Spectral synthesis for the Kronecker sets

By Sadahiro SAEKI

(Received Feb. 28, 1969) (Revised April 23, 1969)

Throughout this paper, let G be any locally compact abelian group and \hat{G} its dual. We denote by A(G) the Banach algebra consisting of the Fourier transforms of all complex-valued functions on \hat{G} that are absolutely summable with respect to the Haar measure of \hat{G} [2].

N. Th. Varopoulos proved in [4] that every totally disconnected Kronecker subset of G is a set of spectral synthesis (an S-set) for the algebra A(G). On the other hand, every compact (Hausdorff) space is homeomorphic to a Kronecker subset of some compact abelian group (see Theorem 2). The main purpose of this paper is to show that every Kronecker set is an S-set.

DEFINITION 1. A compact subset K of the group G is called a quasi-Kronecker set, provided that: For each $\varepsilon > 0$ and each real continuous function h on K ($h \in C_R(K)$), there exists a character $\gamma \in \hat{G}$ such that

$$\sup_{x \in K} |\exp [i h(x)] - (x, \gamma)| < \varepsilon.$$

It is then easy to see that:

- (i) Every quasi-Kronecker set is independent;
- (ii) A Kronecker set is a quasi-Kronecker set;
- (iii) If K is a quasi-Kronecker subset of G, then we have $\|\mu\| = \|\hat{\mu}\|_{\infty}$ for all $\mu \in M(K)$. In particular, every quasi-Kronecker set is a Helson set.

The following theorem seems to be well-known. But the author does not know any literature about it; hence we give here a complete proof of it.

Theorem 2. There exists a compact abelian group which contains a quasi-Kronecker set that is not a Kronecker set. Every compact space is homeomorphic to a Kronecker subset of some compact abelian group.

PROOF. Suppose that X is a compact space, and that a and b are two constants such that 0 < a < b < 1, and take any subset F of $C_R(X)$ such that:

(2.1) We have
$$a \leq f \leq b$$
 for all $f \in F$;

(2.2) The functions in
$$F$$
 separate points of X .

Let us then denote by \mathcal{F} the set of all functions in $C_R(X)$ expressible as a finite product of elements in F, and let

(2.3)
$$G = \prod_{g \in \mathcal{F}} T(g) \qquad (T(g) = T \text{ for all } g \in \mathcal{F}),$$

where T denotes the one-dimensional torus (the circle group). Thus every point p of G has the form

$$(2.4) p = (p(g))_{g \in \mathcal{F}} (p(g) \in T(g) \text{ for all } g \in \mathcal{F}),$$

and for every $\gamma\in \hat{G}$ there exist integers $n_1,\,n_2,\,\cdots$, n_k and functions $g_1,\,g_2,\,\cdots$, g_k of ${\mathcal F}$ such that

(2.5)
$$(p, \gamma) = \prod_{i=1}^{k} \{p(g_i)\}^{n_j} \quad (p \in G).$$

We now define a mapping t from X into G by

$$(2.6) t(x) = (\exp \left[2\pi i g(x)\right])_{g \in \mathcal{F}} (x \in X).$$

It is then trivial that t is a homeomorphism from X onto K = t(X). If $h \in C_R(K)$, then there exists $h' \in C_R(X)$ such that $2\pi h'(x) = h(t(x))$. If $\gamma \in \hat{G}$ has the form (2.5), we see from (2.6) that

$$|\exp [i h(t(x))] - (t(x), \gamma)|$$

$$= |\exp [2\pi i h'(x)] - \exp [2\pi i \sum_{j=1}^{k} n_j g_j(x)]|$$

$$\leq 2\pi |h'(x) - \sum_{j=1}^{k} n_j g_j(x)| \qquad (x \in X).$$

Thus, in order to prove that K is a quasi-Kronecker set, it suffices to apply an analogous argument as in [2: p. 104].

Suppose now that X is homeomorphic to T, and that s is a homeomorphism of K onto T. It then follows from (2.5) and (2.6) that

$$\begin{split} \inf_{\gamma\in\hat{G}} \left\{\sup_{p\in K} |s(p)-(p,\gamma)|\right\} & \geq \inf_{g\in C_R(K)} \left\{\sup_{p\in K} |s(p)-\exp\left[i\,g(p)\right]|\right\} \\ & = \inf_{h\in C_R(T)} \left\{\sup_{z\in T} |z-\exp\left[i\,h(z)\right]|\right\} > 0 \;. \end{split}$$

Thus K is not a Kronecker set although it is a quasi-Kronecker set, and this establishes the first statement.

Suppose again that X is any compact space, and let \mathcal{F} in (2.3) be the set of all complex-valued functions $g \in C(X)$ with $|g| \equiv 1$. Defining a mapping τ from X into G by

(2.7)
$$\tau(x) = (g(x))_{g \in \mathcal{F}} \quad (x \in X),$$

one can now easily show that τ is a homeomorphism from X onto $K = \tau(X)$, and that K is a Kronecker set of G.

This completes the proof.

We now introduce some notations. For any closed subset E of G, let us

denote by:

$$I(E) = \{ f \in A(G) : f = 0 \text{ on } E \};$$

 $I_0(E) = \{ f \in A(G) : E \cap \text{supp } f = \emptyset \};$
 $I(E) = \text{the closure of } I_0(E).$

Thus I(E) (resp. J(E)) is the largest (resp. the smallest) closed ideal in A(G) whose zero-set is E. We also denote by PM(E) the space of all pseudomeasures P on G with supp $P \subset E$, and for any $P \in PM(E)$ \hat{P} will be always chosen to be continuous if this is possible, where \hat{P} denotes the bounded Borel function on \hat{G} corresponding to P. We call E an SH-set if and only if E is both an S-set and a Helson set. It is trivial that this condition is equivalent to the one PM(E) = M(E), and that such a set is a set of spectral resolution (an SR-set) [1].

Now, for any $f \in A(G)$ let $\sigma(f, E)$ be the set of all points $x \in G$ at which f does not belong to J(E) locally, and put

$$\sigma(E) = \bigcup_{f \in I(E)} \sigma(f, E)$$
.

It is well-known ([2], [3]) that $\sigma(E)$ is a union of perfect subsets of ∂E (the boundary of E), and that E is an S-set if and only if $\sigma(E)$ is empty. One can also show that $\sigma(E)$ is closed if G is metrizable.

LEMMA 3. Suppose that E is the union of two S-sets E_1 and E_2 of G, then we have $\sigma(E) \subset \partial E_1 \cap \partial E_2 \cap \partial E$. In particular, it follows that E is an S-set if either $\partial E_1 \cap \partial E_2 \cap \partial E$ contains no perfect subset or there exists a C-set C such that $\partial E_1 \cap \partial E_2 \cap \partial E \subset C \subset E$.

PROOF. It is trivial that $\sigma(E) \subset \partial E$. To show that every function of I(E) belongs to J(E) locally at any point in the complement of $E_1 \cap E_2$, take $f \in I(E)$ and $x \in E \setminus (E_1 \cap E_2)$ arbitrarily. Without loss of generality, we may assume that $x \in E_1$. Choose $u \in I_0(E_2)$ so that u = 1 on some neighborhood of x. Since E_1 is an S-set by our assumption, it follows that there is a sequence $\{g_n\}$ in $I_0(E_1)$ such that $\lim_{n \to \infty} \|f - g_n\| = 0$. Then $g_n u \in I_0(E)$ for all $n = 1, 2, \cdots$, and $\lim_{n \to \infty} \|f u - g_n u\| = 0$, which implies $f u \in J(E)$. Since f u = f on some neighborhood of x, it follows that f belongs to J(E) locally at x. Therefore we have

$$\sigma(E) \subset E_1 \cap E_2 \cap \partial E = \partial E_1 \cap \partial E_2 \cap \partial E$$

and this establishes the first statement.

If $\partial E_1 \cap \partial E_2 \cap \partial E$ contains no perfect subset, then $\sigma(E)$ is empty, and hence E is an S-set. Finally, suppose that E contains a C-set C such that $C \supset \partial E_1 \cap \partial E_2 \cap \partial E$. Then for every $f \in I(E)$ we can find a sequence $\{v_n\}_1^\infty$ in $I_0(C)$ so that $\lim_{n \to \infty} ||f - fv_n|| = 0$. Since each fu_n belongs to f(E) at all points of G by what we have proved above, it follows that $fv_n \in f(E)$ for all

 $n=1, 2, \dots$, and hence we have $f \in J(E)$. Since $f \in I(E)$ was arbitrary, this gives the desired conclusion.

The proof is now complete.

THEOREM 4. The union of an SH-set and an S-set is an S-set.

PROOF. Suppose that H and S be an SH-set and an S-set of G, respectively. There exists then a finite positive constant C such that to every $k \in C(H)$ corresponds a $g \in A(G)$ with

(4.1)
$$g|_{H} = k$$
, and $||g|| \le C ||k||_{\infty}$.

Let us take $f \in I(H \cup S)$ and $P \in PM(H \cup S)$ arbitrarily. Since $\sigma(H \cup S) \subset H \cap S$ by Lemma 3, it is easy to verify that supp $fP \subset H \cap S$. Therefore the assumption that H is an SH-set guarantees that fP is a measure on $H \cap S$. To show that fP = 0, let $\mathcal U$ be an arbitrarily fixed basis of open neighborhoods of $H \cap S$, and for each $U \in \mathcal U$ denote by $\mathcal K(U)$ the set of all $g \in A(G)$ such that

(4.2)
$$\sup g|_{H} \subset U$$
, $g=1$ on $H \cap S$, and $\|g\| \leq C$.

It follows then from (4.1) that each $\mathcal{K}(U)$, $U \in \mathcal{U}$, is non-empty. Thus the sets $\mathcal{L}(U) = \{gP \colon g \in \mathcal{K}(U)\}$, $U \in \mathcal{U}$, have the finite intersection property, and it is trivial that they are all contained in the closed ball of PM(G) with radius $C \|P\|$; hence they have a common weak-star cluster point $Q \in PM(G)$. We then claim that $\sup Q \subset S$ and fQ = fP.

To show this, let $h \in I_0(S)$ be arbitrary, and take an open neighborhood V of S on which h vanishes. If $U \in \mathcal{U}$ is such that $U \subset V$, and if $g \in \mathcal{K}(U)$, then we have $hg \in I(H \cup S)$ and so $hg \in J(H \cup S)$ by Lemma 3, since hg = 0 on $V \supset H \cap S$. This yields that hgP = 0 for all $g \in \mathcal{K}(U)$, and hence hQ = 0 since Q belongs to the weak-star closure of $\mathcal{L}(U)$. But $h \in I_0(S)$ was arbitrary, and so we conclude that supp $Q \subset S$. On the other hand, for any $U \in \mathcal{U}$ and $g \in \mathcal{K}(U)$, it must be fgP = fP since $fP \in M(H \cap S)$ and g = 1 on $H \cap S$ by (4.2), which yields fQ = fP. Finally we have fP = fQ = 0, since $Q \in PM(S)$, $f \in I(S)$, and S is an S-set.

This completes the proof.

COROLLARY 5. Every finite union of SH-sets is an SR-set.

PROOF. Since every closed subset of an SH-set is also an SH-set, it suffices to show that every finite union of SH-sets is an S-set. But this follows at once from Theorem 4 by induction.

COROLLARY 6. Every Helson set that is a finite union of S-sets is an SH-set. PROOF. Trivial.

We shall now prove four lemmas, the first two of which are essentially contained in [4]. To make the paper self-contained, we give their complete proofs.

LEMMA 7. To each $\varepsilon > 0$ corresponds a constant $\varepsilon > \eta(\varepsilon) > 0$ with the following property: For any compact subset K of G, any complex number α with $|\alpha| = 1$, and any characters $\gamma_1, \gamma_2 \in \hat{G}$ such that

(7.1)
$$\sup_{x \in K} |\alpha(x, \gamma_1) - (x, \gamma_2)| < \eta(\varepsilon),$$

we can find $h \in A(G)$ so that

(7.2)
$$||h|| < \varepsilon$$
, and $h = \alpha \gamma_1 - \gamma_2$

on some neighborhood of K.

PROOF. We shall here regard T as the multiplicative group of the complex numbers z with |z|=1. Consider the function $f \in A(T)$ defined by f(z)=1-z, and let $\varepsilon>0$ be given. Since f(1)=0, there exist a function $f_{\varepsilon}\in A(T)$ and a constant $\varepsilon>\eta(\varepsilon)>0$ such that

(7.3)
$$f_{\varepsilon}(z) = \sum_{n=-\infty}^{\infty} a_n z^n, \qquad ||f_{\varepsilon}|| = \sum_{n=-\infty}^{\infty} |a_n| < \varepsilon,$$

and such that

(7.4)
$$z \in T$$
, $|1-z| < \eta(\varepsilon) \Rightarrow f_{\varepsilon}(z) = 1-z$.

Suppose now that K, α , γ_1 and γ_2 satisfy the condition (7.1), and define a function g on G by

$$g(x) = \alpha(x, \gamma_1) f_{\varepsilon}(\bar{\alpha}(x, \gamma_2 - \gamma_1)).$$

It is then easy to see from (7.3) and (7.4) that g is the Fourier-Stieltjes transform of a measure on G with norm $< \varepsilon$, and that $g = \alpha \gamma_1 - \gamma_2$ on some open set containing K. To complete the proof, take $\delta > 0$ and $k = k_{\delta} \in A(G)$ so that $||k|| < 1 + \delta$ and k = 1 on some neighborhood of K. Setting $h_{\delta} = gk$, we see that for a sufficiently small $\delta > 0$, $h = h_{\delta} \in A(G)$ satisfies (7.2).

This establishes the Lemma.

Lemma 8. Let K be a quasi-Kronecker subset of G, let $\{Q_j\}_1^n$ be n pseudomeasures in PM(K) such that

(8.1)
$$\operatorname{supp} Q_i \cap \operatorname{supp} Q_j = \emptyset \qquad (1 \le i < j \le n),$$

and put $Q = \sum_{j=1}^{n} Q_{j}$. Then we have

(8.2)
$$\sup_{\gamma \in \hat{G}} |\hat{Q}(\gamma_1 + \gamma) - \sum_{j=1}^n \alpha_j \hat{Q}_j(\gamma)| \leq \varepsilon ||Q||$$

for any $\varepsilon > 0$, any $\gamma_1 \in \widehat{G}$, and any choice $\{\alpha_j\}_1^n$ of complex numbers with $|\alpha_j| = 1$ $(1 \le j \le n)$ such that

(8.3)
$$|(x, \gamma_1) - \alpha_j| < \eta(\varepsilon) \qquad (x \in \text{supp } Q_j, \ 1 \le j \le n),$$

where $\eta(\varepsilon)$ is a constant as in Lemma 7. In particular, we have

(8.4)
$$\sup_{\gamma \equiv \widehat{G}} \sum_{j=1}^{n} |\widehat{Q}_{j}(\gamma)| \leq ||Q||.$$

PROOF. Let ε , γ_1 , and $\{\alpha_j\}_1^n$ be as in (8.3), and take $\delta > 0$ so that the inequality in (8.3) remains valid even if the right term is replaced by $\eta(\varepsilon) - \delta$. Since K is a quasi-Kronecker set, and since $\sup Q = \bigcup_{j=1}^n \sup Q_j \subset K$, we can find $\gamma' \in \hat{G}$ so that

$$|\alpha_j - (x, \gamma')| < \eta(\delta)$$
 $(x \in \text{supp } Q_j, 1 \leq j \leq n)$.

It follows then that for all $x \in \text{supp } Q$ we have

$$|(x, \gamma_1) - (x, \gamma')| \leq \min_{1 \leq j \leq n} \{ |(x, \gamma_1) - \alpha_j| + |\alpha_j - (x, \gamma')| \}$$
$$< \{ \eta(\varepsilon) - \delta \} + \eta(\delta) < \eta(\varepsilon) .$$

Therefore we see from Lemma 7 that for all $\gamma \in \hat{G}$

$$\begin{split} |\hat{Q}(\gamma_1 + \gamma) - \sum_{j=1}^n \alpha_j \hat{Q}_j(\gamma)| \\ & \leq |\hat{Q}(\gamma_1 + \gamma) - \hat{Q}(\gamma' + \gamma)| + \sum_{j=1}^n |\hat{Q}_j(\gamma' + \gamma) - \alpha_j \hat{Q}_j(\gamma)| \\ & \leq \varepsilon \|Q\| + \delta \sum_{j=1}^n \|Q_j\|. \end{split}$$

Since $\delta > 0$ can be taken as small as one pleases, we obtain (8.2).

To complete the proof, let $\gamma \in \hat{G}$ be given, and take α_j so that $|\alpha_j| = 1$ and $\alpha_j \hat{Q}_j(\gamma) = |\hat{Q}_j(\gamma)|$ for all $j = 1, 2, \dots, n$. Then for any $\varepsilon > 0$, there exists $\gamma_1 \in \hat{G}$ which satisfies (8.3). This fact, combined with (8.2), yields (8.4).

The proof is now established.

LEMMA 9. Suppose that K is a quasi-Kronecker subset of G, that $P \in PM(K)$, and that $\{E_k\}_1^n$ are n closed, pairwise disjoint, subsets of K. Then there exist n pseudo-measures $\{P_k\}_1^n$ such that:

(9.1) For all $k = 1, 2, \dots, n$, we have

$$P_k \in PM(E_k)$$
 , $\|\sum_{k=1}^n P_k\| \leq \|P\|$,

$$\|P - P_k\| \le \|P\|$$
 , and $P - P_k \in PM(\overline{K \setminus E_k})$;

(9.2) For all $k=1, 2, \dots, n$ and any neighborhood \hat{U} of \hat{O} of \hat{G} ,

$$\sup_{\gamma-\gamma'\in\hat{\mathcal{U}}}|\hat{P}_{k}(\gamma)-\hat{P}_{k}(\gamma')| \leq \sup_{\gamma-\gamma'\in\hat{\mathcal{U}}}|\hat{P}(\gamma)-\hat{P}(\gamma')| \text{ , }$$

and

$$\sup_{\gamma-\gamma'\in \widehat{\mathcal{U}}} |(P-P_k)\hat{\ }(\gamma)-(P-P_k)\hat{\ }(\gamma)| \leq \sup_{\gamma-\gamma'\in \widehat{\mathcal{U}}} |\widehat{P}(\gamma)-\widehat{P}(\gamma')| \ .$$

PROOF. Fix any $\chi \in A(G)$ so that $\chi = 1$ on some neighborhood of K.

Note then that $\chi P = P$, and that $\|\hat{l}\chi P\| \le \|l\| \|P\|$ for all $l \in M(\hat{G})$, since K is a compact set containing the support of P.

Let U be the set of all tuples $u=(\varepsilon;\ U_1,\ U_2,\ \cdots,\ U_n)$ of $0<\varepsilon<1$ and open neighbourhoods U_k of E_k such that the sets \overline{U}_k , $1\leq k\leq n$, are pairwise disjoint. If we introduce an order "<" in V by

$$(9.3) \qquad (\varepsilon_1; \ U_{11}, \ U_{21}, \ \cdots, \ U_{n1}) < (\varepsilon_2; \ U_{12}, \ U_{22}, \ \cdots, \ U_{n2})$$

$$\Leftrightarrow \varepsilon_1 > \varepsilon_2, \quad \text{and} \quad U_{k1} \supset U_{k2} \quad \text{for all} \quad k \ (1 \le k \le n),$$

then $\mathcal U$ is clearly a directed set. Fixing $u=(\varepsilon;\,U_1,\,U_2,\,\cdots,\,U_n)$ in $\mathcal U$, we shall now define two pseudo-measures Q_u and R_u of PM(K) as follows. Take $h_u\in C_R(K)$ so that

(9.4)
$$0 \le h_u \le \pi$$
, $h_u = 0$ on $\bigcup_{k=1}^n E_k$, and $h_u = \pi$ on $\bigcap_{k=1}^n K \setminus U_k$.

Since K is a quasi-Kronecker set, there exists $\gamma_u \in \hat{G}$ such that

$$(9.5) |\exp[i h_u(x)] - (x, \gamma_u)| < \eta(\varepsilon)/2 (x \in K).$$

where $\eta(\varepsilon)$ is as in Lemma 7. We then define

(9.6)
$$Q_u = (1+\gamma_u)\chi P/2$$
, and $R_u = (1-\gamma_u)\chi P/2$.

It is trivial that

(9.7)
$$P = Q_u + R_u$$
, and $||Q_u||$, $||R_u|| \le ||P||$ $(u \in \mathcal{U})$.

This assures that a subnet of the net $\{Q_u\}_u$ (resp. $\{R_u\}_u$) converges to some Q (resp. R) of PM(K) in the weak-star topology of PM(G) such that

(9.8)
$$P = Q + R$$
, and $||Q||$, $||R|| \le ||P||$.

We claim then that

(9.9)
$$\operatorname{supp} Q \subset \bigcup_{k=1}^{n} E_{k}, \text{ and } \operatorname{supp} R \subset F,$$

where F denotes the closure of $\bigcap_{k=1}^n K \setminus E_k$. To show this, take $f \in I_0(\bigcup_{k=1}^n E_k)$ arbitrarily. Then for some open set U containing $\bigcup_{k=1}^n E_k$ we have supp $fP \subset K \setminus U$. On the other hand, for all $u = (\varepsilon; U_1, U_2, \dots, U_n) \in \mathcal{U}$ with $\bigcup_{k=1}^n U_k \subset U$, we have by (9.4) and (9.5)

$$|1+\gamma_u|<\eta(arepsilon)/2$$
 on $Kackslash U$,

and so that

$$|| fQ_u || = || (1+\gamma_u) fP || /2 \le \varepsilon || f || || P ||.$$

Since Q is a cluster point of the net $\{Q_u\}_u$, this implies fQ = 0; since f was an arbitrary function of $I_0(\bigcup_{k=1}^n E_k)$, it follows that supp $Q \subset \bigcup_{k=1}^n E_k$. Similarly

we have supp $R \subset F$, and obtain (9.9).

We now decompose Q into the sum of n pseudo-measures $\{P_k\}_1^n$ such that

(9.10)
$$Q = \sum_{k=1}^{n} P_k \text{, and supp } P_k \subset E_k \qquad (1 \leq k \leq n) \text{,}$$

and show that these $\{P_k\}_1^n$ satisfy the conditions (9.1) and (9.2).

The first two of (9.1) immediately follow from (9.8) and (9.10). To prove the remainder parts, let $\{Q_{u(\alpha)}\}_{\alpha}$ be any subnet of the net $\{Q_u\}_u$ that converges to Q. Fixing $u=(\varepsilon; U_1, U_2, \cdots, U_n) \in \mathcal{U}$, we see from (9.4) that the function on K defined by

$$(9.4)' h_u' = \begin{cases} h_u & \text{on } K \cap U_1 \\ \pi & \text{on } K \setminus U_1 \end{cases}$$

is continuous; it follows that there exists $\gamma_u' \in \widehat{G}$ with

$$(9.5)' \qquad |\exp[i h'_u(x)] - (x, \gamma'_u)| < \eta(\varepsilon)/2 \qquad (x \in K).$$

Take now any $g_1\!\in\!A(G)$ so that $g_1\!=\!1$ on a neighborhood V_1 of E_1 and $g_1\!=\!0$ on a neighborhood W_1 of $\bigcup_{k=2}^n E_k$. Then for all $u\!=\!(\varepsilon\,;\,U_1,\,U_2,\,\cdots\,,\,U_n)\!\in\!\mathcal{U}$ with $U_1\!\subset\!V_1$ and $\bigcup_{k=2}^n U_k\!\subset\!W_1$, we see from (9.4), (9.4) , (9.5) and (9.5)' that

and

$$|\gamma_u'-\gamma_u|<\eta(arepsilon) \quad ext{on} \quad Kackslash W_1$$
 , $|1+\gamma_u'|<\eta(arepsilon) \quad ext{on} \quad Kackslash V_1$.

Therefore, taking into account the fact that supp $g_1P \subset K \setminus W_1$, we have for such $u \in U$

$$\begin{split} &\| (1+\gamma_{u}')\chi \, P/2 - g_{1}Q_{u} \, \| \\ & \leq 2^{-1} \, \| \, (1+\gamma_{u}') \, g_{1}\chi P - (1+\gamma_{u}) \, g_{1}\chi P \, \| + 2^{-1} \, \| \, (1+\gamma_{u}') (1-g_{1})\chi P \, \| \\ & \leq \| \, (\gamma_{1}' - \gamma_{u}) \, g_{1}P \, \| + \varepsilon \, \| \, (1-g_{1})\chi P \, \| \\ & \leq \varepsilon \, (\| \, g_{1}P \| + \| \, 1 - g_{1} \| \cdot \| \, P \| \,) \,, \end{split}$$

from which it follows at once that

(9.11)
$$\begin{split} P_1 &= g_1 Q \\ &= \lim_{\alpha} g_1 Q_{u(\alpha)} \\ &= \lim_{\alpha} \left[(1 + \gamma'_{u(\alpha)}) \chi P / 2 + \{ g_1 Q_{u(\alpha)} - (1 + \gamma'_{u(\alpha)}) \chi P / 2 \} \right] \\ &= \lim_{\alpha} \left(1 + \gamma'_{u(\alpha)} \right) \chi P / 2 \;, \end{split}$$

and so that

(9.12)
$$P - P_{1} = \lim_{\alpha} (1 - \gamma'_{u(\alpha)}) \chi P / 2.$$

In particular, we have $\|P-P_1\| \le \|P\|$, and also it follows from (9.8), (9.9) and (9.10) that

$$\operatorname{supp}(P-P_1) = \operatorname{supp}\left(R + \sum_{k=2}^{n} P_k\right) \subset \left[\left(K \setminus \bigcup_{k=1}^{n} E_k\right)^{-}\right] \cup \left[\bigcup_{k=2}^{n} E_k\right]$$
$$\subset (K \setminus E_1)^{-}.$$

Suppose now that $\gamma, \gamma' \in \hat{G}$ are arbitrary, then we see from (9.11) that

$$\begin{split} \hat{P}_{1}(\gamma) - \hat{P}_{1}(\gamma') &= 2^{-1} \lim_{\alpha} \left[\{ \hat{P}(\gamma) + \hat{P}(\gamma + \gamma'_{u(\alpha)}) \} - \{ \hat{P}(\gamma') + \hat{P}(\gamma' + \gamma'_{u(\alpha)}) \} \right] \\ &= 2^{-1} \lim_{\alpha} \left[\{ \hat{P}(\gamma) - \hat{P}(\gamma') \} + \{ \hat{P}(\gamma + \gamma'_{u(\alpha)}) - \hat{P}(\gamma' + \gamma'_{u(\alpha)}) \} \right], \end{split}$$

which yields

$$\sup_{\boldsymbol{\gamma}-\boldsymbol{\gamma}'\in\hat{\mathcal{U}}}|\hat{P}_{\mathbf{1}}\!(\boldsymbol{\gamma})-\hat{P}_{\mathbf{1}}\!(\boldsymbol{\gamma}')| \leqq \sup_{\boldsymbol{\gamma}-\boldsymbol{\gamma}'\in\hat{\mathcal{U}}}|\hat{P}(\boldsymbol{\gamma})-\hat{P}(\boldsymbol{\gamma}')|$$

for all neighborhoods \hat{U} of $\hat{O} \in \hat{G}$. Similarly it follows from (9.12) that this last inequality holds with P_1 replaced by $P - P_1$.

Applying the same arguments for all k $(1 \le k \le n)$, we see that the $\{P_k\}_1^n$ have all the required properties, and this completes the proof.

LEMMA 10. Suppose that K is a compact subset of G, then for each neighborhood U of $O \in G$, there exists a natural number N = N(U) with the following property:

For any natural number n, we can find $N \times n$ compact subsets $\{E_{jk}\}$, $1 \le j \le N$, $1 \le k \le n$, of K such that;

- (a) The sets $\{E_{jk}\}_{k=1}^n$ are pairwise disjoint for each $j=1, 2, \dots, N$.
- (b) To any choice $\{k(j)\}_{j=1}^n$ of natural numbers k(j) with $1 \le k(j) \le n$ $(1 \le j \le N)$, there correspond finitely many, pairwise disjoint, closed subsets $\{K_l\}_l$ of K such that

$$\bigcap_{j=1}^{N} K \setminus E_{jk(j)} \subset \bigcup_{l} K_{l}, \quad and \quad \bigcup_{l} (K_{l} - K_{l}) \subset U.$$

PROOF. We shall first show this lemma in case that G has the form

(10.1)
$$G = \prod_{\alpha = A} T(\alpha) \qquad (T(\alpha) = T \text{ for all } \alpha \in A)$$

as a topological group. We then denote by $S(\alpha)$ a copy of S for any subset S of T and $\alpha \in A$. Suppose now that U is any fixed neighborhood of $O \in G$. It follows then from the definition of the product topology that we can find a neighborhood W of $O \in T$ and a finite subset A_1 of A so that

(10.2)
$$(W; A_1) = \prod_{\alpha \in A_1} W(\alpha) \times \prod_{\alpha \in A \setminus A_1} T(\alpha) \subset U.$$

We then define N = N(U) to be the number of the elements of A_1 .

Suppose that n be an arbitrary natural number. Let us then take n closed, pairwise disjoint, subsets $\{F_k\}_1^n$ of T so that: For each k $(1 \le k \le n)$,

the closure of $T \setminus F_k$ consists of finitely many connected components (i. e., closed arcs) $\{C_{km}\}_m$ such that $\bigcup_m (C_{km} - C_{km}) \subset W$. Denoting by $\{\alpha_1, \alpha_2, \cdots, \alpha_N\}$ the elements of A_1 , we define the sets E_{jk} by

(10.3)
$$E_{jk} = K \cap [F_k(\alpha_j) \times \prod_{\alpha \neq \alpha_j} T(\alpha)] \qquad (1 \leq j \leq N, \ 1 \leq k \leq n).$$

It is then easy to verify that so defined $\{E_{jk}\}$ satisfy both the required conditions (a) and (b).

Returning to the general case, suppose that G is any locally compact abelian group, and that K is any compact subset of it. We can find then a cardinal number Ω and a compact subset \widetilde{K} of the product group T^{Ω} for which there exists a homeomorphism s from \widetilde{K} onto K (cf. the proof of Theorem 2). Fixing any neighborhood U of $O \in G$, take a neighborhood \widetilde{U} of $O \in T^{\Omega}$ so that

(10.4)
$$\tilde{x}, \tilde{y} \in \tilde{K}, \text{ and } \tilde{x} - \tilde{y} \in \tilde{U} \Rightarrow s(\tilde{x}) - s(\tilde{y}) \in U.$$

For $T^{\mathcal{Q}}$ and this \widetilde{U} , choose a natural number N as before. Then for any natural number n, we can find $N \times n$ compact subsets $\{\widetilde{E}_{jk}\}$ of \widetilde{K} that satisfy (a) and (b) with K and $\{E_{jk}\}$ replaced by \widetilde{K} and $\{\widetilde{E}_{jk}\}$. If we define E_{jk} to be $s(\widetilde{E}_{jk})$ for $1 \leq j \leq N$ and $1 \leq k \leq n$, it is easy to see from (10.4) that these sets $\{E_{jk}\}$ have the required properties.

This completes the proof.

THEOREM 11. Every quasi-Kronecker subset K of G is an SH-set.

PROOF. We must prove that $P \in PM(K)$ implies $P \in M(K)$.

Fix any $P \in PM(K)$; we shall first show that for any compact subset \hat{C} of \hat{G} and $\varepsilon > 0$ there exists a measure $\mu = \mu(\hat{C}, \varepsilon) \in M(K)$ such that

(11.1)
$$\|\mu\| \leq \|P\|$$
, and $|\hat{\mu}(\gamma) - \hat{P}(\gamma)| \leq \varepsilon(\|P\| + 1)$ $(\gamma \in \hat{C})$.

To do this, take $\varepsilon > 0$ and a compact subset \hat{C} of \hat{G} , and put

(11.2)
$$U = U(\hat{C}, \varepsilon) = \{ x \in G : \sup_{\gamma \in \hat{C}} |1 - (x, \gamma)| < \eta(\varepsilon) \},$$

which is a neighborhood of $0 \in G$. Let N = N(U) be a natural number as in Lemma 10. Since P has compact support, \hat{P} is a uniformly continuous function on \hat{G} ; it follows that there exists a neighborhood \hat{V} of $\hat{O} \in \hat{G}$ such that

(11.3)
$$\sup_{\gamma-\gamma'\in\widehat{V}}|\widehat{P}(\gamma)-\widehat{P}(\gamma')|<\varepsilon/2N.$$

Since \hat{C} is compact, we can find finitely many elements of \hat{C} , say $\gamma_1, \gamma_2, \dots, \gamma_r$ so that

(11.4)
$$\hat{C} \subset \bigcup_{i=1}^{r} (\gamma_i + \hat{V}).$$

Let us now take a positive integer M with $||P|| < M\varepsilon/2N$, and put n = rM.

There exist $N \times n$ compact subsets $\{E_{jk}\}$ $(1 \le j \le N, 1 \le k \le n)$ of K satisfying the conditions (a) and (b) in Lemma 10. Since the sets $\{E_{1k}\}_{i}^{n}$ are pairwise disjoint, Lemma 9 applies, and we can find n pseudo-measures $\{P_{k}\}_{i}^{n}$ so that:

(11.5)
$$\begin{cases} P_k \in PM(E_{1k}), & P - P_k \in PM(\overline{K \setminus E_{1k}}), \\ \left\| \sum_{k=1}^n P_k \right\| \le \|P\|, \text{ and } \|P - P_k\| \le \|P\| \end{cases}$$
 $(1 \le k \le n);$

(11.6) For any neighborhood \hat{U} of $\hat{O} \in \hat{G}$, we have

and

$$\begin{split} \sup_{\gamma-\gamma'\in\hat{\mathcal{U}}} |\hat{P}_k(\gamma) - \hat{P}_k(\gamma')| & \leq \sup_{\gamma-\gamma'\in\hat{\mathcal{U}}} |\hat{P}(\gamma) - \hat{P}(\gamma')| \text{ ,} \\ \sup_{\gamma-\gamma'\in\hat{\mathcal{U}}} |(P-P_k)^{\smallfrown}(\gamma) - (P-P_k)^{\smallfrown}(\gamma')| & \leq \sup_{\gamma-\gamma'\in\hat{\mathcal{U}}} |\hat{P}(\gamma) - \hat{P}(\gamma')| \end{split}$$

for all $k = 1, 2, \dots, n$.

We then claim that $\sup_{\boldsymbol{\gamma}\in\hat{\mathcal{C}}}|\hat{P}_k(\boldsymbol{\gamma})|<\varepsilon/N$ for at least one k $(1\leq k\leq n)$. Otherwise, there exist n elements $\{\gamma_k'\in\hat{\mathcal{C}}\}_1^n$ with $|\hat{P}_k(\boldsymbol{\gamma}_k')|\geq\varepsilon/N$ for all k $(1\leq k\leq n)$. It follows from (11.4) that some $\gamma_i+\hat{V}$, say $\gamma_1+\hat{V}$, contains M elements of the set $\{\gamma_k'\}_1^n$, say γ_1' , γ_2' , \cdots , γ_M' (note that n=rM). Therefore we have by (11.3) and (11.6)

$$\begin{split} |\hat{P}_{k}(\gamma_{1})| &\geq |\hat{P}_{k}(\gamma_{k}')| - |\hat{P}_{k}(\gamma_{k}') - \hat{P}_{k}(\gamma_{1})| \\ &\geq \varepsilon/N - \sup_{\gamma - \gamma' \in \hat{V}} |\hat{P}_{k}(\gamma) - \hat{P}_{k}(\gamma')| \\ &\geq \varepsilon/2N \qquad (1 \leq k \leq M). \end{split}$$

This, combined with Lemma 8 and (11.5), shows

$$\|P\| \ge \|\sum_{k=1}^n P_k\| \ge \sum_{k=1}^n |\widehat{P}_k(\gamma_1)| \ge \sum_{k=1}^M |\widehat{P}_k(\gamma_1)| \ge M\varepsilon/2N$$
 ,

which contradicts our choice of M. Thus there exists an integer k(1) $(1 \le k(1) \le n)$ with $\sup_{\gamma \in \hat{\mathcal{C}}} |\hat{P}_{k(1)}(\gamma)| < \varepsilon/N$. Putting $P_1' = P_{k(1)}$, we have a decomposition of P such that:

(11.7)
$$\begin{cases} P = (P - P_1') + P_1', & \|P - P_1'\| \leq \|P\|, \\ \sup_{\gamma \in \widehat{\mathcal{C}}} |P_1'(\gamma)| < \varepsilon/N, & P - P_1' \in PM(\overline{K \setminus E_{1k(1)}}), \\ \sup_{\gamma = \gamma' \in \widehat{\mathcal{V}}} |(P - P_1')^{\hat{\gamma}}(\gamma) - (P - P_1')^{\hat{\gamma}}(\gamma')| < \varepsilon/2N. \end{cases}$$

Repeating the same arguments for $P-P_1' \in PM(\overline{K \setminus E_{1k(1)}})$ and the compact subsets $\{E_{2k} \cap (\overline{K \setminus E_{1k(1)}})\}_{k=1}^n$ of $\overline{K \setminus E_{1k(1)}}$, and so on, we can find N integers $\{k(j)\}_{j=1}^N$ with $1 \leq k(j) \leq N$ and N pseudo-measures $\{P_j'\}_{j=1}^N$ so that:

(11.8)
$$P = Q + \sum_{j=1}^{N} P'_{j}, \quad \sup_{1 \le j \le N} \left\{ \sup_{\gamma \in \widehat{\mathcal{C}}} |\widehat{P}'_{j}(\gamma)| \right\} < \varepsilon/N,$$

and

(11.9)
$$||Q|| \le ||P||$$
, supp $Q \subset \text{the closure of } \bigcap_{j=1}^{N} K \setminus E_{jk(j)}$.

It then follows from (b) of Lemma 10 that there exist finitely many, pairwise disjoint, closed subsets $\{K_i\}_i$ of K such that

(11.10)
$$\bigcap_{j=1}^{N} K \setminus E_{jk(j)} \subset \bigcup_{l} K_{l}, \text{ and } \bigcup_{l} (K_{l} - K_{l}) \subset U.$$

Therefore we have a decomposition of Q of the form

(11.11)
$$Q = \sum_{l} Q_{l}, \quad Q_{l} \in PM(K_{l}) \quad \text{for all} \quad l.$$

Letting $\{x_i \in K_i\}_i$ be any choice of points, we now define

(11.12)
$$\mu \in M(K) \quad \text{by} \quad \mu = \sum_{l} \hat{Q}_{l}(0)\delta(x_{l}),$$

where in general $\delta(x)$ denotes the unit mass at the point x. Observe then that $\|\mu\| \leq \sum_{l} |\hat{Q}_{l}(0)|$, which together with (11.9), (11.11) and Lemma 8 gives $\|\mu\| \leq \|Q\| \leq \|P\|$. We have also by (11.8) and (11.12)

$$\begin{aligned} |\hat{\mu}(\gamma) - \hat{P}(\gamma)| &\leq |\sum_{l} (x_{l}, \gamma) \hat{Q}_{l}(0) - \hat{Q}(\gamma)| + \sum_{j=1}^{N} |\hat{P}'_{j}(\gamma)| \\ &\leq |\hat{Q}(\gamma) - \sum_{l} (x_{l}, \gamma) \hat{Q}_{l}(0)| + \varepsilon \qquad (\gamma \in \hat{C}). \end{aligned}$$

This, combined with Lemma 8, (11.2), (11.10) and (11.11) shows

$$|\hat{\mu}(\gamma) - \hat{P}(\gamma)| \le \varepsilon \|Q\| + \varepsilon \le \varepsilon (\|P\| + 1)$$
 $(\gamma \in \hat{C})$,

and we have proved the existence of a measure $\mu \in M(K)$ satisfying (11.1).

But it is clear that (11.1) implies that P is the Fourier-Stieltjes transform of a measure of M(K), which follows at once from the fact that every closed (bounded) ball of M(K) is weak-star compact.

This establishes the Theorem.

COROLLARY 12. Every finite union of quasi-Kronecker sets is an SR-set.

PROOF. This is evident from Theorem 11 and Corollary 5.

THEOREM 13 (cf. [5]). Suppose that $\{K_j\}_0^n$ are n+1, pairwise disjoint, compact subsets of G such that:

(13.1) The set
$$\bigcup_{j=0}^{n} K_j$$
 is a quasi-Kronecker set;

(13.2) Any
$$K_j$$
 contains no perfect subset $(1 \le j \le n)$.

Then the set $K_0+K_1+\cdots+K_n$ is an SR-set.

PROOF. We prove this by induction on n. When n=0, the statement is nothing but Theorem 11. Suppose that the conclusion of the Theorem holds with n replaced by n-1 for some natural number n, and that the sets $\{K_j\}_0^n$ satisfy the above conditions. Put then

$$L = K_0 + K_1 + \cdots + K_{n-1}$$
, and $D = K_n$,

and let $W = \{1, 2, \cdots, \alpha, \alpha + 1, \cdots\}$ be any well-ordered set having cardinal number larger than that of D. For any compact subset E of D, we shall define a family $\{E(\alpha); \alpha \in W\}$ of subsets of E as follows. Let E(1) be the set of all accumulation points of E, and suppose that $E(\alpha)$ has already defined for every $\alpha \in W$ with $\alpha < \alpha_0$. We then define the set $E(\alpha_0)$ to be the set $\bigcap_{\alpha < \alpha_0} E(\alpha)$ if $\alpha_0 - 1$ does not exist, and to be the set of all accumulation points of $E(\alpha_0 - 1)$ if $\alpha_0 - 1$ exists. By transfinite induction, we obtain the family $\{E(\alpha); \alpha \in W\}$.

Suppose now that E is a closed subset of D. If $E(1)=\emptyset$, then E is finite, and so L+E is a finite disjoint union of translates of L by (13.1). Since L is an SR-set by the hypothesis of the induction, it is easy to see that L+E is an SR-set. We shall now fix $\alpha_0 > 1$ ($\alpha_0 \in W$) and assume that L+E is an SR-set for every compact subset E of D with $E(\alpha)=\emptyset$ for some $\alpha < \alpha_0$.

Let us then take any closed subset E of D with $E(\alpha_0)=\emptyset$. In case that α_0-1 does not exist, then $E(\alpha_0)=\bigcap_{\alpha<\alpha_0}E(\alpha)$ by the definition of $E(\alpha_0)$; it follows that $E(\alpha)=\emptyset$ for some $\alpha<\alpha_0$, since each $E(\alpha)$, $\alpha\in W$, is compact, and since we have $E(\alpha)\supset E(\alpha')$ for all α , $\alpha'\in W$ with $\alpha<\alpha'$. Thus L+E is an SR-set by our hypothesis of the transfinite induction. If $\alpha_1=\alpha_0-1$ exists, then $E(\alpha_1)$ must be finite. Taking any closed subset F of L+E, $f\in I(F)$, and $P\in PM(F)$, we want to show that fP=0.

First of all we have

(13.3)
$$\operatorname{supp} fP \subset F \cap (L + E(\alpha_1)).$$

In fact, let $u \in I_0(F \cap (L+E(\alpha_1)))$ be arbitrary; there exists an open set U such that $U \supset E(\alpha_1)$ and $(\text{supp } u) \cap (F \cap (L+U)) = \emptyset$; we have then

$$\operatorname{supp} uP \subset (\operatorname{supp} u) \cap F \subset F \setminus (L+U) \subset L+(E \setminus U)$$
.

But $(E \setminus U)(\alpha_1) \subset E(\alpha_1) \setminus U = \emptyset$; it follows from our assumption that $L + (E \setminus U)$ is an SR-set, and so that we have ufP = 0. Since $u \in I_0(F \cap (L + E(\alpha_1)))$ was arbitrary, this establishes (13.3). Note also that $L + E(\alpha_1)$ is an SR-set since $E(\alpha_1)$ is a finite subset of D.

Let $\varepsilon > 0$ be arbitrary; there exists $f_{\varepsilon} \in A(G)$ with

(13.4)
$$\operatorname{supp} f_{\varepsilon} \cap (F \cap (L + E(\alpha_1))) = \emptyset, \text{ and } ||f - f_{\varepsilon}|| < \varepsilon.$$

Since $D = K_n$ contains no perfect subset by (13.2), D is totally disconnected;

thus E, as a compact subset of D, is 0-dimensional. Therefore we can find an open set U so that:

(13.5)
$$\left\{ \begin{array}{ll} U \supset E(\alpha_1), & \text{and} \quad E \cap U \text{ is compact }; \\ (\sup f_{\mathfrak{s}}) \cap F \cap (L+U) = \emptyset. \end{array} \right.$$

For each $\eta > 0$, there exists $\gamma \in \hat{G}$ such that;

$$|\gamma-1|<\eta \qquad \text{on} \quad (E\cap U)\cup \bigcup_{j=0}^{n-1}K_j;$$
 $|\gamma+1|<\eta \qquad \text{on} \quad E\setminus U;$

because of (13.1). Consequently we can find $\gamma_{\varepsilon} \in \hat{G}$ so that:

$$|\gamma_{\varepsilon}-1| < \eta(\varepsilon)$$
 on $L+(E \cap U)$;
 $|\gamma_{\varepsilon}+1| < \eta(\varepsilon)$ on $L+(E \setminus U)$.

This, together with (13.3), (13.4) and (13.5) gives

$$\begin{split} \| fP - (\gamma_{\varepsilon} + 1)(f - f_{\varepsilon})P/2 \| \\ & \leq 2^{-1} \{ \| (1 - \gamma_{\varepsilon})fP \| + \| (\gamma_{\varepsilon} + 1)f_{\varepsilon}P \| \} \\ & \leq 2^{-1} \varepsilon (\| fP \| + \| f_{\varepsilon}P \|) \leq \varepsilon (\| fP \| + \varepsilon \| P \|) , \end{split}$$

and hence

$$|| fP || \le \varepsilon (|| fP || + \varepsilon || P ||) + || (\gamma_{\varepsilon} + 1)(f - f_{\varepsilon})P/2 ||$$

$$\le \varepsilon (|| fP || + \varepsilon || P ||) + \varepsilon || P ||.$$

Letting $\varepsilon \to 0$, we have fP = 0. Thus F is an S-set, and we have proved that L+E is an SR-set for every compact subset E of D with $E(\alpha_0) = \emptyset$.

By transfinite induction, we see that L+E is an SR-set for every compact subset E of D such that $E(\alpha)=\emptyset$ for some $\alpha\in W$. But it is easy to see that $D(\alpha)=\emptyset$ for some $\alpha\in W$, since D contains no perfect subset and since the cardinal number of W is larger than that of D. Thus the set $L+D=K_0+K_1+\cdots+K_n$ is an SR-set.

This completes the induction, and so establishes the Theorem.

We finish up this paper with:

THEOREM 14. For n compact spaces $\mathcal{K} = \{K_j\}_1^n$, let $V = V(\mathcal{K})$ be the tensor algebra over the spaces $\mathcal{K} = \{K_j\}_1^n$ (for the definition, see $[\mathbf{6}; p. 59]$). Then, if at least n-1 spaces K_j do not contain any perfect subsets, spectral synthesis holds in the algebra V.

PROOF. Without loss of generality, we can and will assume that $\{K_j\}_1^n$ are pairwise disjoint compact subsets of some compact abelian group G such that their union is a Kronecker set (see the proof of Theorem 2). Then we can identify isometrically and algebraically V to the quotient algebra $A(\tilde{K})$

 $A(G)/I(\widetilde{K})$, where $\widetilde{K} = K_1 + K_2 + \cdots + K_n$ [6; p. 73]. Thus our statement follows at once from Theorem 13 (cf. [6; § 4]).

Tokyo Metropolitan University

References

- [1] P. Malliavin, Ensembles de résolution spectrale, Proc. I.C.M. Stockholm, 1962, 368-378.
- [2] W. Rudin, Fourier analysis on groups, New York, Interscience, 1962.
- [3] S. Saeki, An elementary proof of a theorem of Henry Helson, Tôhoku Math. J., 20 (1968), 244-247.
- [4] N. Th. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C.R. Acad. Sci. Paris, 260 (1955), 3831-3834.
- [5] N. Th. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sci. Paris, 260 (1955), 4668-4670.
- [6] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math., 119 (1967), 51-112.