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§1. Summary
K. Jacobs ([I]) reported as an example of Toeplitz type sequences that
0000000000000 ---

= 0100010101000100010001010 ---

is strictly ergodic and has a rational pure point spectrum. This sequence

has the following properties:
(i) It is a shift of the sequence 001000101010001.-- which is invariant

under the substitution 0—0010, 1—1010 of length 4.

(ii) The (2i+41)-th symbol of it is 0 for 1=0,1, 2, ---.

In this paper, we prove that if some general conditions like (i) (ii) above
are satisfied for a sequence over some finite alphabet, then it is strictly
ergodic and has a rational pure point spectrum. That is, our main results
are the followings:

I. If M is a minimal set associated with a substitution of some constant
length, then M is strictly ergodic.

II. Let M be a strictly ergodic set associated with a substitution of
length p*, where p is a prime number and % is any positive integer. Assume
that for some (or, equivalently, any) a € M, there exist integers A#=0 and
r=1, such that (ip*+7)-th symbol of « is the same for 1=0,1, 2, --.. Then,
M has a rational pure point spectrum {w; w?*=1 for some i=0,1,2, ---}.

§2. Notations and definitions

Let C be any finite set of symbols which contains at least two elements.
Let N={0,1, 2, ---} be the set of non-negative integers. Let T be the shift
transformation on the power space C¥. That is, T is defined as follows:
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(Ta)(n)= a(n+1),
where a€ C¥ andne N. Forpe N, let N,={0,1, -, p—1}. Let C*=\JC"?»

PEN

be the disjoint sum, where C¥°={/A} and A is the empty sequence. C¥ or
C* may be considered as the set of infinite or finite sequences over C, respec-
tively. We identify C¥ with C. L(£) denotes the length of £ C*. That is,
L(§) equals k%, such that £ CVt, For ae C¥, define L(a)=c0. For £ C*
and a = C*\UC¥, the juxtaposition of & and « in this order is denoted by &*a,
that is,

&(n) o if 0=n=LE)—1

a(n—L&) - if L) =n=LE)+L(a)—1.

For §=C* and as C*\UCY, & is called a prefix or a section of «, if there
exists 7, such that a=~&%*y, or if there exist » and {, such that a=7*&*(,
respectively. For § = C* and pe C*, § is called a suffix of 7, if there exists
g, such that p=_*&. For £ C* [':={a=sC¥; £ is a prefix of a} denotes
the cylinder set. C¥ is a topological space with the family of cylinder sets
as its open base. For a = C¥, denote

G =1

range (o) ={a(n)e C; ne N}
Orb (&) = {T"a; ne N}
Orb (a) = closure of Orb (a).

For the notions such as a minimal set, a strictly ergodic (i. e. minimal and
uniquely ergodic, at the same time) set or an almost periodic sequence and
their properties about shift dynamical system (C¥, T), refer and [5]
Let SCCY be a strictly ergodic set. There uniquely exists a probability
measure ¢ on S (with respect to the Borel field on S), such that T is a mea-
sure preserving transformation on S for p#. Consider the Hilbert space L,(S, p)
over complex numbers. Let U be the isometrical linear operator on L,(S, ),
such that (Uf)(a)=f(Ta), where fe LS, ) and e S. U is uniquely deter-
mined by the strictly ergodic set S. U is called to have a pure point spectrum,
if there exists a base {f;} of L,(S, p) each term of which is a proper func-
tion of U ([6])). By a proper value or a proper function of S or «, such
that Orb () =S, we mean those of U defined above. Also, by the statement

that S or a, such that Orb (a)=S, has a pure point spectrum, we mean that
U has a pure point spectrum.

By a substitution of length p=2, we mean a function defined on C which
takes values on C¥». By a howmogeneous substitution, we mean a substitution
of length p for some p=2. Let 6 be any homogeneous substitution. We
extend 6 to a function C*UCY¥ -C*\UC¥ which we also denote by 68, as
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follows:
0(a) = 6(a(0)*6(a(L))*0(a(2))* -,

which belongs to C* or C¥ as a C* or C?, respectively. Let ¢ be any
homogeneous substitution. A minimal set SCC? ig called to be associated
with 6, if 6(S)c S. A minimal set is called a homogeneous substitution mini-
mal set, if there exists a homogeneous substitution with which it is associated.
For the general properties of a substitution minimal set on a space of two-
sided sequences, refer [3]

For integers p=2 and n=0, let

k—1 .
n= 2 aipk—z—l
=0
(@, 0 if nx0, 0<a,<p—1; i=0,1, -, k—1)

be the p-adic development of n. Define p(n) e N} by p(n)@D)=a; (:=0,1, -,
k—1). Let p=2 be any integer. By a finite-state machine over N, we mean
a quadruple M= (KX, ¢, q,, ), where K is any nonempty finite set, ¢ is a func-
tion KX N,—K, g, is any element of K, and = is a function K—C. 0 is called
the next state function of M. We extend 0 to a function KXN3} — K which
we also denote by d, so as to satisfy d(q, &*9)=06(d(q, &), ) for any g K
and & ne N¥. Define AP « C¥ by APn)=17(d(g,, p(n))), where ne N. For
any integer p=2, F, denotes the set of a < C¥, such that a=24% for some
finite-state machine M over N,. And, F, denotes the set of a = C¥, such
that « =2 for some finite-state machine M =(X, d, q,, t) over N,, such that
7 is a one-to-one mapping. Denote

F=\UF,.

P2

An element of F is called a finite-rank sequence over C. a < C¥ is called an
ultimately periodic sequence, if there exists a non-negative integer n, such that
T"a is a periodic sequence. It is known ([[£]) that for multiplicatively inde-
pendent integers p, p' =2, F, N\ F, equals the set of all ultimately periodic
sequences.

Let M=(K, 0, q,, ) be a finite-state machine over N, (p=2). We define
the following notions:

DEFINITION 1. Let g, ¢’ = K. Denote g~q’ (M), if for any § € N§, ©(d(q, &))
=7(d(¢’, &)) holds. The negation of g~¢q’ (M) is denoted by g »* ¢’ (M).

DEFINITION 2. The next state function 4 is called strongly connected, if
for any ¢, ¢’ € K, there exists £ € N¥, such that d(g, §)=¢’.

DEFINITION 3. §& N§ is called a reset sequence (of M), if for any ¢, ¢/ €K,
(g, &)~0d(q’, &) (M) holds. A reset sequence & is called a minimal reset
sequence, if any suffix (x &) of & is not a reset sequence.
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DEFINITION 4. Let X, X,, X,, -« be a sequence of independent and iden-
tically distributed random variables each of which takes values on N, with

equal probability 1/p. For any non-negative integer n and ¢, ¢’ € K, let
P =Prob {d(g, Xo* X * - *X,_1)=¢q'}.

Then, the system of transition probabilities {P{®; ¢, ¢’ € K, n = N} defines on
K a stationary Markov chain, which we call the Markov chain associated
with o.

§ 3. Strictly ergodicity

LEMMA 1. TacF, if and only if a< F,, where p=2 is any integer.
PROOF. Assume that @ € F), and a = A%, where M = (X, 9, q,, 7) is a finite-
state machine over N,. Let K'’=KXK. Define a function 9’: K'XN,— K/,
as follows:
0(g’, n+1), (¢, n)) -+ if 0=n=p—2

(0(g, 0), 9(¢’, p—1)) -+ if n=p—1.

Let ¢,=(qs ¢0), Where g,=0(gy, 1). Let z/: K—C be a function, such that
7/((q, ¢)) =7(q). Let M’'=(K’, 0/, q, /). Then, it is easily verified that T«
=2A®. Conversely, let Ta € F, and Ta=A®, where M = (X, 9, ¢,, 7) is a finite-
state machine over N,. Let K’=N;XKX K. Define a function ¢’: K’ X N,—K’,
as follows:

5@ = |

1, 9,9 - if =0 and n=0
0, q,9), n)y=7 @, 6(qg, p—1), 9(q¢’, 0)) -+ if i#0 and n=0
(2, o(¢’, n—1), o(q’, n)) --- otherwise.
Let ¢,=1(0, ¢, ¢o)- Let z/: K’—C be a function, such that

a(0) -+ if i=1
“G 0 4)={ |
7(qg) --- otherwise.
Let M’=(K’, 0/, g5, ©/). Then, we have a =41 .

LEMMA 2. Let p=2 be any integer. We have F ,=F, for k=1,2,3, ..

PrROOF. Being clear.

LEMMA 3. Let p=2 be any integer. Let M=(K, 90, q, t) be any finite-
state machine over N,, such that 0 is strongly connected and 6(q,, 0)=gq,. Then,
AP 1s an almost periodic sequence.

ProoF. Let Card K=r-+1. Since 0 is strongly connected and d(g,, 0)=g¢,,
for any g< K, there exists é§ = Nj of length 7, such that d(g, §)=g¢, Let
0<j<k be any integers. Let L(p(k))=s. For any integer h =0, there exists
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an integer n=1, such that
h=np™ <(n+Dp—1< h-2p"—1.

Furthermore, there exists £ € N¥ of length 7, such that (g, p(n)*&)=gq, Let
pm)y=p(n)x&. Then, we have

h=mp*+j=mp*+k < h+2p"—1

and 0(q,, p(mp*-+1)) = 8(q,, p(0)) for i=j, j+1, -, k. Therefore, AP (mp*+1)=
AP @) for i=j, j+1, ---, k. Since h was arbitrary, this means that the section

AP AP 5+ 2P ()

of A appears in any section of A% of length 2p"**. This completes the
proof.

LEMMA 4. Let p=2 be any integer. Let M=(K, d, q,, t) be a finite-state
machine over N,, such that 0 is strongly connected and 6(q,, 0)=q,. Then, for
any ce C,

Card {1; AP =¢c, RZiZ k+n—1}
n
converges uniformly for k=0 as n— oco.

Proor. Let {P®;q,q¢ = K,ne N} be the system of transition proba-

bilities of the Markov chain associated with 6. Since this Markov chain is

non-cyclic and ergodic, for any ¢ € C, there exists a real number 0= w1,
such that

lim > PR=ow

n—oo ¢ €7~ 1(c)
for any g= K. For sufficiently small ¢>0, let d be an integer, such that
n=d means

e
su 5 .
s 2

P& ——w' =
vt @ -

Let ng%‘bd be any integer. Let m:[-}%]—l. Let £ be any non-negative

integer. Then, there exists an integer A=1, such that
EShp? <(h+mp*—1=k+n—1.

Let j=1 be any integer. Let 0(q, P(j))=¢. Then, we have

Card {i; AP =c, P*< i< (G+Dp*~1} _ p@

p? e @

Therefore, it is easily verified that

Card {i; AP()=c, k<i<ktn—1}
o

wlZle.
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This completes the proof.

LEMMA 5. Let p=2 be any integer. Let acF, be any almost periodic
sequence. Then, there exist a positive integer k and a finite-state machine
M'=(K', &', qu, ©') over Ny, such that

(i) 0’ is strongly connected and 6’(qp 0)= qy,

(i) 2%® e Orb (a).

Moreover, if « eﬁ"p, then

(iii) 7’ is one-to-one,
in addition to (i) (ii).

PrOOF. Let o« =A®, where M= (K, 0, q,, 7) is a finite-state machine over
N, (¢ is one-to-one, if @< F). Let EC K be any ergodic component of the
Markov chain associated with d, such that d(q, p(n)) = E for some positive
integer n. It is easily seen that there exist ¢j= E and a positive integer &,
such that

0(qh, 00 .- x0)= g} .
—
k
Define
7P =0x0% -« x0xp(7)
D
k—L(p())

for i=0,1, -+, p*—1. Define a function ¢”: EXN_—E, as d”(q, ©)=0(q, ),
where g€ £ and i€ N,. The extension of 0” to a function EXN}—E is
also denoted by 0”. Let

K'={qe E; 0"(q;, §)=q for some §= N¥%}.

The restriction of §” to K’XN%¥, is denoted by 0’. Then, 0’/ is a function
K'X N’ — K’ which is strongly connected and satisfies 0'(qh, O =gq4. Let ¢’
be the restriction of = to K’. Let M'=(K’, ¢, g5, /). Then, M’ satisfies (i)
(and (iii), if aeﬁp). Let m be a positive integer, such that d(q,, p(m)) = q;.
For any positive integer j, let h=mp*. Then, it is easily seen that

AZPE) = 2P (h+1)

for 1=0,1, .-, p*”—1. Thus, we have the condition (ii).
Let a € C¥. For a positive integer k, let D be the & products of C.
Define ¢,(a) e D¥, as follows:

o)) =(a(n), a(n+1), -, alnt+k—1)e D,
where n e N.
LEMMA 6. If a & F, then ¢ (a) is a finite-rank sequence over D.
PROOF. Let ae F, (p=2). Then, from Lemma 1, T'a € F, for 1=0,1,2, ---.
For i=0,1, -, k—1, let M®=(K®, 5%, ¢, z) be a finite-state machine over
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Ny, such that %o =T'a. Let K=K®XK®X --- x K% Define a function
0: KXN,—K and z: K—D, as follows:

3(@®, 4, -+, ¢%1), m)= (UG, m), 52D, ), -, TP, m)
7(@®, ¢, -+, ¢ D) = (cO(g®), zPO(D), -, TED(gE-D)),

where (¢, ¢, .-, ¢*"?)e K and ne N,. Let q,=(q{, qf*, -, q¥?). Let
M= (K, 0, g, 7). Then, we have 1¥ = ¢,(a).

THEOREM 1. Let SCC¥ be any minimal set which intersects with F. Then,
S is a strictly ergodic set.

Proor. It is sufficient to prove that for any &= C* (& is not the empty
sequence), there exists y S, such that

Card {i; h=<i<h-+n—1 and & is a prefix of Ty}
n

converges uniformly for A=0asn—oo. Let L()=Fk. Let acSNF. Let D
be the k& products of C. Then, ¢,(a) is an almost periodic and finite-rank
sequence over D. From Lemma 4 and Lemma 5, there exists 8 & Orb (¢i(a))
C D¥, such that

Card {i; B(®) =(8(0), EQ), ---, E(k—1)), h=i = h+n—1}

n

converges uniformly for A= 0 as n—oo. Since Orb (¢i(a)) = ¢ (Orb (a))=0x(S),
there exists y € S, such that ¢,(y)=p. It is easily seen that y satisfies the
required property.

COROLLARY 1. Let SCCY be a homogeneous substitution minimal set.
Then, S is a strictly ergodic set.

To prove [Corollary 1, it is sufficient to prove the following lemma.

LEMMA 7. Let SCC¥ be a minimal set associated with a substitution 6 of
length p=2. Then, there exists a positive integer k, such that S intersects
with F .

ProOOF. It is easily seen that there exist a positive integer 2 and a = S,
such that #*(a)=a. Let K=range («). Define a function d: KX N,—K, as
follows :

d(q, n)=the (n-+1)-th symbol of 6%(q)=0%(q)(n),
where g€ K and ne€ N,;. Let g, be the initial symbol of a. Let 7: K—KCC

be the identity mapping. Let M=(X,d, q,, 7). Then, we have a=1¢" and
7 is one-to-one.
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§4. Spectrum

LEMMA 8. Let M=(K, 0, gy 7) be a finite-state machine over N, (p=2),
such that AP < C¥ is not an ultimately periodic sequence. Then, there exist
q, ¢ €K and E= N¥, such that

@O  Exd, qrqgWM)

(i) (g, &=gq, ¢, E=7q"

PrROOF. Assume that there do not exist ¢, ¢’ < K and § & Nj satisfying
the above (i) (ii). Let Card K=r. Let p< N} be any sequence of length 7%
Assume that d(q,, ) * 0(gs, ) (M) for some g,, g, K. There exists &= 4,
such that p=7»’*&*9” for some 7/, »” € N}, and

M (g1, 7) = 0(g5, 7" #§)
@ (g2 ') = (g2, 7’ %) -

Let g=40(q,, 3’) and ¢’ =0(q, n’). Then, ¢, ¢’ and & satisfy (i) (ii) above, con-
tradicting our assumption. Thus, d(q,, 7)~0d(g,, ) (M) for any ¢, ¢, K, and
n is a reset sequence. Since any ne NJ, such that L(p)=1? is a reset
sequence, 4% must be an ultimately periodic sequence.

LEMMA 9. Let M=(K,J, q,, t) be a finite-state machine over N, (p=2),
such that AP is not an ultimately periodic sequence. Assume that M has at
least one reset sequence. Then, for any n, there exists a minimal resel sequence
&, such that L(E)=n.

Proor. Let p= N} be a reset sequence. From Lemma 8, there exists
e N¥, such that L({)=n, which is not a reset sequence. Since y*{ is a
reset sequence and { is not, there exists a minimal reset sequence & which
has { as its suffix. This completes the proof.

LEMMA 10. Let M=(K, 0, q,, 7) be a finite-state machine over N, (p=2),
such that © 1is one-to-one, 0 1is strongly connected, and 0(q, 0)=gq, Let
Card K=Fk. Assume that

AP Gip ) = 2P )

for 1=0,1, ..., 2p*—1, where h and r are non-negative integers. Let
0%0% - x0xp(r) -+ if h= L(p())
\_.-Y———/
g=4 h—L(p())

suffix of p(r) of length h --- if h < L(p()).
Then, & is a reset sequence, and

AP (p*+1)= 25 (r)

holds for any integer i= ——[%;]
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PrOOF. Let b:[—;,;]. There exists an integer n =1, such that

b < np** < np** - p*—1 < b+-2p**—1.

Since ¢ is strongly connected and d(q,, 0)=gq,, for any ¢, ¢’ € K, there exists
ne N¥, such that L(»)=2k and d(q, n)=¢q’. Let q=40(q,, p(n)) and ¢’ be any
state. Let » be as above. Let p(m)=p(n)*y. Since 0=m—b=<2p*—1, we
have

2(3(q', €)= 7(0(qu, () *7%8)
= 2(0(gu P(m—b)P"+1)
= A (m—b)p"+7)
=190).

Since ¢’ is an arbitrary state and ¢ is one-to-one, this means that £ is a
reset sequence.

THEOREM 2. Let SCC¥ be a minimal set associated with a substitution of
length p*, where p is a prime number and k is any positive integer. Assume
that for some (or, equivalently, any) a € S, there exist non-negative integers h
and v, such that a(ip"4+-r)=a(r) for i=0,1,2, ... Then, S has a pure point
spectrum. Moreover, if S is an infinite set, then the point spectrum of S is
p(p)={w; o =1 for some i= N}.

ProOOF. When S is a finite set, our theorem is clear. Assume that S is
an infinite set. From Lemma 5 and Lemma 7, there exists a finite-state
machine M = (KX, 9, ¢,,7) over N, (k is a positive integer which may differ
from % in the statement of Theorem 2), such that

(i) o0 is strongly connected and &(q,, 0)=q,

(i) 2@ e S

(iii) = is one-to-one.

Let a=2%" and a@ip*+7)=a(r) for i=0,1,2, . From Lemma 10, M has a
reset sequence. Moreover, since S is an infinite set, @ is not an ultimately
periodic sequence. Therefore, from Lemma 9, for any non-negative integer
n, there exists a minimal reset sequence &, such that L(&)=n+1. Define
se N, as follows:

E=0%0x% ... x0xp¥s),
where if & consists only of (’s, then define s=0. We have a(ip*r® - 5) = a(s)
for any integer i > —[?kf—@)—]. For any integer i, i denotes the residue class

modulo p*-© which contains i. Let



576 T. KAMAE

E={m; a(ip**®+m)= a(s) for any integer i,
such that p*©+m=0}.

Since 5 E, E is not empty. For any integer j, let E+j={m+j; me E}.
We prove that if E4j=F, then j must be a multiple of p**. Let E+4+j=F
and j/ be the greatest common divisor of j and p*2©. Then, j/ must be either
a multiple of »** or a divisor of p*". Assume the latter, then we have
E+ip"»=FE for any integer i. Therefore, a(ip**+s)=a(s) for any integer

12—[1)‘,3,;] This means that the suffix of & of length n(< L(§)) is a reset

sequence, contradicting the assumption that & is a minimal reset sequence.
Thus, if E-+i=E+j, then we have i=; (modp**). From there
exists an integer L,, such that for any non-negative integer i and j & E, there
exists an integer j/, satisfying

@ jej

(i) i=Ey=i+L,—1

(iii) a(j’) = a(s).
Let » = C* be any section of a of length L,. Let

E,={m; n(ip*:©®+m) = a(s) for any integer i,
such that 0 Z p*®4+m < L,—1}.

Then, from the above discussion, there exists an integer j, such that E=FE,-}j.
Moreover, this j is uniquely determined up to modulo p**. Define G,(7),
such that 0=<G,(p)<p*"—1 and E=E,+G,(5). For B Orb(a)=S, define
Zx(B), such that g,(8) = G,(y), where 5 is the prefix of 8 of length L,. Then,
it is clear that g,(T8)=g,(f)+1 (modp**) for any f<S. Let w, be any

primitive p**-th root of 1. Let f, be a complex valued function defined on
S, such that

fn(ﬁ) - wngn(ﬁ> .

Then, it is clear that f, < LS, ), where g is the T-invariant probability
measure on S, and that f, is a proper function corresponding to a proper
value w, of the strictly ergodic set S. Since n was any non-negative integer
and the point spectrum of S is a multiplicative subgroup, this means that
the point spectrum of S includes p(p).

To complete the proof, we prove that {f/; i,j= N} generates the Hilbert

space L,(S, p). It is easily seen that {f7; 1, j= N} is multiplicatively closed.
Let

An,m: {‘BE S; gn(ﬁ):m} ’

where ne N and 0 <m < p*—1. Then, the characteristic function of 4,
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belongs to the linear subspace spanned by {f/; i, j N}, since it equals

L e S

P opt
Let

d={d,,; neN, 0=m=p*—1}.

To complete the proof, it is sufficient to prove that for any cylinder set /7,
that intersects with S, there exists BC S belonging to the o-field generated
by 4, such that BC I, and u(I',—B)=0. To prove this, it is sufficient to
prove that for almost every (y) g Iy, there exists Ve 4, such that eV
c 'y, since 4 is a countable family. Let

I,={ie N; 0= 1< p*— L(y), p(i+j) is a reset sequence
of M for any je N, such that 0=j= L(n)—1}
_ CardIl,

nT pkn

Since M has a reset sequence and any sequence which has a reset sequence
as its section is itself a reset sequence, the above ¢, tends to 1 as n-—oo.
Let

R,={a(@)*a(i+1)* -+ xa(i+L,—1); i=j (mod p**)

for some je I,,}
R, ={a@)*a(i+1)* - xa(i+L,—1); i=j (mod p*™)
for some j= N, such that 0<7<p*—1 and j& I,}.
Since R, and R/ are disjoint, we have

F‘( U FC):Cn'
[4=27

Let g(B) e I, for some n= N and S S. For j N, such that 0=<j< L(y)—1,
we have B(j)= a(g.(8)+J), since ()= a(ip*+g,(B)-+j) for some integer i =0
and g,(B)+J is a reset sequence of M. Let

W={peS; g.B) 1, for some n= N}.
Since

{‘BES; gn(ﬁ)E]n}:célj? chsy

we have p(W)=1. Let Bel'y~W. Then, there exists n< N, such that
g.(pye I,. Let g(f)=m. For any ye€ 4,,,, we have y(j)=a(m+j)= A(j) for
J=0,1, -, L(p)—1. Since fel’y, we have y= ;. Thus, 4,,cI, This
completes the proof of

COROLLARY 2. Let SCCY be a minimal set associated with a substitution
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0 of length p*, where p is a prime number and k is any positive integer. As-
sume that there exists an integer 0 <1< pF—1, such that 6(c)(t) is the same for
any ce C. Then, S has a rational pure point spectrum p(p).

[1]
[2]
£31
[4]
[5]
[6]

§5. Remark

Our results remain true in the case of two-sided sequences.

Osaka University
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