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Let there be given an n-dimensional $(n\geqq 2)$ complete and connected Rie-
mannian manifold $M$ of class $C^{\infty}$ whose sectional curvature $K(P)$ with respect
to any plane section $P$ is non-negative. The manifold structures of $M$ with
an r-dimensional totally geodesic submanifold $V$ have been studied in two
lines of investigation. One is concerning with the striking Toponogov’s
result, $i$ . $e.$ , the basic theorem on triangles. Making use of the basic theorem
on triangles, he proved [6] that if a complete Riemannian manifold of non-
negative curvature admits a straight line, $M$ is isometric to $V\times R$ where $V$

is a totally geodesic hypersurface, and with the aid of the totally convex
sets Cheeger-Gromoll [1] showed the existence of a compact totally geodesic
submanifold $S_{M}$ which is also a totally convex set in a complete and non-
compact Riemannian manifold, and the second named author [5] investigated
the isometric structures of a complete and non-compact Riemannian manifold
of non-negative curvature with a compact totally geodesic hypersurface.
The other has been made by T. Frankel [3], who gave the restrictions on
the totally geodesic imbeddings in $M$ of positive curvature and dimension
$n\leqq 2r$, by showing the natural homomorphism of the fundamental groups
$\pi_{1}(V)\rightarrow\pi_{1}(M)$ is surjective. In this paper we do not ask about the imbed-
dability of $V$ as a compact totally geodesic submanifold of $M$. It seems,
however, to the authors that it is essentially important that $M$ is not of
positive curvature but of non-negative curvature, as shown the following
example that the product manifold $S^{r}\times S^{n-r}$ of r-dimensional sphere $S^{r}$ and
$(n-r)$ -dimensional sphere $S^{n-r}$ is of non-negative curvature. Thus, by taking

account of the well known de Rham’s theorem, it might be interesting to
study precisely the manifold structure of a complete locally symmetric space
of non-negative curvature and with a totally geodesic submanifold. Note the
assumption $M$ is of positive curvature” gives the guaranty that the second
variation formula with respect to every l-parameter variation whose varia-
tion vector field is parallel along the geodesic is of strictly negative.

In \S 1, we give definitions and notations in later use. In \S 2, we shall
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deal with the variations of arc lengths with respect to the l-parameter varia-
tion of a geodesic. As against the first and the second variations, we cal-
culate straightforwardly the k-th, variation $(k\geqq 3)$ of the arc length, which
plays an important role for the proofs of the results obtained in \S 3. In the
last section, we apply the k-th, variation formula and investigate the mani-
fold structure of a locally symmetric space of non-negative curvature.

\S 1. Preliminaries.

Let $M$ be an n-dimensional complete and connected Riemannian mani-
fold of class $C^{\infty}$ and $g$ the induced Riemannian metric tensor of $M$. Through-
out this paper, we assume that the sectional curvature on $M$ is non-negative
with respect to the Riemannian metric $g$ . $\nabla_{X}$ is the covariant differentia-
tion with respect to a vector field $X$. Let a geodesic $\Gamma=\{\gamma(s)\}$ be always
parametrized by arc length and $\gamma^{\prime}(s)$ a tangent vector to $\Gamma$ at $\gamma(s)$ . For
the tangent space, denoted by $M_{p}$ , of $M$ at a point $p,$ $P=P(X, Y)$ is the
plane section spanned by any two linearly independent vectors $X$ and $Y$

belonging to $M_{p}$ . We denote by $K(P)=K(X, Y)$ the sectional curvature
corresponding to a plane section $P=P(X, Y)$ which is given by $K(X, Y)$

$=-g(R(X, Y)X,$ $Y$ )$/\{g(X, X)g(Y, Y)-g(X, Y)^{2}\}$ , where $R$ is the Riemannian
curvature tensor on $M$. We denote also by $G_{p},$ $G_{\Gamma}$ and $G_{M}$ the set of all
plane sections at $p$ , those of all plane sections $P(\gamma^{\prime}(s), Y(s))$ at a point $\gamma(s)$ on
any geodesic $\Gamma=\{\gamma(s)\},$ $Y(s)$ being an arbitrary vector field along $\Gamma$ and the
union of all sets $G_{p}$ for any point $p$ , respectively. For any two points $p,$ $q$

in $M$, let $d(p, q)$ be the distance between $p$ and $q$ with respect to the metric
tensor $g$. For any two disjoint compact subset $A$ and $B$ in $M$, we denote
by $\Gamma(A, B)$ the set of all minimal geodesic segments each of which starts
from a point $p\in A$ and ends at $q\in B$ such that $d(p, q)=d(A, B)$ . We also
denote by $\Gamma(A, \infty)$ the set of all rays from $A$ to $\infty$ . $A$ submanifold $N$ is by
definition a Riemannian manifold which is a subset in $M$ (as a set theoretical)

and the inclusion map $c:N\rightarrow M$ is an isometric imbedding. $A$ hypersurface
$V$ of $M$ is a Riemannian submanifold whose inclusion map $c;V\rightarrow M$ is an
isometric imbedding and $\dim V=\dim M-1$ . For a submanifold $N$ of $M$, a
cut point $\gamma(a)$ to $N$ along a geodesic segment $\Gamma$ is by definition the minimal
point to $N$ along $\Gamma$ whose starting point $\gamma(0)$ is in $N$ and starting direction
is normal to it at the starting point, $i$ . $e.,$ $\Gamma|[0, t]\in\Gamma(\gamma(t), N)$ holds for $0<t\leqq a$

and $\Gamma|[0, t]\not\in\Gamma(\gamma(t), N)$ for $t>a$ . The cut locus $C(N)$ is by definition the
set of all cut points to $N$ along every geodesic starting from $N$ and normal
to it at the starting point. We also denote by $F(N)$ the first focal locus of $N$.

$A$ soul of $M$ is by definition a compact totally convex set in $M$ which is
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also a compact totally geodesic submanifold without boundary. The existence
of a soul in a complete and non-compact Riemannian manifold of non-nega-
tive curvature is announced in [1].

\S 2. The $k$-th variation formula of the arc length.

In this section, we fix two points $p$ and $q$ of $M$ and a geodesic segment
$\Gamma=t\gamma(s)\}(0\leqq s\leqq l)$ starting from $p=\gamma(0)$ and ending at $q=\gamma(l)$ . Given a
smooth vector field $V$ along $\Gamma$ , we consider a l-parameter variation $\alpha$ of $\Gamma$

such that $\alpha:[0, l]\times(-\epsilon, \epsilon)\rightarrow M$ defined by

(2.1) $\alpha(s, t)=\exp_{\gamma(s)}t\cdot V(s)$ ,

where $\exp_{r(s)}$ is the exponential mapping of $M_{\gamma(s)}$ into M. $V$ is called the
variation vector field along $\Gamma$ associated with the variation $\alpha$ . For each
fixed $s$ , we denote by $\alpha_{s}$ a coordinate curve $s=constant$ given by $\alpha_{s}(t)=\alpha(s, t)$ ,

and for each fixed $t$, we denote also by $\alpha_{t}$ another coordinate curve $t=con-$

stant, called the variation curve, given by $\alpha_{t}(s)=\alpha(s, t)$ . Then we have two
vector fields $V$ and $T$ along the smooth mapping $\alpha$ defined by $V=\alpha_{*}(\partial/\partial t)$

and $T=\alpha_{*}(\partial/\partial s)$ , respectively. Thus we find

\langle 2.2) $V(s, O)=V(s)$ , $T(s, O)=\gamma^{\prime}(s)$ $s\in[0, l]$ .
Since $\partial/\partial t$ and $\partial/\partial s$ are basis vector fields for $[0,1]\times(-\epsilon, \epsilon)$ , it follows from
$[\partial/\partial t, \partial/\partial s]=0$ that

(2.3)
$\nabla_{\partial,\partial\iota}T--=\nabla_{\partial,-\partial\overline{s}}V$

,

where we identify the connection along $\alpha$ with the usual $\nabla$ . We denote by
$L(t)$ the length of the variation curve $\alpha_{t}$ . It is given by

$L(t)=\int_{0^{l}}g(T(s, t),$ $T(s, t))^{2}ds1$

As is well known, if the variation vector field $V$ is orthogonal to the tangent
vector $\gamma^{\prime}(s)$ of $\Gamma$ at each point, then the first and the second variation
formulas of the arc length $L(t)$ are given by

$L^{\prime}(0)=0$ ,
(2.4)

$L^{\prime\prime}(O)=\int_{0^{l}}[g(\nabla_{\partial,-\partial\overline{s}}V, \nabla_{\frac{\partial}{\partial s}}V)+g(R(V, \gamma^{\prime})V, \gamma^{\prime})](s, O)ds$ .

We shall consider the k-th variation of $L$ . In the following we only consider
the variation vector field $V$ associated with the variation $\alpha$ being orthogonal
to the geodesic $\Gamma$ . Then we obtain

PROPOSITION 2.1. For a l-parameter variation $\alpha$ of $\Gamma$ defined by (2.1)
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satisfying $g(V, \gamma^{\prime})=0$ , we have

$ L^{(k)}(0)=\int(\frac{\partial}{\partial t})^{k-1}g(\nabla T, T)|(s, 0)ds+\cdots$

(2.5)
$=\int_{0\partial^{\partial_{S}}\partial^{\partial_{S}}}^{\iota}\left(\begin{array}{l}\partial\\-\partial\overline{t}\end{array}\right)[g(\nabla V, \nabla V)+g(R(V, T)V, T)](s, O)ds$

$+\cdots$ $(k\geqq 3)$

where the remainder is an integral of the sum of terms consisting only of the

factors $\frac{\partial}{\partial t}g(\nabla_{\partial,\partial\overline{s}}V, T),$ $(\frac{\partial}{\partial t})^{2}g(\nabla_{-}V, T)\partial^{\partial}\overline{s}\ldots$ , $(\frac{\partial}{\partial t})^{k-2}g(\nabla_{\partial,\partial\overline{s}}V, T)$ .
PROOF. At first we shall show that the following equation

(2.6) $\int_{0^{l}}f(s, 0)g(\nabla_{\gamma}, V, \gamma^{\prime})ds=0$

holds for any function $f$ : $[0, l]\times(-\epsilon, \epsilon)\rightarrow R$ of class $C^{1}$ . In fact, the left
hand side is rewritten as follows:

$\int_{0^{\ell}}f(s, 0)g(\nabla_{\gamma}, V, \gamma^{\prime})ds=[f(s, 0)\cdot g(V, \gamma^{\prime})]_{0}^{l}-\int_{0}^{\iota}\frac{\partial}{\partial s}f(s, 0)\cdot g(V, \gamma^{\prime})ds$ ,

because $\Gamma$ is a geodesic, that is, $\nabla_{\gamma},\gamma^{\prime}=0$ . Under the assumption that the
variation vector field $V$ is orthogonal to $\Gamma,$ $(2.6)$ holds clearly.

Now, making use of the Leibniz theorem and differentiating the function
$t\rightarrow L(t)$ , we get the following

$L^{(k)}(0)=\int_{0\partial\overline{s}}^{\iota-1}(\frac{\partial}{\partial t})^{k}g(\nabla_{\partial}V, V)ds+\sum_{j=1}^{k-2}\int_{0^{\iota_{k- 1}}}C_{j}(\frac{\partial}{\partial t})^{k-1-j}g(\nabla_{\partial,\partial\overline{s}}V, V)$

$(\frac{\partial}{\partial t})^{J}21\gamma^{\prime})\cdot\left(\begin{array}{l}\partial\\-\partial\overline{t}\end{array}\right)g(T, T)^{-}21ds$ .

It follows from the equation (2.6) that the last member of the right
hand side in the relation above vanishes identically and the function
$(\frac{\partial}{\partial t})^{j}g(T, T)^{-}21$ may be regarded as the polynomial of $\frac{\partial}{\partial t}g(\nabla V, T)\partial^{\partial}\overline{s}$

$(\frac{\partial}{\partial t})^{2}g(\nabla_{\partial,\theta\overline{s}}V, T)$ , $\cdot$ .. , $(-\partial^{\partial}\overline{t})^{J-1}g(\nabla V, T)\partial^{\partial_{\overline{s}}}$ This fact means that the k-th

variation of $L$ is expressed as the equation (2.5).
REMARK. We give explicitly the third, the fourth and the fifth variations

of $L$ :

$L^{\prime\prime\prime}(O)=\int_{0^{l}}[\frac{\partial}{\partial t}g(R(V, T)V,$ $T$ ) $+2g(R(V, \gamma^{\prime})V,$ $\nabla_{\gamma},$ $V$ )$](s, O)ds$ ,

$L^{(4)}(0)=\int_{0^{l}}[(\frac{\partial}{\partial t})^{2}g(R(V, T)V,$ $T$ ) $+2g(\nabla_{\frac{\partial}{\partial t}}R(V, T)V,$
$\nabla_{\gamma},$ $V$ )

$+2g(R(V, \gamma^{\prime})V,$ $R(V, \gamma^{\prime})V)-3\{g(\nabla_{\gamma}, V, \nabla_{\gamma}, V)$
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$+g(R(V, \gamma^{\prime})V,$ $\gamma^{\prime}$) $\}^{2}](s, 0)ds$ ,

$L^{(5)}(0)=\int[(\frac{\partial}{\partial t})^{3}g(R(V, T)V,$ $T$ ) $+2g(\nabla_{\partial,-}\nabla R(V, T)V,$ $\nabla_{\gamma\prime}V$ )

$+6g(\nabla_{\partial_{\overline{t}} ,\partial}R(V, T)V,$
$R(V, \gamma^{\prime})V)-10\{g(\nabla_{r\prime}V, \nabla_{r^{l}}V)+g(R(V, \gamma^{\prime})V, \gamma^{\prime})\}$

. $\{\frac{\partial}{\partial t}g(R(V, T)V,$ $T$ ) $+2g(R(V, T)V,$ $\nabla_{r\prime}V$ )$\}](s, O)ds$ .

Now, let us consider the case where the variation vector field $V$ is par-
allel along $\Gamma$ . Calculating straightforwardly, we get

$(-\frac{\partial}{\partial t})^{\eta t}g(\nabla_{\partial_{-} ,\partial t}T, T)(s, 0)=g((\nabla_{\partial_{-} ,\partial\iota})^{m- 1}R(V, T)V,$ $T$ )

$+\sum_{i=2}^{m-1}{}_{m}C_{i}g((\nabla_{-\partial\overline{t^{Y}}}^{r_{\partial}})^{m-i-1}R(V, T)V,$
$(\nabla_{\partial,\partial\overline{t}})^{i- 2}R(V, T)V)(s, 0)$

,

$(\frac{\partial}{\partial t})^{rn}g(\nabla_{\partial_{t\partial\overline{t}} ,\partial^{--}}T, \nabla_{\partial}T)(s, 0)$

$=\sum_{i=1}^{m-1}{}_{m}C_{i}g((\nabla_{-\frac{\partial}{\partial t}})^{m-i-1}R(V, T)V,$
$(\nabla_{\partial,-\partial\overline{t}})^{i- 1}R(V, T)V)(s, 0)$

for $m\geqq 3$ . Combining together with these expressions and a consequence of
Proposition 2.1, we obtain

PROPOSITION 2.2. If, for a l-parameter variation $\alpha$ of $\Gamma$ defined by (2.1),
the variation vector field $V$ is orthogonal to $\Gamma$ and parallel along it, then we get

(2.7) $L^{(k)}(0)=\int_{0}^{\iota}(\frac{\partial}{\partial t})^{k-2}g(R(V, T)V,$ $T$ ) $(s, 0)ds+\cdots$ ,

where the remainder depends only on vectors $R(V, T)V,$
$\nabla_{\partial,-\partial\overline{t}}R(V, T)V,$

$\cdots$ ,

$(\nabla_{\partial_{-} ,-\partial t})^{k- 4}R(V, T)V$.

\S 3. An application of the $k$-th variation for locally symmetric spaces.

As an application of the k-th variation formula obtained in \S 2, we shall
consider $M$ being a locally symmetric space of non-negative curvature. T.
Frankel studied some relations of the fundamental groups of a complete Rie-
mannian manifold $M$ of strictly positive curvature and its compact totally
geodesic hypersurface $N[3]$ . One of the results obtained in [3] is the natural
homomorphism of fundamental groups $\pi_{1}(N)\rightarrow\pi_{1}(M)$ is surjective. But in
general $\pi_{1}(N)\rightarrow\pi_{1}(M)$ is not surjective if $M$ is of non-negative curvature.
For instance, consider $M$ being a torus and $N$ a closed geodesic. The pur-
pose of this section is to investigate some isometric structures of a complete
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locally symmetric space $M$ of non-negative curvature which admits a compact
totally geodesic hypersurface $N$ where the natural homomorphism of funda-
mental groups $\pi_{1}(N)\rightarrow\pi_{1}(M)$ is not surjective.

Let $M$ be a connected and complete locally symmetric space of non-
negative curvature and $W,$ $V$ be a compact totally geodesic hypersurface and
a submanifold of $M$, respectively.

First of all, we shall consider $M$ being non-compact.

THEOREM 3.1. Let $M$ be a complete and non-compact locally symmetric
space of non-negative curvature with compact totally geodesic hypersurface $W$.
Then $M$ is isometric to $W\times R$ and $W$ is a soul of $M$ if $ C(W)=\emptyset$ , or otherwise
$C(W)=W^{*}$ is a soul of $M$, and $W$ is the double covering of $W^{*}$ . Furthermore
$M$ is isometric to $W\times R/f$, where $f$ is the isometric involution of fixed point
free defined by the family of rays $\{\Lambda_{x} ; \Lambda_{x}\in\Gamma(W, \infty), \lambda_{x}(0)=x\in W\}$ .

The proof is concluded in Theorems A and $B$ in [5]. They state that if
a compact totally geodesic hypersurface $N$ in a complete and non-compact
Riemannian manifold $M$ of non-negative curvature has the property $ F(N)=\emptyset$ ,

then $M$ is isometric to either $N\times R$ (if $ C(N)=\emptyset$) or otherwise, $C(N)=N^{*}$ is
a soul of $M$. Moreover, every geodesic starting from $\chi*\in N^{*}$ and normal to
$N^{*}$ at the starting point $\chi*$ is a ray from $N^{*}$ to $\infty$ which strikes $N$ with
right angle. And there is a unique ray $\Lambda_{x}=\{\lambda_{x}(t)\}(0\leqq t<\infty)$ from $N$ to $\infty$

through each point $x=\lambda_{x}(0)\in N$ which is contained in some ray from $N^{*}$ to
$\infty$ . Let $f:N\times R\rightarrow N\times R$ be defined by $f(x, t)=(\lambda_{x}(-2l), -t)$ for all $x\in N$

and all $t\in R$ , where we put $l=d(N, N^{*})$ . Then $M$ is isometric to $N\times R/f$

and the mapping $\pi;N\rightarrow N^{*}$ defined by $\pi(x)=\lambda_{x}(-l)$ is a local isometry
which can be considered as a covering mapping. Therefore $N$ is the double
covering of $N^{*}$ .

If $M$ is locally symmetric, we have $K(P)=0$ for any $P\in G_{A_{x}}$ and any
$A_{x}\in\Gamma(V, \infty),$ $x\in V$ . Then $ F(V)=\emptyset$ is automatically satisfied. Therefore
the proof is a consequence of Theorems A and $B$ in [5].

$CoROLLARY$ . Let $V$ be a totally geodesic submanifold in a complete and
non-compact locally symmetric space $M$ with non-negative curvature. Then, $V$

is contained entirely in some $W_{t}$ , where $W_{t}=\{x\in M;d(W, x)=t\}$ (or $W_{t}^{*}$

$=\{x\in M;d(W^{*}, x)=t\})$ is a compact totally geodesic hypersurface. Hence
$ V\cap W\neq\emptyset$ implies that $V$ is a totally geodesic submanifold of $W$ and $ V\cap W=\emptyset$

implies that $V$ is a totally geodesic submanifold of $W^{*}$ or otherwise there is
an isometric imbedding $c:V\rightarrow W$.

PROOF. First of all we suppose that $M=W\times R/f$. In other word, $C(W)$

$=W^{*}$ is a compact totally geodesic hypersurface and $W_{t}^{*}=\{x\in M;d(x, W^{*})$

$=t\}$ is isometric to $W$ for each $t>0$ . Since $V$ is compact, there is a number
$t_{0}$ such that $ V\cap W_{t}^{*_{0}}=\emptyset$ . Take two points $p\in V,$ $q\in W_{t}^{*_{0}}$ such that $d(p, q)$
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$=d(V, W_{t}^{*_{0}})$ . There is a uniquely determined shortest geodesic $\Gamma\in\Gamma(q, p)_{r}$

$\Gamma=\{\gamma(t)\}(0\leqq t\leqq l),$ $\gamma(0)=q,$ $\gamma(1)=p$ such that $\Gamma|(-\infty, 0$] is a ray from $W_{t}^{*_{0}}$

to $\infty$ . We shall find $V\subset W_{t-l}^{*_{0}}$ . In fact, the tangent space $(W_{t- l}^{*_{0}})_{p}$ at $p$ con-
tains $V_{q}$ and recall that $V$ and $W_{t-l}^{*_{0}}$ are totally geodesic submanifold and
hypersurface, respectively.

The proof in the case $M=W\times R$ is covered essentially in the one stated
above. Q. E. D.

Next, we shall restrict our attention to a compact locally symmetric
space $M$ of non-negative curvature which admits a compact totally geodesic
submanifold $V$ and a compact totally geodesic hypersurface $W$. If $M$ is of
positive curvature, $W$ and $V$ must intersect each other by virtue of the
second variation formula (see Frankel [2]). There is no guaranty that
$ W\cap V\neq\emptyset$ under our assumption.

But if $ W\cap V=\emptyset$ , taking two points $y\in V,$ $x\in W$ such that $d(x, y)=d(V, W)$

and a geodesic $\Gamma\in\Gamma(y, x)$ , we get $K(\gamma^{\prime}(s), X(s))=0$ for all $s\in[0, d(y, x)]$ and
all parallel vector field $X$ along $\Gamma$ satisfying $X(O)\in V_{y}$ , where we use the
l-parameter variation $\alpha(s, t);=\exp_{\gamma(s)}tX(s)$ and the variation formulas $L^{(k)}(0)$.
stated in \S 2. Because the function $t\rightarrow L(\alpha_{t})$ is analytic and $L^{(k)}(0)=0$ for all
$k=1,2$ , $\cdot$ ., we must have $L(t)=L(0)=d(y, x)$ for all $t\in(-\epsilon, \epsilon)$ . Therefore.
we get a neighborhood $U_{x}\subset V$ of $X$, every point of which has the constant
distance $d(V, W)$ to $W$. By compactness of $V$, we have $d(z, W)=d(V, W)$,

for any point $z\in V$ and $K(\gamma_{z}^{\prime}(s), X_{z}(s))=0$ for any $\Gamma_{z}\in\Gamma(z, W)$ and any
parallel vector field X. along $\Gamma_{z}$ satisfying $X_{z}(0)\in V..$ Summing up these
facts, we obtain

THEOREM 3.2. Let $W$ and $V$ be a compact totally geodesic hypersurface
and a submanifold of a compact locally symmetric space $M$ of non-negative
curvature. Then, we have $ W\cap V\neq\emptyset$ or otherwise, we have $d(y, W)=d(V, W)$

for any point $y\in V$ and $K(\gamma_{y}^{\prime}(s), X_{y}(s))=0$ for any $\Gamma_{y}\in\Gamma(y, W)$ and any par-
allel vector field along $\Gamma_{y}$ such that $X_{y}(0)\in V_{y}$ .

Let us consider $V,$ $W$ being hypersurfaces. From Theorem 3.2, we have
$K(\gamma_{x}^{\prime}(s), X(s))=0$ for all geodesic $\Gamma_{x}$ starting at $x\in V$ and normal to it at
$\gamma_{x}(0)=x$ and all parallel vector field $X$ along $\Gamma_{x}$ such that $X(0)\in V_{x}$ if $ V\cap W=\emptyset$ .
This fact implies that $ F(V)=\emptyset$ and the compactness of $M$ implies $ C(V)\neq\emptyset$ .

PROPOSITION 3.3. $C(V)$ and $C(W)$ are compact totally geodesic hypersur-

faces of M. Moreover $C(V)$ (resp. $C(W)$) is locally isometric to $V$ (resp. $W$).

PROOF. Let $p\in C(V)$ and $\chi\in V$ be points such that $d(p, x)=d(C(V), V)$ ,

and $\Gamma\in\Gamma(x, p)$ be a shortest geodesic. Since $p$ is not a focal point to $x$

along $\Gamma$ , there exist a point $x_{1}\in V$ and a shortest geodesic $\Gamma_{1}\in\Gamma(x_{1}, p)$

satisfying $\gamma_{1}^{\prime}(l)=-\gamma^{\prime}(1)$ and $x_{1}\neq x$, where we put $l=d(C(V), V)$ . Putting $Z$

the unit normal vector field defined in a small neighborhood $U_{x}\subset V$ of $x$ in
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such a way that $Z(x)=\gamma^{\prime}(0)$ , we may consider that the mapping $\varphi$ defined by
$\varphi(y)=\exp_{y}l\cdot Z(y),$ $y\in U_{x}$ is a diffeomorphism of $U_{x}$ onto $\varphi(U_{x})$ . Making use
of Warner’s metric comparison theorem [7], we see that $L(c)=L(\varphi\circ c)$ holds
for arbitrary piecewise smooth curve $c$ in $U_{x}$ . Therefore, $\varphi$ being an isometry
of $U_{x}$ onto $\varphi(U_{x}),$ $\varphi(U_{x})$ is a piece of totally geodesic hypersurface which is
isometric to $U_{x}$ . We can also construct the unit normal vector field $Z_{1}$ defined
in a neighborhood $U_{x_{1}}\subset V$ of $x_{1}$ such that $Z_{1}(x_{1})=\gamma_{1}^{\prime}(0)$ and the mapping $\varphi_{1}$

defined by $\varphi_{1}(y_{1})=\exp_{y_{1}}l\cdot Z_{1}(y_{1})$ . Because we have the same argument as $\varphi$

and $U_{x}$ , there exist $U_{x}^{\prime}\subset U_{x}$ and $U_{x_{1}}^{\prime}\subset U_{x_{1}}$ such that $\varphi(U_{x}^{\prime})$ coincides with
$\varphi_{1}(U_{x_{1}}^{\prime})$ . In fact, both $\varphi(U_{x})$ and $\varphi_{1}(U_{x_{1}})$ must have the common tangent space
at $p$ and are totally geodesic. Then we find that for each point $y\in\varphi^{-1}(U_{x}^{\prime})$ ,
we have $\gamma_{y}(2l)\in\varphi_{1}^{-1}(\varphi(y))$ . In fact, by virtue of Omori’s Proposition (3.4 Pro-
position, [4]), $\gamma_{y}^{\prime}(1)\neq-\gamma_{y_{1}}^{\prime}(l),$ $y_{1}\equiv\varphi_{1}^{-1}(\varphi(y))$ implies the existence of Jacobi field
$Y$ along $\Gamma_{y}$ such that $g(Y, \gamma_{y}^{\prime})=0,$ $Y(O)\in V_{y},$ $Y(O)\neq 0$ and $Y(l)=0$ . But this
contradicts Theorem 3.2. Hence we see that $\varphi(U_{x}^{\prime})\subset C(V)$ .

We shall next prove that $C(V)$ is a compact totally geodesic hypersurface.
Let $p_{0}\in M$ be a point such that $\lim_{k-}p_{k}=p_{0},$

$p_{k}\in\varphi(U_{x})$ . There is a sequence

of points $x_{k}\in U_{x}$ satisfying $\varphi(x_{k})=p_{k}$ and the geodesic $\Gamma_{k}$ starting from $x_{k}$

and normal to $V$ at the starting point. Then, $\gamma_{k}(2l)\in U_{1}$ holds for each
$k=1,2,$ $\cdots$ Hence there is a geodesic $\Gamma_{0}$ starting from $x_{0}=\lim_{k-}x_{k}$ and normal

to $V$ at the starting point which satisfies $\gamma_{0}(2l)\in V$ . This fact implies that
$\gamma_{0}(l)\in C(V)$ and there exist neighborhoods $U_{x0},$ $U_{\gamma_{0^{(2l)}}}$ and mappings $\varphi_{x0},$ $\varphi_{\gamma_{0}(2l)}$

as well as $U_{x}$ and $\varphi$ . $\Gamma_{0}$ containing no focal point to $x_{0}$ , we have the same
argument as $U_{x},$ $\varphi$ . Since $V$ is compact, we can choose a family of points
$\{x_{i}\}$ and corresponding neighborhoods $\{U_{i}\}$ in such a way that $V$ can be covered

by $\bigcup_{i=1}^{k}U_{i}$ , and we also see that $C(V)\subset\bigcup_{i=1}^{k}\varphi_{i}(U_{i})$ , which shows that $C(V)$ is a
compact totally geodesic hypersurface. Q. E. D.

In the following we shall classify the structures of $M$ with disjoint com-
pact totally geodesic hypersurfaces $V$ and $W$. Recall that we have $K(P)=0$

for any plane section $P\in G_{\Gamma_{x}}$ and every geodesic $\Gamma_{x}$ starting from a point $x$

of $V$ or $W$ with normal direction to $V$ or $W$ at the point. And hence $F(V)$

$=F(W)=\emptyset$ is automatically satisfied. Since $V$ and $W$ are in the same posi-
tion, we restrict our attention to $V$ .

THEOREM 3.4. Assume that there is a unit normal vector field $N$ which is
defined globally over $V$ and $V$ divides $M$ into two connected components. Then
$C(V)$ consists of two connected components, each of which is a compact totally
geodesic hypersurface, say $C_{1}(V)$ and $C_{2}(V)$ , and $V$ is the double covering
of them. Moreover $V_{t}=\{\exp_{x}tN(x);x\in V\}$ is isometric to $V$ for each
$t\in[0,$ $d(V, C(V)))$ . Especially $M$ is isometric to a Klein bottle if $\dim M=2$.
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PROOF. Let $\Gamma_{x}$ be the geodesic defined by $\gamma_{x}(0)=x\in V$ and $\gamma_{x}^{\prime}(0)=N(x)$ .
Then $K(P)=0$ holds for an $y$ plane section $P$ satisfying $P\in G_{\Gamma_{x}}$ , which im-
plies that the mapping $\varphi_{t}$ : $V\rightarrow V_{t}$ defined by $\varphi_{t}(x):=\gamma_{x}(t)$ is a local isometry.
Putting $C_{1}(V)=\{\gamma_{x}(l(x));\gamma_{x}(l(x))\in C(V)\}$ , we see from Proposition 3.3 that
$\ell(x)=l$ (constant) and $\gamma_{x}(2l)\in V$ for any $x\in V$. Hence the mapping $\varphi_{zl}$ : $V\rightarrow V$

is an isometric involution of fixed point free and $C_{1}(V)$ is isometric to $V/\varphi_{2l}$ .
Then $\varphi_{l}$ : $V\rightarrow C_{1}(V)$ can be considered as a covering projection. For any fixed
$t\in(O, l),$ $V_{t}$ is a compact totally geodesic hypersurface by virtue of Warner’s
metric comparison theorem and the property of $\varphi_{t}$ implies that $V_{t}$ is compact.

Q. E. D.
REMARK. Let $\varphi_{l}^{\prime}$ : $V\rightarrow C_{2}(V)$ be defined as well as $\varphi_{l}$ : $V\rightarrow C_{1}(V)$ . Then

for a point $x\in V,$ $\varphi_{2l}^{\prime},$ $\circ\varphi_{2l}(x)\neq x$ holds in general. There is no guaranty for
$\varphi_{2l}^{\prime},$ $\circ\varphi_{2l}(x)=\chi$ holding. We note that for any point $p\in C(V)$ , there are just
two minimal geodesics $\Gamma_{1},$ $\Gamma_{2}$ in $\Gamma(p, V)$ and its tangent vectors satisfy
$\gamma_{1}^{\prime}(l)=-N(\gamma_{1}(l)),$ $\gamma_{2}^{\prime}(l)=-N(\gamma_{2}(l))$ under the assumption of Theorem 3.4. And
$\Gamma_{1},$ $\Gamma_{2}$ lie entirely in the component containing $C_{1}(V)$ .

THEOREM 3.5. Assume that there is a unit normal vector field $N$ which is
defined globally over $V$ and $V$ does not divide M. Then, $C(V)$ is isometric to
V. Especially $M$ is isometric to a flat torus if $\dim M=2$ .

PROOF. We have seen that $C(V)$ is a compact totally geodesic hyper-
surface and $\Gamma(p, V)$ consists of just two geodesics for every point $p\in C(V)$ .
Suppose that there is a point $p\in C(V)$ in such a way that the geodesics
$\Gamma_{1},$ $\Gamma_{2}\in\Gamma(p, V)$ satisfy both $\gamma_{1}^{\prime}(l)=-N(\gamma_{1}(l))$ and $\gamma_{2}^{\prime}(l)=-N(\gamma_{2}(l))$ , where
$l=d(V, C(V))$ . Then we see that $C(V)$ contains the set $\{\gamma_{x}(l);x\in V,$ $\gamma_{x}^{\prime}(0)$

$=N(x)\}$ which is a compact totally geodesic hypersurface and coincides with
$C_{1}(V)$ stated in Theorem 3.4. Then $V$ divides $M$ into two connected com-
ponents. Therefore we must have $\gamma_{1}^{\prime}(l)=N(\gamma_{1}(l))$ and $\gamma_{2}^{\prime}(l)=-N(\gamma_{2}(l))$ for any
point $p\in C(V)$ and $\Gamma_{1},$ $\Gamma_{2}\in\Gamma(p, V)$ . This fact implies that $\varphi_{\iota}$ : $V\rightarrow C(V)$

defined by $\varphi_{l}(x):=\exp_{x}l\cdot N(x)$ is injective. Hence $C(V)$ is isometric to $V$ .
Q. E. D.

REMARK. There is no guaranty that $\gamma_{x}(2l)=\gamma_{x}(0)$ holds for every point
$x\in V$ ; in other words, $M$ is isometric to $V\times S^{1}$ . In fact, consider a flat torus
whose covering fold is given as a parallelogram with the same side length.
Then $\gamma_{x}(2l)=\gamma_{x}(0)$ holds for every point $x\in V$ ( $V$ is a closed geodesic) if and
only if one of its angles is equal to right angle. When one of its angles is
equal to $\pi/3,$ $\gamma_{x}(4l)=\gamma_{x}(0)$ holds for every $x\in V$.

Now, we assume that there is no unit normal vector field which is defined
globally over $V$ . Then the set $V_{t}^{*}=\{x\in M;d(x, V)=t\}$ is a connected and
compact totally geodesic hypersurface for each $t\in(O, d(V, C(V)))$ . For a fixed
$t_{0}\in(0, d(V, C(V)))$ we see that $V_{t}^{*_{0}}$ divides $M$ into two connected components,
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that is to say, one is the set $\{x\in M;d(x, V)<t_{0}\}$ and the other is { $x\in M$ ;
$d(x, V)>t_{0}\}$ each of which has boundary as $V_{t}^{*_{0}}$ . It is easily seen that
$C(V_{t}^{*_{0}})\supset V$ and $C(V_{t}^{*_{0}})$ has two connected components. Therefore $V_{t}^{*_{0}}$ satisfies
the hypothesis of Theorem 3.4 and hence we have the same argument. Sum-
ming up these facts, we obtain

THEOREM 3.6. Assume that there is no unit normal vector field which is
defined globally over V. Then $V_{t}^{*_{0}}$ is the double covering of $V$ for each
$t\in(O, d(V, C(V)))$ . Moreover $C(V)$ is isometric to $V$ .

It follows from the generalized Gauss-Bonnet theorem that $\chi(M)=0$ if
even dimensional, oriented and compact locally symmetric space $M$ has two
compact totally geodesic hypersurfaces $V$ and $W$ such that $ V\cap W=\emptyset$ .

Now, the natural homomorphism of fundamental groups $\pi_{1}(V)\rightarrow\pi_{1}(M)$ is
surjective if the inverse image $\pi^{-1}(V)$ of $V$ under the projection map $\pi;\tilde{M}\rightarrow M$

is connected, where $\tilde{M}$ is the universal covering manifold of $M[3]$ . The
discussion in this section shows that $\pi_{1}(V)\rightarrow\pi_{1}(M)$ is not necessarily surjec-
tive under our situation that $M$ is a complete locally symmetric space of
non-negative curvature. Therefore let us consider $\pi_{1}(V)\rightarrow\pi_{1}(M)$ being not
surjective. If $M$ is isometric to $V\times R$ , we easily see that $\pi_{1}(V)\rightarrow\pi_{1}(M)$ is
surjective. Developing the same argument as in [3] we obtain that $K(P)=0$

for any plane section $P\in G_{\Gamma_{x}}$ and any geodesic $\Gamma_{x},$ $X\in V$ whose starting
point is $x$ and normal to $V$ at $x$. Then we get

THEOREM 3.7. Let $M$ be a complete locally symmetric space of non-negative
curvature and $V$ be a compact totally geodesic hypersurface. Suppose that the
natural homomorphism of fundamental groups $\pi_{1}(V)\rightarrow\pi_{1}(M)$ is not surjective.
Then we have

(1) if $M$ is non-compact, $M$ is isometric to $V\times R/f$ where $f$ is the iso-
metric involution of fixed point free defined in Theorem 3.1,

(2) if $M$ is compact, $M$ has the isometric structures stated in Theorem 3.4
or 3.5.

REMARK. If $\dim M=2,$ $M$ is isometric to an open M\"obius band if $M$ is
non-compact, and $M$ is isometric to either a Klein bottle or a flat torus if $M$

is compact.
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