choose u I (E,) so that x=1 on some neighborhood of x. Since
E, is an S-set by our assumption, it follows that there is a sequence {g,} in
I(E) such that lim | f—g,|=0. Then guel(F) for all n=1,2, ..., and

lim || fu—g,ul| =0, which implies fu J(E). Since fu=f on some neighborhood
of x, it follows that f belongs to J(F) locally at x. Therefore we have

o(EYCTE,NE,NOE=0E,N0E,NOE,

and this establishes the first statement.

If 6E,\0E,N0E contains no perfect subset, then o¢(F) is empty, and
hence E is an S-set. Finally, suppose that E contains a C-set C such that
CDOE,NOE,N0E. Then for every fe I(E) we can find a sequence {v,}? in
I(C) so that lim | f/—fv,|=0. Since each fu, belongs to J(E) at all points

of G by what we have proved above, it follows that fv,e J(E) for all
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n=1,2, .-, and hence we have f< J(E). Since f< I(E) was arbitrary, this
gives the desired conclusion.

The proof is now complete.

THEOREM 4. The union of an SH-set and an S-set is an S-set.

PROOF. Suppose that H and S be an SH-set and an S-set of G, respec-
tively. There exists then a finite positive constant C such that to every
ke C(H) corresponds a g< A(G) with

(4.1) glu=k, and jgl=Clkl..

Let us take fe I[(HUS) and P PM(H\US) arbitrarily. Since o(H\US)
CHANS by Lemma 3, it is easy to verify that supp fPC HNS. Therefore
the assumption that H is an SH-set guarantees that fP is a measure on HNS.
To show that fP=0, let U be an arbitrarily fixed basis of open neighborhoods
of HNS, and for each Ue& 4 denote by A(U) the set of all g A(G) such
that

4.2) suppglzCU, g=lon HNS, and [g|=C.

It follows then from (4.1) that each #(U), U< 4, is non-empty. Thus the
sets L(U)={gP: g= x(U)}, U= U, have the finite intersection property, and
it is trivial that they are all contained in the closed ball of PM(G) with radius
C||P|; hence they have a common weak-star cluster point Q = PM(G). We
then claim that suppQC S and fQ = fP.

To show this, let & e I(S) be arbitrary, and take an open neighborhood
V of S on which A vanishes. If Ue @ is such that U V, and if ge x(U),
then we have hge I(H\US) and so hge J(H\US) by Lemma 3, since Ag=0
on VO HANS. This yields that AgP=0 for all g X(U), and hence hQ =0
since Q belongs to the weak-star closure of £(U). But h e I(S) was arbitrary,
and so we conclude that supp @ S. On the other hand, for any U< U and
ge X(U), it must be fgP=fP since fPe M(HNS) and g=1 on HN\S by
(4.2), which yields fQ = P. Finally we have fP=f0Q =0, since Q< PM(S),
fe I(S), and S is an S-set.

This completes the proof.

COROLLARY 5. Every finite union of SH-sets is an SR-set.

PrOOF. Since every closed subset of an SH-set is also an SH-set, it
suffices to show that every finite union of SH-sets is an S-set. But this
follows at once from Theorem 4 by induction.

COROLLARY 6. Every Helson set that is a finite union of S-sets is an SH-set.

ProoOF. Trivial

We shall now prove four lemmas, the first two of which are essentially
contained in [4]. To make the paper self-contained, we give their complete
proofs.
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LEMMA 7. To each ¢>0 corresponds a constant ¢ > n(e) >0 with the follow-
ing property: For any compact subset K of G, any complex number o with
la| =1, and any characters r,, 7, < G such that

(7.1) sup lalx, r)— (&, 72| <7e),

we can find he A(G) so that
(7.2 lal<e, and h=ay,—7,

on some neighborhood of K.

PrROOF. We shall here regard T as the multiplicative group of the com-
plex numbers z with |z|] =1. Consider the function fe A(T) defined by f(2)
=1—2, and let ¢ >0 be given. Since f(1)=0, there exist a function f, & A(T)
and a constant ¢ > n(e) >0 such that

@.3) D=5 az,  Ifl= 3 || <,
and such that
(7.4) ze T, [1—z| <ne)> f()=1—=z.

Suppose now that K, «, y; and y, satisfy the condition [7.1), and define a func-
tion g on G by
g(x) = a(x, T1)ﬁ(d'(x’ 7’2”7’1)) .

It is then easy to see from (7.3) and (7.4) that g is the Fourier-Stieltjes trans-
form of a measure on G with norm <e¢, and that g=ay,—y, on some open
set containing K. To complete the proof, take ¢ >0 and k=%k; = A(G) so that
|#|| <140 and k=1 on some neighborhood of K. Setting ;= gk, we see
that for a sufficiently small 6 >0, h=h; e A(G) satisfies

This establishes the Lemma.

LEMMA 8. Let K be a quasi-Kronecker subset of G, let {Q;}T be n pseudo-
measures in PM(K) such that

@1 supp @;N\supp @; =0 (A =i<j=n),

and put Q= f]Qj. Then we have
i=

®2) sup [Q+1)— B )l = <1Ql

7 IG

for any ¢>0, any r, € é, and any choice {a;}? of complex numbers with |a;|=1
(A <5< n) such that

@.3) [(x, r)—a;l<ne) (xesuppQy, 1=57=n),

where 7(€) is a constant as in Lemma 7. In particular, we have
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(8.4) sup 310N =101

7*56 =1
Proor. Let ¢, 7, and {a,}? be as in (8.3), and take 6 >0 so that the
inequality in (8.3) remains valid even if the right term is replaced by 7(e)—o0.
Since K is a quasi-Kronecker set, and since supp Q = O supp Q,;C K, we can
~ j=1
find ¥’ = G so that ’
| a;—(x, 1< 7(9) (xesupp @y, 1=7=n).

It follows then that for all x € supp Q we have
|G r)—(x )| = 12‘]23, {1, r)—ayl+la;—(x, 7)1}

< A{nle)—0}+n0(0) < ().

Therefore we see from Lemma 7 that for all yc G
QG147 5 Q)
= 10GAN=0G +)1+ 3 10/ +1)—a7)]
<clQI+3 2 10,1

Since 0 >0 can be taken as small as one pleases, we obtain (8.2).

To complete the proof, let y G be given, and take a; so that |a;|=1
and oszj(;'): ]Qj(r)l for all j=1,2,...,n. Then for any &> 0, there exists
r.€ G which satisfies (8.3). This fact, combined with (8.2), yields

The proof is now established.

LEMMA 9. Suppose that K is a quasi-Kronecker subset of G, that P PM(K),
and that {E;}7 are n closed, pairwise disjoint, subsets of K. Then there exist
n pseudo-measures {P,}} such that:

0. Foral k=1,2,-.-,n, we have

P.e PMED, |3 PI=|PI.

|P—Pyl| < ||P|l, and P—P,e PM(K\E));
(9.2) For all k=1,2, ..., n and any neighborhood U of O of G,
sup |P())—Pi(r)| = sup |P(N—PG")|,

7T’ €U -1’ €U
and
sup |(P—P) (1—(P—P) (NI = sup |P(H—PG)| .

r—r'ev rer'EU

PrROOF. Fix any ye< A(G) so that y=1 on some neighborhood of K.
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Note then that yP= P, and that llfoll <P for all [ M(G), since K is
a compact set containing the support of P.

Let U be the set of all tuples u=_(; U,, U,, ---, U,) of 0<e<1 and open
neighbourhoods U, of E; such that the sets U » 1< k<n, are pairwise disjoint.
If we introduce an order “ <" in U by

9.3) (e15 Ussy Upyy ++ 5 Un)<<(e3; Uiy Usgy -+ 5 Ung)
e >, and Uy,DU, forall E(QZkE<Zn),

then U is clearly a directed set. Fixing u=(; U,, U,, -+, U,) in U, we shall
now define two pseudo-measures @, and R, of PM(K) as follows. Take A,
e Cy(K) so that

9.4) 0<h,<7, h,=0 on k\ile,c, and h,=z on ’élK\Uk.
Since K is a quasi-Kronecker set, there exists r, G such that
(9.5) | exp [i h(0)]—(x, 72)| <7(e)/2  (x€ K),
where 7(e) is as in We then define
9.6) Qu=U+7r)x P/2, and R,=—yr,)yP/2.

It is trivial that
.7 P=Q.,+R,, and [Q.], IR.JI=IPI (we).

This assures that a subnet of the net {Q,}, (resp. {R,},) converges to some
Q (resp. R) of PM(K) in the weak-star topology of PM(G) such that

9.8 P=Q+R, and |Q, [RI=I]P].

We claim then that

9.9 supp Q C kQE’“ , and suppRCF,

where F denotes the closure of {ZL\K\E,C. To show this, take f< I(,(\nJ Ek)
k=1 k=1
arbitrarily. Then for some open set [ containing knjE,c we have supp fP
k=1
— K\U. On the other hand, for all u=(e; U, U,, -, U) & U with \J U,C U,
k=1

we have by and

[ 14741 <n(e)/2 on K\U,
and so that

1 /Qull =14y )P /2= fIII P -
Since @ is a cluster point of the net {Q,}., this implies fQ =0; since f was

an arbitrary function of I,(\J E,), it follows that supp QC ) E;. Similarly
k=1 k=1
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we have supp RC F, and obtain
We now decompose @ into the sum of n pseudo-measures {P,}? such that

(9.10) Q=3P,, and supp P,.CE, (=<k=n),
k=1

and show that these {P,}7? satisfy the conditions (9.1) and (9.2).

The first two of (9.1) immediately follow from [(9.8) and [(9.10) To prove
the remainder parts, let {Quu,}. b€ any subnet of the net {Q,}, that converges
to Q. Fixing u=(; U, U,, ---, Uy) € U, we see from that the function
on K defined by

h, on KNU,
T  on K\U,

9.4y Bl =

is continuous; it follows that there exists yj G with

95y | exp [i h(0)1—(x, )| <7(e)/2  (x€ K).

Take now any g, = A(G) so that g,=1 on a neighborhood V, of E, and g,=0
on a neighborhood W, of szE"' Then for all u=(e; U,, Uy, ---, Up) = U with

U, V, and \J U,C W,, we see from [9.4), (9.4, [05) and [95) that
k=2

l7e—7al <n() on K\W,,
[1+7al <nle) on K\V,.

Therefore, taking into account the fact that supp g,Pc K\W,, we have for
such u= U

I Aty P/2—2,Qu |
=27 A4y g P—A+r) g P +271 | A+ 7)1 —g)x Pl
= | Gi—rw g Pl+elA—g)y P
=e(lgPl+I1=gl -1 PI),

from which it follows at once that

9.11) P, =20

= lizn Z1Quwn

and

= liin [(1+T;(a))XP/2+{ngu(a)_<1+T;(a)>XP/2}]

=lim A+7n)P/2,
and so that

9.12) P—P,=1lim (1—74w)1P/2 .
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In particular, we have || P—P,|| <| P|, and also it follows from and
(9.10) that

supp (P— P;)=supp (R+ EZP,C) c [(K\k\zjl Ey) ]U[,}! |
C(K\E)" .
Suppose now that y, 1’ G are arbitrary, then we see from (9.11) that
P(p—PG"y=2" lim HPO+PG+rue) —{PGN+PG +ruw)}]

=27 im [{P() = PG HPG +Tue) = PG+ 7))
which yields

sup |P(N—P(¢)| = sup | P(r)— PGl

ey 7Tor'EU
for all neighborhoods U of O« G. Similarly it follows from (9.12) that this
last inequality holds with P, replaced by P—P,.

Applying the same arguments for all 2 (1 <k <n), we see that the {P}7
have all the required properties, and this completes the proof.

LEMMA 10. Suppose that K is a compact subset of G, then for each neigh-
borhood U of O < G, there exists a natural number N = N(U) with the following
property:

For any natural number n, we can find NXn compact subsets {Ep}, 1L<j< N,
1<k<n, of K such that;

(@) The sets {Ej}3-, are pairwise disjoint for each j=1,2,---, N.

(b) To any choice {k(j)}?., of natural numbers k(j) with 1< k() <n 1=j
< N), there correspond finitely many, pairwise disjoint, closed subsets {K;}, of K
such that

N
le\Ejk(j)C k/KZ, and L/(KL—KL)CU.
j=

Proor. We shall first show this lemma in case that G has the form
10.1) G=1T1I T(a) (T(a)=T for all ac A)
oa-A

as a topological group. We then denote by S(a) a copy of S for any subset
S of T and a= A. Suppose now that U is any fixed neighborhood of O G.
It follows then from the definition of the product topology that we can find
a neighborhood W of O« T and a finite subset A, of A so that
(10.2) (W A)= TI W(a)x IAI\A T(cU.

a= 1

a=Ay
We then define N=N(U) to be the number of the elements of A,.

Suppose that n be an arbitrary natural number. Let us then take n
closed, pairwise disjoint, subsets {F};}7 of T so that: For each 2 1=k =<n),
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the closure of T'\F; consists of finitely many connected components (i. e., closed
arcs) {Cym}m such that \J(Cipn—Cin)C W. Denoting by {«,, a,, ---, ay} the
m

elements of A,, we define the sets E;, by
(10.3) Ep=Kn[Fa)x IT T@] (A=j=N 1sk=n).
a Olj :

It is then easy to verify that so defined {Ej,} satisfy both the required con-
ditions (a) and (b).

Returning to the general case, suppose that G is any locally compact
abelian group, and that K is any compact subset of it. We can find then a
cardinal number £ and a compact subset K of the product group 7% for
which there exists a homeomorphism s from K onto K (cf. the proof of

Theorem 2). Fixing any neighborhood U of O & G, take a neighborhood U of
0= T2 so that

(10.4) % jc K, and F—5e U> s—s(HeU.
For T2 and this UJ, choose a natural number N as before. Then for any
natural number », we can find NXn compact subsets {Ej,c} of K that satisfy
(a) and (b) with K and {Ej} replaced by K and {E,,}. If we define E,, to be
s(B;) for 1<7< N and 1<k<n, it is easy to see from that these sets
{E;;} have the required properties.

This completes the proof.

THEOREM 11. Ewvery quasi-Kronecker subset K of G is an SH-set.

PrOOF. We must prove that Pe PM(K) implies P e M(K).

Fix any P< PM(K); we shall first show that for any compact subset ¢
of G and ¢>0 there exists a measure p=u(C, ) M(K) such that

L.1) lgl <P, and |2(N—PG)| =PI+ (G eC).
To do this, take ¢ >0 and a compact subset C of G, and put
(11.2) U=UC, e)y={xeG: sup [1—(x, )| <)},
r=C

which is a neighborhood of 0 & G. Let N=N(U) be a natural number as in
Since P has compact support, P is a uniformly continuous func-

tion on G; it follows that there exists a neighborhood V of O e G such that

(11.3) sup |P()—PG")| <e/2N.
r—r'ev
Since C is compact, we can find finitely many elements of C, say T Tor s I
so that
(11.4) Cc \:Jl i+ VY.

Let us now take a positive integer M with ||P| < Me/2N, and put n=rM.
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There exist NXn compact subsets {E;;} (1=;=N, 1<k<n) of K satisfying
the conditions (a) and (b) in Since the sets {E,)} are pairwise
disjoint, applies, and we can find n pseudo-measures {P}? so that:

I=k=mn);

P,e PM(E,y), P“PkEPM(KTE_Jc),
11.5) { '

|ZP|=1P1, and |P-P=IP

(11.6) For any neighborhood U of O e G, we have
sup |PN—PigHI = sup |P(N—PG)],

and ey e
sup_|(P—P) ()—(P—Py G| = sup |P()—PG")
7—r'ev r-r'ev

for all k=1,2, .-, n

We then claim that sup|Pyy)| <e¢/N for at least one k (1=k=n).

7eC . .
Otherwise, there exist n elements {y{ e C}? with |P(y5)| =¢/N for all 2 A<k
<n). It follows from (11.4) that some y;+ V, say 71+ V, contains M elements
of the set {y/}z, say r{, 74 -+, ru (note that n=vrM). Therefore we have by

and (11.6)
| Pl 2 1P| — 1 Pa—Pilro)|
=e/N— sup | P()—Pi(r")

r=r'cv

> ¢/2N 1<k=M).
This, combined with and shows

IPIZ1 B P2 B IPG) 2 1P| = Mef2N,

which contradicts our choice of M. Thus there exists an integer k(1) (1 <k(Q)
=< n) with sup | Py()| <e/N. Putting Pj= P, we have a decomposition of

recC
P such that:
P=(P—-P)+P{, |P-P{|=|P|,
a1 sup |[Pi(p)] <e/N, P—Pie PM(K\E )
rEC
sup |(P—P)"(n)—P—Pn (") <e/2N.
T-r'evV

Repeating the same arguments for P—P|e PM(K\E,,) and the compact

subsets {E,; N\ (K\FExay)}3-; 0f K\Ezq,, and so on, we can find N integers
{k()H}y with 1< k()< N and N pseudo-measures {P}}{' so that:
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¥ "
18) P=Q+ X Pj, sup {sup | Pi(r)[} <e/N,
j=1 1=j=N reb
and
N
(11.9) QI ZIPIl, supp@QcCthe closure of (\IK\EJ»MD.
j=

It then follows from (b) of that there exist finitely many, pairwise
disjoint, closed subsets {K}, of K such that

(11.10) ﬁ\l K\Ej, UK, and UK—K)CU.
Therefore we have a decomposition of @ of the form
(11.11) Q= ; Q:, Q. PM(K) for all .
Letting {x, € K;}, be any choice of points, we now define
(11.12) pe MUE) by p=300)x),

where in general d(x) denotes the unit mass at the point x. Observe then

that | || <3 10«0)|, which together with and gives
l
Il =1QI=<1P]. We have also by and [IT.12]

|8) =P = 1 30 NAO-0D) 1+ 21 P50
= 10— NRO)+e  e0).

This, combined with (A1.2), [(I1.10) and [I1.1T) shows
l6(H—P@)| <e|Q+e<e(|P[+1) (Gel),

and we have proved the existence of a measure y e M(K) satisfying

But it is clear that [(I1.1) implies that P is the Fourier-Stieltjes transform
of a measure of M(K), which follows at once from the fact that every closed
(bounded) ball of M(K) is weak-star compact.

This establishes the Theorem.

COROLLARY 12. Ewvery finite union of quasi-Kronecker sets is an SR-set.

ProOOF. This is evident from Theorem 11 and Corollary 5.

THEOREM 13 (cf. [5]). Suppose that {K;}¢ are n-+1, pairwise disjoint,
compact subsets of G such that:

(13.1) The set C)Kj 1S a quasi-Kronecker set;
=0
13.2) Any K; contains no perfect subset (1=j=n).

Then the set K,+K,+ -+ +K, is an SR-set.
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Proor. We prove this by induction on #n. When n=0, the statement is
nothing but Theorem 11. Suppose that the conclusion of the Theorem holds
with n replaced by n—1 for some natural number n, and that the sets {K;}7
satisfy the above conditions. Put then

L: K0+K1+ b +Kn_1 » and D - KTL )

and let W={1, 2, ---, a, a+1, ...} be any well-ordered set having cardinal
number larger than that of D. For any compact subset E of D, we shall
define a family {E(a); a=W} of subsets of F as follows. Let E(1) be the
set of all accumulation points of £, and suppose that E(a) has already defined
for every a € W with a <a,. We then define the set E(a,) to be the set

N E(a) if a,—1 does not exist, and to be the set of all accumulation points
a<lag
of E(a,—1) if a,—1 exists. By transfinite induction, we obtain the family

{E(@); acW).

Suppose now that E is a closed subset of D. If E(1)=0, then E is finite,
and so L-+F is a finite disjoint union of translates of L by (13.1). Since L is
an SR-set by the hypothesis of the induction, it is easy to see that L+ F is
an SR-set. We shall now fix a,>1 (a¢,W) and assume that L-+FE is an
SR-set for every compact subset F of D with E(a)=#0 for some a < a,.

Let us then take any closed subset E of D with E(ay)=#0. In case that
a,—1 does not exist, then FE(a,)= N E(a) by the definition of E(a,); it

a<lag
follows that E(a)=1#0 for some a < «,, since each E(a), a €W, is compact, and

since we have E(a)DE(a’) for all @, a’ €W with a<a’. Thus L+E is an
SR-set by our hypothesis of the transfinite induction. If «;=a,—1 exists,
then E(«,) must be finite. Taking any closed subset F of L+E, f< I(F), and
P = PM(F), we want to show that fP=0.

First of all we have

(13.3) supp fPC FNn(L+E(a)).

In fact, let u e I(FN\(L+E(a,)) be arbitrary ; there exists an open set U such
that U D E(a;) and (supp ) N(FN(L+U)=0; we have then

supp uPC (supp yNFcC F\(L+U)c L+(E\U).
But (E\UXea,)C E(e)\U=90; it follows from our assumption that L+(E\U)
is an SR-set, and so that we have ufP=0. Since uec [(FN(L+E(a,)) was
arbitrary, this establishes (13.3). Note also that L+ FE(«,) is an SR-set since
E(ay) is a finite subset of D.

Let ¢> 0 be arbitrary; there exists f, € A(G) with

(13.4) supp e N(FN(L+E(a))=90, and |f—f]<e.
Since D= K, contains no perfect subset by (13.2), D is totally disconnected;
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thus E, as a compact subset of D, is O-dimensional. Therefore we can find
an open set U so that:

UDE(a), and ENU is compact;

(supp fONFNL+-U)=0.

For each >0, there exists y e G such that:

(135)

r-11<7 o0 EnHVUK;
lr+1] <79 on E\U;

because of (13.1). Consequently we can find y. e G so that:
lre—1] <) on L+(ENU);
[7e+1] <ne) on L+(E\U).

This, together with [13.3), (13.4) and [13.5) gives

I fP—=(r (/= fOP/2]

= 27H{IlA=yd PI+IGeA1) L}
=27 PN+ P = el P+l P,

and hence
I /P = el fPII+ell P11+ D= f)P/2]
=e(| /P +el PD+ell Pl

Letting ¢—0, we have fP=0. Thus F is an S-set, and we have proved that
L-+FE is an SR-set for every compact subset F of D with E(a,) =0.

By transfinite induction, we see that L+ FE is an SR-set for every compact
subset E of D such that E(a)=0 for some a = W. But it is easy to see that
D(a)y=0 for some a =W, since D contains no perfect subset and since the
cardinal number of W is larger than that of D. Thus the set L+D=K,+ K,
+ ... 4+ K, is an SR-set.

This completes the induction, and so establishes the Theorem.

We finish up this paper with:

THEOREM 14. For n compact spaces K = {K;}7, let V=V(X) be the tensor
algebra over the spaces K = {K;}r (for the definition, see [6; p. 597). Then, if
at least n—1 spaces K; do not contain any perfect subsets, spectral synthesis
holds in the algebra V.

Proor. Without loss of generality, we can and will assume that {K;}} are
pairwise disjoint compact subsets of some compact abelian group G such that
their union is a Kronecker set (see the proof of Theorem 2). Then we can
identify isometrically and algebraically ¥V to the quotient algebra A([?)—_—
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A(G)/](l:'), where K= K +K,+ --- +K, [6;p. 73]. Thus our statement follows
at once from (cf. [6; §47D.

Tokyo Metropolitan University
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