On the imbedding problem of Galois extensions

By Norio ADACHI

(Received April 15, 1969)
(Revised Feb. 14, 1970)

Introduction

Let Ω be a field, and k a finite Galois extension of Ω with Galois group $\mathfrak{g}=G(k / \Omega)$. Let $\varphi: G \rightarrow \mathfrak{g}$ be a homomorphism of a finite group G onto \mathfrak{g} with kernel A. Then we have an exact sequence

$$
\begin{equation*}
1 \longrightarrow A \longrightarrow G \xrightarrow{\varphi} \mathfrak{g} \longrightarrow 1 \tag{1}
\end{equation*}
$$

We say that the imbedding problem $(k / \Omega, G, \varphi)$ associated with the exact sequence (1) is solvable, if there exists a Galois algebra $K^{*)}$ over Ω with Galois group $(\mathbb{S}=G(K / \Omega)$ such that:

1) There is an isomorphism π of G onto ($($.
2) k is contained in K, and it is the fixed subalgebra of K under A^{π}.
3) φ is the composite of π with the naturally induced epimorphism of G onto g .
Such a K is said to be a solution of the imbedding problem. (For simplicity we shall write g instead of g^{π} for $g \in G$.)

We shall be concerned with the imbedding problem only when the following conditions are satisfied:

1) The group A is abelian.
2) The characteristic of the field Ω is relatively prime to the order of A.

The purpose of the present paper is to summarize some properties about the imbedding problem, as a preparation to prove the main theorem in the author's following paper.
§ 1. A necessary condition for the solvability of the imbedding problem
1.1. For $s \in g$ choose an element $g_{s} \in G$ such that
*) A commutative algebra K over Ω is called a Galois algebra with Galois group ©f, if the following conditions are satisfied: 1) K is semi-simple, 2) (8) is a group of automorphisms of K over $\Omega, 3) K$ is isomorphic to the group ring $\Omega[\S]$ as right (6) modules. For the general theory of Galois algebras, see [2] and [3].

$$
\varphi\left(g_{s}\right)=s, \quad \text { and } \quad g_{1}=1
$$

And define, as usual,

$$
T^{s}=g_{s}^{-1} T g_{s}, \quad s \in \mathfrak{g}, \quad T \in A
$$

Then A will have the structure of a g-module.
Denote by k_{A} the multiplicative group of all the invertible elements in the group ring $k[A]$. As g operates on both k and A, k_{A} is also endowed with the structure of a g -module. The inclusion map $i: A \rightarrow k_{A}$ induces a homomorphism $i^{\#}: H^{2}(\mathrm{~g}, A) \rightarrow H^{2}\left(\mathrm{~g}, k_{A}\right)$. Now we are going to prove the following well known proposition of Faddeev-Hasse.

Proposition. Let a be the cohomology class of $H^{2}(\mathfrak{g}, A)$ which is determined by the exact sequence (1). If the imbedding problem ($k / \Omega, G, \varphi$) is solvable, then a is contained in the kernel of $i^{\#}$, i. e. $i^{\#}(a)=1$.

Proof. Let K be one of the solutions of $(k / \Omega, G, \varphi)$. Since K is a Galois algebra over k, K has a normal basis $\left\{\theta^{T}\right\}_{T \in A}$ over k with respect to A. A map which sends T to $\theta^{T}(T \in A$) induces an isomorphism of $k[A]$ onto K as right g-modules. As $\theta^{g_{s}}$ is an element of K, we may write $\theta^{g_{s}}=\sum_{T \in A} \alpha_{s, T} \theta^{T}$ with some suitable $\alpha_{s, T} \in k$. Put $a_{s}=\sum_{T \in A} \alpha_{s, T} T$, then a_{s} is mapped to $\theta^{g_{s}}$ by the above isomorphism.

Put

$$
g_{s} g_{t}=g_{s t} a_{s, t} \quad(s, t \in \mathfrak{g})
$$

Then $a_{s, t}$ is contained in A. The set $\left\{a_{s, t}\right\}_{s, t \in\}}$ is a factor set of the class a.
From an equality $\theta^{g_{s-1}} \theta^{g_{s}}=\theta^{a_{s}-1, s}$ we have $a_{s-1}^{s} a_{s}=a_{s-1, s}$. Hence a_{s} is in k_{A}. It is easily shown that an equality $\theta^{g_{s} g_{t}}=\theta^{g_{s} a_{s, t}}$ implies $a_{s, t}=a_{s}^{t} a_{s t}^{-1} a_{t}$. Q.E.D.

The converse of the proposition is not always true. However, G. Beyer [1] settled the converse in a case which plays a basic role in the author's next coming paper.

Suppose that A is cyclic of prime power order l^{n}, and k contains a primitive l^{n}-th root of unity ζ. Let z be a generator of the cyclic group A, and x be a character defined by $x(z)=\zeta$. Put $\mathfrak{h}=\left\{h \in \mathfrak{g} ; x\left(z^{h}\right)=x(z)^{h}\right\}$. This is a normal subgroup of g, and the quotient group g / \mathfrak{g} may be considered as a subgroup of the group of reduced residue classes of the rational integers $\bmod l^{n}$. Therefore, in particular, if l is an odd prime, then $\mathfrak{g} / \mathfrak{h}$ is a cyclic group.

Theorem of Beyer. Suppose that $\mathfrak{g} / \mathfrak{h}$ is cyclic. Then, if $i^{\#}(a)=1$, the imbedding problem $(k / \Omega, G, \varphi)$ is solvable.
1.2. Now back to the general case. Let m be the order of the abelian group A. We assume that the field k contains the m-th roots of unity. Let x be any character of A. Then, by the assumption on the characteristic of
Ω, there is a primitive idempotent E_{x} of $k[A]$ such that $T=\sum_{x \in \hat{A}} x(T) E_{x}$ for $T \in A$. Here, \hat{A} denotes the character group of A. And we have

$$
k[A]=\sum_{x \in \hat{A}} k E_{x}, \quad \text { and } \quad k_{A}=\sum_{x \in \hat{A}} k * E_{x}
$$

As $E_{x}^{s}(s \in g)$ is also a primitive idempotent, we have $E_{x}^{s}=E_{x^{s}}$ for some $x^{s} \in \hat{A}$. In fact, we see $x^{s}(T)=x\left(T^{s-1}\right)^{s}$ for $s \in \mathrm{~g}, T \in A$ (see [2] or [3]).

We say that a character x is conjugate to a character y, if there is some $s \in g$ such that $y=x^{s}$. It is clear that this conjugacy is an equivalence relation. Let Ω be any one of the conjugate classes. Put $E_{\Omega}=\sum_{x \in \Omega} E_{x}$, and $k_{A}^{(\Omega)}=\sum_{x \in \Omega} k^{*} E_{x}=k_{A} E_{\Omega}$. Then the idempotent E_{Ω} is g-invariant and $k_{A}^{(\Omega)}$ has the structure of a g -module.

For $x \in \mathfrak{R}$, we put $g_{\mathscr{R}}=\left\{s \in \mathfrak{g} ; x^{s}=x\right\}$. Then g_{Ω} is a subgroup of g. The group g_{Ω} depends on the choice of x in Ω, so we choose one x and fix it once and for all.

THEOREM. $H^{q}\left(\mathrm{~g}, k_{A}\right)=\prod_{\Omega} H^{q}\left(\mathrm{~g}, k_{A}^{(\Omega)}\right)$ is canonically isomorphic to $\prod_{\Omega} H^{q}\left(\mathrm{~g}_{\mathrm{s}}, k^{*}\right)$ for every integer q.

Proof. Let $Z[\mathrm{~g}] \otimes_{\mathrm{s}_{\mathrm{s}}} k^{*} E_{x}$ denote the tensor product of the group ring $Z[\mathrm{~g}]$ and $k^{*} E_{x}$ over the group ring $Z\left[g_{\Omega}\right]$. Define

$$
t(s \otimes \alpha)=(s t) \otimes \alpha \quad \text { for } s, t \in \mathfrak{g} \text { and } \alpha \in k^{*} E_{x}
$$

then $Z[\mathrm{~g}] \otimes_{3_{s i s}} k^{*} E_{x}$ has the structure of a g-module. It is easily seen that $Z[\mathrm{~g}] \otimes_{\mathrm{s}_{\mathrm{I}}} k^{*} E_{x} \cong k_{A}^{(\Omega)}$ as g -modules. By Šapiro's lemma, we have

$$
H^{q}\left(\mathfrak{g}, k_{A}^{(\Omega)}\right) \cong H^{q}\left(\mathfrak{g}_{\Omega}, k^{*} E_{x}\right) .
$$

Since $k^{*} E_{x} \cong k^{*}$ as g_{Ω}-modules, we have

$$
H^{q}\left(g_{\Omega}, k^{*} E_{x}\right) \cong H^{q}\left(g_{\Omega}, k^{*}\right) . \quad \text { Q. E. D. }
$$

Corollary (Hasse). Let Res $\}_{\Omega_{\Omega}}$ be the restriction map of $H^{2}(\mathrm{~g}, A)$ into $H^{2}\left(g_{\Omega}, A\right)$, and let $x^{\#}$ be the homomorphism of $H^{2}\left(g_{\Omega}, A\right)$ into $H^{2}\left(g_{\Omega}, k^{*}\right)$ which is induced by the character x. Then $i^{\#}(a)=1$, if and only if $x^{\#} \operatorname{Res}_{{ }_{\Omega \Omega}}^{a}(a)=1$ for all the classes Ω.

Proof. Immediate from the Theorem.
Since $H^{1}\left(g_{\Omega}, k^{*}\right)=1$, we have also $H^{1}\left(\mathrm{~g}, k_{A}\right)=1$ (cf. [3]).
1.3. Suppose that Ω is an algebraic number field, and suppose that k contains the m-th roots of unity. For each prime \mathfrak{p} of Ω, we let $\Omega_{\mathfrak{p}}$ denote the \mathfrak{p}-adic completion of Ω. It is convenient to write k^{p} for " any one of the \mathfrak{B}-adic completions $k_{ß}$ for \mathfrak{B} over \mathfrak{p} ", and we write $\mathfrak{g}^{\mathfrak{p}}=G\left(k^{\mathfrak{p}} / \Omega_{\mathfrak{p}}\right)$ for the local Galois group.

Theorem. The canonical sequence

$$
1 \longrightarrow H^{2}\left(\mathfrak{g}, k_{A}\right) \longrightarrow \coprod_{p} H^{2}\left(\mathfrak{g}^{\mathfrak{p}}, k_{A}^{\mathfrak{p}}\right)
$$

is exact, where $\underset{p}{I I}$ denotes the direct sum ranging over all the primes of Ω.
Proof. Consider the following commutative diagram*):

The top line is injective by the class field theory, and the columns are isomorphisms by Theorem 1.2. Hence the bottom line is injective. Q.E.D.

Corollary. Let $i_{p}^{\#}: H^{2}\left(g^{p}, A\right) \rightarrow H^{2}\left(g^{p}, k_{A}^{p}\right)$ be the homomorphism which is induced by the inclusion $i_{p}: A \rightarrow k_{A}^{p}$. Then we have $i^{\#}(a)=1$, if and only if $i_{\eta}^{\#} \cdot \operatorname{Res}_{{ }_{b}^{g}}^{8}(a)=1$ for every prime p which ramifies in k / Ω.

Proof. By the Theorem, it suffices to prove $i_{\square}^{\#} \cdot \operatorname{Res}{ }_{{ }_{\mathrm{g}}^{\mathrm{p}}}(a)=1$ for every unramified prime \mathfrak{p}. By Corollary to Theorem 1.2 we have $i_{\mathbb{p}}^{\#} \cdot \operatorname{Res}_{\mathfrak{p}}^{\mathfrak{q}_{p}}(a)=1$, if and only if $x_{p}^{\#} \cdot \operatorname{Res}_{8}^{a_{\Omega}^{p}} \cdot \operatorname{Res}_{9}^{a} p(a)=1$ for all classes \mathscr{R}, where $x_{p}^{\#}$ denotes the homomorphism of $H^{2}\left(g_{\Omega}^{p}, A\right)$ into $H^{2}\left(g_{\Omega}^{p},\left(k^{p}\right)^{*}\right)$ which is induced by the character x. Let $U^{\mathfrak{p}}$ be the group of units in $k^{\mathfrak{p}}$. Since \mathfrak{p} is unramified in k / Ω, we know $H^{2}\left(g^{p}, U^{p}\right)=1$. Hence, in particular, we have $x_{p}^{\#} \cdot \operatorname{Res}_{9}^{q_{9}^{p} p} \cdot \operatorname{Res}_{9}^{q} p(a)=1$. Q.E.D.

Put $G^{p}=\varphi^{-1}\left(g^{p}\right)$, and denote by φ^{p} the restriction of φ to G^{p}. Then we have an imbedding problem ($k^{p} / \Omega_{\mathfrak{p}}, G^{p}, \varphi^{p}$) for each prime \mathfrak{p} of Ω. If ($k^{p} / \Omega_{p}, G^{p}, \varphi^{p}$) is solvable for every prime which ramifies in k / Ω, then, by the Corollary we see $i^{\#}(a)=1$. If, in particular, the assumption of Theorem of Beyer is satisfied, it follows from the solvability of $\left(k^{p} / \Omega_{p}, G^{p}, \varphi^{p}\right)$ for every ramified prime \mathfrak{p} that $(k / \Omega, G, \varphi)$ is solvable.

REMARK. We can show Theorem 1.3 without the assumption that k contains the m-th roots of unity. But it is of no use to show it, since we are going to prove that the imbedding problem can be reduced to the case where k contains the m-th roots of unity.

§2. Reduction

2.1. Let $\varphi_{i}: G_{i} \rightarrow \mathrm{~g}$ be a homomorphism of a finite group G_{i} onto g with abelian kernel $A_{i}(i=1,2)$. Let a_{i} be the cohomology class of $H^{2}\left(g, A_{i}\right)$ which is uniquely determined by the group extension G_{i} of A_{i} by g. By the standard definition of product, we have another cohomology class $a_{1} \times a_{2}$ of $H^{2}\left(g, A_{1} \times A_{2}\right)$. Let
*) Note that $\left(g_{\mathfrak{r}}\right)^{\mathfrak{p}}=\left(\mathfrak{g}^{y}\right)_{\mathfrak{R}}=\mathfrak{g}^{y} \cap g_{\Omega}$.

$$
1 \longrightarrow A_{1} \times A_{2} \longrightarrow \tilde{G} \xrightarrow{\tilde{\varphi}} \mathrm{~g} \longrightarrow 1
$$

be a group extension of $A_{1} \times A_{2}$ by g determined by the class $a_{1} \times a_{2}$.
Proposition. $(k / \Omega, \tilde{G}, \tilde{\varphi})$ is solvable, if and only if $\left(k / \Omega, G_{i}, \varphi_{i}\right)$ is solvable for each i.

Proof. Let K_{i} be a solution of $\left(k / \Omega, G_{i}, \varphi_{i}\right)$. Then it is clear that $K_{1} \otimes_{k} K_{2}$ is a solution of $(k / \Omega, \tilde{G}, \tilde{\varphi})$. Conversely, let \tilde{K} be a solution of $(k / \Omega, \tilde{G}, \tilde{\varphi})$. Denote by K_{1} and K_{2} the fixed subalgebras of K under A_{2}, A_{1}, respectively. Then $K_{i}(i=1,2)$ are solutions of $\left(k / \Omega, G_{i}, \varphi_{i}\right)$, respectively. Q. E. D.

By this proposition the imbedding problem is reduced to the case A has a prime power order.
2.2. Put, in 2.1., $A=A_{1}, G=G_{1}, \varphi=\varphi_{1}, F=A_{2}, \overline{\mathfrak{g}}=G_{2}, j=\varphi_{2}, \bar{G}=\tilde{G}$. Suppose that $(k / \Omega, \mathfrak{g}, j)$ has a solution \bar{k} which is a field. Since \bar{G} is also considered as an extension of A by \bar{g}, we have an exact sequence

$$
1 \longrightarrow A \longrightarrow \bar{G} \xrightarrow{\bar{\varphi}} \overline{\mathrm{~g}} \longrightarrow 1
$$

Proposition. $(\bar{k} / \Omega, \bar{G}, \bar{\varphi})$ is solvable, if and only if $(k / \Omega, G, \varphi)$ is solvable.
Proof. Let \bar{K} be a solution of $(\bar{k} / \Omega, \bar{G}, \bar{\varphi})$. Then the fixed subalgebra K of \bar{K} under F is a solution of $(k / \Omega, G, \varphi)$. Conversely, let K be a solution of ($k / \Omega, G, \varphi$), then $K \otimes_{k} \bar{k}$ is a solution of $(\bar{k} / \Omega, \bar{G}, \bar{\varphi})$.
Q. E. D.

By this Proposition the imbedding problem is reduced to the case k contains the m-th roots of unity.

Remark. Define $T^{\sigma}=T^{j(\sigma)}$ for $T \in A, \sigma \in \overline{\mathrm{~g}}$. Then A is endowed with the structure of a \bar{g}-module, and F operates on A trivially. It is easily seen that \bar{G} is a group extension corresponding to the class $\operatorname{Inf}_{\overline{8}}^{\bar{g}}(a) \in H^{2}(\overline{\mathfrak{g}}, A)$, where $\operatorname{Inf}_{\underset{8}{\bar{g}}}^{\bar{g}}$ denotes the inflation map of $H^{2}(\mathrm{~g}, A)$ into $H^{2}(\overline{\mathrm{~g}}, A)$.

Tokyo Institute of Technology

References

[1] G. Beyer, Über relativ-zyklische Erweiterungen galoisscher Körper, J. Reine Angew. Math., 196 (1956), 34-58.
[2] H. Hasse, Existenz und Mannigfaltigkeit abelscher Algebren mit vorgegebener Galoisgruppe über einem Teilkörper des Grundkörpers I, Math. Nachr., 1 (1948), 40-61.
[3] P. Wolf, Algebraische Theorie der Galoisschen Algebren, Deutscher Verlag der Wissenschaften, 1956.

