# Spectrum of a substitution minimal set

By Teturo KAMAE

(Received Jan. 19, 1970)

# § 1. Summary

K. Jacobs ([1]) reported as an example of Toeplitz type sequences that



 $= 0100010101000100010001010 \cdots$ 

is strictly ergodic and has a rational pure point spectrum. This sequence has the following properties:

- (i) It is a shift of the sequence  $001000101010001\cdots$  which is invariant under the substitution  $0\rightarrow0010$ ,  $1\rightarrow1010$  of length 4.
  - (ii) The (2i+1)-th symbol of it is 0 for  $i=0,1,2,\cdots$ .

In this paper, we prove that if some general conditions like (i) (ii) above are satisfied for a sequence over some finite alphabet, then it is strictly ergodic and has a rational pure point spectrum. That is, our main results are the followings:

- I. If M is a minimal set associated with a substitution of some constant length, then M is strictly ergodic.
- II. Let M be a strictly ergodic set associated with a substitution of length  $p^k$ , where p is a prime number and k is any positive integer. Assume that for some (or, equivalently, any)  $\alpha \in M$ , there exist integers  $h \ge 0$  and  $r \ge 1$ , such that  $(ip^h + r)$ -th symbol of  $\alpha$  is the same for  $i = 0, 1, 2, \cdots$ . Then, M has a rational pure point spectrum  $\{\omega; \omega^{p^i} = 1 \text{ for some } i = 0, 1, 2, \cdots\}$ .

#### § 2. Notations and definitions

Let C be any finite set of symbols which contains at least two elements. Let  $N = \{0, 1, 2, \dots\}$  be the set of non-negative integers. Let T be the shift transformation on the power space  $C^N$ . That is, T is defined as follows:

$$(T\alpha)(n) = \alpha(n+1)$$
,

where  $\alpha \in C^N$  and  $n \in N$ . For  $p \in N$ , let  $N_p = \{0, 1, \dots, p-1\}$ . Let  $C^* = \bigcup_{p \in N} C^{N_p}$  be the disjoint sum, where  $C^{N_0} = \{\Lambda\}$  and  $\Lambda$  is the empty sequence.  $C^N$  or  $C^*$  may be considered as the set of infinite or finite sequences over C, respectively. We identify  $C^{N_1}$  with C.  $L(\xi)$  denotes the length of  $\xi \in C^*$ . That is,  $L(\xi)$  equals k, such that  $\xi \in C^{N_k}$ . For  $\alpha \in C^N$ , define  $L(\alpha) = \infty$ . For  $\xi \in C^*$  and  $\alpha \in C^* \cup C^N$ , the *juxtaposition* of  $\xi$  and  $\alpha$  in this order is denoted by  $\xi^*\alpha$ , that is,

$$(\xi^*\alpha)(n) = \left\{ \begin{array}{ll} \xi(n) & \cdots & \text{if } 0 \leq n \leq L(\xi) - 1 \\ \\ \alpha(n - L(\xi)) & \cdots & \text{if } L(\xi) \leq n \leq L(\xi) + L(\alpha) - 1 \end{array} \right.$$

For  $\xi \in C^*$  and  $\alpha \in C^* \cup C^N$ ,  $\xi$  is called a *prefix* or a *section* of  $\alpha$ , if there exists  $\eta$ , such that  $\alpha = \xi^* \eta$ , or if there exist  $\eta$  and  $\zeta$ , such that  $\alpha = \eta^* \xi^* \zeta$ , respectively. For  $\xi \in C^*$  and  $\eta \in C^*$ ,  $\xi$  is called a *suffix* of  $\eta$ , if there exists  $\zeta$ , such that  $\eta = \zeta^* \xi$ . For  $\xi \in C^*$ ,  $\Gamma_{\xi} = \{\alpha \in C^N; \xi \text{ is a prefix of } \alpha\}$  denotes the cylinder set.  $C^N$  is a topological space with the family of cylinder sets as its open base. For  $\alpha \in C^N$ , denote

range 
$$(\alpha) = \{\alpha(n) \in C; n \in N\}$$
  
Orb  $(\alpha) = \{T^n \alpha; n \in N\}$   
 $\overline{\text{Orb}}(\alpha) = \text{closure of Orb}(\alpha).$ 

For the notions such as a minimal set, a strictly ergodic (i. e. minimal and uniquely ergodic, at the same time) set or an almost periodic sequence and their properties about shift dynamical system  $(C^N, T)$ , refer [2] and [5]. Let  $S \subset C^N$  be a strictly ergodic set. There uniquely exists a probability measure  $\mu$  on S (with respect to the Borel field on S), such that T is a measure preserving transformation on S for  $\mu$ . Consider the Hilbert space  $L_2(S, \mu)$  over complex numbers. Let U be the isometrical linear operator on  $L_2(S, \mu)$ , such that  $(Uf)(\alpha) = f(T\alpha)$ , where  $f \in L_2(S, \mu)$  and  $\alpha \in S$ . U is uniquely determined by the strictly ergodic set S. U is called to have a pure point spectrum, if there exists a base  $\{f_i\}$  of  $L_2(S, \mu)$  each term of which is a proper function of U ([6]). By a proper value or a proper function of S or  $\alpha$ , such that  $\overline{Orb}(\alpha) = S$ , we mean those of U defined above. Also, by the statement that S or  $\alpha$ , such that  $\overline{Orb}(\alpha) = S$ , has a pure point spectrum, we mean that U has a pure point spectrum.

By a substitution of length  $p \ge 2$ , we mean a function defined on C which takes values on  $C^{Np}$ . By a homogeneous substitution, we mean a substitution of length p for some  $p \ge 2$ . Let  $\theta$  be any homogeneous substitution. We extend  $\theta$  to a function  $C^* \cup C^N \to C^* \cup C^N$  which we also denote by  $\theta$ , as

follows:

$$\theta(\alpha) = \theta(\alpha(0)) * \theta(\alpha(1)) * \theta(\alpha(2)) * \cdots$$

which belongs to  $C^*$  or  $C^N$  as  $\alpha \in C^*$  or  $C^N$ , respectively. Let  $\theta$  be any homogeneous substitution. A minimal set  $S \subset C^N$  is called to be associated with  $\theta$ , if  $\theta(S) \subset S$ . A minimal set is called a homogeneous substitution minimal set, if there exists a homogeneous substitution with which it is associated. For the general properties of a substitution minimal set on a space of two-sided sequences, refer [3].

For integers  $p \ge 2$  and  $n \ge 0$ , let

$$n = \sum_{i=0}^{k-1} a_i p^{k-i-1}$$

$$(a_0 \neq 0 \text{ if } n \neq 0, \ 0 \leq a_i \leq p-1; \ i = 0, 1, \dots, k-1)$$

be the p-adic development of n. Define  $p(n) \in N_p^*$  by  $p(n)(i) = a_i$   $(i = 0, 1, \cdots, k-1)$ . Let  $p \geq 2$  be any integer. By a finite-state machine over  $N_p$ , we mean a quadruple  $M = (K, \delta, q_0, \tau)$ , where K is any nonempty finite set,  $\delta$  is a function  $K \times N_p \to K$ ,  $q_0$  is any element of K, and  $\tau$  is a function  $K \to C$ .  $\delta$  is called the next state function of M. We extend  $\delta$  to a function  $K \times N_p^* \to K$  which we also denote by  $\delta$ , so as to satisfy  $\delta(q, \xi^* \eta) = \delta(\delta(q, \xi), \eta)$  for any  $q \in K$  and  $\xi$ ,  $\eta \in N_p^*$ . Define  $\lambda_M^{(p)} \in C^N$  by  $\lambda_M^{(p)}(n) = \tau(\delta(q_0, p(n)))$ , where  $n \in N$ . For any integer  $p \geq 2$ ,  $F_p$  denotes the set of  $\alpha \in C^N$ , such that  $\alpha = \lambda_M^{(p)}$  for some finite-state machine M over  $N_p$ . And,  $\widetilde{F}_p$  denotes the set of  $\alpha \in C^N$ , such that  $\tau$  is a one-to-one mapping. Denote

$$F = \bigcup_{p \geq 2} F_p$$
.

An element of F is called a *finite-rank sequence* over C.  $\alpha \in C^N$  is called an *ultimately periodic sequence*, if there exists a non-negative integer n, such that  $T^n\alpha$  is a periodic sequence. It is known ([4]) that for multiplicatively independent integers p,  $p' \geq 2$ ,  $F_p \cap F_{p'}$  equals the set of all ultimately periodic sequences.

Let  $M = (K, \delta, q_0, \tau)$  be a finite-state machine over  $N_p$   $(p \ge 2)$ . We define the following notions:

DEFINITION 1. Let  $q, q' \in K$ . Denote  $q \sim q'$  (M), if for any  $\xi \in N_p^*$ ,  $\tau(\delta(q, \xi)) = \tau(\delta(q', \xi))$  holds. The negation of  $q \sim q'$  (M) is denoted by  $q \nsim q'$  (M).

DEFINITION 2. The next state function  $\delta$  is called *strongly connected*, if for any  $q, q' \in K$ , there exists  $\xi \in N_n^*$ , such that  $\delta(q, \xi) = q'$ .

DEFINITION 3.  $\xi \in N_p^*$  is called a reset sequence (of M), if for any  $q, q' \in K$ ,  $\delta(q, \xi) \sim \delta(q', \xi)$  (M) holds. A reset sequence  $\xi$  is called a minimal reset sequence, if any suffix  $(\pm \xi)$  of  $\xi$  is not a reset sequence.

DEFINITION 4. Let  $X_0$ ,  $X_1$ ,  $X_2$ , ... be a sequence of independent and identically distributed random variables each of which takes values on  $N_p$  with equal probability 1/p. For any non-negative integer n and q,  $q' \in K$ , let

$$P_{qq'}^{(n)} = \text{Prob} \{\delta(q, X_0 * X_1 * \cdots * X_{n-1}) = q'\}.$$

Then, the system of transition probabilities  $\{P_{qq'}^{(n)}; q, q' \in K, n \in N\}$  defines on K a stationary Markov chain, which we call the *Markov chain associated* with  $\delta$ .

## § 3. Strictly ergodicity

LEMMA 1.  $T\alpha \in F_p$  if and only if  $\alpha \in F_p$ , where  $p \ge 2$  is any integer.

PROOF. Assume that  $\alpha \in F_p$  and  $\alpha = \lambda_M^{(p)}$ , where  $M = (K, \delta, q_0, \tau)$  is a finite-state machine over  $N_p$ . Let  $K' = K \times K$ . Define a function  $\delta' : K' \times N_p \to K'$ , as follows:

$$\delta'((q, q'), n) = \begin{cases} (\delta(q', n+1), \delta(q', n)) & \dots \text{ if } 0 \leq n \leq p-2 \\ (\delta(q, 0), \delta(q', p-1)) & \dots \text{ if } n = p-1. \end{cases}$$

Let  $q_0'=(q_1,q_0)$ , where  $q_1=\delta(q_0,1)$ . Let  $\tau':K'\to C$  be a function, such that  $\tau'((q,q'))=\tau(q)$ . Let  $M'=(K',\delta',q_0',\tau')$ . Then, it is easily verified that  $T\alpha=\lambda_M^{(p)}$ . Conversely, let  $T\alpha\in F_p$  and  $T\alpha=\lambda_M^{(p)}$ , where  $M=(K,\delta,q_0,\tau)$  is a finite-state machine over  $N_p$ . Let  $K'=N_3\times K\times K$ . Define a function  $\delta':K'\times N_p\to K'$ , as follows:

$$\delta'((i, q, q'), n) = \begin{cases} (1, q, q') & \cdots & \text{if } i = 0 \text{ and } n = 0 \\ (2, \delta(q, p - 1), \delta(q', 0)) & \cdots & \text{if } i \neq 0 \text{ and } n = 0 \\ (2, \delta(q', n - 1), \delta(q', n)) & \cdots & \text{otherwise.} \end{cases}$$

Let  $q'_0 = (0, q_0, q_0)$ . Let  $\tau' : K' \to C$  be a function, such that

$$\tau'((i, q, q')) = \begin{cases} \alpha(0) & \cdots & \text{if } i = 1 \\ \tau(q) & \cdots & \text{otherwise.} \end{cases}$$

Let  $M' = (K', \delta', q'_0, \tau')$ . Then, we have  $\alpha = \lambda_{M'}^{(p)}$ .

LEMMA 2. Let  $p \ge 2$  be any integer. We have  $F_{pk} = F_p$  for  $k = 1, 2, 3, \cdots$ . PROOF. Being clear.

LEMMA 3. Let  $p \ge 2$  be any integer. Let  $M = (K, \delta, q_0, \tau)$  be any finite-state machine over  $N_p$ , such that  $\delta$  is strongly connected and  $\delta(q_0, 0) = q_0$ . Then,  $\lambda_{\mathcal{B}}^{(p)}$  is an almost periodic sequence.

PROOF. Let Card K=r+1. Since  $\delta$  is strongly connected and  $\delta(q_0, 0)=q_0$ , for any  $q \in K$ , there exists  $\xi \in N_p^*$  of length r, such that  $\delta(q, \xi)=q_0$ . Let  $0 \le j \le k$  be any integers. Let L(p(k))=s. For any integer  $k \ge 0$ , there exists

an integer  $n \ge 1$ , such that

$$h \leq np^{r+s} < (n+1)p^{r+s} - 1 \leq h + 2p^{r+s} - 1$$
.

Furthermore, there exists  $\xi \in N_p^*$  of length r, such that  $\delta(q_0, p(n) * \xi) = q_0$ . Let  $p(m) = p(n) * \xi$ . Then, we have

$$h \le mp^s + i \le mp^s + k \le h + 2p^{r+s} - 1$$

and  $\delta(q_0, p(mp^s+i)) = \delta(q_0, p(i))$  for  $i=j, j+1, \dots, k$ . Therefore,  $\lambda_M^{(p)}(mp^s+i) = \lambda_M^{(p)}(i)$  for  $i=j, j+1, \dots, k$ . Since h was arbitrary, this means that the section

$$\lambda_M^{(p)}(j) * \lambda_M^{(p)}(j+1) * \cdots * \lambda_M^{(p)}(k)$$

of  $\lambda_M^{(p)}$  appears in any section of  $\lambda_M^{(p)}$  of length  $2p^{r+s}$ . This completes the proof.

LEMMA 4. Let  $p \ge 2$  be any integer. Let  $M = (K, \delta, q_0, \tau)$  be a finite-state machine over  $N_p$ , such that  $\delta$  is strongly connected and  $\delta(q_0, 0) = q_0$ . Then, for any  $c \in C$ ,

Card 
$$\{i; \lambda_M^{(p)}(i) = c, k \leq i \leq k+n-1\}$$

converges uniformly for  $k \ge 0$  as  $n \to \infty$ .

PROOF. Let  $\{P_{qq'}^{(n)}; q, q' \in K, n \in N\}$  be the system of transition probabilities of the Markov chain associated with  $\delta$ . Since this Markov chain is non-cyclic and ergodic, for any  $c \in C$ , there exists a real number  $0 \le \omega \le 1$ , such that

$$\lim_{n\to\infty}\sum_{q'\in\tau^{-1}(c)}P_{qq'}^{(n)}=\omega$$

for any  $q \in K$ . For sufficiently small  $\varepsilon > 0$ , let d be an integer, such that  $n \ge d$  means

$$\sup_{q\in K}\left|\sum_{q'\in\tau^{-1}(c)}P_{qq'}^{(n)}-\omega\right|\leq \frac{\varepsilon}{2}.$$

Let  $n \ge \frac{4}{\varepsilon} p^d$  be any integer. Let  $m = \left[\frac{n}{p^d}\right] - 1$ . Let k be any non-negative integer. Then, there exists an integer  $h \ge 1$ , such that

$$k \le h p^d < (h+m)p^d - 1 \le k+n-1$$
.

Let  $j \ge 1$  be any integer. Let  $\delta(q_0, p(j)) = q$ . Then, we have

$$\frac{\text{Card } \{i; \lambda_M^{(p)}(i) = c, jp^d \leq i \leq (j+1)p^d - 1\}}{p^d} = \sum_{q' \in \tau^{-1}(c)} P_{qq'}^{(d)}.$$

Therefore, it is easily verified that

$$\left| \frac{\operatorname{Card} \left\{ i ; \lambda_{M}^{(p)}(i) = c, \ k \leq i \leq k+n-1 \right\}}{n} - \omega \right| \leq \varepsilon.$$

This completes the proof.

Lemma 5. Let  $p \ge 2$  be any integer. Let  $\alpha \in F_p$  be any almost periodic sequence. Then, there exist a positive integer k and a finite-state machine  $M' = (K', \delta', q'_0, \tau')$  over  $N_{pk}$ , such that

- (i)  $\delta'$  is strongly connected and  $\delta'(q_0, 0) = q_0'$ ,
- (ii)  $\lambda_{M'}^{(p^k)} \in \overline{\mathrm{Orb}}(\alpha)$ .

Moreover, if  $\alpha \in \widetilde{F}_p$ , then

(iii)  $\tau'$  is one-to-one, in addition to (i) (ii).

PROOF. Let  $\alpha = \lambda_M^{(p)}$ , where  $M = (K, \delta, q_0, \tau)$  is a finite-state machine over  $N_p$  ( $\tau$  is one-to-one, if  $\alpha \in \widetilde{F}_p$ ). Let  $E \subset K$  be any ergodic component of the Markov chain associated with  $\delta$ , such that  $\delta(q_0, p(n)) \in E$  for some positive integer n. It is easily seen that there exist  $q'_0 \in E$  and a positive integer k, such that

$$\delta(q_0', \underbrace{0 * 0 * \cdots * 0}_{k}) = q_0'.$$

Define

$$\eta^{(i)} = \underbrace{0 * 0 * \cdots * 0}_{k-L(p(i))} * p(i)$$

for  $i=0,1,\cdots$ ,  $p^k-1$ . Define a function  $\delta'': E\times N_{p^k}\to E$ , as  $\delta''(q,i)=\delta(q,\eta^{(i)})$ , where  $q\in E$  and  $i\in N_{p^k}$ . The extension of  $\delta''$  to a function  $E\times N_{p^k}^*\to E$  is also denoted by  $\delta''$ . Let

$$K' = \{q \in E; \ \delta''(q'_0, \xi) = q \text{ for some } \xi \in N^*_{pk}\}.$$

The restriction of  $\delta''$  to  $K' \times N_{pk}^*$  is denoted by  $\delta'$ . Then,  $\delta'$  is a function  $K' \times N_{pk}^* \to K'$  which is strongly connected and satisfies  $\delta'(q_0', 0) = q_0'$ . Let  $\tau'$  be the restriction of  $\tau$  to K'. Let  $M' = (K', \delta', q_0', \tau')$ . Then, M' satisfies (i) (and (iii), if  $\alpha \in \widetilde{F}_p$ ). Let m be a positive integer, such that  $\delta(q_0, p(m)) = q_0'$ . For any positive integer j, let  $k = mp^{kj}$ . Then, it is easily seen that

$$\lambda_{M'}^{(p^k)}(i) = \lambda_{M}^{(p)}(h+i)$$

for  $i = 0, 1, \dots, p^{kj}-1$ . Thus, we have the condition (ii).

Let  $\alpha \in C^N$ . For a positive integer k, let D be the k products of C. Define  $\varphi_k(\alpha) \in D^N$ , as follows:

$$\varphi_k(\alpha)(n) = (\alpha(n), \alpha(n+1), \cdots, \alpha(n+k-1)) \in D$$

where  $n \in \mathbb{N}$ .

LEMMA 6. If  $\alpha \in F$ , then  $\varphi_k(\alpha)$  is a finite-rank sequence over D.

PROOF. Let  $\alpha \in F_p$  ( $p \ge 2$ ). Then, from Lemma 1,  $T^i \alpha \in F_p$  for  $i=0,1,2,\cdots$ . For  $i=0,1,\cdots$ , k-1, let  $M^{(i)}=(K^{(i)},\delta^{(i)},q_0^{(i)},\tau^{(i)})$  be a finite-state machine over

 $N_p$ , such that  $\lambda_M^{(p)}{}^{(i)} = T^i \alpha$ . Let  $K = K^{(0)} \times K^{(1)} \times \cdots \times K^{(k-1)}$ . Define a function  $\delta \colon K \times N_p \to K$  and  $\tau \colon K \to D$ , as follows:

$$\delta((q^{(0)}, q^{(1)}, \dots, q^{(k-1)}), n) = (\delta^{(0)}(q^{(0)}, n), \delta^{(1)}(q^{(1)}, n), \dots, \delta^{(k-1)}(q^{(k-1)}, n))$$

$$\tau(q^{(0)}, q^{(1)}, \dots, q^{(k-1)}) = (\tau^{(0)}(q^{(0)}), \tau^{(1)}(q^{(1)}), \dots, \tau^{(k-1)}(q^{(k-1)})),$$

where  $(q^{(0)}, q^{(1)}, \dots, q^{(k-1)}) \in K$  and  $n \in N_p$ . Let  $q_0 = (q_0^{(0)}, q_0^{(1)}, \dots, q_0^{(k-1)})$ . Let  $M = (K, \delta, q_0, \tau)$ . Then, we have  $\lambda_M^{(p)} = \varphi_k(\alpha)$ .

THEOREM 1. Let  $S \subset C^N$  be any minimal set which intersects with F. Then, S is a strictly ergodic set.

PROOF. It is sufficient to prove that for any  $\xi \in C^*$  ( $\xi$  is not the empty sequence), there exists  $\gamma \in S$ , such that

Card 
$$\{i; h \le i \le h+n-1 \text{ and } \xi \text{ is a prefix of } T^i \gamma\}$$

converges uniformly for  $h \ge 0$  as  $n \to \infty$ . Let  $L(\xi) = k$ . Let  $\alpha \in S \cap F$ . Let D be the k products of C. Then,  $\varphi_k(\alpha)$  is an almost periodic and finite-rank sequence over D. From Lemma 4 and Lemma 5, there exists  $\beta \in \overline{\mathrm{Orb}}(\varphi_k(\alpha)) \subset D^N$ , such that

Card 
$$\{i; \beta(i) = (\xi(0), \xi(1), \dots, \xi(k-1)), h \le i \le h+n-1\}$$

converges uniformly for  $h \ge 0$  as  $n \to \infty$ . Since  $\overline{\text{Orb}}(\varphi_k(\alpha)) = \varphi_k(\overline{\text{Orb}}(\alpha)) = \varphi_k(S)$ , there exists  $\gamma \in S$ , such that  $\varphi_k(\gamma) = \beta$ . It is easily seen that  $\gamma$  satisfies the required property.

COROLLARY 1. Let  $S \subset C^N$  be a homogeneous substitution minimal set. Then, S is a strictly ergodic set.

To prove Corollary 1, it is sufficient to prove the following lemma.

LEMMA 7. Let  $S \subset C^N$  be a minimal set associated with a substitution  $\theta$  of length  $p \geq 2$ . Then, there exists a positive integer k, such that S intersects with  $\widetilde{F}_{nk}$ .

PROOF. It is easily seen that there exist a positive integer k and  $\alpha \in S$ , such that  $\theta^k(\alpha) = \alpha$ . Let  $K = \text{range}(\alpha)$ . Define a function  $\delta : K \times N_{pk} \to K$ , as follows:

$$\delta(q, n) = \text{the } (n+1)\text{-th symbol of } \theta^k(q) = \theta^k(q)(n)$$
,

where  $q \in K$  and  $n \in N_{pk}$ . Let  $q_0$  be the initial symbol of  $\alpha$ . Let  $\tau: K \to K \subset C$  be the identity mapping. Let  $M = (K, \delta, q_0, \tau)$ . Then, we have  $\alpha = \lambda_M^{(p^k)}$  and  $\tau$  is one-to-one.

### § 4. Spectrum

LEMMA 8. Let  $M = (K, \delta, q_0, \tau)$  be a finite-state machine over  $N_p$   $(p \ge 2)$ , such that  $\lambda_M^{(p)} \in C^N$  is not an ultimately periodic sequence. Then, there exist  $q, q' \in K$  and  $\xi \in N_p^*$ , such that

- (i)  $\xi \neq \Lambda$ ,  $q \nsim q'(M)$
- (ii)  $\delta(q, \xi) = q, \ \delta(q', \xi) = q'.$

PROOF. Assume that there do not exist  $q, q' \in K$  and  $\xi \in N_p^*$  satisfying the above (i) (ii). Let  $\operatorname{Card} K = r$ . Let  $\eta \in N_p^*$  be any sequence of length  $r^2$ . Assume that  $\delta(q_1, \eta) \not\sim \delta(q_2, \eta)$  (M) for some  $q_1, q_2 \in K$ . There exists  $\xi \neq \Lambda$ , such that  $\eta = \eta' * \xi * \eta''$  for some  $\eta', \eta'' \in N_p^*$ , and

(1) 
$$\delta(q_1, \eta') = \delta(q_1, \eta' * \xi)$$

(2) 
$$\delta(q_2, \eta') = \delta(q_2, \eta' * \xi).$$

Let  $q = \delta(q_1, \eta')$  and  $q' = \delta(q_2, \eta')$ . Then, q, q' and  $\xi$  satisfy (i) (ii) above, contradicting our assumption. Thus,  $\delta(q_1, \eta) \sim \delta(q_2, \eta)$  (M) for any  $q_1, q_2 \in K$ , and  $\eta$  is a reset sequence. Since any  $\eta \in N_p^*$ , such that  $L(\eta) = r^2$ , is a reset sequence,  $\lambda_M^{(p)}$  must be an ultimately periodic sequence.

LEMMA 9. Let  $M = (K, \delta, q_0, \tau)$  be a finite-state machine over  $N_p$  ( $p \ge 2$ ), such that  $\lambda_M^{(p)}$  is not an ultimately periodic sequence. Assume that M has at least one reset sequence. Then, for any n, there exists a minimal reset sequence  $\xi$ , such that  $L(\xi) \ge n$ .

PROOF. Let  $\eta \in N_p^*$  be a reset sequence. From Lemma 8, there exists  $\zeta \in N_p^*$ , such that  $L(\zeta) \geq n$ , which is not a reset sequence. Since  $\eta * \zeta$  is a reset sequence and  $\zeta$  is not, there exists a minimal reset sequence  $\xi$  which has  $\zeta$  as its suffix. This completes the proof.

LEMMA 10. Let  $M = (K, \delta, q_0, \tau)$  be a finite-state machine over  $N_p$  ( $p \ge 2$ ), such that  $\tau$  is one-to-one,  $\delta$  is strongly connected, and  $\delta(q_0, 0) = q_0$ . Let Card K = k. Assume that

$$\lambda_{h}^{(p)}(ip^{h}+r)=\lambda_{h}^{(p)}(r)$$

for  $i=0, 1, \dots, 2p^{2k}-1$ , where h and r are non-negative integers. Let

$$\xi = \left\{ \begin{array}{l} \underbrace{0*0*\cdots*0*p(r)}_{h-L(p(r))} & \text{if } h \geqq L(p(r)) \\ \\ \text{suffix of } p(r) \text{ of length } h \cdots \text{ if } h < L(p(r)) \end{array} \right..$$

Then,  $\xi$  is a reset sequence, and

$$\lambda_M^{(p)}(ip^h+r)=\lambda_M^{(p)}(r)$$

holds for any integer  $i \ge -\left[\frac{r}{p^h}\right]$ .

PROOF. Let  $b = \left[ \frac{r}{p^h} \right]$ . There exists an integer  $n \ge 1$ , such that

$$b \leq np^{2k} < np^{2k} + p^{2k} - 1 \leq b + 2p^{2k} - 1$$
.

Since  $\delta$  is strongly connected and  $\delta(q_0, 0) = q_0$ , for any  $q, q' \in K$ , there exists  $\eta \in N_p^*$ , such that  $L(\eta) = 2k$  and  $\delta(q, \eta) = q'$ . Let  $q = \delta(q_0, p(n))$  and q' be any state. Let  $\eta$  be as above. Let  $p(m) = p(n) * \eta$ . Since  $0 \le m - b \le 2p^{2k} - 1$ , we have

$$egin{aligned} au(\delta(q',\,\xi)) &= au(\delta(q_0,\,p(n)*\eta*\xi)) \ &= au(\delta(q_0,\,p((m-b)p^h+r))) \ &= \lambda_M^{(p)}((m-b)p^h+r) \ &= \lambda_M^{(p)}(r) \,. \end{aligned}$$

Since q' is an arbitrary state and  $\tau$  is one-to-one, this means that  $\xi$  is a reset sequence.

THEOREM 2. Let  $S \subset C^N$  be a minimal set associated with a substitution of length  $p^k$ , where p is a prime number and k is any positive integer. Assume that for some (or, equivalently, any)  $\alpha \in S$ , there exist non-negative integers k and k, such that k (k) = k (k) for k = 0, 1, 2, .... Then, k has a pure point spectrum. Moreover, if k is an infinite set, then the point spectrum of k is k0 (k) = k0; k0 (k) = k0; k0 (k0) = k1.

PROOF. When S is a finite set, our theorem is clear. Assume that S is an infinite set. From Lemma 5 and Lemma 7, there exists a finite-state machine  $M = (K, \delta, q_0, \tau)$  over  $N_{pk}$  (k is a positive integer which may differ from k in the statement of Theorem 2), such that

- (i)  $\delta$  is strongly connected and  $\delta(q_0, 0) = q_0$
- (ii)  $\lambda_M^{(p^k)} \in S$
- (iii)  $\tau$  is one-to-one.

Let  $\alpha = \lambda_M^{(p^k)}$  and  $\alpha(ip^k + r) = \alpha(r)$  for  $i = 0, 1, 2, \cdots$ . From Lemma 10, M has a reset sequence. Moreover, since S is an infinite set,  $\alpha$  is not an ultimately periodic sequence. Therefore, from Lemma 9, for any non-negative integer n, there exists a minimal reset sequence  $\xi$ , such that  $L(\xi) \ge n+1$ . Define  $s \in N$ , as follows:

$$\xi = 0*0*\cdots*0*p^k(s)$$
 ,

where if  $\xi$  consists only of 0's, then define s=0. We have  $\alpha(ip^{kL(\xi)}+s)=\alpha(s)$  for any integer  $i \ge -\left[\frac{s}{p^{kL(\xi)}}\right]$ . For any integer i,  $\bar{i}$  denotes the residue class modulo  $p^{kL(\xi)}$  which contains i. Let

$$E=\{\overline{m}\;;\; \alpha(ip^{kL(\xi)}+m)=\alpha(s)\;\; {\rm for\;\; any\;\; integer}\;\; i,$$
 such that  $ip^{kL(\xi)}+m\geqq 0\}\;.$ 

Since  $\bar{s} \in E$ , E is not empty. For any integer j, let  $E+j=\{\overline{m+j}; \overline{m} \in E\}$ . We prove that if E+j=E, then j must be a multiple of  $p^{kn}$ . Let E+j=E and j' be the greatest common divisor of j and  $p^{kL(\xi)}$ . Then, j' must be either a multiple of  $p^{kn}$  or a divisor of  $p^{kn}$ . Assume the latter, then we have  $E+ip^{kn}=E$  for any integer i. Therefore,  $\alpha(ip^{kn}+s)=\alpha(s)$  for any integer  $i \ge -\left[\frac{s}{p^{kn}}\right]$ . This means that the suffix of  $\xi$  of length  $n(< L(\xi))$  is a reset sequence, contradicting the assumption that  $\xi$  is a minimal reset sequence. Thus, if E+i=E+j, then we have  $i \equiv j \pmod{p^{kn}}$ . From Lemma 10, there exists an integer  $L_n$ , such that for any non-negative integer i and  $j \in E$ , there exists an integer j', satisfying

- (i)  $j' \in \overline{j}$
- (ii)  $i \leq j' \leq i + L_n 1$
- (iii)  $\alpha(j') \neq \alpha(s)$ .

Let  $\eta \in C^*$  be any section of  $\alpha$  of length  $L_n$ . Let

$$E_{\eta} = \{ \overline{m} ; \eta(ip^{kL(\xi)} + m) = \alpha(s) \text{ for any integer } i,$$
 such that  $0 \le ip^{kL(\xi)} + m \le L_n - 1 \}$ .

Then, from the above discussion, there exists an integer j, such that  $E=E_{\eta}+j$ . Moreover, this j is uniquely determined up to modulo  $p^{kn}$ . Define  $G_n(\eta)$ , such that  $0 \le G_n(\eta) \le p^{kn}-1$  and  $E=E_{\eta}+G_n(\eta)$ . For  $\beta \in \overline{\mathrm{Orb}}(\alpha)=S$ , define  $g_n(\beta)$ , such that  $g_n(\beta)=G_n(\eta)$ , where  $\eta$  is the prefix of  $\beta$  of length  $L_n$ . Then, it is clear that  $g_n(T\beta) \equiv g_n(\beta)+1 \pmod{p^{kn}}$  for any  $\beta \in S$ . Let  $\omega_n$  be any primitive  $p^{kn}$ -th root of 1. Let  $f_n$  be a complex valued function defined on S, such that

$$f_n(\beta) = \omega_n^{g_n(\beta)}$$
.

Then, it is clear that  $f_n \in L_2(S, \mu)$ , where  $\mu$  is the T-invariant probability measure on S, and that  $f_n$  is a proper function corresponding to a proper value  $\omega_n$  of the strictly ergodic set S. Since n was any non-negative integer and the point spectrum of S is a multiplicative subgroup, this means that the point spectrum of S includes  $\rho(p)$ .

To complete the proof, we prove that  $\{f_i^j; i, j \in N\}$  generates the Hilbert space  $L_2(S, \mu)$ . It is easily seen that  $\{f_i^j; i, j \in N\}$  is multiplicatively closed. Let

$$\Delta_{n,m} = \{ \beta \in S ; g_n(\beta) = m \}$$
,

where  $n \in N$  and  $0 \le m \le p^{kn} - 1$ . Then, the characteristic function of  $\Delta_{n,m}$ 

belongs to the linear subspace spanned by  $\{f_i^j; i, j \in N\}$ , since it equals

$$\frac{1}{p^{kn}}\sum_{i=0}^{p^{kn-1}}\frac{f_n^i}{\omega_n^{mi}}.$$

Let

$$\Delta = \{\Delta_{n,m}; n \in \mathbb{N}, 0 \leq m \leq p^{kn} - 1\}.$$

To complete the proof, it is sufficient to prove that for any cylinder set  $\Gamma_{\eta}$  that intersects with S, there exists  $B \subset S$  belonging to the  $\sigma$ -field generated by  $\Delta$ , such that  $B \subset \Gamma_{\eta}$  and  $\mu(\Gamma_{\eta} - B) = 0$ . To prove this, it is sufficient to prove that for almost every  $(\mu)$   $\beta \in \Gamma_{\eta}$ , there exists  $V \in \Delta$ , such that  $\beta \in V \subset \Gamma_{\eta}$ , since  $\Delta$  is a countable family. Let

$$I_n=\{i\in N;\ 0\leq i\leq p^{kn}-L(\eta),\ p^k(i+j)\ \text{is a reset sequence}$$
 of  $M$  for any  $j\in N$ , such that  $0\leq j\leq L(\eta)-1\}$  
$$c_n=\frac{\mathrm{Card}\ I_n}{p^{kn}}\ .$$

Since M has a reset sequence and any sequence which has a reset sequence as its section is itself a reset sequence, the above  $c_n$  tends to 1 as  $n \to \infty$ . Let

$$R_n = \{ lpha(i) * lpha(i+1) * \cdots * lpha(i+L_n-1) \; ; \; i \equiv j \pmod {p^{kn}} \}$$
 for some  $j \in I_n \}$   $R'_n = \{ lpha(i) * lpha(i+1) * \cdots * lpha(i+L_n-1) \; ; \; i \equiv j \pmod {p^{kn}} \}$  for some  $j \in N$ , such that  $0 \leq j \leq p^{kn}-1$  and  $j \in I_n \}$ .

Since  $R_n$  and  $R'_n$  are disjoint, we have

$$\mu(\bigcup_{\zeta\in R_n}\Gamma_\zeta)=c_n.$$

Let  $g_n(\beta) \in I_n$  for some  $n \in N$  and  $\beta \in S$ . For  $j \in N$ , such that  $0 \le j \le L(\eta) - 1$ , we have  $\beta(j) = \alpha(g_n(\beta) + j)$ , since  $\beta(j) = \alpha(ip^{kn} + g_n(\beta) + j)$  for some integer  $i \ge 0$  and  $g_n(\beta) + j$  is a reset sequence of M. Let

$$W = \{ \beta \in S; g_n(\beta) \in I_n \text{ for some } n \in N \}.$$

Since

$$\{eta\in S\;;\;g_n(eta)\in I_n\}=\bigcup_{\zeta\in R_n}\Gamma_\zeta\cap S\;,$$

we have  $\mu(W)=1$ . Let  $\beta \in \Gamma_{\eta} \cap W$ . Then, there exists  $n \in N$ , such that  $g_n(\beta) \in I_n$ . Let  $g_n(\beta)=m$ . For any  $\gamma \in \mathcal{L}_{n,m}$ , we have  $\gamma(j)=\alpha(m+j)=\beta(j)$  for  $j=0,1,\cdots,L(\eta)-1$ . Since  $\beta \in \Gamma_{\eta}$ , we have  $\gamma \in \Gamma_{\eta}$ . Thus,  $\mathcal{L}_{n,m} \subset \Gamma_{\eta}$ . This completes the proof of Theorem 2.

COROLLARY 2. Let  $S \subset C^N$  be a minimal set associated with a substitution

 $\theta$  of length  $p^k$ , where p is a prime number and k is any positive integer. Assume that there exists an integer  $0 \le i \le p^k - 1$ , such that  $\theta(c)(i)$  is the same for any  $c \in C$ . Then, S has a rational pure point spectrum  $\rho(p)$ .

## § 5. Remark

Our results remain true in the case of two-sided sequences.

Osaka University

#### References

- [1] K. Jacobs, Combinatorial construction in ergodic theory, Proc. international conference on functional analysis, Tokyo, 1969.
- [2] F. Hahn and Y. Katznelson, On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc., (2) 126 (1967), 335-360.
- [3] W.H. Gottschalk, Substitution minimal sets, Trans. Amer. Math. Soc., 109 (1963), 467-491.
- [4] A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata, Math. Systems Theory, (2) 3 (1969), 186-192.
- [5] S. Kakutani, Ergodic theory of shift transformations, Proc. 5-th Berkeley Symp., vol. 2, part 2 (1967), 405-413.
- [6] P.R. Halmos, Lectures on ergodic theory, Publication Math. Soc. Japan, 1956.