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§1. Introduction

The dimension of the isometry group of an m-dimensional Riemannian
manifold (M, g) is equal to or smaller than m(m-+1)/2. The maximum is
attained if and only if (M, g) is of constant curvature and one of the follow-
ing manifolds: a sphere S™, a real projective space P™, a Euclidean space
E™, and a hyperbolic space H™ (cf. S. Kobayashi and K. Nomizu [5], p. 308).

G. Fubini's theorem 2], or [1]; p. 229) says that in an m-dimensional
Riemannian manifold (m > 2) the dimension of the isometry group can not
be equal to m(m-+1)/2—1. Further, by H.C. Wang and K. Yano it
was shown that in an m-dimensional Riemannian manifold (m +4), there
exists no group of isometries of order s such that

1.1) m(m-+1)/2> s> m(m—1)/2+1.

Riemannian manifolds admitting isometry groups of dimension m(m—1)/2-+1
were studied by K. Yano [13], and the related subjects were studied by S.
Ishihara [4], M. Obata [7] etc.

We consider similar problems in Sasakian manifolds. For a Sasakian
manifold M with structure tensors (¢, &, », g) we denote by I(M) and A(M)
the group of isometries and the group of automorphisms. By S#**[H] for
H> -3, E*™"[—3], and (L, CD"[H] for H<—3, we denote complete and
simply connected Sasakian manifolds of (2n+1)-dimension with constant ¢-
holomorphic sectional curvature H> —3, —3, and H < —3, respectively (S.
Tanno [1I]. These Sasakian manifolds admit the automorphism groups of
the maximum dimension (n-+1)* (cf. S. Tanno [10]). By F(f) we denote the
cyclic group generated by exp f£& for a real number . Manifolds are assumed
to be connected and structure tensors are assumed to be of class C*.

In this paper the main theorem is as follows:

THEOREM A. Let (M, ¢, &, 7, 8 be a complete Sasakian manifold of m-
dimension, m = 2n-1.

() If dim I(M)=(n+1)? then (M, ¢, & 7, g) is one of the following mani-
folds:
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(i—1) a Sasakian manifold of constant curvature,
(i—2) S™HI/F{) for H> —3 and H+1,

(i—3) E™—3]/F(ty,

(i—4) (L, CD®M[H]/F(ty) for H<—3.

(i) If dim I(M)> (n+1)? then (M, g) is of constant curvature.

If M is simply connected, we can give the complete classification of (M,
o, &, 7, 8 whose isometry group has dimension =(n-+1)*=(m-+1)%/4, (M, g)
being complete.

THEOREM A’. Let (M, ¢,§&, 1, 8) be a complete and simply connected Sasa-
kian manifold of m-dimension, m =2n-+1. Then,

(i) dim I(M)=(n-+1)% if and only if (M, ¢, &, 7, ) is one of the following
manifolds :

(i—1) S™[H] for H> —3 and H+1,
(i—2) E™ 3]
(i—3) (L, CD™[H] for H< —3.

(i) dim I(M)> (n+1)% if and only if dim I(M)=n+1)2n+1)=m(m-+1)/2
and (M’ ¢’ &, 7, 8= S™[11.

In A, Sasakian manifolds (i—2)~(i—4) have a property dim I(M)
=dim A(M). More precisely, we have I(M)= AM)\J A’(M), where A’/(M) is
composed of isometries ¢ satisfying ¢&=—&.

COROLLARY. Let (M, g) be a complete Riemannian manifold of m-dimension,
m=2n+1. Assume that

dim I(M) > (n+1)2=(n-+1)%/4.

Then (M, g) is of constant curvature 1, if and only if (M, g) admits a Sasakian
structure (@, &, 1, 9).

§2. Preliminaries

Let (M, g) be a Riemannian manifold with a fixed Riemannian metric g.
Then a Sasakian structure (¢, &, 79,2 on (M, g) is characterized by a unit
Killing vector field & such that

@1 FxW& -Y=g(¢ YV)X—g(X, V),
or
2.1y —R(X, §)Y =g(§, Y)X—g(X, Y)§,

where X, Y are vector fields on M, V' is the Riemannian connection defined
by g, and R is the Riemannian curvature tensor. ¢ and % are defined by

¢=—F& and n(X)=g(¢, X) (cf. [3] [8] [10], etc.). So we denote by (M, &,

2) a Sasakian manifold and by & a Sasakian structure on (M, g).
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If we have two Sasakian structures &, and &, which are orthogonal,
namely g(&uy £) =0 on M, then we have the third Sasakian structure &g,,:

(2-2) = (1/2)[&1): £

= ¢(1)$(2) = _9‘!’(2)5(1)

such that &g, &, and &, are mutually orthogonal. A set (&, &uy &y 1S
called a Sasakian 3-structure and in this case the dimension of M is 4r-+3
for some integer »=0 (Y.Y. Kuo [6]). They satisfy

2.3) = QA/2[Ew» €l
(2-4) S(m - (1/2)[5(3): 5(1)] ’

and there is no Sasakian structure &, on (M, g), which is orthogonal to the
above three (S. Tachibana and W.N. Yu [9).

The following lemma is useful in our arguments.

LEMMA 2.1. (S. Tachibana and W.N. Yu [9]) Let (M, g) be a complete
and simply connected Riemannian manifold of m-dimension. If (M, g) admits
two Sasakian structures & and &' with non-constant g(&, &), then (M, g) is iso-
metric with a unit sphere S™.

Assume that a Riemannian manifold (M, g admits a Sasakian structure
¢ such that the isometry group I(M)=I(M, g) is different from the automor-
phism group AM)=A(M, &, g). Then we have an isometry ¢ which is not
an automorphism of the Sasakian structure. If ¢ preserves &, then ¢ pre-
serves V§é=—¢ and 7, and hence, ¢ is an automorphism. Therefore, denot-
ing by the same letter ¢ its differential, we have @& #&. We show that this
unit Killing vector field ¢& defines a Sasakian structure on (M, g). Let p be
an arbitrary point and let X, Y be arbitrary vector fields on M. Since ¢ is
an isometry, it preserves the Riemannian curvature tensor:

R, (0X, 0§)pY = ¢ ,(R(X, §)Y ), .
Consequently, by [2.I} we have
—R,,(0X, p8)pY = @ (g,(& Y)X—g)(X, Y)E)

=g,(& V) X—g,(X, V).
Here we have

gp(sr Y)Z(SD*g)p(S: Y):ggop«DS’ GDY) ’

and, therefore, we get

—R, (0 X, 08)0Y = g,,(0&, oY )X —g, (90X, pY )9 .

This means that ¢£ is a Sasakian structure.
In [10] we have classified almost contact Riemannian manifolds of (2n+1)-
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dimension admitting the automorphism groups of the maximum dimension
(n4+1).. The classification only for Sasakian manifolds is as follows:

LEMMA 2.2. (S. Tanno [10], [11]) Let (M, &, g) be a Sasakian manifold of
(2n4-1)-dimension. Then dim A(M) < (n+1)%. dim A(M)=(n+1)* holds, if and
only if (M, &, g) has constant ¢-holomorphic sectional curvature H and it is one
of the followings:

(1) S+ H]/F({) for H> —3, where 2r - 4(H+-3)"!/t, is an integer,

(2) E*1[-3]/F(t,), where t, is a real number,

@) (L, CDMLH]/F(t,) for H< —3, where t, is a real number.

§3. The case dim M =3

First we have

PROPOSITION 3.1. [If a Riemannian manifold of 3-dimension admits a Sasa-
kian 3-structure, then it is of constant curvature 1.

ProoF. In a Sasakian manifold, sectional curvature K(&, X) for a 2-plane
which contains & is equal to 1 (cf. (2.1), or [3]). If (M, g) has a Sasakian
3-structure &y, Euy £y then

§=a&qy+bE i+

for constant a, b, ¢ satisfying a®4b*+c?*=1, is also a Sasakian structure and
(M, g) is of constant curvature 1.
THEOREM 3.2. Let (M, &, g) be a complete Sasakian manifold of 3-dimension.
(i) If dim I(M)=4, then (M, &, g) is one of the followings:
(i—1) a Sasakian manifold of constant curvature,
(i—2) S HJ/F(,) for H> —3 and H+1,
(i—3) E°[—31/F(),
(i—4) (L, CDO[H]/F(ty) for H< —3.

(i) If dim I(M)>4, then dim I(M)=6 and (M, &, g) is either S*[1] or
P[1]1=S?*[1]/F(n).

PROOF. Assume that dim I(M)=4. Since dim A(M)<4 by Lemma 2.2,
we have either dim A(M)=dim I(M)=4 or dim A(M)<dim I(M). The first
case implies (i—1)~(i—4) by Lemma 2.2.

If dim A(M)<dim I(M), we see that there is some isometry ¢ in the
identity component of I(M) which satisfies ¢&x& and @& —&. @& defines
another Sasakian structure on (M, g). If g(&, ¢&) is not constant on M, we
consider the universal covering manifold (*M, *g) of (M, g), and naturally
induced Sasakian structures *¢ and *(¢£). Then by Lemma 2.1, (*M, *g) is
isometric with a unit sphere. Hence, (M, g) is of constant curvature 1.

Next we assume that g(§, &§)=a is constant on M. Since ¢&+& and
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o&+ —&, we have |a|<1. Then we have a Sasakian structure
(3.1) Ey=—a§/V1=a" +(p§)/V1=a*,

which is orthogonal to & =&, and hence (M, g) admits a Sasakian 3-structure
by [2.2). By [Proposition 3.1, (M, g) is of constant curvature. This is the
case (i—1).

Finally assume that dim /(M) > 4. By a theorem of G. Fubini we have
dim I(M)=6. (M, g) is isometric to either S® or P32 Therefore, we have
either (M, &, 2)=S*[1] or (M, &, g)= P*1]=S?*[1]/F(x).

§4. The difference of dim (M) and dim A(M)

PROPOSITION 4.1. Let (M, &, g) be a complete Sasakian manifold. Assume
that dim I[(M)—dim A(M)=1. Then (M, g) is of constant curvature 1.

PrOOF. Let (A,, -+, Ay_y, Ay=E&) be a basis of the Lie algebra composed
of infinitesimal automorphisms, where y=dim A(M). Since we have some
isometry ¢ satisfying ¢& + & and ¢& + —& (cf. proof of Theorem 3.2), we have
another Sasakian structure ¢&. If g(&, ¢€) is not constant on M, (M, g) is of
constant curvature. If g(§, ¢€) is constant on M, then &, defined by (3.1)
together with &§=¢&.,, &, by (2.2), defines a Sasakian 3-structure. Since &,
is not an infinitesimal automorphism of &, but a Killing vector field, we can
consider

Au Tt Ar—p E(l)’ E(z)

as a basis of the Lie algebra of Killing vector fields on (M, g). Thus, &g
must be expressed in the form:

4.1) = a; A+ - +ar Ay +ab b,

for some constant «a,, -+, ar_,, @, b. However, this implies that &,,—b&.,, is an
infinitesimal automorphism of &,. On the other hand, by (2.2) and (2.4), we
have

CEw—0b6wy Syl = 2(Eyt+bEes)

which is a contradiction. Hence, only one possibility is that (M, g) is of con-
stant curvature 1.

LEMMA 4.2. Let (M, &, g) be a complete Sasakian manifold. Assume that
dim I(M)—dim A(M)=2. Then either

A (M, g) is of constant curvature, or

(i) (M, g admits a Sasakian 3-structure &, &y, &g, and we have a basis
of the Lie algebra of Killing vector fields:

(4'2) Al) ttty A?’—l, A?‘: S: Xl: oy X[Bs E(Z); 5(3)
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where f=dim I(M)—dim A(M)—2, and (A,, -+, Ay) is a basis of the Lie algebra
of infinitesimal automorphisms of §&.

PrOOF. By dim A(M) < dim I(M), we see that either (M, g) is of constant
curvature, or (M, g) admits a Sasakian 3-structure. So we consider the latter
case. In the proof of the preceding Proposition, we have proved that &g,
can not be expressed in the form (4.1). Hence, &, is taken as one element
of (4.2). If dim I(M)—dim A(M)—2>0, we can add 3 Killing vector fields
Xy, -, Xp to get (4.2).

THEOREM 4.3. Let (M, &, g) be a complete Sasakian manifold. If dim I(M)
~—dim A(M) =3, then (M, g) is of constant curvature.

Proor. By Lemma 4.2, we may assume that we have a basis (4.2) of the
Lie algebra of Killing vector fields on (M, g), where 8=1. Let X=X,. Since
(M, g) is complete, X generates the l-parameter group exp sX, —oco < s < co,
of isometries of (M, g). Since exp sX-§&, is a unit Killing vector field, we

have some constant a,, -+, a4, @, by, --+, bg, b, ¢ depending on s such that
exp sX - &= a, A+ - +ar Ar 0 XA+ - +bﬂXﬁ
+aay+bEtcse -

We devide our arguments in several steps.
(I) The case where there is some s so that at least one of a,, -+, ar_y,
by, ---, bg is non-zero. In this case we have a non-zero Killing vector field Y

defined by
4.3) Y=expsX-&p—an—bEm—cée .

(I-—1) First suppose that the inner products of exp sX:&,, and &g, &,
&y, are all constant. Then g(Y, Y) is a non-zero constant on M and &g de-
fined by

(4.4) En=Y/Vg,Y)

is a Sasakian structure on (M, g), because all exp sX-&quy Eay Eoy &y are
Sasakian structures and &p; is of unit length. By our construction of &g,
the inner products of &,; and &, &, &u are constant.

(I—1—i) If &, belongs to the 3-dimensional distribution defined by &,
Ewy €y, then &y or Y is a linear combination of &, &, &s, With real coef-
ficients. So, exp sX- &y, is of the form a’,+0'&,+c’&u,. This is a contra-
diction.

(I—1—ii) If &, does not belong to the 3-dimensional distribution defined
by &uy ey E@yy then by normalization of the following vector field:

Etn— 86 Eanéay—2 G E)ér— 8wy )

we have a Sasakian structure &, which is orthogonal to all &), &u) &g
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This is also a contradiction (cf. § 2).

(I—2) Suppose that at least one of the inner products of exp sX - &, and
Euy Ey Ew is mot constant. Then, by for the universal covering
manifold, we see that (M, g) is of constant curvature.

(II) The case where, for any s, —co < s < co, we have

(4.5 exp sX « = a(8)&+b(8)E (8 sy

where a, b, ¢ depend only on s. We differentiate [(4.5) with respect to s and
get

(4.6) [X, E]= A+ Byt Céu
where A, B, C are constant such that
A= —(0a(s)/0s),, B=—(0b(s)/ds),, C=—(0c(s)/0s),.
We show that A=0. In fact, we have
A=g([X, &l €y
= Lx(8Ew EoN—(Lx &€y E)—8Ew» [ X, €D

=0—-0—-A4,
where Ly is the Lie derivation with respect to X. Hence, we have
4.7) LX, €yl =BExt+Cées -
Define a Killing vector fleld Z by
(4.3) Z=X+(1/2)CE»—1/2)BE, -
Then we have
4.9) [Z, Ex]1=0

by and (2.4). Thus, Z is an infinitesimal automorphism of the Sasakian
structure &4, and it is written as

(4.10) Z=a; A+ - FarAroFaé,
for some constant ay, ---, ar_;, a. By and we have

X=a;A+ - +ar—1147‘—1+41'5(1)_(1/2>CE<2>+(1/2)B§(3) ’

which contradicts the choice of the basis[4.2), since X=X,. Thus, only one
possibility is that (M, g) is of constant curvature.

THEOREM 4.4. Let (M, &, g) be a complete Sasakian manifold which is not
of constant curvature. Then, we have either

(i) dim I(M)=dim A(M) = admitting no Sasakian 3-structure], or

(i) dim I(M)=dim A(M)+2 [ 2 admitting a Sasakian 3-structure].
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PROOF. Assume that (M, g) admits no Sasakian 3-structure. If dim I(M)
> dim A(M), by Proposition 4.1, Lemma 4.2 and Theorem 4.3, (M, g) must be
of constant curvature. This is a contradiction. Hence, we have dim I(M)
=dim A(M).

Assume that (M, g) admits a Sasakian 3-structure (&}, &, ). Since
(M, g) is not of constant curvature, g(&, &,) must be constant. Then we can
construct a Sasakian 3-structure (§=2~&, &uy Euy). Hence, we have (ii); other-
wise (M, g) is of constant curvature.

§5. The case dim I(M)= dim A(M)-2

In this section we assume that a complete Sasakian manifold (M, §, g) is
not of constant curvature and dim I(M)=dim A(M)+2 holds. Then (M, g)
admits a Sasakian 3-structure and dim M =4r+3. By [Lemma 4.2, we have a
basis of Killing vector fields:

A1: ttt Ar—p Ar: é-:fm; 5(2)» E(a) .

LEMMA 5.1. Let f be an automorphism of & Then we have a constant 0
depending on f

6.1 SE @y =sin 0 4+-cos 0y, ,
(5.2) fE(g) = “-FCOS 05(2)isin 05(3) .

PrOOF. First we have f&,, =&, Since f&,, is a Killing vector field, we
have

(5.3) fEo=0a,A4+ - +ar_ Ay s+ ab b6yt

for constant ay, ---, ay_y, a, b and c¢. If at least one of ay, --+, ay_, is not equal
to zero, we see that (M, g) is of constant curvature, as in (I) of proof of
Theorem 4.3. This contradicts the assumption. Hence, we get

(5.4) S = a6y +bEpt-cE, -
We show that ¢=0. This is done by
a=g([Ee» Ew)=8([Ex» [Ew)

=(f*2)(€w» Ew) =86 Ew)=0.

Thus, f&u = bEu+cEs- Since fE,, is of unit length, b and ¢ are replaced by
sin @ and cos #. Similarly, we have f&g, =0&,+c’§s,. Then

(€ [Ew) = 8 (b oyt sy D'yt s)
=bb'+cc’ .
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Since f is an isometry, we have bb’-cc’=0. Consequently, we have b’ =
Fcosd and ¢’ = +sind.

LEMMA 5.2. Let p be a point in M. Then the isotropy group P of the
automorphism group AM) at p is a subgroup of 1XO(2)x U(2r).

PROOF. Let &=§&,, &y by = PEcars

€1yttt Copy ¢ep Tty ¢ezr

be a basis of the tangent space M, at p. Let f be any element in P. Then
we have f&,,=&,, and (5.1), (56.2). This implies that f leaves the three sub-
spaces V', V? and V* of M, invariant, where V*' is spanned by &, V? is
spanned by &, and &, and V*=V*(e, -, €y, P&, ---, Pe,,) is the ortho-
gonal complement of V!+V? in M,. The action of f on V' is trivial. On
V? it is an element of the othogonal group O(2). On V* the action of f is
expressed by an element of (the real representation of) the unitary group
U@2r).

THEOREM 5.3. Let (M, &, g) be a complete Sasakian manifold which is not
of constant curvature. If dim I(M)=dim A(M)+2 (or, equivalently, if (M, g
admits a Sasakian 3-structure), then we have

(5.5) dim AM) < (2r+-124+-3,  m=4r+3.

ProoOF. By Lemma 5.2, the dimension of the isotropy group P at p is
equal to or smaller than dim O(2)+dim U(2r) = 1+(2r)%. The dimension of the
subspace of M, spanned by infinitesimal automorphisms is equal to or smaller
than dim M =4r+3. Therefore we have dim A(M) < (2r)*4-14-(4r+3).

§ 6. The case where I(M)=AM)\J A’ (M)

In a Sasakian manifold (M, &, g), we denote by A/(M) the set of all iso-
metries ¢ satisfying @& = —&.
PROPOSITION 6.1. Let (M, &, g) be one of the following Sasakian manifolds:

S™HJ/F(t))  for H> —3 and H+1,
E™[—=3]/F(t), (L, CDMLH]/F(ty)  for H<—3.

Then we have dim I(M)=dim A(M) and I(M)=AM)\J A'(M).

PROOF. Since (M, g) is not of constant curvature, by Theorem 4.4, we
have either dim I(M)=dim A(M), or M admits a Sasakian 3-structure, which
is assumed to be (&, £, &u). In the latter case, we have K(§gy §sy)=1 by
(2.1). However, K(£qu), &gy = K&y, 9&); that is, it is ¢-holomorphic sectional
curvature (= H =+ 1). This is a contradiction. Hence, dim I(M)=dim A(M).

Next we show that there is an isometry A such that hé=—&. Let (*M,
*&, *g) be the universal covering manifold of (M, &, g) such that (M, &, g)
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=(*M, *¢, *g)/F(t,). Then (*M, —*&, *g) is another Sasakian structure on
(*M, *g), which has constant *(—¢)-holomorphic sectional curvature H, too.
Hence, (*M, *&, *g) and (*M, *(—&), *g) are isomorphic, and we have an iso-
metry *A such that *h*&= —*¢& (cf. Proposition 4.1] of [IL]). *h*é and —*&
generate the l-parameter groups *A~!- exp t*& - *h and exp (—1*£), respectively.
Therefore we have

exp t*& - *h="*h.exp (—t*£).
Let [ ]1:*M—M (*p—[*p]=p) be the projection. Define & by hp=_[*h*p].
For *p/ such that [*p’]=p, we have some integer z so that *p/ = exp f,z*& - *p.
Then
[*h¥*p’]=[*h - exp t,2*¢ - *p]
= [exp (—#,2*E) - *h - *p]]
=[*r*p].

Therefore *h induces a well defined % on (M, &, g). Clearly, i is an isometry
and satisfies h& = —¢&.

Now, let ¢ be any isometry which is not an automorphism of (M, &, g2).
Then ¢& defines a Sasakian structure on (M, g) such that & +¢&. If g(&, ¢&)
is not constant, (M, g must be of constant curvature. This can not happen.
Therefore g(§, ¢&)=a is constant, and we have either |a|<1 or a=—1. If
la| <1, we can construct a Sasakian 3-structure, and we must have dim I(M)
= dim A(M)+2.

This is a contradiction. Thus, we have a=—1 and ¢§=—§&. Then an
isometry h~'- ¢ satisfies h™'. & =&, which implies that 2~'-¢ is an automor-
phism. Denoting this by f, we have ¢=hf. This means that I(M)= A(M)
U A (M), where A/‘(M)=h- A(M)={hf; fe A(M)}.

§7. Theorems and corollaries

THEOREM 7.1. Let (M, &, g) be a complete Sasakian manifold of m-dimen-
sion, m=2n-+1.
(i) If dim I(M)=(n+1)? then (M, &, g) is one of the followings:
(i—1) a Sasakian manifold of constant curvature,
(i—2) S™H]/F(t,) for H> —3 and H+1,
(i—3) E™—31/F(),
(i—4) (L, CD®M[H]/F(ty) for H< —3.
(i) If dim I(M) > (n+1)%, then (M, &, g) is of constant curvature 1.
PROOF. For m =3, see Theorem 3.2. Suppose that m =2n+1=5. Assume
that dim I(M)=(®-+1)2. By Theorem 4.4, we have (i—1), or dimI(M)=
dim A(M), or dim I(M)=dim A(M)+2. If dim [(M)=dim A(M)=(n+1)? we
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have (i—1)~(i—4) by
If dim I(M)=dim A(M)+2 and if (M, g) is not of constant curvature,
then dim M=4r+3 and we have dim A(M) < (2r+1)*43 by Theorem 6.3. Then

(7.1) dim I(M)= dim A(M)+2 < 2r+1)*+5=(2r+2)*—(4r—2).

Since =1, we have dim I(M) < (2r+2)?=(n+1)?, which is a contradiction.
This completes the proof of (i).

Next assume that dim (M) > (n+1)%.. Then (M, g) is of constant curva-
ture, or dim I(M)=dim A(M)+2 by If dim I(M)=dim A(M)--2
and if (M, g) is not of constant curvature, we have as before. And we
have a contradiction.

THEOREM 7.2. Let (M, &, g) be a complete and simply connected Sasakian
manifold of m-dimension, m=2n-+1. Then,

() dim I(M)=n+1), if and only if (M, &, g) is one of the followings:

(i—1) S™H] for H> —3 and H+#1,
(i—2) E™—3],
(i—3) (L, CD®M[H] for H< —3.

(i) dim I(M)> (n+1), if and only if dim I(M)=m(m+1)/2 and (M, &, 8)
=S™1].

PrOOF. This follows from Proposition 6.1 and Theorem 7.1.

COROLLARY 7.3. Let (M, g) be a complete Riemannian manifold of m-
dimension, m=2n-+1. Assume that

dim I(M) > (n+-1)* = (m-+1)2/4.

Then (M, g) is of constant curvature 1, if and only if (M, g) admits a Sasakian
structure (&, g).

PrOOF. This follows from and (Proposition 5.1, [11]).

COROLLARY 7.4. Let (M, &, g) be a complete Sasakian manifold of (dr-+1)-
dimension, which is not of constant curvature. Then dim I(M)=dim A(M).

Proor. This follows from Theorem 4.4.

REMARK. Let (M, &, g) be a complete Sasakian manifold, which is not of
constant curvature. Assume that (M, g) admits a Sasakian 3-structure and
dim M=4r+3. Then by Theorem 5.3, the dimension of the automorphism
group A(M) can not satisfy

(Ar+3)(4r+4)/2=dim A(M) > (2r-+2)?, nor
(2r+2)* > dim A(M) > (2r+1)2+3.
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