On the imbedding problem of Galois extensions

By Norio Adachi

(Received April 15, 1969) (Revised Feb. 14, 1970)

Introduction

Let Ω be a field, and k a finite Galois extension of Ω with Galois group $g = G(k/\Omega)$. Let $\varphi: G \to g$ be a homomorphism of a finite group G onto g with kernel A. Then we have an exact sequence

$$1 \longrightarrow A \longrightarrow G \xrightarrow{\varphi} \mathfrak{g} \longrightarrow 1.$$
 (1)

We say that the imbedding problem $(k/\Omega, G, \varphi)$ associated with the exact sequence (1) is solvable, if there exists a Galois algebra K^{*} over Ω with Galois group $\mathfrak{G} = G(K/\Omega)$ such that:

- 1) There is an isomorphism π of G onto \mathfrak{G} .
- 2) k is contained in K, and it is the fixed subalgebra of K under A^{π} .
- 3) φ is the composite of π with the naturally induced epimorphism of G onto g.

Such a K is said to be a solution of the imbedding problem. (For simplicity we shall write g instead of g^{π} for $g \in G$.)

We shall be concerned with the imbedding problem only when the following conditions are satisfied:

- 1) The group A is abelian.
- 2) The characteristic of the field Ω is relatively prime to the order of A.

The purpose of the present paper is to summarize some properties about the imbedding problem, as a preparation to prove the main theorem in the author's following paper.

$\S1$. A necessary condition for the solvability of the imbedding problem

1.1. For $s \in \mathfrak{g}$ choose an element $g_s \in G$ such that

*) A commutative algebra K over Ω is called a Galois algebra with Galois group \mathfrak{G} , if the following conditions are satisfied: 1) K is semi-simple, 2) \mathfrak{G} is a group of automorphisms of K over Ω , 3) K is isomorphic to the group ring $\Omega[\mathfrak{G}]$ as right \mathfrak{G} -modules. For the general theory of Galois algebras, see [2] and [3].

N. Adachi

 $\varphi(g_s) = s$, and $g_1 = 1$.

And define, as usual,

 $T^s = g_s^{-1}Tg_s$, $s \in \mathfrak{g}$, $T \in A$.

Then A will have the structure of a g-module.

Denote by k_A the multiplicative group of all the invertible elements in the group ring k[A]. As g operates on both k and A, k_A is also endowed with the structure of a g-module. The inclusion map $i: A \to k_A$ induces a homomorphism $i^*: H^2(\mathfrak{g}, A) \to H^2(\mathfrak{g}, k_A)$. Now we are going to prove the following well known proposition of Faddeev-Hasse.

PROPOSITION. Let a be the cohomology class of $H^2(g, A)$ which is determined by the exact sequence (1). If the imbedding problem $(k/\Omega, G, \varphi)$ is solvable, then a is contained in the kernel of i^* , i.e. $i^*(a) = 1$.

PROOF. Let K be one of the solutions of $(k/\Omega, G, \varphi)$. Since K is a Galois algebra over k, K has a normal basis $\{\theta^T\}_{T \in A}$ over k with respect to A. A map which sends T to θ^T $(T \in A)$ induces an isomorphism of k[A] onto K as right g-modules. As θ^{g_s} is an element of K, we may write $\theta^{g_s} = \sum_{T \in A} \alpha_{s,T} \theta^T$ with some suitable $\alpha_{s,T} \in k$. Put $a_s = \sum_{T \in A} \alpha_{s,T} T$, then a_s is mapped to θ^{g_s} by the above isomorphism.

Put

$$g_s g_t = g_{st} a_{s,t} \qquad (s, t \in \mathfrak{g}).$$

Then $a_{s,t}$ is contained in A. The set $\{a_{s,t}\}_{s,t\in\mathbb{N}}$ is a factor set of the class a. From an equality $\theta^{g_{s-1}}\theta^{g_s} = \theta^{a_{s-1},s}$ we have $a_{s-1}^s a_s = a_{s-1,s}$. Hence a_s is in

k_A. It is easily shown that an equality $\theta^{g_sg_t} = \theta^{g_sta_{s,t}}$ implies $a_{s,t} = a_s^t a_{st}^{-1}a_t$. Q.E.D.

The converse of the proposition is not always true. However, G. Beyer [1] settled the converse in a case which plays a basic role in the author's next coming paper.

Suppose that A is cyclic of prime power order l^n , and k contains a primitive l^n -th root of unity ζ . Let z be a generator of the cyclic group A, and x be a character defined by $x(z) = \zeta$. Put $\mathfrak{h} = \{h \in \mathfrak{g} ; x(z^h) = x(z)^h\}$. This is a normal subgroup of g, and the quotient group g/\mathfrak{h} may be considered as a subgroup of the group of reduced residue classes of the rational integers mod l^n . Therefore, in particular, if l is an odd prime, then g/\mathfrak{h} is a cyclic group.

THEOREM OF BEYER. Suppose that g/\mathfrak{h} is cyclic. Then, if $i^*(a) = 1$, the imbedding problem $(k/\Omega, G, \varphi)$ is solvable.

1.2. Now back to the general case. Let m be the order of the abelian group A. We assume that the field k contains the m-th roots of unity. Let x be any character of A. Then, by the assumption on the characteristic of

294

 Ω , there is a primitive idempotent E_x of k[A] such that $T = \sum_{x \in \hat{A}} x(T)E_x$ for $T \in A$. Here, \hat{A} denotes the character group of A. And we have

$$k[A] = \sum_{x \in \widehat{A}} k E_x$$
, and $k_A = \sum_{x \in \widehat{A}} k^* E_x$

As E_x^s $(s \in \mathfrak{g})$ is also a primitive idempotent, we have $E_x^s = E_{x^s}$ for some $x^s \in \hat{A}$. In fact, we see $x^s(T) = x(T^{s^{-1}})^s$ for $s \in \mathfrak{g}$, $T \in A$ (see [2] or [3]).

We say that a character x is conjugate to a character y, if there is some $s \in \mathfrak{g}$ such that $y = x^s$. It is clear that this conjugacy is an equivalence relation. Let \mathfrak{R} be any one of the conjugate classes. Put $E_{\mathfrak{R}} = \sum_{x \in \mathfrak{R}} E_x$, and $k_A^{(\mathfrak{R})} = \sum_{x \in \mathfrak{R}} k^* E_x = k_A E_{\mathfrak{R}}$. Then the idempotent $E_{\mathfrak{R}}$ is g-invariant and $k_A^{(\mathfrak{R})}$ has the structure of a g-module.

For $x \in \Re$, we put $g_{\Re} = \{s \in \mathfrak{g} ; x^s = x\}$. Then g_{\Re} is a subgroup of \mathfrak{g} . The group g_{\Re} depends on the choice of x in \Re , so we choose one x and fix it once and for all.

THEOREM. $H^{q}(\mathfrak{g}, k_{A}) = \prod_{\mathfrak{g}} H^{q}(\mathfrak{g}, k_{A}^{(\mathfrak{g})})$ is canonically isomorphic to $\prod_{\mathfrak{g}} H^{q}(\mathfrak{g}, k^{*})$ for every integer q.

PROOF. Let $Z[\mathfrak{g}] \otimes_{\mathfrak{g}_{\mathfrak{R}}} k^* E_x$ denote the tensor product of the group ring $Z[\mathfrak{g}_{\mathfrak{R}}]$ and $k^* E_x$ over the group ring $Z[\mathfrak{g}_{\mathfrak{R}}]$. Define

$$t(s \otimes \alpha) = (st) \otimes \alpha$$
 for $s, t \in \mathfrak{g}$ and $\alpha \in k^* E_x$.

then $Z[\mathfrak{g}] \otimes_{\mathfrak{s}_{\mathfrak{g}}} k^* E_x$ has the structure of a g-module. It is easily seen that $Z[\mathfrak{g}] \otimes_{\mathfrak{s}_{\mathfrak{g}}} k^* E_x \cong k_A^{(\mathfrak{g})}$ as g-modules. By Šapiro's lemma, we have

$$H^q(\mathfrak{g}, \, k_A^{(\mathfrak{g})}) \cong H^q(\mathfrak{g}_{\mathfrak{K}}, \, k^*E_x)$$
.

Since $k^*E_x \cong k^*$ as $\mathfrak{g}_{\mathfrak{R}}$ -modules, we have

$$H^{q}(\mathfrak{g}_{\mathfrak{R}}, k^{*}E_{x}) \cong H^{q}(\mathfrak{g}_{\mathfrak{R}}, k^{*}). \qquad Q. E. D.$$

COROLLARY (Hasse). Let $\operatorname{Res}_{\mathfrak{g}_{\mathfrak{R}}}^{\circ}$ be the restriction map of $H^2(\mathfrak{g}, A)$ into $H^2(\mathfrak{g}_{\mathfrak{R}}, A)$, and let x^* be the homomorphism of $H^2(\mathfrak{g}_{\mathfrak{R}}, A)$ into $H^2(\mathfrak{g}_{\mathfrak{R}}, k^*)$ which is induced by the character x. Then $i^*(a) = 1$, if and only if $x^* \operatorname{Res}_{\mathfrak{g}_{\mathfrak{R}}}^{\circ}(a) = 1$ for all the classes \mathfrak{R} .

PROOF. Immediate from the Theorem.

Since $H^1(\mathfrak{g}_{\mathfrak{R}}, k^*) = 1$, we have also $H^1(\mathfrak{g}, k_A) = 1$ (cf. [3]).

1.3. Suppose that Ω is an algebraic number field, and suppose that k contains the *m*-th roots of unity. For each prime \mathfrak{p} of Ω , we let $\Omega_{\mathfrak{p}}$ denote the \mathfrak{p} -adic completion of Ω . It is convenient to write $k^{\mathfrak{p}}$ for "any one of the \mathfrak{P} -adic completions $k_{\mathfrak{P}}$ for \mathfrak{P} over \mathfrak{p} ", and we write $\mathfrak{g}^{\mathfrak{p}} = G(k^{\mathfrak{p}}/\Omega_{\mathfrak{p}})$ for the local Galois group.

THEOREM. The canonical sequence

295

N. Adachi

$$1 \longrightarrow H^2(\mathfrak{g}, \, k_A) \longrightarrow \coprod H^2(\mathfrak{g}^{\mathfrak{p}}, \, k_A^{\mathfrak{p}})$$

is exact, where $\coprod_{\mathfrak{p}}$ denotes the direct sum ranging over all the primes of Ω .

PROOF. Consider the following commutative diagram*):

The top line is injective by the class field theory, and the columns are isomorphisms by Theorem 1.2. Hence the bottom line is injective. Q. E. D.

COROLLARY. Let $i_{\mathfrak{p}}^{*}: H^{2}(\mathfrak{g}^{\mathfrak{p}}, A) \to H^{2}(\mathfrak{g}^{\mathfrak{p}}, k_{A}^{\mathfrak{p}})$ be the homomorphism which is induced by the inclusion $i_{\mathfrak{p}}: A \to k_{A}^{\mathfrak{p}}$. Then we have $i^{*}(a) = 1$, if and only if $i_{\mathfrak{p}}^{*} \cdot \operatorname{Res} \mathfrak{g}_{\mathfrak{p}}(a) = 1$ for every prime \mathfrak{p} which ramifies in k/Ω .

PROOF. By the Theorem, it suffices to prove $i_p^{\sharp} \cdot \operatorname{Res}_{\ell^p}^{\mathfrak{g}}(a) = 1$ for every unramified prime \mathfrak{p} . By Corollary to Theorem 1.2 we have $i_p^{\sharp} \cdot \operatorname{Res}_{\mathfrak{s}^p}^{\mathfrak{g}}(a) = 1$, if and only if $x_p^{\sharp} \cdot \operatorname{Res}_{\mathfrak{s}^p}^{\mathfrak{g}^p} \cdot \operatorname{Res}_{\mathfrak{s}^p}^{\mathfrak{g}}(a) = 1$ for all classes \mathfrak{R} , where x_p^{\sharp} denotes the homomorphism of $H^2(\mathfrak{g}_{\mathfrak{R}}^{\mathfrak{g}}, A)$ into $H^2(\mathfrak{g}_{\mathfrak{R}}^{\mathfrak{g}}, (k^{\mathfrak{p}})^{*})$ which is induced by the character x. Let $U^{\mathfrak{p}}$ be the group of units in $k^{\mathfrak{p}}$. Since \mathfrak{p} is unramified in k/Ω , we know $H^2(\mathfrak{g}^{\mathfrak{p}}, U^{\mathfrak{p}}) = 1$. Hence, in particular, we have $x_p^{\sharp} \cdot \operatorname{Res}_{\mathfrak{g}^p}^{\mathfrak{p}} \cdot \operatorname{Res}_{\mathfrak{g}^p}^{\mathfrak{p}}(a) = 1$. Q. E. D.

Put $G^{\mathfrak{p}} = \varphi^{-1}(\mathfrak{g}^{\mathfrak{p}})$, and denote by $\varphi^{\mathfrak{p}}$ the restriction of φ to $G^{\mathfrak{p}}$. Then we have an imbedding problem $(k^{\mathfrak{p}}/\Omega_{\mathfrak{p}}, G^{\mathfrak{p}}, \varphi^{\mathfrak{p}})$ for each prime \mathfrak{p} of Ω . If $(k^{\mathfrak{p}}/\Omega_{\mathfrak{p}}, G^{\mathfrak{p}}, \varphi^{\mathfrak{p}})$ is solvable for every prime which ramifies in k/Ω , then, by the Corollary we see $i^*(a) = 1$. If, in particular, the assumption of Theorem of Beyer is satisfied, it follows from the solvability of $(k^{\mathfrak{p}}/\Omega_{\mathfrak{p}}, G^{\mathfrak{p}}, \varphi^{\mathfrak{p}})$ for every ramified prime \mathfrak{p} that $(k/\Omega, G, \varphi)$ is solvable.

REMARK. We can show Theorem 1.3 without the assumption that k contains the *m*-th roots of unity. But it is of no use to show it, since we are going to prove that the imbedding problem can be reduced to the case where k contains the *m*-th roots of unity.

§2. Reduction

2.1. Let $\varphi_i: G_i \to \mathfrak{g}$ be a homomorphism of a finite group G_i onto \mathfrak{g} with abelian kernel A_i (i=1, 2). Let a_i be the cohomology class of $H^2(\mathfrak{g}, A_i)$ which is uniquely determined by the group extension G_i of A_i by \mathfrak{g} . By the standard definition of product, we have another cohomology class $a_1 \times a_2$ of $H^2(\mathfrak{g}, A_1 \times A_2)$. Let

*) Note that $(\mathfrak{g}\mathfrak{R})^{\mathfrak{p}} = (\mathfrak{g}^{\mathfrak{v}})_{\mathfrak{R}} = \mathfrak{g}^{\mathfrak{v}} \cap \mathfrak{g}_{\mathfrak{R}}$.

296

$$1 \longrightarrow A_1 \times A_2 \longrightarrow \widetilde{G} \stackrel{\widetilde{\varphi}}{\longrightarrow} \mathfrak{g} \longrightarrow 1$$

be a group extension of $A_1 \times A_2$ by g determined by the class $a_1 \times a_2$.

PROPOSITION. $(k/\Omega, \tilde{G}, \tilde{\varphi})$ is solvable, if and only if $(k/\Omega, G_i, \varphi_i)$ is solvable for each *i*.

PROOF. Let K_i be a solution of $(k/\Omega, G_i, \varphi_i)$. Then it is clear that $K_1 \bigotimes_k K_2$ is a solution of $(k/\Omega, \tilde{G}, \tilde{\varphi})$. Conversely, let \tilde{K} be a solution of $(k/\Omega, \tilde{G}, \tilde{\varphi})$. Denote by K_1 and K_2 the fixed subalgebras of K under A_2 , A_1 , respectively. Then K_i (i=1, 2) are solutions of $(k/\Omega, G_i, \varphi_i)$, respectively. Q. E. D.

By this proposition the imbedding problem is reduced to the case A has a prime power order.

2.2. Put, in 2.1., $A = A_1$, $G = G_1$, $\varphi = \varphi_1$, $F = A_2$, $\overline{g} = G_2$, $j = \varphi_2$, $\overline{G} = \widetilde{G}$. Suppose that $(k/\Omega, g, j)$ has a solution \overline{k} which is a field. Since \overline{G} is also considered as an extension of A by \overline{g} , we have an exact sequence

$$1 \longrightarrow A \longrightarrow \overline{G} \xrightarrow{\overline{\varphi}} \overline{\mathfrak{g}} \longrightarrow 1.$$

PROPOSITION. $(\bar{k}/\Omega, \bar{G}, \bar{\varphi})$ is solvable, if and only if $(k/\Omega, G, \varphi)$ is solvable. PROOF. Let \bar{K} be a solution of $(\bar{k}/\Omega, \bar{G}, \bar{\varphi})$. Then the fixed subalgebra Kof \bar{K} under F is a solution of $(k/\Omega, G, \varphi)$. Conversely, let K be a solution of $(k/\Omega, G, \varphi)$, then $K \otimes_k \bar{k}$ is a solution of $(\bar{k}/\Omega, \bar{G}, \bar{\varphi})$. Q. E. D.

By this Proposition the imbedding problem is reduced to the case k contains the *m*-th roots of unity.

REMARK. Define $T^{\sigma} = T^{j(\sigma)}$ for $T \in A$, $\sigma \in \overline{\mathfrak{g}}$. Then A is endowed with the structure of a $\overline{\mathfrak{g}}$ -module, and F operates on A trivially. It is easily seen that \overline{G} is a group extension corresponding to the class $\operatorname{Inf}_{\overline{\mathfrak{g}}}^{\overline{\mathfrak{g}}}(a) \in H^2(\overline{\mathfrak{g}}, A)$, where $\operatorname{Inf}_{\overline{\mathfrak{g}}}^{\overline{\mathfrak{g}}}$ denotes the inflation map of $H^2(\mathfrak{g}, A)$ into $H^2(\overline{\mathfrak{g}}, A)$.

Tokyo Institute of Technology

References

- [1] G. Beyer, Über relativ-zyklische Erweiterungen galoisscher Körper, J. Reine Angew. Math., 196 (1956), 34-58.
- [2] H. Hasse, Existenz und Mannigfaltigkeit abelscher Algebren mit vorgegebener Galoisgruppe über einem Teilkörper des Grundkörpers I, Math. Nachr., 1 (1948), 40-61.
- [3] P. Wolf, Algebraische Theorie der Galoisschen Algebren, Deutscher Verlag der Wissenschaften, 1956.