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\S 1. Introduction.

Let $k$ be an algebraic number field of finite degree. Let $p$ be any rational
prime number. The $p$ -Sylow subgroup of the absolute ideal class group of
$k$ will be called the $p$ -class group of $k$ whose order will be denoted by $h_{k,p}$ .

Let $K$ be a Galois extension of degree $m$ over $k$ . Then there are many
known results as to the $p$ -class groups of $K$ and $k$ in case $K/k$ is abelian or
when $m$ is a prime power (in which case $K/k$ is a soluble extension); in
particular, many relations are known to hold between $h_{K,p}$ and $h_{k,p}$ (K. Iwasawa
[2], H. Yokoi [3], [4], A. Yokoyama [5], [6], [7]).

But, at the present time, it seems that there are no convenient literatures
as to the $p$-class groups of $K$ and $k$ in such case where the Galois group
$G(K/k)$ is non-abelian and simple. (For instance, it is such case where the
group $G(K/k)$ is isomorphic to the alternative group $A_{n}$ of degree $ n(>4).\rangle$

So, in this paper we shall deal with the $p$-class groups of $K$ and $k$ in such
special case. The main purpose of this paper is to prove the following
theorem:

THEOREM 1. Let $k$ be an algebraic number field of finite degree. Let $K$

be a Galois extension of degree $m$ over $k$ such that the Galois group $G(K/k)$ is
non-abelian and simple. Let $\Omega_{K}$ and $\Omega_{k}$ be the absolute class fields of $K$ and $k$

respectively. Let $p$ be any rational prime number prime to $m$ . Let $\overline{H}$ be the
p-Sylow subgroup of the Galois group $G(\Omega_{K}/K\Omega_{k})$ , whose rank is denoted by $r_{\sim}$

$1f\cdot\overline{H}$ is non-trivial, then we have $r>1$ and

$(p^{r}-1)(p^{r- 1}-1)\cdots(p-1)\equiv 0$ $(mod m)$ .
After the proof of our main theorem, we shall refer to some results

which are easily verified from above theorem.

\S 2. Preliminaries.

In this section we shall prove three lemmas which are required in order
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to prove our main theorem.
LEMMA 1. Let $k,$ $F$ and $K$ be three algebraic number fields of finite degree

such as $k\subset F\subset K$ Let $p$ be any rational prime number prime to $m=[F:k]$ .
Assume that $F$ and $K$ are both Galois over $k$ . Moreover, assume that the Galois
group $G(F/k)$ of order $m$ is non-abelian and simple, and the Galois group
$G(K/F)$ is an abelian p-group whose rank is denoted by $r$. If we have either
$r=1$ or

$(p^{r}-1)(p^{r- 1}-1)\cdots(p-1)\not\equiv 0$ $(mod m)$ ,

then there exists the subfield $L$ of $K$ which satisfies the following (1) and (2):
(1) we have $FL=K$ and $F_{\cap}L=k$ ,
(2) $L$ is Galois over $k$ .
PROOF. For brevity we put $\overline{G}=G(K/k),\overline{N}=G(K/F)$ and $\overline{H}=G(F/k)$ and

we denote the order of $\overline{N}$ by $p^{n}$ . Let

$\overline{G}=\overline{N}\sigma_{1}+\overline{N}\sigma_{2}+\cdots+\overline{N}\sigma_{m}$

be the disjoint union of cosets of $\overline{N}$. Let $\overline{\sigma}_{i}$ ($i=1,2$ , $\cdot$ .. , m) be the automor-
phisms of $\overline{N}$ given by $x\rightarrow\sigma_{t}^{-1}x\sigma_{i}$ for all $x\in\overline{N}$. Then it is clear that the
mapping $\phi$ given by $\overline{N}\sigma_{i}\rightarrow\overline{\sigma}_{i}$ , for $i=1,2$ , $\cdot$ .. , $m$ , is a homomorphism from $\overline{H}$

into the automorphism group $A(\overline{N})$ of $\overline{N}$. Moreover, it is easily verified
by the assumption for $\overline{H}$ that the kernel of $\phi$ must be either the identity
group $\overline{E}$ of $\overline{H}$ or $\overline{H}$ itself.

Now, we assume that the kernel is $\overline{E}$ . Then we know at once that $\phi$ is
an injection and the image $\phi(\overline{H})$ is a subgroup of $A(\overline{N})$ which is isomorphic
to $\overline{H}$. Since $A(\overline{N})$ must be non-abelian in our case, so we have $r>1$ , and it
is well known that the order of $A(\overline{N})$ is a divisor of $ p^{r(n- r)}(p^{r}-1)(p^{r}-p)\cdots$

$(p^{r}-p^{r-1})$ . Hence, the order $m$ of $\phi(\overline{H})$ must be so. But this is a contradic-
tion. Therefore, it follows immediately that the kernel of $\phi$ must be $\overline{H}$ itself,
and hence all $\overline{\sigma}_{i}$ must be the identity of $A(\overline{N})$ . As we have $(p, m)=1$ by
our assumption, this means that $\overline{N}$ is the $p$ -Sylow subgroup of $\overline{G}$ such as
contained in the center of $\overline{G}$ , and hence it follows immediately by Burnside’s
theorem that $\overline{N}$ has the normal $p$-Sylow complement $\overline{Z}$ in $\overline{G}$ .

Now, if we denote by $L$ the subfield of $K$ corresponding to $\overline{Z}$ by the
Galois theory, then it is easy to verify that $L$ satisfies our conditions ( $ 1\rangle$

and (2).

LEMMA 2. Let $k,$ $F,$ $L$ and $K$ be four algebraic number fields of finite de-
gree such as $k\subset F\subset L\subset K$ Denote the degrees $[L:F]$ and $[K:L]$ by $m$ and
$n$ respectively. Assume that $F$ and $K$ are both Galois over $k$ , and $L$ is Galois
over F. If we have $(m, n)=1$ , then $L$ is Galois over $k$ .

PROOF. We put $L=k(\theta)$ and $r=[F:k]$ , and we denote the minimal poly-
nomial of $\theta$ over $k$ by $f(X)$ . Then $f(X)$ whose degree is $mr$, has a factori-
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zation
$f(X)=\phi_{1}(X)\phi_{2}(X)\cdots\phi_{r}(X)$

in $F[X]$ , where each $\phi_{i}(X)$ ($i=1,2,$ $\cdots$ , r) is an irreducible polynomial of
degree $m$ . If we have $\phi_{1}(\theta)=0$ , then $L$ is the minimal splitting field of $\phi_{1}(X)$

over $F$. If we denote the minimal splitting fields of $\phi_{t}(X)$ ($i=2,3$ , $\cdot$ .. , r) by
$L_{i}$ respectively, then each $L_{i}$ is a Galois extension of degree $m$ over $F$, and
it is the conjugate of $L$ over $k$ .

Now, let $M$ be the minimal splitting field of $f(X)$ over $k$ , then $M$ is Galois
over $k$ , and we have $L\subset M\subset K$. Hence, it is clear that $u=[M:L]$ is a
divisor of $n$ . But, on the other hand, we have $M=LL_{2}\cdots L_{r}$ , and if $m=q_{1}^{e_{1}}q_{2}^{e_{2}}$

... $q_{s}^{e_{s}}$ is the prime factorization of $m$ , then $u$ must have the prime factori-
zation as $u=q_{1^{1}}^{t}q_{2^{2}}^{t}\cdots q_{s^{S}}^{t}(t_{j}\geqq 0)$ . Hence, in our case we have $(u, n)=1$ , and
consequently $u=1$ . Now it is obvious that we have $L=M$.

LEMMA 3. Let $k,$ $F$ and $K$ be three algebraic number fields of finite degree
such as $k\subset F\subset K$. Assume that $F$ and $K$ are both Galois over $k$ . Let $\overline{H}$ and
$\overline{Z}$ be two subgroups of the Galois group $G(K/F)$ such that we have $G(K/F)=$
$\overline{H}\times\overline{Z}$ (direct product). $1f$ the orders of $\overline{H}$ and $\overline{Z}$ are relatively prime to each
other, then the subfield $L$ of $K$ corresponding to $\overline{H}$ is Galois over $k$ .

PROOF. For any $\sigma\in G(K/k)$ and for any $\tau\in\overline{H}$ we have $\sigma^{-1}\tau\sigma\in\overline{H}$ because
$\tau$ and $\sigma^{-1}\tau\sigma$ have the same orders. Hence, $\overline{H}$ is a normal subgroup of $G(K/k)$ ,
and this means immediately the holding of our assertion.

\S 3. The proof of main theorem.

PROOF OF THEOREM 1. Since $K$ is Galois over $k$ and $\Omega_{K}$ is the absolute
class field of $K$, it is obvious that $\Omega_{K}$ is a Galois extension of $k$ . If we
denote the class numbers of $K$ and $k$ by $h_{K}$ and $h_{k}$ respectively, then $h_{K}$ is
divisible by $h_{k}$ because we have clearly $K\cap\Omega_{k}=k$ by our assumption for
the Galois group $G(K/k)$ .

Now, it is evident that the order $p^{n}$ of $\overline{H}$ is equal to $h_{K,p}/h_{k,p}$ . If we
put $N=K\Omega_{k}$ , and if we denote the $p$-Sylow complement of $G(\Omega_{K}/N)$ by $\overline{Z}$,
then it is easily verified that $\overline{H}$ and $\overline{Z}$ satisfy the assumption of Lemma 3
when we apply it to three fields $k,$ $N$ and $\Omega_{K}$ . Hence, the subfield $F$ of $\Omega_{K}$

which corresponds to $\overline{Z}$ is Galois over le, and we have $[F:N]=p^{n}$ . Further-
more, it is evident that the Galois group $G(F/N)$ is isomorphic to $\overline{H}$.

Now, as to the rank $r$ of $\overline{H}$ we assume that we have either $r=1$ or

$(p^{r}-1)(p^{r- 1}-1)\cdots(p-1)\overline{\neq}o$ $(mod m)$ .
Then, from Lemma 1 there exists the subfield $L$ of $F$ such that we have $NL$

$=F,$ $N\cap L=\Omega_{k}$ and $L$ is Galois over $\Omega_{k}$ . Next, as we have $[F:L]=[N:\Omega_{k}]$
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$=m$ and $[L : \Omega_{k}]=[F:N]=p^{n}$ , applying Lemma 2 to four fields $k,$ $\Omega_{k},$ $L$ and
$F$, it is easily verified that $L$ is Galois over $k$ . Moreover, as the Galois group
$G(F/L)$ is isomorphic to $G(K/k)$ , it follows at once that we have $K\cap L=k$

and $KL=F$. Hence, the Galois group $G(L/k)$ is abelian as well as $G(F/K)$

because they are isomorphic to each other.
On the other hand, since $F$ is unramified over $N$ and we have $(m, p^{n})=1$

by our assumptions, it follows easily that the ramification index of any
ramified prime divisor in $F/\Omega_{k}$ is prime to $p^{n}$ . This means immediately that
$L$ is unramified over $\Omega_{k}$ . Hence, $L$ must be an unramified abelian extension
of $k$ . Now, since $\Omega_{k}$ is the maximal unramified abelian extension of $k$ , we
must have $L\subset\Omega_{k}$ . But this is a contradiction to $[L : \Omega_{k}]=p^{n}(>1)$ .

Thus, our theorem is proved completely. Q. E. D.
Now, for the relative class numbers, we have immediately the following

theorem. Namely:
THEOREM 2. Let $k$ be an algebraic number field of finite degree. Let $K$

be a Galois extension of degree $m$ over $k$ such that the Galois group $G(K/k)$ is
non-abelian and simple. Let $p$ be any rational prime number prime to $m$ , and
let $r$ be the minimal natural number such as $r>1$ and

$(p^{r}-1)(p^{r- 1}-1)\cdots(p-1)\equiv 0$ $(mod m)$ .
Denote the class numbers of $K$ and $k$ by $h_{K}$ and $h_{k}$ respectively. If $d=h_{K}/h_{k}$

is divisible by $p$ , then $d$ is divisible by $p^{r}$ .
Moreover, the following theorem will be easily verified by making use

of Theorem 1.
THEOREM 3. Let $k$ be an algebraic number field of finite degree. Let $K$

be a Galois extension of degree $m$ over $k$ such that the Galois group $G(K/k)$ is
non-abelian and simple. Let $p$ be any rational prime number prime to $m$ .
Denote the ranks of p-class groups of $K$ and $k$ by $r_{K,p}$ and $r_{k,p}$ respectively.
Let $q_{1},$ $q_{2}$ , , $q_{s}$ be all the different prime factors of $m$ , and for $i=1,2$ , $\cdot$ .. , $s_{r}$

let $f_{j}$ be the order of the residue class $pmod q_{i}$ . If $h_{K,p}/h_{k,p}$ is divisible by $p_{r}$

the $ r\iota$ we have
$\max$ $(2, f_{1}, f_{2}, \cdots , f_{s})\leqq r_{K,p}-r_{k,p}$ .

PROOF. Let $\Omega_{K}$ and $\Omega_{k}$ be the absolute class fields of $K$ and $k$ respec-
tively. Let $\overline{H}$ be the $p$ -Sylow subgroup of $G(\Omega_{K}/K\Omega_{k})$ , and we denote the
rank of $\overline{H}$ by $r$. Then, as $p$ is prime to $m$ , it is easily verified from Theorem
1 that we have

$\max(2, f_{1}, f_{2}, f_{s})\leqq r$ .
Now, let $C_{K,p}$ and $C_{k,p}$ be the $p$-class groups of $K$ and $k$ respectively.

Let $A_{K}$ be the ambiguous ideal class group with respect to $K/k$ , and we put
$A_{K,p}=A_{K}\cap C_{K,p}$ . Then it is known that we have
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$C_{K,p}=A_{K,p}\times B_{K,p}$ (direct product)

and $A_{K,p}$ is isomorphic to $C_{k,p}$ . (Cf. A. Yokoyama [6]). Hence, it follows
from the class field theory that $B_{K,p}$ is isomorphic to $\overline{H}$ and thus we obtain

$r_{K,p}=r+r_{k,p}$ . Q. E. D.

Finally, as to the relative class numbers of the intermediate fields, we
have the following theorem. Namely:

THEOREM 4. Let $k$ be an algebraic number field of finite degree. Let $K$

be a Galois extension of degree $m$ over $k$ such that the Galois group $G(K/k)$ is
non-abelian and simple. Let $F$ be a proper intermediate field between $k$ and $K$.
Let $p$ be any rational prime number prime to $m$ . $1fh_{K,p}/h_{k,p}$ is divisible by $p$ ,
then $h_{K,p}/h_{F,p}$ is divisible by $p$ too.

PROOF. Let $\Omega_{K}$ and $\Omega_{k}$ be the absolute class fields of $K$ and $k$ respec-
tively. Let $M$ be the subfield of $\Omega_{K}$ such that the Galois group $G(\Omega_{K}/M)$ is
the $p$-Sylow complement of $G(\Omega_{K}/K\Omega_{:})$ . Then, $M$ is Galois over $k$ from Lemma
3, and the Galois group $\overline{H}=G(lf/K\Omega_{k})$ is a $p$ -group of order $p^{n}$ with $n>1$

by our assumption and Theorem 1. Moreover, since we have $[K\Omega_{k} : \Omega_{k}]=m$

and $(m, p)=1$ , if we apply the Schur’s theorem as to the extension of group
to $G(M/\Omega_{k}),$ $G(K\Omega_{k}/\Omega_{k})$ and $\overline{H}$, then we have the decomposition as following:

$G(M/\Omega_{k})=\overline{H}\overline{Z}$ .
Here, it is obvious that $\overline{Z}$ is isomorphic to $G(K\Omega_{k}/\Omega_{k})$ . If we denote by $L$

the intermediate field between $\Omega_{k}$ and $M$ corresponding to $\overline{Z}$ by the Galois
theory, then we have clearly $L\cdot K\Omega_{k}=M$ and $L\cap K\Omega_{k}=\Omega_{k}$ . Furthermore, it
follows that $L$ is not Galois over $\Omega_{k}$ . Because, if we assume otherwise, then
it follows from Lemma 2 that $L$ is Galois over $k$ and the Galois group $G(L/k)$ ,

which is isomorphic to $G(M/K)$ , is an abelian group. Since $M$ is unramified
over $K\Omega_{k}$ and we have $(m, p^{n})=1$ by our assumptions, it is easily verified
that $L$ is unramified over $\Omega_{k}$ . Hence, it follows clearly that $L$ is an un-
ramified abelian extension of $k$ and we must have $L\subset\Omega_{k}$ by the definition
of $\Omega_{k}$ . But it is a contradiction to $[L : \Omega_{k}]=p^{n}$ . Therefore, if we put $L=$

$\Omega_{k}(\theta)$ and if we denote by $f(X)$ the minimal polynomial of $\theta$ over $\Omega_{k}$ , then
$M$ must be the minimal splitting field of $f(X)$ over $\Omega_{k}$ because $\overline{Z}$ is non-
abelian and simple. On the other hand, it is easily verified that $f(X)$ is
irreducible in $K\Omega_{k}[X]$ and we have $M=K\Omega_{k}(\theta)$ .

Finally, let $\Omega_{F}$ be the absolute class field of $F$. As we have $F\cap\Omega_{k}=k$ ,

it is obvious that we have $\Omega_{k}\subset\Omega_{F}$ . Now, if we assume that $h_{K,p}/h_{F,p}$ is not
divisible by $p$ , then we have $h_{K,p}=h_{F,p}$ and as $([K:F], p)=1$ in our case it
$\neq ollowsatoncethatthep$-class groups ofKandFare isomorphic to each other.
Moreover, if we denote by $N$ the field which corresponds to the $p$-Sylow
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complement of $G(\Omega_{F}/F\Omega_{k})$ , then the Galois group $G(N/F\Omega_{k})$ is isomorphic to
$\overline{H}$ and we have $N\cdot K\Omega_{k}=M$ and $N\cap K\Omega_{k}=F\Omega_{k}$ clearly. Therefore, since
$f(X)$ is a polynomial in $F\Omega_{k}[X]$ , it is easily verified that by taking a suitable
root $\theta^{\prime}$ of $f(X)$ we have $N=F\Omega_{k}(\theta^{\prime})$ . As $N$ is Galois over $F\Omega_{k}$ and $f(X)$ is
irreducible in $F\Omega_{k}[X],$ $N$ must be the splitting field of $f(X)$ and hence we
must have $M\subset N$. But this is impossible because we have $[M:N]=[K:F]$
$>1$ by our assumption.

Thus, our theorem is proved completely.
Meijo University
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