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Introduction

Let $\Omega$ be a field, and $k$ a finite Galois extension of $\Omega$ with Galois group
$\mathfrak{g}=G(k/\Omega)$ . Let $\varphi:G\rightarrow \mathfrak{g}$ be a homomorphism of a finite group $G$ onto $\mathfrak{g}$ with
kernel $A$ . Then we have an exact sequence

$1\rightarrow A\rightarrow G\rightarrow^{\varphi}\mathfrak{g}\rightarrow 1$ . (1)

We say that the imbedding problem $(k/\Omega, G, \varphi)$ associated with the exact
sequence (1) is solvable, if there exists a Galois algebra $K^{*)}$ over $\Omega$ with
Galois group $\mathfrak{G}=G(K/\Omega)$ such that:

1) There is an isomorphism $\pi$ of $G$ onto G.
2) $k$ is contained in $K$, and it is the fixed subalgebra of $K$ under $A^{r}$ .
3) $\varphi$ is the composite of $\pi$ with the naturally induced epimorphism of

$G$ onto $\mathfrak{g}$ .
Such a $K$ is said to be a solution of the imbedding problem. (For simplicity
we shall write $g$ instead of $g^{\pi}$ for $g\in G.$)

We shall be concerned with the imbedding problem only when the follow-
ing conditions are satisfied:

1) The group $A$ is abelian.
2) The characteristic of the field $\Omega$ is relatively prime to the order of $A$ .
The purpose of the present paper is to summarize some properties about

the imbedding problem, as a preparation to prove the main theorem in the
author’s following paper.

\S 1. A necessary condition for the solvability of the imbedding problem

1.1. For $s\in \mathfrak{g}$ choose an element $g_{s}\in G$ such that

$*)$ A commutative algebra $K$ over $\Omega$ is called a Galois algebra with Galois group
$\mathfrak{G}$ , if the following conditions are satisfied: 1) $K$ is semi.simple, 2) $\mathfrak{G}$ is a group of
automorphisms of $K$ over $\Omega$ , 3) $K$ is isomorphic to the group ring $\Omega[\mathfrak{G}]$ as right $\mathfrak{G}-$

modules. For the general theory of Galois algebras, see [2] and [3].
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$\varphi(g_{s})=s$ , and $g_{1}=1$ .
And define, as usual,

$T^{s}=g_{s}^{-1}Tg_{s}$ , $s\in \mathfrak{g}$ , $T\in A$ .

Then $A$ will have the structure of a g-module.
Denote by $k_{A}$ the multiplicative group of all the invertible elements in

the group ring $k[A]$ . As $\mathfrak{g}$ operates on both $k$ and $A,$ $k_{A}$ is also endowed
with the structure of a g-module. The inclusion map $i:A\rightarrow k_{A}$ induces a
homomorphism $i\#:H^{2}(\mathfrak{g}, A)\rightarrow H^{2}(\mathfrak{g}, k_{A})$ . Now we are going to prove the fol-
lowing well known proposition of Faddeev-Hasse.

PROPOSITION. Let $a$ be the cohomology class of $H^{2}(\mathfrak{g}, A)$ which is deter-
mined by the exact sequence (1). If the imbedding problem $(k/\Omega, G, \varphi)$ is sol-
vable, then $a$ is contained in the kernel of $i^{\#},$ $i$ . $e$ . $i^{\#}(a)=1$ .

PROOF. Let $K$ be one of the solutions of $(k/\Omega, G, \varphi)$ . Since $K$ is a Galois
algebra over $k,$ $K$ has a normal basis $\{\theta^{T}\}_{T\in A}$ over $k$ with respect to $A$ . A
map which sends $T$ to $\theta^{T}(T\in A)$ induces an isomorphism of $k[A]$ onto $K$ as
right g-modules. As $\theta^{g_{S}}$ is an element of $K$, we may write $\theta^{g_{S}}=\sum_{T\in A}\alpha_{s,T}\theta^{T}$

with some suitable $\alpha_{s,T}\in k$ . Put $a_{s}=\sum_{\tau\subset A}\alpha_{s,T}T$, then $a_{s}$ is mapped to $\theta^{g_{S}}$ by

the above isomorphism.
Put

$g_{s}g_{t}=g_{st}a_{s,t}$ $(s, t\in \mathfrak{g})$ .

Then $a_{s,t}$ is contained in $A$ . The set $\{a_{s,t}\}_{s,t\in)}$ is a factor set of the class $a$ .
From an equality $\theta^{g_{S}- 1}\theta^{g_{S}}=\theta^{a_{S}-1_{S}}$, we have $a_{s^{-1}}^{s}a_{s}=a_{s^{-1}’ s}$ . Hence $a_{s}$ is in

$k_{A}$ . It is easily shown that an equality $\theta^{g_{s}g_{t}}=\theta^{gst^{a_{S}}},{}^{t}impliesa_{s,t}=a_{s}^{t}a_{st}^{-1}a_{t}$ . Q.E.D.
The converse of the proposition is not always true. However, G. Beyer

[1] settled the converse in a case which plays a basic role in the author’s
next coming paper.

Suppose that $A$ is cyclic of prime power order $l^{n}$ , and $k$ contains a pri-
mitive $l^{n}$-th root of unity $\zeta$ . Let $z$ be a generator of the cyclic group $A$ ,

and $x$ be a character defined by $ x(z)=\zeta$ . Put $\mathfrak{h}=\{h\in \mathfrak{g} ; x(z^{h})=x(z)^{h}\}$ . This
is a normal subgroup of $\mathfrak{g}$ , and the quotient group $\mathfrak{g}/\mathfrak{h}$ may be considered as
a subgroup of the group of reduced residue classes of the rational integers
$mod l^{n}$ . Therefore, in particular, if $l$ is an odd prime, then $\mathfrak{g}/\mathfrak{h}$ is a cyclic
group.

THEOREM OF BEYER. Suppose that $\mathfrak{g}/\mathfrak{h}$ is cyclic. Then, if $i^{\#}(a)=1$ , the
imbedding problem $(k/\Omega, G, \varphi)$ is solvable.

1.2. Now back to the general case. Let $m$ be the order of the abelian
group $A$ . We assume that the field $k$ contains the m-th roots of unity. Let
$x$ be any character of $A$ . Then, by the assumption on the characteristic of
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$\Omega$ , there is a primitive idempotent $E_{x}$ of $k[A]$ such that $T=\sum_{x\in\hat{A}}x(T)E_{x}$
for

TE $A$ . Here, $\hat{A}$ denotes the character group of $A$ . And we have

$k[A]=\sum_{x\in\hat{A}}kE_{x}$
, and

$k_{A}=\sum_{x\in\hat{A}}k^{*}E_{x}$
.

As $E_{x}^{s}(s\in \mathfrak{g})$ is also a primitive idempotent, we have $E_{x}^{s}=E_{x^{S}}$ for some
$x^{s}\in\hat{A}$ . In fact, we see $x^{s}(T)=x(T^{s-1})^{s}$ for $s\in \mathfrak{g},$ $T\in A$ (see [2] or [3]).

We say that a character $x$ is conjugate to a character $y$ , if there is some
$s\in \mathfrak{g}$ such that $y=\chi^{s}$ . It is clear that this conjugacy is an equivalence rela-
tion. Let \mbox{\boldmath $\xi$}\S be any one of the conjugate classes. Put $E_{R}=\sum_{xeR}E_{x}$ , and

$k_{A}^{(R)}=\sum_{x\Leftrightarrow J\S}k^{*}E_{x}=k_{A}E_{\Re}$ . Then the idempotent $E_{R}$ is g-invariant and $k_{A}^{(R)}$ has the

structure of a g-module.
For $ x\in\theta$ , we put $\mathfrak{g}_{R}=\{s\in \mathfrak{g};x^{s}=x\}$ . Then $\mathfrak{g}_{\Re}$ is a subgroup of $\mathfrak{g}$ . The

group $\mathfrak{g}_{\Re}$ depends on the choice of $\chi$ in ff, so we choose one $\chi$ and fix it once
and for all.

THEOREM. $H^{q}(\mathfrak{g}, k_{A})=\prod_{R}H^{q}(\mathfrak{g}, k_{A}^{(R)})$ is canonically isomorphic to $\prod_{\$}H^{q}(\mathfrak{g}_{p}, k^{*})$

for every integer $q$ .
PROOF. Let $Z[\mathfrak{g}]\otimes_{\mathfrak{g}_{R}}k^{*}E_{x}$ denote the tensor product of the group ring

$Z[\mathfrak{g}]$ and $k^{*}E_{x}$ over the group ring $Z[\mathfrak{g}_{R}]$ . Define

$ t(s\otimes\alpha)=(st)\otimes\alpha$ for $s,$ $t\in \mathfrak{g}$ and $\alpha\in k^{*}E_{x}$ ,

then $Z[\mathfrak{g}]\otimes_{3\Re}k^{*}E_{x}$ has the structure of a g-module. It is easily seen that
$Z[\mathfrak{g}]\otimes_{\mathfrak{g}_{R}}k^{*}E_{x}\cong k_{A}^{(\Re)}$ as g-modules. By $\check{S}$ apiro’s lemma, we have

$H^{q}(\mathfrak{g}, k_{A}^{(R)})\cong H^{q}(\mathfrak{g}_{R}, k^{*}E_{x})$ .
Since $k^{*}E_{x}\cong k^{*}$ as $\mathfrak{g}_{l?}$ -modules, we have

$H^{q}(\mathfrak{g}_{R}, k^{*}E_{x})\cong H^{q}(\mathfrak{g}_{i?}, k^{*})$ . Q. E. D.

COROLLARY (Hasse). Let ${\rm Res}_{9\Re}\gamma$ be the restriction map of $H^{2}(\mathfrak{g}, A)$ into
$H^{2}(\mathfrak{g}_{R}, A)$ , and let $x^{\#}$ be the homomorphism of $H^{2}(\mathfrak{g}_{R}, A)$ into $H^{2}(\mathfrak{g}_{\Re}, k^{*})$ which
is induced by the character $\chi$ . Then $i^{\#}(a)=1$ , if and only if $x^{g}{\rm Res}_{\mathfrak{g}}^{\mathfrak{a}_{R}}(a)=1$

for all the classes ff.
PROOF. Immediate from the Theorem.
Since $H^{1}(\mathfrak{g}_{\Re}, k^{*})=1$ , we have also $H^{1}(\mathfrak{g}, k_{A})=1$ (cf. [3]).

1.3. Suppose that $\Omega$ is an algebraic number field, and suppose that $k$

contains the m-th roots of unity. For each prime $\mathfrak{p}$ of $\Omega$ , we let $\Omega_{\mathfrak{p}}$ denote
the p-adic completion of $\Omega$ . It is convenient to write $k^{\mathfrak{p}}$ for “ any one of the
$\mathfrak{P}$ -adic completions $k_{\mathfrak{B}}$ for $\mathfrak{P}$ over $\mathfrak{p}’$ , and we write $\mathfrak{g}^{\mathfrak{p}}=G(k^{\mathfrak{p}}/\Omega_{\mathfrak{p}})$ for the locaI
Galois group.

THEOREM. The canonical sequence
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$1\rightarrow H^{2}(\mathfrak{g}, k_{A})\rightarrow I_{\mathfrak{p}}IH^{2}(\mathfrak{g}^{\mathfrak{p}}, k_{A}^{\mathfrak{p}})$

is exact, where
$I_{\mathfrak{p}}I$ denotes the direct sum ranging over all the primes of $\Omega$ .

PROOF. Consider the following commutative diagram*) :
$ H^{2}(\mathfrak{g}_{\Re}, k^{*})\rightarrow$ II $H^{2}(\mathfrak{g}6, (k^{\mathfrak{p}})^{*})$

$|$

$\mathfrak{p}$

$\uparrow$

$H^{2}(\mathfrak{g}, k_{A}^{(\Re)})\rightarrow I_{\mathfrak{p}}IH^{2}(\mathfrak{g}^{\mathfrak{p}}, (k_{A}^{\mathfrak{p}})^{(R)})$ .

The top line is injective by the class field theory, and the columns are iso-
morphisms by Theorem 1.2. Hence the bottom line is injective. Q. E. D.

$CoROLLARY$ . Let $i_{p^{\#}}$ : $H^{2}(\mathfrak{g}^{\mathfrak{p}}, A)\rightarrow H^{2}(\mathfrak{g}^{\mathfrak{p}}, k_{A}^{\mathfrak{p}})$ be the homomorphism which is
induced by the inclusion $i_{\mathfrak{p}}$ : $A\rightarrow k_{A}^{\mathfrak{p}}$ . Then we have $i\#(a)=1$ , if and only if
$i_{\mathfrak{p}}^{\#}\cdot{\rm Res}_{b}^{\mathfrak{g}}v(a)=1$ for every prime $\mathfrak{p}$ which ramifies in $ k/\Omega$ .

PROOF. By the Theorem, it suffices to prove $i_{\mathfrak{p}}^{\#}\cdot{\rm Res}_{\sigma^{\mathfrak{p}}}^{\mathfrak{g}}(a)=1$ for every
unramified prime $\mathfrak{p}$ . By Corollary to Theorem 1.2 we have $i_{p^{\#}}\cdot{\rm Res}_{\circ}^{\mathfrak{g}_{\mathfrak{p}}}(a)=1$ ,

if and only if $x_{\mathfrak{p}}^{\#}\cdot{\rm Res}_{\mathfrak{g}\theta}^{\mathfrak{g}^{\phi}}\cdot{\rm Res}_{\mathfrak{g}^{\mathfrak{p}}}^{\mathfrak{g}}(a)=1$ for all classes ff, where $x_{\mathfrak{p}}^{*}$ denotes the
homomorphism of $H^{2}(\mathfrak{g}_{\Re}^{\mathfrak{p}}, A)$ into $H^{2}(\mathfrak{g}_{R}^{\mathfrak{p}}, (k^{\mathfrak{p}})^{*})$ which is induced by the charac-
ter $x$ . Let $U^{\mathfrak{p}}$ be the group of units in $k^{\mathfrak{p}}$ . Since $\mathfrak{p}$ is unramified in $ k/\Omega$ ,

we know $H^{2}(\mathfrak{g}^{\mathfrak{p}}, U^{\mathfrak{p}})=1$ . Hence, in particular, we have $x_{\mathfrak{p}}^{\#}\cdot{\rm Res}_{\mathfrak{g}}^{9}\iota\cdot{\rm Res}_{\mathfrak{g}^{\mathfrak{p}}}^{o}\mathfrak{p}R(a)=1$ .
Q. E. D.

Put $G^{\mathfrak{p}}=\varphi^{-1}(\mathfrak{g}^{p})$ , and denote by $\varphi^{\mathfrak{p}}$ the restriction of $\varphi$ to $G^{\mathfrak{p}}$ . Then we have
an imbedding problem $(k^{\mathfrak{p}}/\Omega_{\mathfrak{p}}, G^{\mathfrak{p}}, \varphi^{\mathfrak{p}})$ for each prime $\mathfrak{p}$ of $\Omega$ . If $(k^{\mathfrak{p}}/\Omega_{\mathfrak{p}}, G^{\mathfrak{p}}, \varphi^{\mathfrak{p}})$

is solvable for every prime which ramifies in $ k/\Omega$ , then, by the Corollary we
see $i^{\#}(a)=1$ . If, in particular, the assumption of Theorem of Beyer is satis-
fied, it follows from the solvability of $(k^{\mathfrak{p}}/\Omega_{\mathfrak{p}}, G^{\mathfrak{p}}, \varphi^{\mathfrak{p}})$ for every ramified prime

$\mathfrak{p}$ that $(k/\Omega, G, \varphi)$ is solvable.
REMARK. We can show Theorem 1.3 without the assumption that $k$ con-

tains the m-th roots of unity. But it is of no use to show it, since we are
going to prove that the imbedding problem can be reduced to the case where
$k$ contains the m-th roots of unity.

\S 2. Reduction

2.1. Let $\varphi_{i}$ : $G_{i}\rightarrow \mathfrak{g}$ be a homomorphism of a finite group $G_{i}$ onto $\mathfrak{g}$ with
abelian kernel $A_{\iota}(i=1,2)$ . Let $a_{i}$ be the cohomology class of $H^{2}(\mathfrak{g}, A_{t})$ which
is uniquely determined by the group extension $G_{i}$ of $A_{i}$ by $\mathfrak{g}$ . By the stan-
dard definition of product, we have another cohomology class $a_{1}\times a_{2}$ of
$H^{2}(\mathfrak{g}, A_{1}\times A_{2})$ . Let

$*)$ Note that $(\mathfrak{g}\Re)^{\mathfrak{p}}=(\mathfrak{g}^{\backslash g})_{\Re}=\mathfrak{g}^{\mathfrak{v}}\cap \mathfrak{g}_{\$t}$ .
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$\tilde{\varphi}$

$1\rightarrow A_{1}\times A_{2}\rightarrow\tilde{G}\rightarrow \mathfrak{g}\rightarrow 1$

be a group extension of $A_{1}\times A_{2}$ by $\mathfrak{g}$ determined by the class $a_{1}\times a_{2}$ .
PROPOSITION. $(k/\Omega,\tilde{G},\tilde{\varphi})$ is solvable, if and only if $(k/\Omega, G_{i}, \varphi_{i})$ is solvable

for each $i$ .
PROOF. Let $K_{i}$ be a solution of $(k/\Omega, G_{i}, \varphi_{i})$ . Then it is clear that $K_{1}\otimes_{k}K_{2}$

is a solution of $(k/\Omega,\tilde{G},\tilde{\varphi})$ . Conversely, let $\tilde{K}$ be a solution of $(k/\Omega,\tilde{G},\tilde{\varphi})$ .
Denote by $K_{1}$ and $K_{2}$ the fixed subalgebras of $K$ under $A_{2},$ $A_{1}$ , respectively.
Then $K_{i}(i=1,2)$ are solutions of $(k/\Omega, G_{i}, \varphi_{i})$ , respectively. Q. E. D.

By this proposition the imbedding problem is reduced to the case $A$ has
a prime power order.

2.2. Put, in 2.1., $A=A_{1},$ $G=G_{1},$ $\varphi=\varphi_{1},$ $F=A_{2},$ $\overline{\mathfrak{g}}=G_{2},$
$j=\varphi_{2},\overline{G}=\tilde{G}$ . Sup-

pose that $(k/\Omega, \mathfrak{g}, j)$ has a solution $\overline{k}$ which is a field. Since $\overline{G}$ is also con-
sidered as an extension of $A$ by $\overline{\mathfrak{g}}$ , we have an exact sequence

$1\rightarrow A\rightarrow\overline{G}\rightarrow^{\varphi\overline}\overline{\mathfrak{g}}\rightarrow 1$ .
PROPOSITION. $(\overline{k}/\Omega,\overline{G},\overline{\varphi})$ is solvable, if and only if $(k/\Omega, G, \varphi)$ is solvable.
PROOF. Let $\overline{K}$ be a solution of $(\overline{k}/\Omega,\overline{G},\overline{\varphi})$ . Then the fixed subalgebra $K$

of $\overline{K}$ under $F$ is a solution of $(k/\Omega, G, \varphi)$ . Conversely, let $K$ be a solution of
$(k/\Omega, G, \varphi)$ , then $K\otimes_{k}\overline{k}$ is a solution of $(\overline{k}/\Omega,\overline{G},\overline{\varphi})$ . Q. E. D.

By this Proposition the imbedding problem is reduced to the case $k$ con-
tains the m-th roots of unity.

REMARK. Define $T^{\sigma}=T^{J^{(\sigma)}}$ for $T\in A,$ $\sigma\in\overline{\mathfrak{g}}$ . Then $A$ is endowed with
the structure of a g-module, and $F$ operates on $A$ trivially. It is easily seen
that $\overline{G}$ is a group extension corresponding to the class $Inf_{\mathfrak{g}}^{\sim_{\mathfrak{g}}}(a)\in H^{2}(\overline{\mathfrak{g}}, A)$ ,

where $Inf_{\mathfrak{g}}^{\overline{\mathfrak{g}}}$ denotes the inflation map of $H^{2}(\mathfrak{g}, A)$ into $H^{2}(\overline{\mathfrak{g}}, A)$ .
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