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Introduction

Let 2 be a field, and £ a finite Galois extension of £ with Galois group
g=G(k/8). Let ¢:G—g be a homomorphism of a finite group G onto g with
kernel A. Then we have an exact sequence

| A G g1, )

We say that the imbedding problem (k/£2, G, ¢) associated with the exact
sequence (1) is solvable, if there exists a Galois algebra K* over £ with
Galois group & =G(K/f) such that:

1) There is an isomorphism = of G onto @.

2) k is contained in K, and it is the fixed subalgebra of K under A~

3) ¢ is the composite of = with the naturally induced epimorphism of

G onto g.
Such a K is said to be a solution of the imbedding problem. (For simplicity
we shall write g instead of g* for g= G.)

We shall be concerned with the imbedding problem only when the follow-
ing conditions are satisfied:

1) The group A is abelian.

2) The characteristic of the field £ is relatively prime to the order of A.

The purpose of the present paper is to summarize some properties about
the imbedding problem, as a preparation to prove the main theorem in the
author’s following paper.

§1. ‘A necessary condition for the solvability of the imbedding problem

1.1. For se=g choose an element g, <= G such that

*) A commutative algebra K over Q2 is called a Galois algebra with Galois group
©®, if the following conditions are satisfied: 1) K is semi-simple, 2) ® is a group of
automorphisms of K over £, 3) K is isomorphic to the group ring 2{®] as right ®-
modules. For the general theory of Galois algebras, see and @
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o(gs)=s, and g, =1.
And define, as usual,

T =g;Tg,, seg, TeA.

Then A will have the structure of a g-module.

Denote by k, the multiplicative group of all the invertible elements in
the group ring k[A]. As g operates on both k2 and A, k, is also endowed
with the structure of a g-module. The inclusion map i: A—#k, induces a
homomorphism % : H%(g, A)— H%*_g, k,). Now we are going to prove the fol-
lowing well known proposition of Faddeev-Hasse.

PROPOSITION. Let a be the cohomology class of H¥*g, A) which is deter-
mined by the exact sequence (1). If the imbedding problem (k/Q, G, ¢) is sol-
vable, then a is contained in the kernel of i¥, i.e. i*(a)=1.

Proor. Let K be one of the solutions of (k/2, G, ¢). Since K is a Galois
algebra over k, K has a normal basis {#7},<, Over k with respect to A. A
map which sends T to 67 (T € A) induces an isomorphism of k[ A] onto K as

right g-modules. As 6°* is an element of K, we may write 6°° =3 a; 67
T<A
with some suitable a,r k. Put a;= X a, T, then a, is mapped to 0% by
T<A
the above isomorphism.

Put
58t = Zstls,; (s, teg).

Then a,, is contained in A. The set {a,,.};:e is a factor set of the class a.

From an equality 6°°7'¢%*=60%""* we have a!_,a,=a,.,, Hence g, is in
k,. It is easily shown that an equality §%°4*=¢%*"%¢ implies a,,=ataz'a,. Q.E.D.

The converse of the proposition is not always true. However, G. Beyer
[1] settled the converse in a case which plays a basic role in the author’s
next coming paper.

Suppose that A is cyclic of prime power order [ and k2 contains a pri-
mitive [*th root of unity {. Let z be a generator of the cyclic group A,
and x be a character defined by x(2)={. Put h={heg; x(&") = x(&)"}. This
is a normal subgroup of g, and the quotient group g/ may be considered as
a subgroup of the group of reduced residue classes of the rational integers
mod [". Therefore, in particular, if / is an odd prime, then g/% is a cyclic
group.

THEOREM OF BEYER. Suppose that g/% is cyclic. Then, if i¥(a)=1, the
imbedding problem (k/82, G, ¢) is solvable.

1.2. Now back to the general case. Let m be the order of the abelian
group A. We assume that the field 2 contains the m-th roots of unity. Let
x be any character of A. Then, by the assumption on the characteristic of
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L2, there is a primitive idempotent E, of k[ A] such that T= EAx(T)Ex for

rcA

T A. Here, A denotes the character group of A. And we have

R[A]= Z)AkEx, and ky= }]Ak*Ew.
TEA e A
As ES (s=g) is also a primitive idempotent, we have E$ = E,s for some
x*e A. In fact, we see x5(T)=x(T* ) for seg, T< A (see or [3).
We say that a character x is conjugate to a character y, if there is some
seg such that y=x® It is clear that this conjugacy is an equivalence rela-
tion. Let ® be any one of the conjugate classes. Put Eg= > E, and

Y
kff):xzﬁk*Ew:kAEg. Then the idempotent Eg is g-invariant and 2§ has the
structure of a g-module.

For x& ®, we put ge=1{seg; x*=x}. Then g, is a subgroup of g. The
group ge depends on the choice of x in &, so we choose one x and fix it once
and for all.

THEOREM. H4g, k) =TI H%g, k) is canonically isomorphic to TI H¥ge, k*)
for every integer q. * i

PROOF. Let Z[g]®,, k*E, denote the tensor product of the group ring
Z[g] and k*E, over the group ring Z[ge]. Define

IsRa)=(sH R« for s,teg and o € k*E,,

then Z[g]@aﬂk*Ex has the structure of a g-module. It is easily seen that
Z[g] R k*E, = kY as g-modules. By éapiro’s lemma, we have

Ha(g, k) = HU(gq, F*E,) .
Since k*E, = k* as ge-modules, we have
HYgg, R*E,) = HYgg, k*). Q.E.D.

COROLLARY (Hasse). Let Resg, be the restriction map of H*g, A) into
H?(gg, A), and let x* be the homomorphism of H*(ge, A) tnto H*(gg, k*) which
is induced by the character x. Then 1*(a)=1, if and only if x*¥ Resiy(a)=1
for all the classes R.

ProOOF. Immediate from the Theorem.

Since H'(gg, #¥)=1, we have also H(g, k) =1 (cf. [3].

1.3. Suppose that £ is an algebraic number field, and suppose that &
contains the m-th roots of unity. For each prime p of 2, we let £, denote
the p-adic completion of £. It is convenient to write £’ for “any one of the
PB-adic completions ky for P over p”’, and we write g* = G(k*/2;) for the local
Galois group.

THEOREM. The canonical sequence
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1— H*g, k) — IEI H*(g", k%)

is exact, where 11 denotes the direct sum ranging over all the primes of £.
p

Proor. Consider the following commutative diagram® :
H*(gq, k*) — 11 H*(gk, (B")*)
I ]
H*(g, k") — 11 H*(@', (R)™) .
P

The top line is injective by the class field theory, and the columns are iso-
morphisms by Theorem 1.2. Hence the bottom line is injective. = Q.E.D.

COROLLARY. Let if : H¥g®, A)— H%g" k%) be the homomorphism which is
induced by the inclusion i,: A—F,. Then we have i*(a)=1, if and only if
1§ - Resh(@)=1 for every prime p which ramifies in k/Q.

PROOF. By the Theorem, it suffices to prove if-Res®% (a)=1 for every
unramified prime p. By Corollary to Theorem 1.2 we have if - Resh (@) =1,
if and only if x}# . Resg%- Resk (a) =1 for all classes ®, where x§ denotes the
homomorphism of H?(gh, A) into H?*gh, (¥)*) which is induced by the charac-
ter x. Let U’ be the group of units in %’. Since p is unramified in k/£2,
we know H?*(g®, U")=1. Hence, in particular, we have x§ - Resé%-Resgp (a)=1.

Q.E.D.

Put G*=¢~'(g"), and denote by ¢’ the restriction of ¢ to G*. Then we have
an imbedding problem (k°/2,, G*, ¢*) for each prime p of Q. If (k*/2, G*, ¢")
is solvable for every prime which ramifies in £/, then, by the Corollary we
see i*(a)=1. If, in particular, the assumption of Theorem of Beyer is satis-
fied, it follows from the solvability of (k*/£2,, GY ¢*) for every ramified prime
p that (k/82, G, ¢) is solvable.

REMARK. We can show Theorem 1.3 without the assumption that % con-
tains the m-th roots of unity. But it is of no use to show it, since we are
going to prove that the imbedding problem can be reduced to the case where
k contains the m-th roots of unity.

§2. Reduction

2.1. Let ¢;:G,—g¢ be a homomorphism of a finite group G; onto g with
abelian kernel A; (i=1, 2). Let a, be the cohomology class of H*(g, A,) which
is uniquely determined by the group extension G,; of A; by g. By the stan-
dard definition of product, we have another cohomology class a;, X a, of
H%*@g, A, X A,). Let

*) Note that (82)" = (g° e =g N\ Ga.
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. @
1 — A, X Ay—— G —g—o1

be a group extension of A, X A, by g determined by the class a, X a,.

PROPOSITION. (k/, G, ¢) is solvable, if and only if (k/Q, G, ©,) is solvable
Sor each 1.

Proor. Let K; be a solution of (£/82, G;, ¢;). Then it is clear that K, ®.K,
is a solution of (k/2, 5, #). Conversely, let K be a solution of (k/ L2, 6, ).
Denote by K, and K, the fixed subalgebras of K under A, A,, respectively.
Then K,; (1=1, 2) are solutions of (k/2, G,, ¢,), respectively. Q.E.D.

By this proposition the imbedding problem is reduced to the case A has
a prime power order.

2.2. Put,in2l, A=A, G=G,, ¢=0, F=A, §=G,, j=0¢, G=G. Sup-
pose that (k/£, g, j) has a solution £ which is a field. Since G is also con-
sidered as an extension of A by g, we have an exact sequence

42
1 A G g 1.

PROPOSITION. (k/R, G, @) is solvable, if and only if (k/R, G, ¢) is solvable.

PrOOF. Let K be a solution of (¢/2, G, . Then the fixed subalgebra K
of K under F is a solution of (k/2, G, ¢). Conversely, let K be a solution of
(k/2, G, ), then KX,k is a solution of (£/R2, G, ¢). Q.E.D.

By this Proposition the imbedding problem is reduced to the case & con-
tains the m-th roots of unity.

REMARK. Define T°=T7? for T A, 6=g. Then A is endowed with
the structure of a g-module, and F operates on A trivially. It is easily seen
that G is a group extension corresponding to the class Inf¥(a) € H%@, A),

where.Inf ¥ denotes the inflation map of H?(g, A) into H2(G, A).

Tokyo Institute of Technology

References

[1] G. Beyer, Uber relativ-zyklische Erweiterungen galoisscher Korper, J. Reine
Angew. Math., 196 (1956), 34-58.

[2] H. Hasse, Existenz und Mannigfaltigkeit abelscher Algebren mit vorgegebener
Galoisgruppe iiber einem Teilkérper des Grundkoérpers I, Math. Nachr., 1 (1948),
40-61.

{3] P. Wolf, Algebraische Theorie der Galoisschen Algebren, Deutscher Verlag der
Wissenschaften, 1956.



	On the imbedding problem ...
	Introduction
	\S 1. A necessary condition ...
	\S 2. Reduction
	References


