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\S 1. Introduction

The dimension of the isometry group of an m-dimensional Riemannian
manifold $(M, g)$ is equal to or smaller than $m(m+1)/2$ . The maximum is
attained if and only if $(M, g)$ is of constant curvature and one of the follow-
ing manifolds: a sphere $S^{m}$, a real projective space $P^{m}$, a Euclidean space
$E^{m}$, and a hyperbolic space $H^{m}$ (cf. S. Kobayashi and K. Nomizu [5], p. 308).

G. Fubini’s theorem ([2], or [1]; p. 229) says that in an m-dimensional
Riemannian manifold $(m>2)$ the dimension of the isometry group can not
be equal to $m(m+1)/2-1$ . Further, by H. C. Wang [12] and K. Yano [13] it
was shown that in an m-dimensional Riemannian manifold $(m\neq 4)$ , there
exists no group of isometries of order $s$ such that

(1.1) $m(m+1)/2>s>m(m-1)/2+1$ .

Riemannian manifolds admitting isometry groups of dimension $m(m-1)/2-+1$

were studied by K. Yano [13], and the related subjects were studied by S.
Ishihara [4], M. Obata [7], etc.

We consider similar problems in Sasakian manifolds. For a Sasakian
manifold $M$ with structure tensors $(\phi, \xi, \eta, g)$ we denote by $I(M)$ and $A(M)$

the group of isometries and the group of automorphisms. By $S^{2n+1}[H]$ for
$H>-3,$ $E^{2n+1}[-3]$ , and $(L, CD^{n})[H]$ for $H<-3$, we denote complete and
simply connected Sasakian manifolds of $(2n+1)$-dimension with constant $\phi-$

holomorphic sectional curvature $H>-3,$ $-3$ , and $H<-3$ , respectively (S.
Tanno [11]). These Sasakian manifolds admit the automorphism groups of
the maximum dimension $(n+1)^{2}$ (cf. S. Tanno [10]). By $F(t)$ we denote the
cyclic group generated by $\exp t\xi$ for a real number $t$ . Manifolds are assumed
to be connected and structure tensors are assumed to be of class $C^{\infty}$ .

In this paper the main theorem is as follows:
THEOREM A. Let $(M, \phi, \xi, \eta, g)$ be a complete Sasakian manifold of m-

dimension, $m=2n+1$ .
(i) If $\dim I(M)=(n+1)^{2}$ , then $(M, \phi, \xi, \eta, g)$ is one of the following mani-

folds:
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$(i-1)$ a Sasakian manifold of constant curvature,
$(i-2)$ $S^{m}[H]/F(t_{1})$ for $H>-3$ and $H\neq 1$ ,
$(i-3)$ $E^{m}[-3]/F(t_{2})$ ,
$(i-4)$ $(L, CD^{n})[H]/F(t_{3})$ for $H<-3$ .

(ii) If $\dim I(M)>(n+1)^{2}$ , then $(M, g)$ is of constant curvature.
If $M$ is simply connected, we can give the complete classification of $(M$,

$\phi,$ $\xi,$
$\eta,$ $g$) whose isometry group has dimension $\geqq(n+1)^{2}=(m+1)^{2}/4,$ $(M, g)$

being complete.
THEOREM $A^{\prime}$ . Let $(M, \phi, \xi, \eta, g)$ be a complete and simply connected Sasa-

kian manifold of m-dimension, $m=2n+1$ . Then,
(i) $\dim I(M)=(n+1)^{2}$ , if and only if $(M, \phi, \xi, \eta, g)$ is one of the following

manifolds:
$(i-1)$ $S^{m}[H]$ for $H>-3$ and $H\neq 1$ ,
$(i-2)$ $E^{m}[-3]$ ,
$(i-3)$ $(L, CD^{n})[H]$ for $H<-3$ .

(ii) $\dim I(M)>(n+1)^{2}$ , if and only if $\dim I(M)=(n+1)(2n+1)=m(m+1)/2$

and $(M, \phi, \xi, \eta, g)=S^{m}[1]$ .
In Theorem $A$ , Sasakian manifolds $(i-2)\sim(i-4)$ have a property $\dim I(M)$

$=\dim A(M)$ . More precisely, we have $I(M)=A(M)UA^{\gamma}(M)$ , where $A^{\prime}(M)$ is
composed of isometries $\varphi$ satisfying $\varphi\xi=-\xi$ .

$CoROLLARY$ . Let $(M, g)$ be a complete Riemannian manifold of m-dimension,

$m=2n+1$ . Assume that

$\dim I(M)>(n+1)^{2}=(m+1)^{2}/4$ .
Then $(M, g)$ is of constant curvature 1, if and only if $(M, g)$ admits a Sasakian
structure $(\phi, \xi, \eta, g)$ .

\S 2. Preliminaries

Let $(M, g)$ be a Riemannian manifold with a fixed Riemannian metric $g$.
‘Fhen a Sasakian structure $(\phi, \xi, \eta, g)$ on $(M, g)$ is characterized by a unit
Killing vector field $\xi$ such that

(2.1) $\nabla_{X}(\nabla\xi)\cdot Y=g(\xi, Y)X-g(X, Y)\xi$ ,

or

(2.1)i $-R(X, \xi)Y=g(\xi, Y)X-g(X, Y)\xi$ ,

where $X,$ $Y$ are vector fields on $M,$ $\nabla$ is the Riemannian connection defined
by $g$, and $R$ is the Riemannian curvature tensor. $\phi$ and $\eta$ are defined by
$\phi=-\nabla\xi$ and $\eta(X)=g(\xi, X)$ (cf. [3], [8], [10], etc.). So we denote by $(M,$ $\xi$ ,
g) a Sasakian manifold and by $\xi$ a Sasakian structure on $(M, g)$ .
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If we have two Sasakian structures $\xi_{(1)}$ and $\xi_{(2)}$ , which are orthogonal,
namely $g(\xi_{(1)}, \xi_{(2)})=0$ on $M$, then we have the third Sasakian structure $\xi_{(3)}$ :
(2.2) $\xi_{(3)}=(1/2)[\xi_{(1)}, \xi_{(2)}]$

$=\phi_{(1)}\xi_{(2)}=-\phi_{(2)}\xi_{(1)}$

such that $\xi_{(1)},$ $\xi_{(2)}$ and $\xi_{(3)}$ are mutually orthogonal. A set $(\xi_{(1)}, \xi_{(2)}, \xi_{(3)})$ is
called a Sasakian 3-structure and in this case the dimension of $M$ is $4r+3$

for some integer $r\geqq 0$ (Y. Y. Kuo [6]). They satisfy

(2.3) $\xi_{(1)}=(1/2)[\xi_{(2)}, \xi_{(3)}]$ ,

(2.4) $\xi_{(2)}=(1/2)[\xi_{(3)}, \xi_{(1)}]$ ,

and there is no Sasakian structure $\xi_{(4)}$ on $(M, g)$ , which is orthogonal to the
above three (S. Tachibana and W. N. Yu [9]).

The following lemma is useful in our arguments.
LEMMA 2.1. (S. Tachibana and W. N. Yu [9]) Let $(M, g)$ be a complete

and simply connected Riemannian manifold of m-dimension. If $(M, g)$ admits
two Sasakian structures $\xi$ and $\xi^{\prime}$ with non-constant $g(\xi, \xi^{\prime})$ , then $(M, g)$ is iso-
metric with a unit sphere $S^{m}$ .

Assume that a Riemannian manifold $(M, g)$ admits a Sasakian structure
$\xi$ such that the isometry group $I(M)=I(M, g)$ is different from the automor-
phism group $A(M)=A(M, \xi, g)$ . Then we have an isometry $\varphi$ which is not
an automorphism of the Sasakian structure. If $\varphi$ preserves $\xi$ , then $\varphi$ pre-
serves $\nabla\xi=-\phi$ and $\eta$ , and hence, $\varphi$ is an automorphism. Therefore, denot-
ing by the same letter $\varphi$ its differential, we have $\varphi\xi\neq\xi$ . We show that this
unit Killing vector field $\varphi\xi$ defines a Sasakian structure on $(M, g)$ . Let $p$ be
an arbitrary point and let $X,$ $Y$ be arbitrary vector fields on $M$. Since $\varphi$ is
an isometry, it preserves the Riemannian curvature tensor:

$R_{\varphi p}(\varphi X, \varphi\xi)\varphi Y=\varphi_{p}(R(X, \xi)Y)_{p}$ .
Consequently, by (2.1) we have

$-R_{\varphi p}(\varphi X, \varphi\xi)\varphi Y=\varphi_{p}(g_{p}(\xi, Y)X-g_{p}(X, Y)\xi)$

$=g_{p}(\xi, Y)\varphi X-g_{p}(X, Y)\varphi\xi$ .
Here we have

$g_{p}(\xi, Y)=(\varphi^{*}g)_{p}(\xi, Y)=g_{\varphi p}(\varphi\xi, \varphi Y)$ ,

and, therefore, we get

$-R_{\varphi p}(\varphi X, \varphi\xi)\varphi Y=g_{\varphi p}(\varphi\xi, \varphi Y)\varphi X-g_{\varphi p}(\varphi X, \varphi Y)\varphi\xi$ .
This means that $\varphi\xi$ is a Sasakian structure.

In [10] we have classified almost contact Riemannian manifolds of $(2n+1)-$
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dimension admitting the automorphism groups of the maximum dimension
$(n+1)^{2}$ . The classification only for Sasakian manifolds is as follows:

LEMMA 2.2. (S. Tanno [10], [11]) Let $(M, \xi, g)$ be a Sasakian manifold of
$(2n+1)$ -dimension. Then $\dim A(M)\leqq(n+1)^{2}$ . $\dim A(M)=(n+1)^{2}$ holds, if and
only if $(M, \xi, g)$ has constant $\phi$ -holomorphic sectional curvature $H$ and if is one
of the followings:

(1) $S^{2n+1}[H]/F(t_{1})$ for $H>-3$ , where $2\pi\cdot 4(H+3)^{-1}/t_{1}$ is an integer,
(2) $E^{2n+1}[-3]/F(t_{2})$ , where $t_{2}$ is a real number,
(3) $(L, CD^{n})[H]/F(t_{3})$ for $H<-3$ , where $t_{s}$ is a real number.

\S 3. The case $\dim M=3$

First we have
PROPOSITION 3.1. If a Riemannian manifold of 3-dimension admits a Sasa-

kian 3-structure, then it is of constant curvature 1.
PROOF. In a Sasakian manifold, sectional curvature $K(\xi, X)$ for a 2-plane

which contains $\xi$ is equal to 1 (cf. (2.1), or [3]). If $(M, g)$ has a Sasakian
3-structure $\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(3)}$ , then

$\xi=a\xi_{(1)}+b\xi_{(2)}+c\xi_{(3)}$

for constant $a,$ $b,$ $c$ satisfying $a^{2}+b^{2}+c^{2}=1$ , is also a Sasakian structure and
$(M, g)$ is of constant curvature 1.

THEOREM 3.2. Let $(M, \xi, g)$ be a complete Sasakian manifold of 3-dimension.
(i) If $\dim I(M)=4$, then $(M, \xi, g)$ is one of the followings:
$(i-1)$ a Sasakian manifold of constant curvature,
$(i-2)$ $S^{3}[H]/F(t_{1})$ for $H>-3$ and $H\neq 1$ ,
$(i-3)$ $E^{3}[-3]/F(t_{2})$ ,
$(i-4)$ $(L, CD^{1})[H]/F(t_{3})$ for $H<-3$ .

(ii) If $\dim I(M)>4$, then $\dim I(M)=6$ and $(M, \xi, g)$ is either $S^{3}[1]$ or
$P^{3}[1]=S^{3}[1]/F(\pi)$ .

PROOF. Assume that $\dim I(M)=4$ . Since $\dim A(M)\leqq 4$ by Lemma 2.2,
we have either $\dim A(M)=\dim I(M)=4$ or $\dim A(M)<\dim I(M)$ . The first
case implies $(i-1)\sim(i-4)$ by Lemma 2.2.

If $\dim A(M)<\dim I(M)$ , we see that there is some isometry $\varphi$ in the
identity component of $I(M)$ which satisfies $\varphi\xi\neq\xi$ and $\varphi\xi\neq-\xi$ . $\varphi\xi$ defines
another Sasakian structure on $(M, g)$ . If $g(\xi, \varphi\xi)$ is not constant on $M$, we
consider the universal covering manifold $(^{*}M, *g)$ of $(M, g)$ , and naturally
induced Sasakian structures $*\xi$ and $*(\varphi\xi)$ . Then by Lemma 2.1, $(^{*}M, *g)$ is
isometric with a unit sphere. Hence, $(M, g)$ is of constant curvature 1.

Next we assume that $g(\xi, \varphi\xi)=a$ is constant on $M$. Since $\varphi\xi\neq\xi$ and
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$\varphi\xi\neq-\xi$, we have $|a|<1$ . Then we have a Sasakian structure

(3.1) $\xi_{(2)}=-a\xi/\sqrt{1-a^{2}}+(\varphi\xi)/\sqrt{1-a^{2}}$ ,

which is orthogonal to $\xi=\xi_{(1)}$ , and hence $(M, g)$ admits a Sasakian 3-structure
by (2.2). By Proposition 3.1, $(M, g)$ is of constant curvature. This is the
case $(i-1)$ .

Finally assume that $\dim I(M)>4$ . By a theorem of G. Fubini we have
$\dim I(M)=6$ . $(M, g)$ is isometric to either $S^{3}$ or $P^{3}$ . Therefore, we have
either $(M, \xi, g)=S^{3}[1]$ or $(M, \xi, g)=P^{3}[1]=S^{3}[1]/F(\pi)$ .

\S 4. The difference of $\dim I(M)$ and $\dim A(M)$

PROPOSITION 4.1. Let $(M, \xi, g)$ be a complete Sasakian manifold. Assume
that $\dim I(M)-\dim A(M)=1$ . Then $(M, g)$ is of constant curvature 1.

PROOF. Let $(A_{1}, \cdot.. , A_{r- 1}, A_{\gamma}=\xi)$ be a basis of the Lie algebra composed
of infinitesimal automorphisms, where $\gamma=\dim A(M)$ . Since we have some
isometry $\varphi$ satisfying $\varphi\xi\neq\xi$ and $\varphi\xi\neq-\xi$ (cf. proof of Theorem 3.2), we have
another Sasakian structure $\varphi\xi$ . If $g(\xi, \varphi\xi)$ is not constant on $M,$ $(M, g)$ is of
constant curvature. If $g(\xi, \varphi\xi)$ is constant on $M$, then $\xi_{(2)}$ defined by (3.1)

together with $\xi=\xi_{(1)},$ $\xi_{(3)}$ by (2.2), defines a Sasakian 3-structure. Since $\xi_{(2)}$

is not an infinitesimal automorphism of $\xi_{(1)}$ , but a Killing vector field, we can
consider

$A_{1},$ $A_{\gamma-1},$ $\xi_{(1)},$ $\xi_{(2)}$

as a basis of the Lie algebra of Killing vector fields on $(M, g)$ . Thus, $\xi_{(3)}$

must be expressed in the form:

(4.1) $\xi_{(S)}=a_{1}A_{1}+\cdots+a_{\gamma-1}A_{\gamma-1}+a\xi_{(1)}+b\xi_{(2)}$

for some constant $a_{1},$ $\cdots$ , $a_{\gamma-1},$ $a,$
$b$ . However, this implies that $\xi_{(3)}-b\xi_{(2)}$ is an

infinitesimal automorphism of $\xi_{(1)}$ . On the other hand, by (2.2) and (2.4), we
have

$[\xi_{(3)}-b\xi_{(2)}, \xi_{(1)}]=2(\xi_{(2)}+b\xi_{(8)})$ ,

which is a contradiction. Hence, only one possibility is that $(M, g)$ is of con-
stant curvature 1.

LEMMA 4.2. Let $(M, \xi, g)$ be a complete Sasakian manifold. Assume that
$\dim I(M)-\dim A(M)\geqq 2$ . Then either

(i) $(M, g)$ is of constant curvature, $or$

(ii) $(M, g)$ admits a Sasakian 3-structure $\xi,$ $\xi_{(2)},$ $\xi_{(3)}$ and we have a basis
of the Lie algebra of Killing vector fields:
(4.2) $A_{1},$

$\cdots,$
$A_{r- 1},$ $A_{\gamma}=\xi,$ $X_{1},$

$\cdots,$ $X_{\beta},$ $\xi_{(2)},$ $\xi_{(3)}$
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where $\beta=\dim I(M)-\dim A(M)-2$, and $(A_{1}$ , $\cdot$ .. , $A_{\gamma})$ is a basis of the Lie algebra

of infinitesimal automorphisms of $\xi$ .
PROOF. By $\dim A(M)<\dim I(M)$ , we see that either $(M, g)$ is of constant

curvature, or $(M, g)$ admits a Sasakian 3-structure. So we consider the latter
case. In the proof of the preceding Proposition, we have proved that $\xi_{(3)}$

can not be expressed in the form (4.1). Hence, $\xi_{(3)}$ is taken as one element
of (4.2). If $\dim I(M)-\dim A(M)-2>0$ , we can add $\beta$ Killing vector fields
$X_{1},$ $\cdots$ , $X_{\beta}$ to get (4.2).

THEOREM 4.3. Let $(M, \xi, g)$ be a complete Sasakian manifold. If $\dim I(M)$

$-\dim A(M)\geqq 3$ , then $(M, g)$ is of constant curvature.
PROOF. By Lemma 4.2, we may assume that we have a basis (4.2) of the

Lie algebra of Killing vector fields on $(M, g)$ , where $\beta\geqq 1$ . Let $X=X_{1}$ . Since
$(M, g)$ is complete, $X$ generates the l-parameter group $\exp sX,$ $-\infty<s<\infty$ ,

of isometries of $(M, g)$ . Since $\exp sX\cdot\xi_{(1)}$ is a unit Killing vector field, we
have some constant $a_{1}$ , $\cdot$ .. , $a_{r-1},$ $a,$ $b_{1}$ , $\cdot$

., , $b_{\beta},$ $b,$ $c$ depending on $s$ such that

$\exp sX\cdot\xi_{(1)}=a_{1}A_{1}+\cdots+a_{r-1}A_{\gamma-1}+b_{1}X_{1}+\cdots+b_{\beta}X_{\beta}$

$+a\xi_{(1)}+b\xi_{(2)}+c\xi_{(3)}$ .
We devide our arguments in several steps.

(I) The case where there is some $s$ so that at least one of $a_{1}$ , $\cdot$ . , $a_{\gamma-1}$ ,
$b_{1},$ $\cdots$ , $b_{\beta}$ is non-zero. In this case we have a non-zero Killing vector field $Y$

defined by

(4.3) $Y=\exp sX\cdot\xi_{(1)}-a\xi_{(1)}-b\xi_{(2)}-c\xi_{(3)}$ .
(I–1) First suppose that the inner products of $\exp sX\cdot\xi_{(1)}$ and $\xi_{(1)},$ $\xi_{(2)}$ ,

$\xi_{(3)}$ are all constant. Then $g(Y, Y)$ is a non-zero constant on $M$ and $\xi_{[4]}$ de-
fined by

(4.4) $\xi_{[4]}=Y/\frac{Y,Y}{g()}$

is a Sasakian structure on $(M, g)$ , because all $\exp sX\cdot\xi_{(1)},$ $\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(S)}$ are
Sasakian structures and $\xi_{[4]}$ is of unit length. By our construction of $\xi_{[4]}$ ,
the inner products of $\xi_{[4]}$ and $\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(3)}$ are constant.

$(I-1-i)$ If $\xi_{[4]}$ belongs to the 3-dimensional distribution defined by $\xi_{(1)}$ ,
$\xi_{(2)},$ $\xi_{(3)}$ , then $\xi_{[4]}$ or $Y$ is a linear combination of $\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(3)}$ with real coef-
ficients. So, $\exp sX\cdot\xi_{(1)}$ is of the form $a^{\prime}\xi_{(1)}+b^{\prime}\xi_{(2)}+c^{\prime}\xi_{(3)}$ . This is a contra-
diction.

$(I-1-ii)$ If $\xi_{[4]}$ does not belong to the 3-dimensional distribution defined
by $\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(3)}$ , then by normalization of the following vector field:

$\xi_{[4]}-g(\xi_{[4]}, \xi_{(1)})\xi_{(1)}-g(\xi_{[4]}, \xi_{(2)})\xi_{(2)}-g(\xi_{[4]}, \xi_{(3)})\xi_{(3)}$

we have a Sasakian structure $\xi_{(4)}$ , which is orthogonal to all $\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(3)}$ .
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This is also a contradiction (cf. \S 2).
(I–2) Suppose that at least one of the inner products of $\exp sX\cdot\xi_{(1)}$ and

$\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(3)}$ is not constant. Then, by Lemma 2.1 for the universal covering
manifold, we see that $(M, g)$ is of constant curvature.

(II) The case where, for any $s,$ $-\infty<s<\infty$ , we have

(4.5) $\exp sX\cdot\xi_{(1)}=a(s)\xi_{(1)}+b(s)\xi_{(2)}+c(s)\xi_{(3)}$

where $a,$ $b,$ $c$ depend only on $s$ . We differentiate (4.5) with respect to $s$ and
get

(4.6) $[X, \xi_{(1)}]=A\xi_{(1)}+B\xi_{(2)}+C\xi_{(3)}$ ,

where $A,$ $B,$ $C$ are constant such that

$A=-(\partial a(s)/\partial s)_{0}$ , $B=-(\partial b(s)/\partial s)_{0}$ , $C=-(\partial c(s)/\partial s)_{0}$ .
We show that $A=0$ . In fact, we have

$A=g([X, \xi_{(1)}], \xi_{(1)})$

$=L_{X}(g(\xi_{(1)}, \xi_{(1)}))-(L_{X}g)(\xi_{(1)}, \xi_{(1)})-g(\xi_{(1)}, [X, \xi_{(1)}])$

$=0-0-A$ ,

where $L_{X}$ is the Lie derivation with respect to $X$. Hence, we have

(4.7) $[X, \xi_{(1)}]=B\xi_{(2)}+C\xi_{(3)}$ .
Define a Killing vector field $Z$ by

(4.8) $Z=X+(1/2)C\xi_{(2)}-(1/2)B\xi_{(3)}$ .
Then we have

(4.9) $[Z, \xi_{(1)}]=0$

by (2.2) and (2.4). Thus, $Z$ is an infinitesimal automorphism of the Sasakian
structure $\xi_{(1)}$ , and it is written as
(4.10) $Z=\alpha_{1}A_{1}+\cdots+\alpha_{\gamma- 1}A_{r- 1}+\alpha\xi_{(1)}$

for some constant $\alpha_{1}$ , $\cdot$ .. , $\alpha_{\gamma-1},$ $\alpha$ . By (4.8) and (4.10), we have

$X=\alpha_{1}A_{1}+\cdots+\alpha_{r- 1}A_{r- 1}+\alpha\xi_{(1)}-(1/2)C\xi_{(2)}+(1/2)B\xi_{(3)}$ ,

which contradicts the choice of the basis (4.2), since $X=X_{1}$ . Thus, only one
possibility is that $(M, g)$ is of constant curvature.

THEOREM 4.4. Let $(M, \xi, g)$ be a complete Sasakian manifold which is not
of constant curvature. Then, we have either

(i) $\dim I(M)=\dim A(M)$ [ $\rightarrow\leftarrow$ admitting no Sasakian 3-structure], $or$

(ii) $\dim I(M)=\dim A(M)+2$ [ admitting a Sasakian 3-structure].
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PROOF. Assume that $(M, g)$ admits no Sasakian 3-structure. If $\dim I(M)$

$>\dim A(M)$ , by Proposition 4.1, Lemma 4.2 and Theorem 4.3, $(M, g)$ must be
of constant curvature. This is a contradiction. Hence, we have $\dim I(M)$

$=\dim A(M)$ .
Assume that $(M, g)$ admits a Sasakian 3-structure $(\xi t_{1)}, \xi_{(2)}^{\prime}, \xi_{(3)}^{\prime})$ . Since

$(M, g)$ is not of constant curvature, $g(\xi, \xi t_{1)})$ must be constant. Then we can
construct a Sasakian 3-structure $(\xi=\xi_{(1)}, \xi_{(2)}, \xi_{(3)})$ . Hence, we have (ii); other-
wise $(M, g)$ is of constant curvature.

\S 5. The case $\dim I(M)=\dim A(M)+2$

In this section we assume that a complete Sasakian manifold $(M, \xi, g)$ is
not of constant curvature and $\dim I(M)=\dim A(M)+2$ holds. Then $(M, g)$

admits a Sasakian 3-structure and $\dim M=4r+3$ . By Lemma 4.2, we have a
basis of Killing vector fields:

$A_{1},$ $A_{\gamma-1},$ $A_{\gamma}=\xi=\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(3)}$ .
LEMMA 5.1. Let $f$ be an automorphism of $\xi$ . Then we have a constant $\theta$

depending on $f$

(5.1) $f\xi_{(2)}=\sin\theta\xi_{(2)}+\cos\theta\xi_{(3)}$ ,

(5.2) $f\xi_{(3)}=\mp\cos\theta\xi_{(2)}\pm\sin\theta\xi_{(3)}$ .

PROOF. First we have $f\xi_{(1)}=\xi_{(1)}$ . Since $f\xi_{(2)}$ is a Killing vector field, we
have

(5.3) $f\xi_{(2)}=a_{1}A_{1}+\cdots+a_{\gamma-1}A_{\gamma-1}+a\xi_{(1)}-\vdash b\xi_{(2)}+c\xi_{(3)}$

for constant $a_{1}$ , $\cdot$ .. , $a_{r-1},$ $a,$
$b$ and $c$ . If at least one of $a_{1}$ , $\cdot$ , $a_{r-1}$ is not equal

to zero, we see that $(M, g)$ is of constant curvature, as in (I) of proof of
Theorem 4.3. This contradicts the assumption. Hence, we get

(5.4) $f\xi_{(2)}=a\xi_{(1)}+b\xi_{(2)}+c\xi_{(3)}$ .

We show that $a=0$ . This is done by

$a=g(f\xi_{(2)}, \xi_{(1)})=g(f\xi_{(2)}, f\xi_{(1)})$

$=(f^{*}g)(\xi_{(2)}, \xi_{(1)})=g(\xi_{(2)}, \xi_{(1)})=0$ .
Thus, $f\xi_{(2)}=b\xi_{(2)}+c\xi_{(3)}$ . Since $f\xi_{(2)}$ is of unit length, $b$ and $c$ are replaced by
$\sin\theta$ and $\cos\theta$ . Similarly, we have $f\xi_{(3)}=b^{\prime}\xi_{(2)}+c^{\prime}\xi_{(3)}$ . Then

$g(f\xi_{(2)}, f\xi_{(3)})=g(b\xi_{(2)}+c\xi_{(3)}, b^{\gamma}\xi_{(2)}+c^{\prime}\xi_{(3)})$

$=bb^{\gamma}+cc^{\prime}$ .
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Since $f$ is an isometry, we have $bb^{\prime}+cc^{\gamma}=0$ . Consequently, we have $b^{\gamma}=$

$\mp\cos\theta$ and $ c’=\pm\sin\theta$ .
LEMMA 5.2. Let $p$ be a point in M. Then the $iso$ tropy group $P$ of the

automorphism group $A(M)$ at $p$ is a subgroup of $1\times O(2)\times U(2r)$ .
PROOF. Let $\xi=\xi_{(1)},$ $\xi_{(2)},$ $\xi_{(3)}=\phi\xi_{(2)}$ ,

$e_{1},$ $\cdots$ $e_{2\gamma}$ , $\phi e_{1},$ $\cdots$ $\phi e_{2r}$

be a basis of the tangent space $M_{p}$ at $p$ . Let $f$ be any element in $P$. Then
we have $f\xi_{(1)}=\xi_{(1)}$ and (5.1), (5.2). This implies that $f$ leaves the three sub-
spaces $V^{1},$ $V^{2}$ and $V^{4r}$ of $M_{p}$ invariant, where $V^{1}$ is spanned by $\xi_{(1)},$ $V^{2}$ is
spanned by $\xi_{(2)}$ and $\xi_{(3)}$ , and $V^{4\gamma}=V^{4r}(e_{1}, \cdot.., e_{2r}, \phi e_{1}, \cdot.. , \phi e_{2r})$ is the ortho-
gonal complement of $V^{1}+V^{2}$ in $M_{p}$ . The action of $f$ on $V^{1}$ is trivial. On
$V^{2}$ it is an element of the othogonal group $O(2)$ . On $V^{4\gamma}$ the action of $f$ is
expressed by an element of (the real representation of) the unitary group
$U(2r)$ .

THEOREM 5.3. Let $(M, \xi, g)$ be a complete Sasakian manifold which is not

of constant curvature. If $\dim I(M)=\dim A(M)+2$ (or, equivalently, if $(M, g)$

admits a Sasakian 3-structure), then we have

(5.5) $\dim A(M)\leqq(2r+1)^{2}+3$ , $m=4r+3$ .
PROOF. By Lemma 5.2, the dimension of the isotropy group $P$ at $p$ is

equal to or smaller than $\dim O(2)+\dim U(2r)=1+(2r)^{2}$ . The dimension of the
subspace of $M_{p}$ spanned by infinitesimal automorphisms is equal to or smaller
than $\dim M=4r+3$ . Therefore we have $\dim A(M)\leqq(2r)^{2}+1+(4r+3)$ .

\S 6. The case where $I(M)=A(M)\cup A^{\prime}(M)$

In a Sasakian manifold $(M, \xi, g)$ , we denote by $A^{\prime}(M)$ the set of all iso-
metries $\varphi$ satisfying $\varphi\xi=-\xi$ .

PROPOSITION 6.1. Let $(M, \xi, g)$ be one of the following Sasakian manifolds:
$S^{m}[H]/F(t_{1})$ for $H>-3$ and $H\neq 1$ ,

$E^{m}[-3]/F(t_{2})$ , $(L, CD^{n})[H]/F(t_{\theta})$ for $H<-3$ .
Then we have $\dim I(M)=\dim A(M)$ and $I(M)=A(M)UA^{\prime}(M)$ .

PROOF. Since $(M, g)$ is not of constant curvature, by Theorem 4.4, we
have either $\dim I(M)=\dim A(M)$ , or $M$ admits a Sasakian 3-structure, which
is assumed to be $(\xi, \xi_{(2)}, \xi_{(3)})$ . In the latter case, we have $K(\xi_{(2)}, \xi_{(3)})=1$ by
(2.1). However, $K(\xi_{(2)}, \xi_{(3)})=K(\xi_{(2)}, \phi\xi_{(2)})$ ; that is, it is $\phi$ -holomorphic sectional
curvature $(=H\neq 1)$ . This is a contradiction. Hence, $\dim I(M)=\dim A(M)$ .

Next we show that there is an isometry $h$ such that $ h\xi=-\xi$ . Let $(^{*}M$,
$**$ be the universal covering manifold of $(M, \xi, g)$ such that $(M, \xi, g)$
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$=(^{*}M, *\xi, *g)/F(t_{0})$ . Then $(^{*}M,$ $-**$ is another Sasakian structure on
$(^{*}M, *\backslash g)$ , which has constant $*(-\phi)$ -holomorphic sectional curvature $H$, too.
Hence, $(^{*}M, *\xi, *g)$ and $(^{*}M, *(-\xi),$ $*g$) are isomorphic, and we have an iso-
metry $*h$ such that $*h^{*}\xi=-*\xi$ (cf. Proposition 4.1 of [11]). $*h^{*}\xi$ and $-*\xi$

generate the l-parameter groups $h^{-1}\cdot\exp t^{*}\xi\cdot*h$ and $\exp(-t^{*}\xi)$ , respectively.
Therefore we have

$\exp t^{*}\xi\cdot*h=*h\cdot\exp(-t^{*}\xi)$ .

Let $[]$ : $*M\rightarrow M(^{*}p\rightarrow[^{*}p]=p)$ be the projection. Define $h$ by $hp=[^{*}h^{*}p]$ .
For $*p$ ’ such that $[*p’]=p$ , we have some integer $z$ so that $*p’=\exp t_{0}z^{*}\xi\cdot*p$ .
Then

$[^{*}h^{*}p^{\gamma}]=[*h\cdot\exp t_{0}z^{*}\xi\cdot*p]$

$=[\exp(-t_{0^{Z^{*}}}\xi)\cdot*h\cdot*p]$

$=[*h^{*}p]$ .
Therefore $*h$ induces a well defined $h$ on $(M, \xi, g)$ . Clearly, $h$ is an isometry
and satisfies $ h\xi=-\xi$ .

Now, let $\varphi$ be any isometry which is not an automorphism of $(M, \xi, g)$ .
Then $\varphi\xi$ defines a Sasakian structure on $(M, g)$ such that $\varphi\xi\neq\xi$ . If $g(\xi, \varphi\xi)$

is not constant, $(M, g)$ must be of constant curvature. This can not happen.
Therefore $g(\xi, \varphi\xi)=a$ is constant, and we have either $|a|<1$ or $a=-1$ . If
$|a|<1$ , we can construct a Sasakian 3-structure, and we must have $\dim I(M)$

$\geqq\dim A(M)+2$ .
This is a contradiction. Thus, we have $a=-1$ and $\varphi\xi=-\xi$ . Then an

isometry $ h^{-1}\cdot\varphi$ satisfies $ h^{-1}\cdot\varphi\xi=\xi$ , which implies that $ h^{-1}\cdot\varphi$ is an automor-
phism. Denoting this by $f$, we have $\varphi=hf$. This means that $I(M)=A(M)$

V $A^{\prime}(M)$ , where $A^{\prime}(M)=h\cdot A(M)=\{hf;f\in A(M)\}$ .

\S 7. Theorems and corollaries

THEOREM 7.1. Let $(M, \xi, g)$ be a complete Sasakian manifold of m-dimen-
sion, $m=2n+1$ .

(i) If $\dim I(M)=(n+1)^{2}$ , then $(M, \xi, g)$ is one of the followings:
$(i-1)$ a Sasakian manifold of constant curvature,
$(i-2)$ $S^{m}[H]/F(t_{1})$ for $H>-3$ and $H\neq 1$ ,
$(i-3)$ $E^{m}[-3]/F(t_{2})$ ,
$(i-4)$ $(L, CD^{n})[H]/F(t_{3})$ for $H<-3$ .

(ii) If $\dim I(M)>(n+1)^{2}$ , then $(M, \xi, g)$ is of constant curvature 1.
PROOF. Form $=3,$ $seeTheorem3.2$ . Suppose thatm $=2n+1\geqq 5$ . Assume

that $\dim I(M)=(n+1)^{2}$ . By Theorem 4.4, we have $(i-1)$ , or $\dim I(M)=$

$\dim A(M)$ , or $\dim I(M)=\dim A(M)+2$ . If $\dim I(M)=\dim A(M)=(n+1)^{2}$ , we
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have $(i-1)\sim(i-4)$ by Lemma 2.2.
If $\dim I(M)=\dim A(M)+2$ and if $(M, g)$ is not of constant curvature,

then $\dim M=4r+3$ and we have $\dim A(M)\leqq(2r+1)^{2}+3$ by Theorem 6.3. Then

(7.1) $\dim I(M)=\dim A(M)+2\leqq(2r+1)^{2}+5=(2r+2)^{2}-(4r-2)$ .

Since $r\geqq 1$ , we have $\dim I(M)<(2r+2)^{2}=(n+1)^{2}$ , which is a contradiction.
This completes the proof of (i).

Next assume that $\dim I(M)>(n+1)^{2}$ . Then $(M, g)$ is of constant curva-
ture, or $\dim I(M)=\dim A(M)+2$ by Theorem 4.4. If $\dim I(M)=\dim A(M)+2$

and if $(M, g)$ is not of constant curvature, we have (7.1) as before. And we
have a contradiction.

THEOREM 7.2. Let $(M, \xi, g)$ be a complete and simply connected Sasakian
manifold of m-dimension, $m=2n+1$ . Then,

(i) $\dim I(M)=(n+1)^{2}$ , if and only if $(M, \xi, g)$ is one of the followings:
$(i-1)$ $S^{m}[H]$ for $H>-3$ and $H\neq 1$ ,
$(i-2)$ $E^{m}[-3]$ ,
$(i-3)$ $(L, CD^{n})[H]$ for $H<-3$ .

(ii) $\dim I(M)>(n+1)^{2}$ , if and only if $\dim I(M)=m(m+1)/2$ and $(M, \xi, g)$

$=S^{m}[1]$ .
PROOF. This follows from Proposition 6.1 and Theorem 7.1.
COROLLARY 7.3. Let $(M, g)$ be a complete Riemannian manifold of m-

dimension, $m=2n+1$ . Assume that

$\dim I(M)>(n+1)^{2}=(m+1)^{2}/4$ .

Then $(M, g)$ is of constant curvature 1, if and only if $(M, g)$ admits a Sasakian
structure $(\xi, g)$ .

PROOF. This follows from Theorem 7.1 and (Proposition 5.1, [11]).

COROLLARY 7.4. Let $(M, \xi, g)$ be a complete Sasakian manifold of $(4r+1)-$

dimension, which is not of constant curvature. Then $\dim I(M)=\dim A(M)$ .
PROOF. This follows from Theorem 4.4.
REMARK. Let $(M, \xi, g)$ be a complete Sasakian manifold, which is not of

constant curvature. Assume that $(M, g)$ admits a Sasakian 3-structure and
$\dim M=4r+3$ . Then by Theorem 5.3, the dimension of the automorphism
group $A(M)$ can not satisfy

$(4r+3)(4r+4)/2\geqq\dim A(M)>(2r+2)^{2}$ , nor

$(2r+2)^{2}>\dim A(M)>(2r+1)^{2}+3$ .

T\^ohoku University
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