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In [3] and [5], V. W. Guillemin, I. M. Singer and S. Sternberg gave Exist-
ence and Uniqueness theorem and Realization theorem concerning the abstract
transitive Lie algebra. In this paper we shall give some extensions of these
theorems, $i.e$ . Embedding theorem (Section 5) and Existence theorem (Section 7).

The former involves as its applications Realization theorem and also theorems
concerning the graded Lie algebra, the latter may be said to be a relative
existence theorem with the higher order structure constant. We begin by
giving an abstract definition of an infinite Lie algebra and a truncated Lie
algebra of any order. Roughly speaking, we shall construct Lie algebra as a
projective limit of truncated Lie algebras. By this method, we can simplify
the proofs, especially of Existence theorem, and also state the properties of
the higher order structure constant. (It is shown in Section 3 that our infinite
Lie algebra is equivalent to the complete filtered Lie algebra [4], and hence
also to the abstract transitive Lie algebra.)

1. Throughout this paper, all vector spaces and Lie algebras are assumed
to be defined over a commutative field of characteristic $0$ . Suppose that a
collection of

a sequence of finite dimensional vector spaces $V_{0},$ $V_{1},$ $\cdots$ , $V_{n},$ $\cdots$

$\pi_{0}$ $\pi_{1}$ $\pi_{n}$

a sequence of maps $ 0-V_{0}-V_{1}-\cdots-V_{n}-\cdots$ , and
a sequence of bracket products $[]_{n}^{\prime}$ : $V_{n}\times V_{n}\ni(x, y)-[x, y]_{n}^{\prime}\in V_{n-1},$ $n=$

$0,1,2,$ $\cdots$ , $(V_{-1}=0)$ is given, and that the following conditions $(a)-(f)$ are
satisfied for all $n\geqq 1$ .

(a) $\pi_{n}$ is linear and surjective;
(b) $\pi_{n-1}[x, y]_{n}^{\prime}=[\pi_{n}x, \pi_{n}y]_{n-1}^{\prime}$ , for all $x,$ $y\in V_{n}$ ;
(c) $[, ]_{n}^{\prime}$ is bilinear and anti-symmetric;
(d) $J_{n^{\prime}}(x, y, z)=0$ for all $x,$ $y,$ $z\in V_{n}$ , where $J_{n^{\prime}}$ is a trilinear anti-symmetric

map of $V_{n}\times V_{n}\times V_{n}$ into $V_{n-z}def\dot{i}ned$ by

$J_{n^{\prime}}(x, y, z)=[[x, y]_{n}^{\prime},$ $\pi_{n}z]_{n-1}^{\prime}+[[y, z]_{n}^{\prime},$ $\pi_{n}x]_{n-\iota}^{\prime}+[[z, x]_{n}^{\prime},$ $\pi_{n}y]_{n-1}^{\prime}$ ;
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(e) Denote by $g_{n}$ the kernel of the map $\pi_{n}$ : $V_{n}\rightarrow V_{n-1}$ . Then $[g_{n}, g_{n}]_{n}^{\prime}=0$ ;
(f) Let $a\in g_{n}$ . If $[a, x]_{n}^{\prime}=0$ for all $\chi\in V_{n}$ , then $a=0$.
Set $L=pr\lim V_{n}$ . ($L$ is the vector space consisting of all sequences

$(x_{0}, x_{1}, )$ such that $x_{n}\in V_{n}$ and $\pi_{n}x_{n}=x_{n-1}.$) For any elements $X=(x_{0}, x_{1}, )$

and $Y=(y_{0}, y_{1}, )$ of $L$ , we define bracket product $[,]$ by

(1.1) [X, $Y$ ] $=([x_{1}, y_{1}]_{1}^{\prime}, [x_{2}, y_{2}]_{2}^{\prime}, )$ .
It follows from (b) and (d) that $[,]$ satisfies the usual Jacobi identity, and
consequently this product makes $L$ into a Lie algebra. (Note that $\dim L<\infty$ ,
if and only if $g_{n}=0$ for all sufficiently large $n$).

DEFINITION. An infinite Lie algebra is the Lie algebra $L=pr\lim V_{n}$ ,
determined by a collection $\{\{V_{n}\}, \{\pi_{n}\}, \{[,]_{n}^{\prime}\}\}$ , satisfying the conditions $(a)-(f)$ ,
for all $n\geqq 1$ .

Subsequently we shall denote the infinite Lie algebra simply by $pr\lim V_{n}$ ,
omitting $\pi_{n}$ and $[,]_{n}^{\prime}$ , since no confusion will occur. $V_{n}$ is called the n-th
truncation of $L,$ $\pi_{n}$ the projection.

DEFINITION. A truncated Lie algebra of order $p$ is a collection of a finite
sequence of finite dimensional vector spaces $V_{0},$ $V_{1},$ $\cdots$ , $V_{p}$ , a sequence of

maps $0_{\leftarrow V_{0}}^{\pi_{0}}\leftarrow\cdots\leftarrow V_{p}\pi_{p}$ and a sequence of bracket products $[,]_{n}^{\prime}$ : $V_{n}\times V_{n}\rightarrow V_{n-1}$ ,
$n=0,$ $\cdots$ , $p$ , satisfying the conditions $(a)-(f)$ for all $n\geqq 1$ and $n\leqq p$ . $(p\geqq 0)$ .

We shall denote this truncated Lie algebra simply by $\{V_{0}, \cdots , V_{p}\}$ , or
more simply by $V_{p}$ . A truncated Lie algebra is not a Lie algebra in the
usual sense of the word. In this paper we shall be concerned with the ques-
tion when a truncated Lie algebra $\{V_{0}, \cdots , V_{p}\}$ can be prolonged to an infinite
Lie algebra $pr\lim V_{n}$ . This question was considered originally, we may say,
by E. Cartan [1] in the third fundamental theorem of the infinite Lie group,
and recently by V. Guillemin, I. M. Singer and S. Sternberg [3], [5], although
their formulations were seemingly different from ours, and they usually
reduced the problem to case $p=1$ .

Let $V_{p}$ be a truncated Lie algebra of order $p$ . If a subspace $W_{p}$ of the
vector space $V_{p}$ satisfies $[W_{p}, W_{p}]_{p}^{\prime}\subset\pi_{p}W_{p}$ , then by setting $W_{n-1}=\pi_{n}W_{n}$ ,
$p\geqq n\geqq 1$ , we obtain a truncated Lie algebra $\{W_{0}, \cdots , W_{p}\}$ , which we shall
call a subalgebra $W_{p}$ of $V_{p}$ . A subalgebra $W_{p}$ of $V_{p}$ is said to be transitive
if $W_{0}=V_{0}$ .

An infinite Lie algebra $M=pr\lim W_{n}$ is said to be a subalgebra of $L$ , if
each $W_{n}$ is a subalgebra of $V_{n}$ . If $W_{0}=V_{0}$ moreover, $M$ is said to be a
transitive subalgebra of $L$ . We say that $W_{n+1}$ is a prolongation of $W_{n}$ in $L$,

and $M$ an infinite prolongation of $W_{n}$ in $L$ .
Let $L=pr\lim V_{n}$ and $M=pr\lim W_{n}$ be two infinite Lie algebras with the

same symbols $\pi_{n}$ and $[,]_{n}^{\prime}$ .
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We say that an infinite sequence of maps $\{f_{0}, f_{1}, \}$ is an embedding of
$M$ into $L$ , if it satisfies,

\langle 1.2) $f_{n}$ is a linear injective map of $W_{n}$ into $V_{n}$ ;

\langle 1.3) $\pi_{n- 1}f_{n}=f_{n-1}\pi_{n}$ ;

\langle 1.4) $[f_{n}x, f_{n}y]_{n}^{\prime}=f_{n- 1}[x, y]_{n}^{\prime}$ for any $x,$ $y\in W_{n}$ ;

for all $n$ .
In this case we say that $\{f_{n}\}$ is a lift of each $f_{n}$ , and $f_{p}(p>n)$ a lift of

$f_{n}$ . If each $f_{n}$ is surjective, $\{f_{n}\}$ is an isomorphism (an automorphism, if
$L=M)$ of $M$ onto $L$ .

Similarly, let $\{V_{0}, \cdots, V_{p}\}$ and $\{W_{0}, \cdots , W_{p}\}$ be two truncated Lie algebras.
A map $f_{p}$ : $W_{p}\rightarrow V_{p}$ is said to be an embedding of truncated Lie algebra $W_{p}$

into $V_{p}$ , if there exists a sequence of maps $\{f_{0}, \cdots , f_{p}\}$ such that (1.2), (1.3)

and (1.4) are satisfied for all $n\leqq p$ . Every map $f_{n}(n<p)$ is said to be a
reduced map of $f_{p}$ .

2. In this section, we shall prove some elementary properties of an in-
finite Lie algebra $L=pr\lim V_{n}$ . Hereafter, we shall omit the subscript $n$ on
$\pi_{n},$ $[,]_{n}^{\prime}$ and $J_{n}^{\prime}$ . We denote by $\pi^{n}$ the n-th iterate of $\pi$ . Thus $\pi^{n}$ is the map
$V_{n+k}\rightarrow V_{k}$ for any $k$ . ($\pi^{0}=identity$ map). We denote by $G_{n}$ the kernel of the
map $\pi^{n}$ ; $V_{n}\rightarrow V_{0}$ . Clearly $G_{0}=g_{0}=V_{0},$ $G_{1}=g_{1}$ and $G_{n}\supset g_{n}$ . We shall keep
these notations $G_{n}$ and $g_{n}$ for $L$ throughout this section.

(2.1) $Lefa\in G_{n}(n\geqq 1)$ . If $[a, x]^{\prime}=0$ for all $x\in V_{n}$ , then $a=0$ .

PROOF. Suppose $a\neq 0$ , then for some $m(1\leqq m\leqq n),$ $\pi^{m}a=0,$ $\pi^{m- 1}a\neq 0$ .
Therefore $\pi^{m- 1}a\in g_{n- m+1}$ . Since $[\pi^{m- 1}a, \pi^{m- 1}x]^{\prime}=\pi^{m- 1}[a, x]^{\prime}=0$ for all $x\in V_{n}$ ,

and $\pi^{m- 1}$ : $V_{n}\rightarrow V_{n- m+1}$ is surjective, we have $\pi^{m- 1}a=0$ by condition $(f)$ . This
contradiction proves our assertion. QED.

(2.2) If $a,$ $b\in V_{n},$ $\pi^{l}a=0,$ $\pi^{m}b=0,1\geqq 0,$ $m\geqq 0$ and $l+m\leqq n+1$ , then $[a, b]^{\prime}=0$ .
PROOF. We prove by induction on $n$ .
If $n=0$ or 1, our assertion is trivial. We shall prove (2.2) under the

assumption that this is true for $V_{n- 1}(n\geqq 2)$ . If $l=0$ or $m=0$ , then $[a, b]‘=0$

is trivial. If $l\geqq 1$ and $m\geqq 1$ , then $\pi a,$ $\pi b\in V_{n-1}$ and $\pi^{l-1}(\pi a)=0,$ $\pi^{m- 1}(\pi b)=0$,
$(l-1)+(m-1)\leqq n$ . Therefore by the induction assumption, we have $[\pi a, \pi b]^{\prime}$

$=0$ . Since $\pi[a, b]‘=[\pi a, \pi b]^{\prime}=0$ , we have $[a, b]^{\prime}\in g_{n-1}$ . Let $u$ be an arbi-
trary element of $V_{n- 1}$ and $\overline{u}$ an element of $V_{n}$ such that $\pi\overline{u}=u$ . By condition
(d), $[[a, b]^{\prime},$ $u]^{\prime}=[[a,\overline{u}]^{\prime},$ $\pi b]^{\prime}-[[b,\overline{u}]^{\prime},$ $\pi a]^{\prime}$ . On the other hand, $\pi^{\iota}[a,\overline{u}]^{\prime}$

$=[\pi^{\iota}a, \pi^{\iota}\overline{u}]^{\prime}=0,$ $\pi^{m-1}(\pi b)=0$ and $l+(m-1)\leqq n$ . Therefore, again by the induc-
tion assumption we have $[[a,\overline{u}]^{\prime},$ $\pi b]^{\prime}=0$ . Similarly $[[b,\overline{u}]^{\prime},$ $\pi a]^{\prime}=0$ . Hence
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$[[a, b]^{\prime},$ $u]^{\prime}=0$ for any $u\in V_{n-1}$ . Then $[a, b]^{\prime}=0$ follows from (f). QED.
As a particular case of (2.2), we have

(2.3) If $a\in G_{n}$ and $b\in g_{n}$ , then $[a, b]^{\prime}=0$.
We say that $\overline{u}\in V_{n}$ is over $u\in V_{k}$ , if $n>k$ and $\pi^{n- k}\overline{u}=u$ . Let $a\in G_{n}$

$(n\geqq 1),$ $u\in V_{n-1}$ and $\overline{u}$ be an arbitrary element of $V_{n}$ over $u$ . Then it follows
from (2.3) that $[a,\overline{u}]^{\prime}$ is determined by $a$ and $u$ , and is independent of the
choice of $\overline{u}$ . Thus the action of $G_{n}$ on $V_{n-1}$ is well defined, which we denote
by $au=[a,\overline{u}]^{\prime}$ . It follows from (2.1) that the induced map $G_{n}\rightarrow Hom(V_{n-1}$ ,
$V_{n-1})$ is injective.

Let $a,$ $b\in G_{n}(n\geqq 1)$ and $\tilde{a},\tilde{b}$ be arbitrary elements of $G_{n+1}$ over $a,$
$b$

respectively. Then we can easily see by making use of (2.2) that $[\tilde{a},\tilde{b}]^{\prime}$ is
an element of $G_{n}$ determined only by $a$ and $b$ . Thus we can define a product
$[,]$ on $G_{n}$ by $[a, b]=[\tilde{a},\tilde{b}]^{\prime}$ . Then evidently

(2.4) $\pi[a, b]=[a, b]^{\prime}$ , $a,$ $b\in G_{n}$ .
Moreover

(2.5) $G_{n}$ is a Lie algebra acting on $V_{n-1}$ . $(n\geqq 1)$ .
That is, $[a, b]u=a(bu)-b(au)$ , and consequently

$[[a, b],$ $c$] $+[[b, c],$ $a$] $+[[c, a],$ $b$] $=0$ , $a,$ $b,$ $c\in G_{n},$ $u\in V_{n-1}$ .
PROOF. Let $\overline{u}\in V_{n}$ be an element over $u$ , and $\tilde{a},\tilde{b},\tilde{u}\in V_{n+1}$ be elements

over $a,$ $b,\overline{u}$ respectively. Then our assertion follows from $J^{\prime}(\tilde{a},\tilde{b},\tilde{u})=0$ . We
can also prove in a similar device that

(2.6) $g_{n}$ is an ideal of $G_{n}$ and acts trivially on $G_{n-1}\subset V_{n- 1}$ . Furthermore, if
$n\geqq 2,$ $g_{n}$ is abelian.

From now on we shall call $g_{n}$ the n-th isotropy algebra of $L$ .

3. In this section, we prove two propositions, by which we are assured
that an infinite Lie algebra is algebraically the same with a complete filtered
Lie algebra [4], and hence also with an abstract transitive Lie algebra [3], [5].

Definition of a complete filtered Lie algebra is as follows. A filtered Lie
algebra is a Lie algebra $L$ with a decreasing sequence of subalgebras $L=L_{-\iota}$

$\supset L_{0}\supset L_{1}\supset L_{2}\supset\ldots$ , such that

(f1) $\bigcap_{i}L_{i}=0$ ;

(f2) $[L_{i}, L_{j}]\subset L_{i+j}(i+j\geqq-1)$ ;

(f3) $\dim L_{i}/L_{i+1}<\infty$ ;
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(f4) for every $A\in L_{i},$ $i\geqq 0$, such that $A\not\in L_{i\neq 1}$ , there is an element $X\in L$,

such that $[A, X]\not\in L_{i}$ .
$A_{\rightarrow}^{-}- complete$ filtered Lie algebra is a filtered Lie algebra such that

(f5) if we define a uniform topology in $L$ , by taking $\{L_{i}\}$ as a basis for
the neighborhood system of the origin, then $L$ is complete with respect
to this uniformity.

PROPOSITION 1. Let $L=pr\lim V_{n}$ be an infinite Lie algebra. Denote by
$L_{n}$ the kernel of the natural projection $L\rightarrow V_{n},$ $n\geqq 0$ . Then $ L\supset L_{0}\supset L_{1}\supset\cdots$ is
a complete filtered Lie algebra.

PROOF. Let $X=$ $(0, \cdots , 0, x_{i+1}, x_{i+2}, )\in L_{i}$ and $Y=(O, \cdots , 0, y_{j+1}, y_{j\prec\cdot 2}, )$

$\in L_{j}$ . Then, by applying (2.2) to $V_{i+j+1}$ , we have $[x_{i+j+1}, y_{i+j+1}]^{\prime}=0$ . Hence
by (1.1), [X, $Y$ ] $\in L_{i+j}$ . Thus we have proved (f2). Since $L_{i+j}\subset L_{i}(j\geqq 0)$ , we
see that $L_{i}$ is a subalgebra of Lie algebra $L$ . Completeness of $L$ with respect
to the uniformity defined by $\{L_{i}\}$ is clear from the definition of the projective
limit. Other conditions for $L$ to be a filtered Lie algebra are easily checked
and our assertion is verified. QED.

PROPOSITION 2. Let $ L^{0}\supset L_{0}^{0}\supset L_{1}^{0}\supset\ldots$ be a complete filtered Lie algebra.
Then we can construct an infinite Lie algebra $L=pr\lim V_{n}$ , such that $\{L_{t}^{0}\}$ is
isomorphic to the complete filtered Lie algebra $\{L_{i}\}$ determined by $L$ just as
stated in Proposition 1.

PROOF. Let $\{L_{i}^{0}\}$ be a filtered Lie algebra which is not necessarily com-
plete for a moment. We define an infinite Lie algebra as follows. Denote by
$V_{n}$ the quotient vector space $L^{0}/L_{n}^{0}$ , and by $p_{n}$ the natural projection $L^{0}\rightarrow V_{n}$ ,

$n=0,1,$ $\cdots$ Then by (f3), $\dim V_{n}<\infty$ . Since $L_{n}^{0}$ is a subspace of $L_{n-1}^{0}$ , pro-
jection $\pi;V_{n}\rightarrow V_{n-1}$ is naturally defined. Next, for any $x,$ $y\in V_{n}$ , we take
$X,$ $Y\in L^{0}$ such that $p_{n}X=x,$ $p_{n}Y=y$ , and define $[,]$ ’ by $[x, y]^{\prime}=p_{n-1}[X, Y]$ .
(Since $[L^{0},$ $L_{n}^{0}]\subset L_{n-1}^{0},$ $p_{n-1}[X,$ $Y]$ depends only on $x$ and $y$). We can check
easily that these vector spaces $\{V_{n}\}$ , projections $\{\pi\}$ and bracket products
$\{[,]^{\prime}\}$ satisfy all the conditions $(a)-(f)$ . Thus we have obtained an infinite
Lie algebra $L=pr\lim V_{n}$ . Let $\{L_{i}\}$ be the complete filtered Lie algebra deter-
mined by $L$ just in the way stated in Proposition 1. We define a map $f:L^{0}\rightarrow L$

by $fX=(p_{0}x, p_{1}x, )\in L,$ $X\in L^{0}$ . Then we can easily verify that (1) $f$ is
injective, (2) $f$ is a homomorphism of Lie algebra $L^{0}$ into Lie algebra $L,$ $(3)$

$fL_{n^{0}}=L_{n}\cap fL^{0}$ and (4) $fL^{0}$ is dense in $L$ . Now, by these properties (1)$-(4)$ of
$f$, we can conclude that $L^{0}$ is complete if and only if $fL^{0}=L$ . Therefore,
under the assumption that $\{L_{i}^{0}\}$ is a complete filtered Lie algebra, the map $f$

is a Lie algebra isomorphism of $L^{0}$ onto $L$ , which sends $L_{n}^{0}$ onto $L_{n}$ . QED.

4. In this section we shall briefly describe the associated graded infinite
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Lie algebra of an infinite Lie algebra and the related homology groups. From
now on, in this paper we always denote by $L$ the infinite Lie algebra deter-
mined by $\{V_{n}\}$ , and by $g_{n}$ the n-th isotropy algebra of $L$ .

We define a bracket product $[,]^{}$ in the direct sum $\sum_{n=0}^{\infty}g_{n}$ as follows. Let
$a\in g_{i}$ and $b\in g_{j}$ . Set $[a, b]^{0}=[\overline{a},\overline{b}]^{\prime}$ , where $\overline{a}$ and $\overline{b}$ are arbitrary elements
of $V_{i+j}$ over $a$ and $b$ respectively. Then we can easily check, using (2.2), that
$[a, b]^{0}$ is a well defined element of $g_{i+j-1}$ , and also that the product $[,]^{}$

satisfies the usual Jacobi identity. Thus we obtain the so-called graded Lie
algebra $\sum_{n=0}^{\infty}g_{n}$ with bracket product $[,]^{}$ .

Setting $L_{i}=\sum_{n=i+1}^{\infty}g_{n}(i\geqq-1)$ , we have a filtered Lie algebra $\{L_{i}\}$ . Then as in

the proof of Proposition 2, we can construct the corresponding infinite Lie alge-
bra, which we shall denote by $Gr(L)=\overline{\sum_{>n_{\Leftarrow}0}}g_{n}$ . An infinite Lie algebra $L$ is said

to be graded, if it is isomorphic to $Gr(L)$ .
If $a\in g_{n},$ $v\in g_{0}=V_{0}$ , we shall write $a\cdot v$ instead of $[a, v]^{0}$ , thus we have

a map $g_{n}\times V_{0}\ni(a, v)-a\cdot v\in g_{n- 1}$ .
Let $U$ and $V$ be any vector spaces. We identify the vector space of all

l-linear anti-symmetric maps of $U\times\cdots\times U$ ( $l$ times) into $V$ with the space
$V\otimes\wedge^{l}(U^{*})$ , where $U^{*}$ is the dual space of $U$ . We define the boundary

operator $\partial:g_{i+1}\otimes\wedge^{j- 1}(V_{0}^{*})\rightarrow g_{i}\otimes\wedge^{j}(V_{0}^{*})$ by $(\partial f)(v_{1}, v_{2}, v_{j})=\sum_{\kappa-1}^{j}(-)^{j- k}f(v_{1},$ $\cdots$ ,

$\hat{v}_{k}$ , $\cdot$ .. , $v_{j}$) $\cdot v_{k},$ $v_{1}$ , $\cdot$ .. , $v_{j}\in V_{0},$ $f\in g_{i+1}\otimes\wedge^{j- 1}(V_{0}^{*})$ , where the symbol $\hat{v}$ indicates
that the argument $v$ is omitted. We can easily see that $\partial^{2}=0$ . We denote
by $H^{ij}(L)$ the homology group at $g_{i}\otimes\wedge^{j}(V_{0}^{*}),$ $i,$ $j\geqq 0$ , with respect to the
boundary operator $\partial$ . Suppose more generally that $U$ is a vector space and
a projection $\overline{\pi};U\rightarrow V_{0}$ is given. Then $\partial:g_{i+1}\otimes\wedge^{j- 1}(U^{*})\rightarrow g_{i}\otimes\wedge^{j}(U^{*})$ is

defined by $(\partial f)(u_{1}, \cdots , u_{j})=\sum_{k=1}^{j}(-1)^{j-k}f(u_{1}, \text{{\it \^{u}}}_{k}, u_{j})\cdot(\overline{\pi}u_{k}),$ $u_{1},$ $\cdots$ , $u_{j}\in U$. In

this case also we have $\partial^{2}=0$ .
Let $\{V_{0}=h_{0}, h_{1}, \}$ be a sequence of subspaces $h_{n}$ of $g_{n}$ , such that

$h_{n}\cdot V_{0}\subset h_{n- 1}$ for all $n$ . Then the homology group at $h_{i}\otimes\Lambda^{j}(V_{0}^{*})$ is similarly
defined, which we denote by $H^{ij}(\{h\})$ .

LEMMA 1. Let $U$ be a vector space, and fi a projection of $U$ onto $V_{0}$ . Let
$f\in h_{i}\otimes\wedge^{m}(U^{*})(m\geqq 1)$ and assume $\partial f=0$ . If $H^{ij}(\{h\})=0$, for $j=1,$ $\cdots$ , $m$ ,

then there exists an element $\sigma\in h_{i+1}\otimes\wedge^{m- 1}(U^{*})$ , such that $\partial\sigma=f$.
PROOF. Let $G$ be the kernel of the projection $\overline{\pi}$ . Let $\varphi:V_{0}\rightarrow U$ be a

linear map such that $\overline{\pi}\varphi=identity$ map of $V_{0}$ . Then we have $U=G\oplus\varphi V_{0r}$

where the symbol $\oplus means$ the direct sum. Let $a_{1},$ $\cdots$ , $a_{m-j}\in G$ . We define
$f_{j}(a_{1}, a_{m- j})\in h_{i}\otimes\Lambda^{j}(V_{0}^{*})$ by $f_{j}(a_{1}, a_{m- j})(v_{1}, v_{j})=f(a_{1},$ $a_{m- j},$ $\varphi v_{1},$ $\cdots$ ,
$\varphi v_{j}),$ $v_{1},$ $\cdots$ , $v_{j}\in V_{0},$ $j=0,$ $\cdots$ , $m$ . From $(\partial f)(a_{1}, \cdots , a_{m- j}, \varphi v_{1}, \cdots , \varphi v_{j+1})=0$ , we
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obtain $\partial(f_{j}$( $a_{1}$ , $\cdot$ .. , $a_{m-j}$)$)=0$ . (In particular, we have $f(a_{1}$ , $\cdot$ .. , $a_{m})=0$ , for $j=0.$)

Therefore, by the assumption $H^{ij}(\{h\})=0$, there exists an element $\sigma_{j}(a_{1},$ $\cdots$ ,
$a_{m- j})$ of $h_{i\cdot\vdash 1}\otimes\wedge^{j- 1}(V_{0}^{*})$ such that $\partial(\sigma_{j}(a_{1}, \cdots , a_{m-j}))=f_{j}(a_{1}, \cdots , a_{m- j})$ , for each
$j=1$ , $\cdot$ .. , $m$ . Moreover we can assume that $\sigma_{j}$ ; $G\times\cdots\times G\ni(a_{1}, a_{m- j})$

$-\sigma_{j}(a_{1}, \cdots , a_{m-j})\in h_{i+1}\otimes\wedge^{j- 1}(V_{0}^{*})$ is $(m-j)$-linear and anti-symmetric. Then

the desired $\sigma$ is given by $\sigma(u_{1}, \cdots , u_{m- 1})=\sum_{j=1}^{m}\sum_{\wedge}$ sgn $\tau\sigma_{j}(a_{r(1)}, \cdots , a_{\tau(m- j)})(v_{\tau(m-j+1)}$ ,

... , $v_{r(m-1)}$), where $u_{k}=a_{k}+\varphi v_{k}\in G\oplus\varphi V_{0},$ $k=1,$ $*m-1$ and the sum $\sum_{\tau}$ is

taken over all permutations $\tau$ of $\{1, \cdots , m-1\}$ such that $\tau(1)<\ldots<\tau(m-j)$

and $\tau(m-j+1)<\ldots<\tau(m-1)$ . QED.

5. Throughout this section, we assume that $\{W_{0}, W_{1}, \cdot.. , W_{p}, W_{p+1}\}$ is a
truncated Lie algebra of order $p+1$ such that $\dim W_{0}=\dim V_{0}$ . Let $\varphi:W_{p}$

$\rightarrow W_{p+1}$ be an arbitrary linear section. (By a linear section $\varphi$ we mean a linear
map such that $\pi\varphi=identity$ map of $W_{p}.$) Then we have a transitive sub-
algebra $\varphi W_{p}=\{W_{0}, \cdots , W_{p}, \varphi W_{p}\}$ of $W_{p+1}$ .

LEMMA 2. Let $\varphi:W_{p}\rightarrow W_{p+1}$ be a linear section. Assume that there exists
an embedding $f^{\prime}$ : $\varphi W_{p}\rightarrow V_{p+1}$ , and that $H^{p1}(L)=0$ . Then there exists a unique
embedding $f:W_{p+1}\rightarrow V_{p+1}$ , which coincides with $f^{\prime}$ on $\varphi W_{p}$ .

PROOF. We denote by $f_{k}$ the embedding $W_{k}\rightarrow V_{k}$ reduced from $f^{\prime},$ $(k\leqq p)$ .
Let $h$ be the kernel of the projection $W_{p\dashv\cdot 1}\rightarrow W_{p}$ . Then we have $W_{p+1}=h\oplus\varphi W_{p}$ .
In order to extend $f^{\prime}$ on $\varphi W_{p}$ to $f$ on $W_{p+1}$ , satisfying (1.3) and (1.4) with $n$

replaced by $p+1$ , we have only to define a map $f:h\rightarrow g_{p+1}$ satisfying

(5.1) $[fa, f^{\prime}x]^{\prime}=f_{p}[a, x]$ ‘ for any $a\in h$ and $x\in\varphi W_{p}$ .
Putting $f_{p}W_{p}=U$ and $\pi f^{\prime}x=u$ , we have from (5.1)

$(fa)u=f_{p}[a, \varphi f_{p}^{-1}u]^{\prime}$ , $a\in h,$ $u\in U$ .
Since $\pi f_{p}[a, \varphi f_{p}^{-1}u]^{\prime}=f_{p-1}[\pi a, f_{p}^{-1}u]^{\prime}=0$, we have $f_{p}[a, \varphi f_{p}^{-1}u]\in g_{p}$ . Define
$T_{a}\in g_{p}\otimes U^{*}$ by $T_{a}(u)=f_{p}[a, \varphi f_{p}^{-1}u]^{\prime},$ $u\in U$ . Then $\partial T_{a}=0$ . In fact, $\partial T_{a}(u, v)$

$=[f_{p}[a, \varphi f_{p}^{-1}u]^{\prime},$ $v]^{\prime}-[f_{p}[a, \varphi f_{p}^{-1}v]^{\prime},$ $u]^{\prime}=f_{p- 1}[\pi a, [\varphi f_{p}^{-1}u, \varphi f_{p}^{-1}v]^{\prime}]^{\prime}=0$ . $u,$ $v\in U$ .
Besides, we can see that since $\dim W_{0}=\dim V_{0},$ $\pi^{p}$ : $U\rightarrow V_{0}$ is a surjection.
Therefore by Lemma 1, there exists an element, say $fa$ , of $g_{p+1}$ such that
$\partial(fa)=T_{a}i$ . $e$ . $(fa)u=T_{a}(u)$ for all $u\in U$ . Moreover, since $\partial:g_{p+1}\rightarrow g_{p}\otimes U^{*}$

is an injection, $fa$ is uniquely determined. Finally, injectivity of the map
$h\ni a-fa\in g_{p+1}$ is obvious. Therefore the resulting map $f$ defined on $W_{p+1}$

also satisfies (1.2) with $n$ replaced by $p+1$ . QED.

PROPOSITION 3. Assume that $H^{p1}(L)=H^{p2}(L)=0$ and that there exists an
embedding $f_{p}$ : $W_{p}\rightarrow V_{p}$ . Then we can lifl $f_{p}$ to an embedding $f:W_{p+1}\rightarrow V_{p+1}$ .

PROOF. Set $f_{p}W_{p}=U$. Let $\theta:U\rightarrow V_{p+1}$ and $\varphi:W_{p}\rightarrow W_{p+1}$ be arbitrary
linear sections. Define $F\in V_{p}\otimes\wedge^{2}(U^{*})$ by
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(5.2) $F(u, v)=f_{p}[\varphi f_{p}^{-1}u, \varphi f_{p}^{-1}v]^{\prime}-[\theta u, \theta v]^{\prime}$ for $u,$ $v$ a $U$ .
Then it is easily checked using $J^{\prime}=0$ that $F$ is a $cycle\in g_{p}\otimes\wedge^{2}(U^{*})$ . There-
fore there is an element $\sigma\in g_{p+1}\otimes U^{*}$ and $\partial\sigma=F$. Define $f^{\prime}$ : $\varphi W_{p}\rightarrow V_{p+1}$ by
$f^{\prime}(\varphi x)=\theta^{\prime}(f_{p}x)$ , where $\theta^{\prime}=\theta+\sigma,$ $x\in W_{p}$ . Then for any $x,$ $y\in W_{p}$ , $[f^{\prime}\varphi x, f^{\prime}\varphi y]$

‘

$=[\theta f_{p}x, \theta f_{p}y]^{\prime}+(\partial\sigma)(f_{p}x, f_{p}y)=f_{p}[\varphi x, \varphi y]^{\prime}$ . Thus $f^{\prime}$ is an embedding of $\varphi W_{p}$

into $V_{p+1}$ . Now we can apply Lemma 2 and our assertion is verified. QED.

We generalize Lemma 2 as follows.
PROPOSITION 4. Let $\{W_{0}^{\prime}, \cdots , W_{p+1}^{\prime}\}$ be a transitive subalgebra of { $W_{0},$ $\cdots$ ,

$W_{p+1}\}$ . Assume that there exist embeddings $f_{p}$ : $W_{p}\rightarrow V_{p}$ and $f^{\prime}$ : $W_{p+1}^{\prime}\rightarrow V_{p+1}$ ,

such that $f^{\gamma}$ is a lift of the restriction of $f_{p}$ to $W_{p}^{\prime}$ . If $H^{p1}(L)=0$, then we can
lift $f_{p}$ to an embedding $f_{p+1}$ of $W_{p+1}$ into $V_{p+1}$ , which coincides with $f^{\prime}$ on $W_{p+1}^{\prime}$ .
Furthermore such $f_{p+1}$ is uniquely determined.

PROOF. Let $\varphi:W_{p}\rightarrow W_{p+1}$ be a linear section such that $\varphi W_{p}^{\prime}\subset W_{p+1}^{\prime}$ .
Then we can take a linear section $\theta:U=f_{p}W_{p}\rightarrow V_{p+1}$ such that

$f^{\prime}\varphi x=\theta f_{p}x$ for all $x\in W_{p}^{\prime}$ .
Define $F\in g_{p}\otimes\wedge^{2}(U^{*})$ by (5.2) with new $\varphi$ and $\theta$ . Then $F(u, v)=0$, if $u,$ $v$

$\in f_{p}W_{p}^{\prime}$ .
Now we wish to solve the equation $\partial\sigma=F$, with unknown $\sigma\in g_{p+1}\otimes U^{*}$ ,

under the condition $\sigma(u)=0$ for $u\in f_{p}W_{p}^{\prime}$ . Since $\dim W_{0}^{\prime}=\dim V_{0}$ , we have
$\pi^{p}f_{p}W_{p}^{\prime}=V_{0}$ . Therefore $U=f_{p}W_{p}^{\prime}\oplus G$, where $G$ is a subspace of the kernel
of the projection $\pi^{p}$ ; $U\rightarrow V_{0}$ . Since $\partial F=0$ , we have $F(a, b)=0$ and $\partial(F(a))=0$

for $a,$ $b\in G$ , where $F(a)$ is an element of $g_{p}\otimes U^{*}$ defined by $F(a)(u)=F(a, u)$ ,
in the same way as in the proof of Lemma 1. Owing to these properties of
$F$, our equation reduces to $\partial(\sigma(a))=F(a),$ $a\in G$ . Then, using Lemma 1, we
have a unique solution $\sigma(a)\in g_{p+1}$ .

Define $f_{p+1}$ : $\varphi W_{p}\rightarrow V_{p+1}$ , by $f_{p+1}(\varphi x)=\theta f_{p}x+\sigma(a)$ , where $x$ is an arbitrary
element of $W_{p}$ , and $a$ is the $G$ component of $f_{p}x$ with respect to the direct
sum $U=f_{p}W_{p}^{\prime}\oplus G$ . Then we can see easily that $[f_{p+1}\varphi x, f_{p+1}\varphi y]^{\prime}=f_{p}[\varphi x, \varphi y]^{\prime}$ ,
for any $x,$ $y\in W_{p}$ . Thus $f_{p+1}$ : $\varphi W_{p}\rightarrow V_{p+1}$ is an embedding. Applying Lemma
2, we can extend $f_{p+1}$ uniquely to the embedding $W_{p+1}\rightarrow V_{p+1}$ . QED.

By repeated applications of Proposition 4, we have the following theorem.
THEOREM 1. Let $L=pr\lim V_{n}$ and $M=pr\lim W_{n}$ be infinite Lie algebras

such that $\dim V_{0}=\dim W_{0}$, and let $M^{\prime}=pr\lim W_{n}^{\prime}$ be a transitive subalgebra
of M. Assume that there $exist$ embeddings $f_{p}$ : $W_{p}\rightarrow V_{p}$ (for some p) and $\{f_{n^{\prime}}\}$ :
$M^{\prime}\rightarrow L$ , such that $f_{p}$ coincides with $f_{p^{\prime}}$ on $W_{p^{\prime}}$ . Assume further that $H^{t1}(L)=0$

for all $i\geqq p$ .
Then there exists a unique embedding $\{f_{n}\}:M\rightarrow L$ which is a lift of $f_{p}$ and

coincides with $\{f_{n}^{\prime}\}$ on $M^{\prime}$ .
THEOREM 2 (EMBEDDING THEOREM). Let $L=pr\lim V_{n}$ and $M=pr\lim W_{n}$
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be infinite Lie algebras such that $\dim V_{0}=\dim W_{0}$. Assume that there exists
an embedding $f_{p}$ : $W_{p}\rightarrow V_{p}$ for some $p$ and $H^{i1}(L)=H^{i2}(L)=0$ for all $i\geqq p$ .

Then $f_{p}$ can be lifted to an embedding $\{f_{n}\}:M\rightarrow L$ . Furthermore, if $\{\tilde{f}_{n}\}$

is another such lift of $f_{p}$ , then there exists an automorphism $\{h_{n}\}$ of $L$ , such
that $h_{n}$ sends $f_{n}W_{n}$ onto $\tilde{f}_{n}W_{n}$ for each $n$ .

PROOF. The first assertion follows from repeated applications of Proposition
3. The existence of $\{h_{n}\}$ is proved as follows. Set $L^{\prime}=pr\lim f_{n}W_{n}$ . Applying
Theorem 1 to $L$ and $L_{\succ}^{\prime}$ we can extend the embedding $\{\tilde{f}_{n}f_{n}^{-1}\}:L^{\prime}\rightarrow L$ to the
embedding $\{h_{n}\}:L\rightarrow L$ . Since $\dim V_{n}<\infty$ , each $h_{n}$ is a bijection, hence $\{h_{n}\}$

is an automorphism of $L$ . QED.

APPLICATIONS. Set $D(V_{0})=\overline{\sum_{n\geqq 0}}V_{0}\otimes S^{n}(V_{0}^{*})$ . This can be regarded as the

graded infinite Lie algebra of all formal power series vector fields on $V_{0}$ . It
is known that $H^{ij}(D(V_{0}))=0$ for all $i,$ $j\geqq 0,$ $(i, j)\neq(0,0)$ , and indeed $D(V_{0})$ is
characterized by this property.

THEOREM 3 (REALIZATION THEOREM). Every infinite Lie algebra $L$ is iso-
morphic to a transitive subalgebra of $D(V_{0})$ . Furthermore such subalgebra is
determined up to an automorphism of $D(V_{0})$ .

PROOF. Since $H^{ij}(D(V_{0}))=0$ for all $i\geqq 0,$ $j\geqq 1$ , we can apply Theorem 2
to $D(V_{0})$ and $L$, with $f_{0}=identityma\grave{p}$ of $V_{0}$ . QED.

THEOREM 4. Let $L$ be an infinite Lie algebra such that $H^{i1}(L)=H^{i2}(L)=0$

for all $i\geqq 1$ . Then $L$ is graded, if and only if the first structure constant of
$L$ is $0$ . (As for the structure constant, see Section 7).

PROOF. Let $L$ be graded. Since the first structure constant of $Gr(L)$ is
$0$, that of $L$ must also be $0$ .

Conversely, assume that the first structure constant of $L$ is $0$ . Then we
can see easily that there is an isomorphism of the first truncation $V_{1}$ of $L$

onto that of $Gr(L)$ . Since the homology groups of $Gr(L)$ and $L$ are the same,
we can apply Theorem 2 to obtain an embedding $L\rightarrow Gr(L)$ . Since the dimen-
sion of the truncation of any order of $L$ is equal to that of the same order
of $Gr(L)$ , the embedding is an isomorphism. QED.

We say that an infinite Lie algebra $L=pr\lim V_{n}$ is abelian if $[V_{n}, V_{n}]^{\prime}$

$=0$ for all $n$ . An infinite Lie algebra is said to be flat, if it contains an
abelian transitive subalgebra.

The first structure constant of a flat infinite Lie algebra is $0$ . Every
graded infinite Lie algebra is evidently flat. Therefore the following theorem
follows from Theorem 1.

THEOREM 5. Let $L$ be an infinite Lie algebra such that $H^{i1}(L)=0$ for all
$i\geqq 1$ . If $L$ is flat, then it is also graded.

6. Let $h_{n}$ be any subspace of $g_{n}$ . We define $h_{n^{1}}^{(}‘\subset g_{n+1}$ by $h_{n^{1)}}(=\{a\in g_{n\dashv\iota}$ ;
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$a\cdot v\in h_{n}$ for all $v\in V_{0}$ }. Let $W_{p}$ be a transitive subalgebra of $V_{p}$ . We say
that $W_{p}$ is prolongable in $L$, if there exists a linear section $\theta:W_{p}\rightarrow V_{p+1}$

such that $[\theta W_{p}, \theta W_{p}]^{\prime}\subset W_{p}$ . Let $h_{p}=g_{p}\cap W_{p}$ and $h_{p+1}$ be an arbitrary sub-
space of $h_{p}^{(1)}$ . If $W_{p}$ is prolongable by a linear section $\theta$, then $h_{p+1}+\theta W_{p}$ , is
clearly a subalgebra of $V_{p+1}$ . Conversely, if $W_{p+1}$ is a subalgebra of $V_{p+1}$

such that $\pi W_{p+1}=W_{p}$ , then the kernel of the projection $W_{p*1}\rightarrow W_{p}$ is con-
tained in $h_{p}^{(1)}$ . If it is identical with $h_{p}^{(1)},$ $W_{p+1}$ is called the normal prolonga-
tion of $W_{p}$ in $L$ . We denote by $\{H^{ij}(W_{p} ; L)\}$ the homology groups determined
by the sequence $\{h_{i}\}$ , where $h_{i}=g_{i}\cap W_{i}$ , if $i\leqq p$ , and $h_{i}(i>p)$ is the sub-
space of $g_{i}$ defined inductively by $h_{n}=h_{n-1}^{(1)}$ .

PROPOSITION 5. Let $W_{p}(p\geqq 1)$ be a transitive subalgebra of $V_{p}$ . If
$H^{p-1j}(W_{p} ; L)=0,$ $j=1,2,3$ and $H^{pj}(L)=0,$ $j=1,2$, then $W_{p}$ is prolongable in $L$ .

PROOF. Let $\psi:W_{p-1}\rightarrow W_{p}$ and $\theta:W_{p}\rightarrow V_{p+1}$ be arbitrary linear sections.
Set $F(u, v)=[\theta u, \theta v]^{\prime}-\psi[u, v]^{\prime},$ $u,$ $v\in W_{p}$ . Then $\pi F(u, v)=0$, therefore $F$ is
an element of $g_{p}\otimes\wedge^{2}(W_{p}^{*})$ . By definition of $\partial$ and by $J^{\prime}=0$, we have
$(\partial F)(u, v, w)=-\sum[\psi[u, v]^{\prime},$ $w]^{\prime}$ , for any $u,$ $v,$ $w\in W_{p}$ , where $\Sigma$ is the sum
over all cyclic permutations of $u,$ $v,$ $w$ . The right hand side of this identity
shows that $\partial F$ is a cycle belonging to $h_{p-1}\otimes\wedge^{3}(W_{p}^{*})$ . It follows from the
assumption $H^{p- 1j}(W_{p};L)=0,$ $j=1,2,3$, that there exists an element $f$ of
$h_{p}\otimes\wedge^{2}(W_{p}^{*})suchthat\partial f=\partial F$. $Thenf-Fisacyclebelongingtog_{p}\otimes\Lambda^{2}(W_{p}^{*})$ .
Again, by the assumption $H^{pj}(L)=0,$ $j=1,2$, there is an element $\sigma$ of $g_{p+1}\otimes W_{p}^{*}$

such that $\partial\sigma=f-F$. Define a linear section $\theta^{\prime}$ : $W_{p}\rightarrow V_{p+1}$ by setting $\theta^{\prime}=\theta+\sigma$ .
Then, for any $u,$ $v\in W_{p}$ , we have $[\theta^{\prime}u, \theta^{\prime}v]^{\prime}=[\theta u, \theta v]^{\prime}+(\partial\sigma)(u, v)=f(u, v)$

$+\psi[u, v]^{\prime}$ . Since $f(u, v)$ and $\psi[u, v]^{\prime}\in W_{p}$ , we have $[\theta^{\prime}u, \theta^{\prime}v]\in W_{p}$ . Thus $W_{p}$

is prolongable by $\theta^{\prime}$ . QED.

THEOREM 6. Let $L=pr\lim V_{n}$ be an infinite Lie algebra and $W_{p}(p\geqq 1)a$

transitive subalgebra of $V_{p}$ . Assume that $H^{ij}(W_{p} ; L)=0$ for all $i\geqq p-1$ and
$j=1,2,3$ and also $H^{ij}(L)=0$ for all $i\geqq p$ and $j=1,2$ .

Then there exists a normal infinite prolongation $M$ of $W_{p}$ in $L$, such that
for any infinite prolongation $M^{\prime}$ of $W_{p}$ in $L$, there is an automorphism of $L$

which embeds $M^{\prime}$ into $M$.
PROOF. By Proposition 5, $W_{p}$ is prolongable in $L$ . Let $W_{p+1}$ be its normal

prolongation in $L$ . In this case we have $H^{ij}(W_{p} ; L)=H^{ij}(W_{p+1} ; L)$ . There-
fore $W_{p+1}$ is again prolongable in $L$ . Continuing in this fashion, we can
obtain a normal infinite prolongation of $W_{p}$ in $L$ , which we denote by $M$.
Since we have $H^{ij}(M)=H^{ij}(W_{p}, L)=0,$ $i\geqq p,$ $j=1,2$ , there is an embedding
of any infinite prolongation $M^{\prime}$ of $W_{p}$ into $M$, owing to Theorem 2. Then,
it follows from Theorem 1, that we can extend the embedding $M^{\prime}\rightarrow M$ to the
embedding of $L$ into $L$ , which is clearly an automorphism of $L$ . QED.
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7. In this section, we shall make some observation on the properties of
the structure constants of the transitive subalgebra of $L$ , and state existence
theorem.

Let $W_{p}(p\geqq 1)$ be a transitive subalgebra of $V_{p}$ , and $h_{p}=W_{p}\cap g_{p}$ . We
define an element $c\in W_{p- 1}\otimes\wedge^{2}(W_{p-1}^{*})$ by $c(u, v)=[\varphi u, \varphi v]^{\prime},$ $u,$ $v\in W_{p-1}$ , where
$W_{p-1}=\pi W_{p}$ and $\varphi$ is an arbitrary linear section $W_{p-1}\rightarrow W_{p}$ . Let $\varphi^{\prime}$ be another
such linear section and $c^{\prime}(u, v)=[\varphi^{\prime}u, \varphi^{\prime}v]^{\prime}$ . Then there is an element $S$ of
$h_{p}\otimes W_{p-1}^{*}$ such that $\varphi^{j}=\varphi+S$, and we have $c^{\prime}=c+\partial S$ . That is, $c^{\prime}=c(mod$ .
$\partial(h_{p}\otimes W_{p-1}^{*}))$ . Therefore, a class $c=\{c\}\in W_{p-1}\otimes\wedge^{2}(W_{p-1}^{*})/\partial(h_{p}\otimes W_{p-1}^{*})$ is
determined independently of the choice of $\varphi$ . We call $c$ the structure con-
stant of $W_{p}$ . If $W_{p}=V_{p},$ $c$ is called the p-th order structure constant of $L$ .
Clearly we have $\pi(c(u, v))=[u, v]^{\prime}$ and $(\partial c)(u, v, w)=J^{\prime}(\varphi u, \varphi v, \varphi w)=0$ , for
$u,$ $v,$ $w\in W_{p-1}$ , where $\partial c$ is an element of $W_{p-2}\otimes\wedge^{3}(W_{p-1}^{*})$ , defined by $(\partial c)(u, v, w)$

$=[c(u, v), w]^{\prime}+[c(v, w), u]^{\prime}+[c(w, u), v]^{\prime}$ . Since these properties of $c$ are inde-
pendent of the choice of the representative $c$ of the class $c$ , we can write
them as follows,

(7.1) $\pi c=[, ]^{\prime}$ and $\partial c=0$ ,

where $\pi$ and $\partial$ are understood as maps of $W_{p- 1}\otimes\wedge^{2}(W_{p-3}^{*})/\partial(h_{p}\otimes W_{p-1}^{*})$ into
$W_{p-2}\otimes\wedge^{2}(W_{p-1}^{*})$ and $W_{p-2}\otimes\wedge^{3}(W_{p-1}^{*})$ respectively.

Now we assume that $W_{p}$ is prolongable in $L$ . Then by the same argu-
ment as in Section 2, we have

(7.2) $h_{p}$ is a Lie algebra acting on $W_{p-1}$ .
Next, take a linear section $\theta:W_{p}\rightarrow V_{p+1}$ , such that $[\theta W_{p}, \theta W_{p}]^{\prime}\subset W_{p}$ , and set

$Y(u, v)=[\theta\varphi u, \theta\varphi v]‘-\varphi c(u, v)$ and $Z(a)u=[\theta a, \theta\varphi u]^{\prime}-\varphi(au)$ ,

where $u,$ $v\in W_{p- 1}$ and $a\in h_{p}$ .
Then we can see that $Y\in h_{p}\otimes\Lambda^{2}(W_{p-1}^{*})$ and $Z(a)\in h_{p}\otimes W_{p-1}^{*}$ . From

$J^{\prime}(\theta\varphi u, \theta\varphi v, \theta a)=0$ , we obtain

(7.3) $ac-\partial(Z(a))=0$ for any $a\in h_{p}$ ,

where $ac$ is an element of $W_{p-1}\otimes\wedge^{2}(W_{p-1}^{*})$ defined by $(ac)(u, v)=a(c(u, v))$

$-c(au, v)-c(u, av)$ .
Similarly from $J^{\prime}(\theta\varphi u, \theta\varphi v, \theta\varphi w)=0$ , we obtain

(7.4) $c^{2}+\partial Y=0$ ,

where $c^{2}$ is an element of $W_{p- 1}\otimes\wedge^{3}(W_{p-1}^{*})$ , defined by $c^{2}(u, v, w)=c(c(u, v),$ $w$)
$c(c(v, w),$ $u$) $+c(c(w, u),$ $v$)

$,$
$u,$ $v,$ $w\in W_{p- 1}$ . E. Cartan’s original statements corre-

sponding to (7.2), (7.3) and (7.4) are respectively $2^{o},$ $3^{o}$ and $4^{O}$ in Chapter II,
Section 23, [1]. Formulations like (7.3) and (7.4) are due to [3] and [5]. We
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shall show that they can be written in terms of $c$ . It is easily seen that for
any $a\in h_{p},$ $ac$ is a well defined element of $W_{p-1}\otimes\wedge^{2}(W_{p-1}^{*})/\partial(h_{p}\otimes W_{p-1}^{*})$ , and
(7.3) becomes

(7.5) $ac=0$ for any $a\in h_{p}$ .
As for $c^{2}$, we wish to prove that if we set $c^{\prime}=c+\partial S$ for any element
$S\in h_{p}\otimes W_{p-1}^{*}$ , then $(c^{\prime})^{2}=c^{2}+\partial T$ for some element $T\in h_{p}\otimes\wedge^{2}(W_{p-1}^{*})$ . This
does not hold in general, but under the assumptions (7.2) and (7.3), we can
verify by a straightforward computation that such $T$ is given by $T(u, v)$

$=S(c(u, v))+S(S(u)v-S(v)u)-[S(u), S(v)]-Z(S(u))v+Z(S(v))u$ , where $Z(\cdot)$ is an
element of $h_{p}\otimes W_{p-1}^{*}$ which satisfies (7.3). Thus $c^{2}$ determines a well defined
element $c^{2}$ of $W_{v- 1}\otimes\Lambda^{3}(W_{v-1}^{*})/\partial(h_{v}\otimes\Lambda^{2}(W_{p-1}^{*}))$ and (7.4) can be written as
(7.6) $c^{2}=0$ .

PROPOSITION 6. Let $W_{p-1}$ be a transitive subalgebra of $V_{p-1}$ , and $h_{p}$ a
subalgebra of the Lie algebra $g_{p}$ satisfying $h_{p}W_{p-},$ $\subset W_{p-1}$ . Assume that $W_{p}$

and $W_{p}^{\prime}$ are prolongations of $W_{p-1}$ in $L$ and $h_{p}=g_{p}\cap W_{p}=g_{p}\cap W_{p}^{\prime}$ . Assume
further that $H^{p1}(L)=0$ . Then there exists an isomorphism of $W_{p}$ onto $W_{p}^{\prime}$

which induces the identity map of $W_{p-1}$ , if and only if the structure constants
of $W_{p}$ and $W_{p}^{\prime}$ are identical.

PROOF. We shall only prove the existence of an isomorphism $f_{p}$ of $W_{p}$

onto $W_{p}^{\prime}$ , under the assumption that they have the same structure constant,

because the converse is nearly evident.
Let $\varphi:W_{p- 1}\rightarrow W_{p}$ and $\varphi^{\prime}$ : $W_{p-1}\rightarrow W_{p}^{\prime}$ be arbitrary linear sections. Then

$\varphi^{\prime}=\varphi+S$ for some $S\in g_{p}\otimes W_{p-1}^{*}$ . It follows from the assumption on the
structure constant that $\partial S=\partial\sigma$ for some $\sigma\in h_{p}\otimes W_{p-1}^{*}$ . Thus $ S-\sigma$ is a cycle
$\in g_{p}\otimes W_{p-1}^{*}$ . Hence $S-\sigma=\partial T$ for some element $T\in g_{p+1}$ , and we have
$\varphi^{\prime}=\varphi+\sigma+\partial T$ . Define a map $f_{p}$ : $W_{p}=\varphi W_{p-1}\oplus h_{p}\rightarrow W_{p}^{\prime}=\varphi^{\prime}W_{p-1}\oplus h_{p}$ by
$f_{p}(\varphi u+a)=\varphi^{\prime}u+(a-\sigma(u))$ , where $u\in W_{p-1}$ and $a\in h_{p}$ . Then by a simple
calculation we see that $f_{p}$ is an isomorphism which we want. QED.

PROPOSITION 7. Let $W_{p}$ be a transitive subalgebra of $V_{p}(p\geqq 0)$ . Assume
that $H^{p1}(L)=H^{p2}(L)=0$ and that there exists an element $c\in W_{p}\otimes\wedge^{2}(W_{p}^{*})$ such
that $\pi c=[, ]^{\prime}$ and $\partial c=0$ . Then $W_{p}$ is prolongable in $L$ by a linear section
$\psi:W_{p}\rightarrow V_{p+1}$ such that $c(u, v)=[\psi u, \psi v]^{\prime}$ for $u,$ $v\in W_{p}$ .

PROOF. Take an arbitrary linear section $\theta:W_{p}\rightarrow V_{p+1}$ . Define $F\in V_{p}$

$\otimes\wedge^{2}(W_{p}^{*})$ by $F(u, v)=c(u, v)-[\theta u, \theta v]^{\prime}$ . Then we can see easily that $F$ is a
$cycle\in g_{p}\otimes\wedge^{2}(W_{p}^{*})$ . Hence there is an element $\sigma\in g_{p+1}\otimes W_{p^{*}}$ such that
$\partial\sigma=F$. Then $\psi=\theta+\sigma$ is the linear section which we want. QED.

PROPOSITION 8. Let $W_{p}$ be a transitive subalgebra of $V_{p}$ and $h_{p}=W_{p}\cap g_{p}$ .
$(p\geqq 1)$ . Assume that (1) $H^{p1}(L)=H^{p2}(L)=0,$ (2) $h_{p}$ is a subalgebra of the Lie
algebra $g_{1)}$ and $h_{p}W_{p-1}\subset W_{p-1},$ $(W_{p- 1}=\pi W_{p})$ , (3) the structure constant $c$ of
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$W_{p}$ satisfies (7.5) and (7.6). Then $W_{p}$ is prolongable in $L$ .
PROOF. We take a representative $c$ of $c$ which is given by $\varphi:W_{p- 1}\rightarrow W_{p}$ .

Then by the assumption (3), we have $c^{2}+\partial Y=0$ for some $Y\in h_{p}\otimes\Lambda^{2}(W_{p-1}^{*})$

and $ac=\partial(Z(a))$ for some $Z(a)\in h_{p}\otimes W_{p-1}^{*}$ , where we can assume that $h_{p}\ni a$

$\mapsto Z(a)$ is a linear map.
Now we define an element $\overline{c}\in W_{p}\otimes\wedge^{2}(W_{p}^{*})$ , referring to the direct sum

$W_{p}=\varphi W_{p-1}\oplus h_{p}$ , by $\overline{c}(\varphi u, \varphi v)=\varphi c(u, v)+Y(u, v),\overline{c}(a, \varphi u)=\varphi(au)+Z(a)u,\overline{c}(a, b)$

$=[a, b]$ , where $u,$ $v\in W_{p-1}$ and $a,$ $b\in h_{p}$ . Then $\overline{c}$ satisfies $\pi\overline{c}=[, ]^{\prime}$ and
$\partial\overline{c}=0$ . Indeed, $\pi\overline{c}(\varphi u+a, \varphi v+b)=c(u, v)+av-bu=[\varphi u+a, \varphi v+b]^{\prime}$ , and a simple
computation shows $(\partial\overline{c})(\varphi u_{1}+a_{1}, \varphi u_{2}+a_{2}, \varphi u_{3}+a_{3})=c^{2}(u_{1}, u_{2}, u_{3})+(\partial Y)(u_{1}, u_{2}, u_{8})$

$-\Sigma(a_{1}c)(u_{2}, u_{3})+\Sigma(Z(a_{1}))(u_{2}, u_{8})+\Sigma([a_{1}, a_{2}]u_{3}-a_{1}(a_{2}u_{3})+a_{2}(a_{1}u_{3}))+\Sigma[[a_{1}, a_{2}],$ $a_{3}$],

where each $\sum$ indicates the sum taken over all cyclic permutations of sub-
scripts 1, 2 and 3. Then the assumptions (2), (3) imply that $\partial\overline{c}$ vanishes.
Finally by Proposition 7 our assertion is verified. QED.

Let $h_{p}$ be a subspace of $g_{p}$ , and let $\{h_{p}, h_{p+1}, \}$ be a sequence such that
$h_{n+1}=h_{n}^{(1)}$ for all $n\geqq p$ . We denote by $H^{ij}(h_{p} ; L)$ the homology group at
$h_{i}\otimes\wedge^{j}(V_{0}^{*})$ which is defined only for $i\geqq p$ .

THEOREM 7 (EXISTENCE THEOREM). Let $L=pr\lim V_{n}$ be an infinite Lie
algebra. Let $W_{p- 1}$ be a transitive subalgebra of $V_{p- 1},$ $h_{p}$ a subspace of the p-th
isotropy algebra $g_{p}$ of $L$ and $c$ an element of $W_{p-1}\otimes\wedge^{2}(W_{p-1}^{*})/\partial(h_{p}\otimes W_{p-1}^{*})$ .
$(p\geqq 1)$ . Assume that

(1) $H^{ij}(h_{p} ; L)=0$ for all $i\geqq p$ and $j=1,2,3$ and $H^{ij}(L)=0$ for all $i\geqq p-1$

and $j=1,2$ ;
(2) $h_{p}$ is a subalgebra of the Lie algebra $g_{1)}$ , satisfying $h_{p}W_{p- 1}\subset W_{p- 1}$ ;
(3) $c$ satisfies (7.1), (7.5) and (7.6).

Then there exists a subalgebra $M=pr\lim W_{n}$ of $L$ such that
(i) $M$ is an infinite prolongation of $W_{p-1}$ in $L$ ;

(ii) $h_{p}$ is the p-th isotropy algebra of $M$ ;
(iii) $c$ is the p-th order structure constant of $M$.

Furthermore, if $M^{\prime}$ is any subalgebra of $L$ which satisfies (i), (ii), (iii) with $M$

replaced by $M^{\prime}$ , then there is an automorphism of $L$ which embeds $M^{\prime}$ into $M$.
PROOF. Let $c$ be a representative of $c$ . Then by the condition (7.1) and

by Proposition $\backslash 7$ with $p$ replaced by $p-1$ , we have $c(u, v)=[\psi u, \psi v]^{\prime},$ $u,$ $v$

$\in W_{p-1}$ , for some $\psi:W_{p- 1}\rightarrow V_{p}$ .
Set $W_{p}=\psi W_{p- 1}+h_{p}$ , then the assumption (2) implies that $W_{p}$ is a sub-

algebra of $V_{p}$ . It follows from Proposition 8, that $W_{p}$ is prolongable in $L$ . Let
$W_{p+1}$ be a normal prolongation of $W_{p}$ in $L$ . Since $H^{ij}(W_{p+1} ; L)=H^{ij}(h_{p} ; L)$

for $i\geqq p$ , we can apply Theorem 6 to $W_{p+1}$ and we obtain the normal infinite
prolongation $M$ of $W_{p+1}$ in $L$ , which evidently satisfies (i), (ii) and (iii). Next,
let $M^{\prime}=pr\lim W_{n^{\prime}}$ be any subalgebra of $L$ satisfying (i), (ii), (iii). Then by
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Proposition 6, there is an isomorphism $f_{p}$ of $W_{p^{\prime}}$ onto $W_{p}$ . Since $H^{ij}(M)=$

$H^{ij}(h_{p} ; L)=0$ for all $i\geqq p$ and $j=1,2$ , we can lift $f_{p}$ to an embedding $M^{\prime}$

$\rightarrow M$, by Theorem 2. Finally, by Theorem 1 we can extend this embedding
to the embedding $L\rightarrow L$ , which is clearly an automorphism of $L$ . QED.

We remark that the Existence and Uniqueness theorem in [3] or [5] is
implied in this theorem by taking $L=D(V_{0})$ and $p=1$ , condition (7.1) reducing
null in case $p=1$ .

Nagoya University
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