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\S 0. Introduction.

The purpose of this paper is to present global existence theorems for
linear differential equations with constant coefficients which satisfy suitable
regularity conditions. (Cf. conditions (1.1), (1.2) and Definition 4.2.) Our proof
relies on the existence of good elementary solutions, the meaning of which
is clarified in \S 1 and \S 4. Sato’s theory of sheaf $C$ (Sato $[2]\sim[5]$) also plays
an essential role in the course of the proof.

We remark that the problem of the global existence of real analytic
solutions has remained unsolved because the topological structure of the space
of real analytic functions on an open set $\Omega$ in $R^{n}$ is a complicated one. (Cf.

Ehrenpreis [1], Martineau [1].) In fact there has been no general result
even when $\Omega$ is convex; the only results hitherto known seem to be Theorems
$\alpha$ and $\beta$ , which we list up below for the reader’s convenience. We also
note that during the preparation of this paper Professors E. De Giorgi and
L. Cattabriga have informed the author that they have obtained the affirma-
tive answer by the method of a priori estimate when $\Omega=R^{2}$ . (Cf. E. De
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Giorgi and L. Cattabriga [1] and [2]. See also Theorem 5.7 and the remark
following it.)

THEOREM $\alpha$ (Malgrange [1]). Let a linear differential operator $P(D)$ be
elliptic, $i$ . $e.$ , have a principal symbol $P_{m}(\xi)$ never vanishing for any non-zero
real cotangent vector $\xi$ . Then for any open set $\Omega$ in $R^{n},$ $P(D)u=f$ has a real
analytic solution $u(x)$ for any real analytic function $f(x)$ defined on $\Omega$ .

THEOREM $\beta$ (Ehrenpreis, Malgrange and Komatsu, see Komatsu [1]

Theorem 3.1). Let $K$ be a compact convex set in $R^{n}$ . Then $P(D)u=f$ has a
solution $u(x)$ in $\mathcal{A}(K)$ for any $f(x)$ in $\mathcal{A}(K)$ . Here $\mathcal{A}(K)$ denotes the space of
real analytic functions on $K,$ $i$. $e.,$

$\mathcal{A}(K)=\rightarrow\lim_{V\supset K}\mathcal{O}(V)$
, where $V$ runs over the

fundamental system of open neighbourhoods of $K$ in $C^{n}$ , and $\mathcal{O}(V)$ denotes the
space of holomorphic functions defined on $V$ .

The extension of the results of this paper to the linear differential
operators with real analytic coefficients and also to the overdetermined
systems of linear differential equations will be given in our forthcoming
papers. See also Kawai [7], [8].

Throughout this paper we use the same notations as in Kawai $[3]\sim[8]$

unless otherwise stated. For example, we denote by $P(x, \xi)$ the symbol of
the m-th order linear differential operator $P(x, D_{x})$ , where $\xi_{j}$ stands for $\partial/\partial x_{j}$ ,

and by $P_{m}(x, \xi)$ its principal symbol, $i$ . $e.$ , the homogeneous part of $P(x, \xi)$ of
order $m$ with respect to $\xi$ .

The results of this paper have been announced in Kawai [6], [7], [8].

The author expresses his hearty thanks to Professor Sato, Professor
Komatsu and Mr. Kashiwara for the stimulating conversations with them.

\S 1. Cnstruction of good elementary solutions–the case of real principal
symbol–

In this section we construct good elementary solutions for linear dif-
ferential operators $P(D)$ with constant coefficients satisfying conditions (1.1)

and (1.2) below. The definition of good elementary solutions for those operators
is given in Definition 1.1.

(1.1) $P_{m}(\xi)$ , the principal symbol of $P(D)$ , is real for real cotangent
vector $\xi$ .

(1.2) The operator $P(D)$ is of simple characteristics, $i$ . $e.,$ $grad_{\xi}P_{m}(\xi)$

never vanishes whenever $P_{m}(\xi)=0$ , where $\xi$ is a non-zero real
cotangent vector.

The results of this section are essentially given in Kawai [3]. See also
Andersson [1], where the analytic singular support of elementary solutions
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of linear differential equations with constant coefficients is investigated.
However, since we have treated general linear differential operators with
variable coefficients there, the proof of the global existence of the elementary

solutions for linear differential operator with constant coefficients is not ex-
plicitly given in that paper. By this reason we.supplement our preceding
paper here by giving the global estimate concerning the convergenc $e$ of the
asymptotic expansions given in the form (1.6) below. We also remark that
conditions (1.1) and (1.2) are relaxed in \S 4, but in this section we restrict
ourselves to the consideration of the operators satisfying these conditions or$f$

the sake of simplicity, partly because the operator satisfying conditions (1.1)

and (1.2) is the most natural and classical one, $i$ . $e.$ , its treatment directly
concerns with the classical notion of bicharacteristics, though the operator

treated in \S 4 does not.
DEFINITION 1.1. (Good elementary solutions for the linear differential

operator satisfying conditions (1.1) and (1.2).) A hyperfunction $E(x)$ satisfying
the equation

(1.3) $P(D)E(x)=\delta(x)$

is called a good elementary solution of the linear differential operator $P(D)$

with constant coefficients satisfying conditions (1.1) and (1.2) if it satisfies
either condition $(1.4)_{+}$ or $(1.4)_{-}$ .
$(1.4)_{+}$ S. S. $E(x)\subset\{(x, \xi)\in S^{*}R^{n}|x=0$ or $x=tgrad_{\xi}P_{m}(\xi)$ ,

where $t\geqq 0$ and $P_{m}(\xi)=0$}.

$(1.4)_{-}$ S. S. $E(x)\subset\{(x, \xi)\in S^{*}R^{n}|x=0$ or $x=tgrad_{\xi}P_{m}(\xi)$ ,

where $t\leqq 0$ and $P_{m}(\xi)=0$}.

Here S. S. $E(x)$ denotes the support of $E(x)$ which is regarded as a section
of sheaf $C,$ $i$ . $e.$ , the support of $\beta(E(x))$ , where $\beta$ denotes the cannonical sur-
jection from the sheaf of germs of hyperfunctions to the sheaf $\pi_{*}C$. Here
$\pi$ denotes the cannonical projection from the cotangential sphere bundle to
the base space and $\pi_{*}C$ denotes the direct image of sheaf $C$ under the maPP $ng$

$\pi$ . In the sequel we call a section of sheaf $C$ a micro-hyperfunct on or a
microfunction for short. Concerning the definition and properties of sheaf $c$

we refer to Sato $[2]\sim[5]$ and Sato, Kawai and Kashiwara [1]. Here we
emphasize the fact that the employment of microfunctions makes clear the role
of the bicharacteristic strips (cf. Kawai [3], [4], Sato, Kawai and Kashiwara
[1]), and even when we are treating linear differential operators with con-
stant coefficients as in this paper, specifying the ‘ cotangential component of
the singularity “ of hyperfunctions is very important as is shown later.

THgOREM 1.2. Let a linear differential operator $P(D)$ with constant coeffi-
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cients satisfy conditions (1.1) and (1.2). Then there exist two good elementary
solutions $E_{+}(x)$ and $E_{-}(x)$ of $P(D)$ such that $E_{+}(x)$ satisfies condition $(1.4)_{+}$ and
$E_{-}(x)$ satisfies condition $(1.4)_{-}$ .

PROOF. We first construct $E_{+}(x)$ . For that purpose we introduce the
following functions $\Phi_{j}(\tau)$ for the sake of simplicity of notations.

(1.5) $\Phi_{j}(\tau)=\left\{\begin{array}{llll} & & & (-1)^{f- 1}(-j-1)!\tau^{j}\\ & & & \frac{1}{j!}\tau^{j}log_{j^{1_{!}}}\tau--(1++_{j^{-}}^{1}-)\tau^{j}\end{array}\right.$
$(j<0)(j\geqq 0)$

.

Taking into account the following well known formula which expands
$\delta$ -function into plane waves

(1.6)
$\delta(x)=\frac{(n-1)!}{(-2\pi\sqrt{-1})^{n}}\int_{|\xi|=1}\overline{(}\langle\frac{\omega(\xi)}{x,\xi\rangle+\sqrt{}-}\overline{10)^{n}}$

we want to obtain the solution $E_{+}(x)$ in the form

(1.7)
$E_{+}(x)=\frac{1}{(-2\pi\sqrt{-1})^{n}}\int_{|\xi|=1}\sum_{J\geqq 0}\frac{c}{(P_{m}(\xi)-}\underline{j(\xi}\sqrt{}\frac{)}{-\overline{1}0)^{j}}\Phi_{mj- n}(\langle x, \xi\rangle+\sqrt{-1}0)\omega(\xi)$

,

where $n$ is the space dimension and $\omega(\xi)$ denotes the volume element on the
unit sphere, i. e.,

$\omega(\xi)=\sum_{j=1}^{n}(-1)^{f}\xi_{j}d\xi_{1}\wedge\cdots$ A $d\xi_{f-1}$ A $d\xi_{j+1}\wedge\cdots\wedge d\xi_{n}$ .

Of course the above expression of $E_{+}(x)$ does not make sense unless we give
the precise meaning of the formal series

$\sum_{J\geqq 0}\frac{c_{f}(\xi)}{(P_{m}(\xi)-\sqrt{-1}0)^{f}}\Phi_{mf-n}(\langle x, \xi\rangle+\sqrt{-1}0)$ .

We give the meaning of this series as a hyperfunction defined by the boundary
value of the holomorphic function

(1.8) $\sum_{j\Xi 0}\frac{c_{f}(\zeta}{(P_{m}(}\Phi_{mj-n}(\langle z, \zeta\rangle)\zeta^{)}\overline{))^{j}}$

from the domain $\Omega=\{(z, \zeta)\in C^{2n}|{\rm Im} P_{m}(\zeta)<0,$ ${\rm Im}\langle z, \zeta\rangle>0$ and $(z, \zeta)$ is
sufficiently close to $S^{*}R^{n}\cong R^{n}\times S^{n-1}$ }.

Now we go on to the proof of the convergence of the series (1.8) in $\Omega$.
The coefficients $c_{j}(\zeta)$ in the series (1.8) should be defined so that

(1.9) $P(D_{z})(\bigwedge_{m}=\frac{1}{(-2\pi\sqrt{-1})^{n}}\Phi_{-n}(\langle z, \zeta\rangle)$

holds. For that purpose it is sufficient to choose $c_{j}(\zeta)$ so that
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(1.10) $\sum_{j\leq 0}\Phi_{mj- n}(\langle z, \zeta\overline{(}P_{m}(\zeta\overline{))^{j}}c_{\underline{j}}(\zeta)\rangle)=\sum_{J\geqq 0}(P_{m}(D_{z})-P(D_{z}))^{j}(\frac{\Phi_{mj+m- n}(\langle z,\zeta\rangle)}{(P_{m}(\zeta))^{j+1}})$

holds. In fact if we can prove that the right hand side of (1.10) converges
.absolutely and locally uniformly in $\Omega$ , then we easily find by differentiation
term by term that it satisfies the equation (1.9) and it is also clear that $c_{j}(\zeta)$

can be defined successively by the relation (1.10) so that it becomes homo-
geneous of order $0$ with respect to $\zeta$ .

Therefore what remains to prove is the convergence of the series in the
right hand side of (1.10). In the sequel we denote by $Q(\zeta)$ the lower order
terms of $P(\zeta)$ multiplied by $(-1)$ , i. e., $Q(\zeta)=P_{m}(\zeta)-P(\zeta)$ . We also denote
[by $Q_{k}(\zeta)$ the homogeneous part of degree $k$ of $Q(\zeta)$ . For the sake of simplicity
of notations we abbreviate in the sequel

$\sum_{k=0}^{m-1}j_{k}$ to $|(j_{k})|$ and $\sum_{k=0}^{m-1}kj_{k}$ to $\Vert(j_{k})\{|$ .

Using these notations the right hand side of (1.10) is clearly re-written in the
following way:

$’(1.11)$ $\sum_{J\geqq 0}(\sum_{k=0}^{m-1}Q_{k}(D))^{f}(\frac{\Phi_{mj+m- n}(\langle z,\zeta\rangle)}{(P_{m}(\zeta))^{f+1}})$

$=\sum_{j\geqq 0}(\sum_{j\geqq 0^{=j}}\frac{j!}{j_{0}!\cdots j_{m- 1}!}Q_{0}^{j_{0}}(D)\ldots Q_{m\overline{1}}^{J_{\underline{m}1}}(D))(\frac{\Phi_{mj+m- n}(\langle z,\zeta\rangle)}{(P_{m}(\zeta))^{j+1}})$

$=\sum_{J\geqq 0}(\sum_{J_{k}^{k}\geqq 0^{=f}}\frac{j!}{j_{0}!\cdots j_{m- 1}!}Q_{0}^{j_{0}}(\zeta)\cdots Q_{m\overline{1}}^{J_{\underline{m}1}}(\zeta)\frac{\Phi_{mj+m-n-||(j_{k^{)}}N}(\langle z,\zeta\rangle)}{P_{m}(\zeta)^{j+1}})$ .

In the sequel we denotez by $x+\sqrt{-1}y$ and $\zeta$ by $\xi+’-1\eta$ , where $x,$ $y,$ $\xi$

:and $\eta$ are real vectors.
It is obviously sufficient to consider the convergence of the series (1.10)

.assuming that $P_{m}(\xi)=0$ , since the convergence of this series when $P_{m}(\xi)\neq 0$

is proved in the course of the proof in the case when $P_{m}(\xi)=0$ , as the
following proof shows. On the other hand, if $P_{m}(\xi)=0$ , then conditions (1.1)

:and (1.2) show that

{$(1.12)$ $P_{m}(\xi+\sqrt{-1}\eta)=0(|\eta|)$ in a domain $V\subset C^{n}$ which touches the
cone $\{\zeta\in C^{n}| \langle 1m\zeta, grad_{\xi}P_{m}(\xi)\rangle<0\}$ up to the second order
of $|\eta|$ along the real axis,

since $P_{m}(\xi+\sqrt{-1}\eta)=\langle\sqrt{-1}\eta, grad_{\xi}P_{m}(\xi)\rangle+O(|\eta|^{2})$ . We want to estimate
$*\langle 1.10$) in $\Omega=\{(z, \zeta)|{\rm Im} P_{m}(\zeta)<0, {\rm Im}\langle z, \zeta\rangle>0, |1m\zeta|\ll 1\}$ . In the sequel we
’denote $|P_{m}(\zeta)|$ by $t,$ $|\langle z, \zeta\rangle|$ by $s$ and $|Q_{j}(\zeta)|$ by $a_{j}$ . We first consider the
$\iota Cases\leqq 1$ . Then we have



486 T. KAWAI

(1.13)
$|_{j\geqq 0}\Sigma(|(\sum_{m- 1 ,j_{k^{k}}^{j}\geqq^{)1_{0}=j}}\frac{j!}{j_{0}!\cdots j}Q_{0}^{j_{0}}(\zeta)\overline{!}\ldots Q_{m\overline{1}^{1}}^{J_{\underline{m}}}(\zeta)\frac{\Phi_{mj+m-n-\Uparrow(j_{k^{)\Uparrow}}}(\langle z,\zeta\rangle)}{P_{m}(\zeta)^{f+1}})|$

$\leqq\sum_{j\geqq 0}\frac{1}{t^{f+1}}($

$|(J_{k^{)1=j}}\sum_{j_{k}\geq 0}$

$\overline{j_{0}!..}j\frac{!}{j_{m-1}!}$ a $i^{0}$ ... $a_{m\overline{1}}^{J\underline{m}1}\{\frac{S^{mj+m-n- Q(f_{k})\Uparrow|\log s}}{(mj+m-n-||(j_{k})||)!}$

$mj+m-n-\Uparrow(j_{l}.)\Uparrow\geqq 0$

$+\frac{mj+m-n-\Uparrow(j_{k}\sum_{p=1}^{)\Uparrow_{\frac{1}{p}}}}{(mj+m-j-\Vert(j_{k})\Vert)!}s^{mf+m-n-N(j_{k)\#\}+}}$

$\sum_{|(j_{k})|=j}$

$\frac{j!}{j_{0}!\cdots j_{m-1}!}\times$

$i_{k}\geqq 0$

$mj+m-n-\Downarrow(j_{k})\Uparrow\underline{/}0$

$\times a_{0}^{j_{0}}\cdots a_{m1}^{J_{\underline{m}-1}}(-mj-m+n+\Vert(j_{k})\Vert-1)$ ! $s^{mf+m-n-N(j_{k^{)\#)}}}$

$\leqq\sum_{J\geqq 0}\frac{1}{t^{j+1}}(\sum_{j^{k}\geq 0}\frac{j!}{j_{0}!\cdots j_{m- 1}!}a_{0^{0}}^{j}\cdots a_{m^{\underline{m}}\overline{1}^{1\{\frac{s^{m-n+J}|10}{(m-n+}-\frac{(2s)^{m- n+f}}{(m-n+])!}\})}}^{j}|(j_{k})|=jj)!g_{-}s|$

$+$
$\sum_{J\geqq 0,m-n+J<0}\overline{t^{j\overline{+1}}}1(|(j_{k^{k}}\sum_{J\geq^{)1}0^{=j}}\frac{j!}{j_{0}!\cdots j_{m- 1}!}a_{0}^{j_{0}}\cdots a_{m\overline{1}}^{J_{\underline{m}1}}(n-m-j-1)!s^{m-n+J)},$

.

since $\Vert(j_{k})\Vert=\sum_{k=0}^{m-1}kj_{k}$ attains its maximum $(m-1)j$ under the condition $|(j_{k})||$

$=\sum_{k=0}^{m-1}i_{k}=i$ and $j_{k}\geqq 0$ when $(j_{0}, \cdots,j_{m- 2},j_{m-1})=(0, \cdots, 0,j)$ and $\sum_{p=1}^{l}\frac{1}{p}\leqq\log l+L$

$\leqq 2^{l}$ holds. As the last term in (1.13)

$j\geq 0\sum_{m-n\dagger J<0}\overline{l^{f\overline{+}1}}1_{-(\sum_{J^{k}\geqq 0^{=j}}\frac{j!}{j_{0}!\cdots j_{m-1}!}a_{0}^{j_{0}}\cdots a_{m\overline{1}}^{J_{\underline{m}1}}(n-m-j-1)!s^{m- n+J)}}|(j_{k})|$

is only a finite sum, this does not give rise to any difficulty concerning the
convergence of the series (1.11). On the other hand we have the following
estimate (1.14) concerning the other term of (1.13):

(1.14)
$\sum_{j\geqq 0}$

$\frac{1}{t^{j+1}}\sum_{|(j_{k})|=j}a_{0}^{j_{0}}\cdots a_{m1}^{J_{\underline{m}-1\{\frac{s^{m- n+f}|10}{(m-n+j}\frac{s|}{!}+\frac{(2s)^{m- n+f}}{(m-n+])!}\}}}\overline{j_{0}!\cdots}j_{m- 1}\overline{!}j_{-}!g_{)}$

$m-n+j\geqq 0$ $j_{k}\geq 0$

$\leqq|\log s|t^{m-n-1}(a_{0}+\cdots:+a_{m-1})^{n-m}\times$

$\times$

$\sum_{j\geqq 0}$

$\frac{1}{(m-n+j)!}(-\frac{3(a_{0}+\cdots+a_{m- 1})s}{t})^{m- n+j}$

$m-n+j\geqq 0$

$\leqq|\log s|t^{m- n-1}(a_{0}+\cdots+a_{m-1})^{n- m}\exp(\frac{3(a_{0}+\cdots+a_{m-1})s}{t})$ .

$sae\sim ThusY$ we have proved the convergence of the series (1.11) as far as $|P_{m}(\zeta)|\neq\theta$

and $0<|\langle z, \zeta\rangle|\leqq 1$ . Even if $|\langle z, \zeta\rangle|>1$ , we can perform an analogous.
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estimate of the series (1.11). In fact we can estimate the series (1.11) except

for a finite sum by

$|(1.15)$
$\sum_{J\geqq 0}$

$\overline{t^{j+\overline{1}}}1_{-\sum_{|(j_{k})|=J}\frac{j!}{j_{0}!\cdots j_{m- 1}!}\times}$

$m-n+!\geqq 0$ $j_{k}\geqq 0$

$\times a_{0}^{j_{0}}\cdots a_{m\overline{1}^{1\{\frac{s^{mj+m- n}}{(m-n+j)!}}}^{j_{\underline{m}}}|\log s|+\frac{2^{m- n+J_{S^{mj+m- n}}}}{(m-n+J)!}\}$ ,

since $ mj+m-n-\Vert(j_{k})\Vert$ attains its maximum under the condition $|(j_{k})|=j$ and
$j_{k}\geqq 0$ when $(j_{0}, j_{1}, \cdot.. j_{m-1})=(j, 0, \cdot.. 0)$ . Then it is clear that the quantity
$given?^{\backslash }by(1.15)$ can be majorized as follows:

$(\langle 1.16)$ $\sum_{j\geqq 0}\frac{|\log s|(3s)^{mj+m-n}(a_{0}+\cdots+a_{m- 1})^{j}}{t^{f+1}(m-n+j)!}$

$m-n+j\geqq 0$

$=|\log s|t^{m- n- 1}(a_{0}+\cdots+a_{m- 1})^{n- m}\times$

$\times$ $\sum_{j\geqq 0}\overline{(}\frac{1}{m-n+J)!}\frac{(a_{0}+\cdots+a_{m- 1})^{m- n+j}}{t^{m- n+j}}((3s)^{m})^{!+\frac{m-n}{m}}$

$m-n+j\geqq 0$

$\leqq|\log s|t^{m-n- 1}(a_{0}+ \cdot.. +a_{m- 1})^{n-m}\exp(\frac{3^{m}(a_{0}+\cdots+a_{m- 1})s^{m}}{t})$ .
Thus we have proved the convergence of the series (1.11) as far as $|P_{m}(\zeta)|\neq 0$

and $|\langle z, \zeta\rangle|\neq 0$ . Therefore we take the boundary value of the holomorphic
function defined by the series (1.11) and obtain a hyperfunction $F(x, \xi)$ in $(x, \xi)$ .
This is the precise meaning of the (formal) series

$\sum_{J\geqq 0}\frac{c_{j}(\xi)}{(P_{m}(\xi)-\sqrt{-1}0)^{j}}\Phi_{mj-n}(\langle x, \xi\rangle+\sqrt{-1}0)$ .

Now what remains to be investigated is the study of the location of

singularities of the hyperfunction $\int_{|\xi|=1}F(x, \xi)\omega(\xi)$ . For that purpose we first

investigate S. S. $F(x, \xi)$ on $S^{*}(S^{*}R^{n})$ and next apply Sato’s lemma on the
regularity of integrals along fibers, which we quote below as Lemma 1.3.

In the sequel we denote by $(\zeta_{x}, \zeta_{\xi})$ a cotangent vector at $(x, \xi)$ . Taking
(1.12) into account we easily find the following relation (1.17) by the definition,
since the series (1.11) defines a holomorphic function in $\Omega$ and $F(x, \xi)$ is a
hyperfunction defined by the boundary value of the series (1.11) from the
domain $\Omega$ .
\langle 1.17) S. S. $F(x, \xi)$

$\subset\{(x, \xi;\zeta_{x}, \zeta_{\xi})|\langle x, \xi\rangle=0,$ $P_{m}(\xi)=0,$ $\zeta_{x}=\xi$ ,

$\zeta_{\xi}=-\alpha grad_{\xi}P_{m}(\xi)+\beta x$, where $\alpha+\beta=1,$ $\alpha,$
$\mathcal{B}\geqq 0$ }

$\cup\{(x, \xi;\zeta_{x}, \zeta_{\xi})|\langle x, \xi\rangle=0, P_{m}(\xi)\neq 0, \zeta_{x}=\xi, \zeta_{\xi}=x\}$

$\cup\{(x, \xi;\zeta_{x}, \zeta_{\xi})|\langle x, \xi\rangle\neq 0, P_{n\iota}(\xi)=0, \zeta_{x}=0, \zeta_{\xi}=-grad_{\xi}P_{m}(\xi)\}$ .
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On the other hand Sato’s lemma on the regularity of integrals along fibers
is the following

LEMMA 1.3. (Sato [3] \S 6, [4] \S 6.5.) Let $f:N\rightarrow M$ be a real analytic map-
ping from an $(n+r)$ -dimensional real analytic manifold $N$ to an $n- dimensional^{r}$

real analytic manifold $M$ with maximal rank. Denote by $dy$ the fundamental
r-form along fiber. Suppose that a hyperfunction $\mu(x)$ defined on $N$ satisfie $s$ the
following condition:

(1.18) $f$ is a proper mapping over S. S. $\mu(x)$ .
Then the integral along fibers $\int_{f^{-1}}\mu(x)dy$ is well-defined. (See Sato [4] \S 6.5

about the definition of the integral of microfunctions along fibers which is
compatible with that of hyperfunctions (Sato [1] \S 10).) Moreover

(1.19) S. S. $\int_{f^{-1}}\mu(x)dy\subset\sigma_{f}$ (S. S. $\mu(x)\cap S^{*}M\times N$)
$M$

,

where $S^{*}M\times NM$ denotes the fiber product of $S^{*}M$ and $N$ over Mand $\sigma_{f}$ denotes

the natural homomorphism from $ S^{*}M\times N\Pi$ to $S^{*}M$ induced by the mapping $f$.
Now we apply Lemma 1.3 to the integral $\int_{|\xi|=1}F(x, \xi)\omega(\xi)$ . Then (1.19),

combined with (1.17) obviously implies that

(1.20) S. S. $\int_{|\xi|=1}F(x, \xi)\omega(\xi)$

$\subset$ { $(x,$ $\xi)\in S^{*}M|x=0$ or $x=tgrad_{\xi}P_{m}(\xi)(t\geqq 0)$ with $P_{m}(\xi)=0$},.

since the third term in the right hand side of (1.17) does not give any con-
tributions to S. S. $\int_{|\xi|=1}F(x, \xi)\omega(\xi)$ by condition (1.2).

Therefore $E_{+}(x)=(-2\pi\sqrt{}^{1}-1)^{n}-\int_{|\xi|=1}F(x, \xi)\omega(\xi)$ satisfies condition $(1.4)_{+},$.

and it is also clear by (1.6) and (1.9) that $E_{+}(x)$ satisfies condition (1.3), i. e.,
$P(D)E_{+}(x)=\delta(x)$ . Thus we have constructed a good elementary solution $ E_{+}(x\rangle$

of $P(D)$ .
On the other hand, if we consider the series (1.11) in the domain $\Omega_{-}=$

{ $(z,$ $\zeta)|{\rm Im} P_{m}(\zeta)>0$ and $1m\langle z,$ $\zeta\rangle>0$ } and define a hyperfunction $F_{-}(x, \xi):by$

the boundary value of the holomorphic function defined in $\Omega_{-}$ , then we have

(1.17) S. S. $F_{-}(x, \xi)$

$\subset\{(x, \xi;\zeta_{x\prime}\zeta_{\xi})|\langle x, \xi\rangle=0,$ $P_{m}(\xi)=0,$ $\zeta_{x}=\xi$ ,

$\zeta_{\xi}=\alpha grad_{\xi}P_{m}(\xi)+\beta x$ . where $\alpha+\beta=1,$ $\alpha,$ $\beta\geqq 0$ }
$\cup\{(x, \xi;\zeta_{x}, \zeta_{\xi})|\langle x, \xi\rangle=0, P_{m}(\xi)\neq 0. \zeta_{x}=\xi, \zeta_{\xi}=x\}$

$\cup\{(x, \xi;\zeta_{x}, \zeta_{\xi})|\langle x, \xi\rangle\neq 0, P_{m}(\xi)=0, \zeta_{x}=0, \zeta_{\xi}=grad_{\xi}:P_{m}(\xi)\}$ .
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Therefore applying Lemma 1.3 to the integral along fibers

$\frac{1}{(-2\pi\sqrt{-1})^{n}}\int_{|\ovalbox{\tt\small REJECT}\xi|=1}F_{-}(x. \xi)\omega(\xi)$ ,

we easily find that this integral defines a good elementary solution of $P(D)$

satisfying $(1.4)_{-}$ . Thus we have also constructed $E_{-}(x)$ . This completes the
proof of Theorem 1.2.

REMARK. We can prove Theorem 1.2 by suitably modifying the celebrated
reasonings of John [1], where only the elliptic operators are treated. One
essential point in the proof is that non-characteristic Cauchy problem in the
complex domain has a unique entire solution as far as all the data given are
entire functions, the linear differential operator under consideration is of
constant coefficients and the initial hypersurface is a hyperplane. (See e. g.
Leray [1], Lemma 9.1.)

But we preferred the proof given above because we can treat more
general class of linear differential operators, even the operators with variable
coefficients, by this asymptotic expansion method without much modification.
See for example \S 4.

\S 2. Global existence of real analytic solutions –compact case–
In this section we prove the global existence of real analytic solution of

the equation $P(D)u(x)=f(x)$ where the differential operator $P(D)$ satisfies
conditions (1.1) and (1.2) and the known function $f(x)$ is real analytic on a
compact set $K\subset R^{n}$ specified later on. fn this section and also in later sec-
tions we denote by $\mathcal{A}(K)$ the space of real analytic functions on $K,$ $i$ . $e.$ ,

$\mathcal{A}(K)=\rightarrow\lim_{V\supset K}\mathcal{O}(V)$
, where $V$ runs over the open neighbourhoods of $K$ in $C^{n}$

and $\mathcal{O}(V)$ denotes the space of holomorphic functions defined on $V$ . For an
open set $\Omega(\subset R^{n})$ we also denote by $\mathcal{A}(\Omega)$ the space of real analytic functions
defined on $\Omega$ . Since we do not use the topological structure of the space $\mathcal{A}(\Omega)$ ,
we do not discuss it here.

LEMMA 2.1. Assume that the compact set $K$ is the closure of the open set
$\Omega=\{x\in R^{n}|\varphi(x)<0\}$ , where $\varphi(x)$ is a real valued real analytic function defined
in a neighbourhood of $K$ satisfying $grad_{x}\varphi(x)\neq 0$ on the boundary $\partial\Omega$ of $\Omega$ .
Suppose that the differential operator $P(D)$ satisfies conditions (1.1) and (1.2)
and that the compact set $K$ satisfies the following geometrical condition (2.1).
Then for any $f(x)$ in $\mathcal{A}(K)$ we can find $u(x)$ in $\mathcal{A}(\Omega)$ such that $P(D)u(x)=f(x)$

holds in $\Omega$ .
(2.1) For any $x_{0}$ in $\partial\Omega$ where $P_{m}(grad_{x}\varphi(x)|_{x=x_{0}})=0$ holds,

the bicharacteristic curve $b_{(x_{0}.grad_{x\varphi}(x)|_{x=x_{0}})}$ of $P(D)$

issuing from $(x_{0}, grad_{x}\varphi(x)|_{x=x_{0}})$ never intersects $\Omega$ .
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PROOF. We make the essential use of the good elementary solution
constructed in Theorem 1.2. For that purpose we first extend $f(x)$ to whole
space $R^{n}$ by $f(x)\theta(-\varphi(x))$ , here $\theta(t)$ denotes the l-dimensional Heaviside
function. We also denote $f(x)\theta(-\varphi(x))$ by $f(x)$ . It is clear that the n-
dimensional hyperfunction $\theta(-\varphi(x))$ is well-defined, since $grad_{x}\varphi(x)\neq 0$ when
$\varphi(x)=0$ . Moreover the hyperfunction $f(x)$ has compact support $K$ by the
definition.

Now consider one of the good elementary solutions of $P(D)$ , e. g., $E_{+}(x)$

and denote it by $E(x)$ for short. Then we define a hyperfunction $\tilde{u}(x)$ by the
following convolution of $\tilde{f}(x)$ and $E(x)i$ . $e.$ , a special kind of $integra1\sim$ along
fibers of hyperfunctions (Sato [1] \S 6.5), which makes sense, since $f(x)$ has
compact support.

(2.2) $\tilde{u}(x)=\int E(x-y)f(y)dy$ .

Then it is clear by (1.3) that $P(D)\tilde{u}(x)=f(x)$ holds on $R^{n}$ .
Next we investigate the regularity property of $\tilde{u}(x)$ . Here we make full

use of the theory of microfunctions, especially Sato’s lemma on the regularity
of integrals along fibers. For that purpose we $\sim first$ determine where the
singularities of $2n$-variable hyperfunction $E(x-y)f(y)$ locate. First note that

\langle 2.3) S. S. $f(x)\subset\{(x, \xi)\in S^{*}R^{n}|\varphi(x)=0, \xi=\pm grad_{x}\varphi(x)\}$

and

\langle 2.4) S. S. $ E(x)\subset$ { $(x,$ $\xi)\in S^{*}R^{n}|x=0$ or $x=tgrad_{\xi}P_{m}(\xi)(t\geqq 0),$ $P_{m}(\xi)=0$}

hold by their definitions. Then taking (2.3) and (2.4) into account it is easily
verified by the definition of the multiplication of two hyperfunctions (Sato

[4] \S 6.4) that

(2.5) S.S. E $(x-y)f(y)\subset\bigcup_{j=\iota}^{5}S_{j}$ ,

where

(i) $S_{1}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y,$ $\varphi(y)=0,$ $(\xi, \eta)=(\alpha\zeta, -\alpha\zeta\pm\beta grad_{y}\varphi(y))$ ,
where $\zeta$ is any non-zero real cotangent vector and $\alpha+\beta=1$ with
$\alpha,$ $\beta\geqq 0$ },

(ii) $S_{2}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y. \varphi(y)\neq 0, \xi=-\eta\neq 0\}$ ,
(iii) $S_{3}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y+tgrad_{\zeta}P_{m}(\zeta)(t\geqq 0),$ $P_{m}(\zeta)=0,$ $\varphi(y)=0$ ,

$(\xi, \eta)=(\alpha\zeta, -\alpha\zeta\pm\beta grad_{y}\varphi(y))$ , where $\zeta$ is a non-zero real cotangent
vector and $\alpha+\beta=1$ with $\alpha,$ $\beta\geqq 0$},

(iv) $S_{4}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y+tgrad_{\zeta}P_{m}(\zeta)(t\geqq 0),$ $P_{m}(\zeta)=0,$ $\varphi(y)\neq 0$ ,
$\xi=-\eta=\zeta\neq 0\}$

and
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(v) $S_{5}=\{(x, y;\xi, \eta)\in S^{*}R^{ln}|\varphi(y)=0$ , $(\xi, \eta)=(0, \pm grad_{y}\varphi(y)),$ $x\neq y+$

$tgrad_{\zeta}P_{m}(\zeta)$ for any $t\geqq 0$ and real non-zero cotangent vector $\zeta$

satisfying $P_{m}(\zeta)=0$}.
$After\overline{j}these$ preparatory investigation of singularities of the integrand of the
integral (2.2) along fibers we apply Lemma 1.3 to the integral. Then we have

(2.6) S.S. $\tilde{u}(x)\subset\{(x, \xi)\in S^{*}R^{n}|$ there exists $y$ such that $\varphi(y)=0$ ,
$\xi=\pm grad_{y}\varphi(y)$ and $x=y+tgrad_{\xi}P_{m}(\xi)(t\geqq 0)$ },

since the sets $S_{2},$ $S_{4}$ , S\’o do not give any contributions to S. S. $\tilde{u}(x)$ by Lemma
1.3 and since the effect to S. S. $\tilde{u}(x)$ of the sets $S_{1}$ and $S_{3}$ after the integration
is obviously contained in the right hand side of (2.6) by Lemma 1.3 also.

Combining the geometrical condition on $\Omega(2.1)$ and the above relation
(2.6) we have proved that $S^{*}\Omega\cap S$ . S. $\tilde{u}(x)=\emptyset$ . Especially this implies by the
definition that the hyperfunction $\tilde{u}(x)$ is real analytic in $\Omega$ . Therefore denot-
ing the restriction of $\tilde{u}(x)$ to $\Omega$ by $u(x)$ , we have the required real analytic
solution $u(x)$ of the equation $P(D)u(x)=f(x)$ in $\Omega$ . This completes the proof
of Lemma 2.1.

Next we improve this lemma a little by using both good elementary
solutions of $P(D)$ . Not only the result given in the following Lemma 2.2,
which plays an essential role in later sections, but also its method of the
proof is of much importance, since the method of the proof of this lemma
will be regarded as a model of the proofs of the theorems in this section and
also in later sections.

LEMMA 2.2. Assume that a compact set $K$ is the closure of the open set
$\Omega=\{x|\varphi(x)<0\}$ , where $\varphi(x)$ is a real valued real analytic function defined in
a neighbourhood of $K$ satisfying $grad_{x}\varphi(x)\neq 0$ on $\partial\Omega$ . Suppose that the dif-
ferential operator $P(D)$ satisfies conditions (1.1) and (1.2) and that $K$ satisfies
the following geometrical condition (2.7). Then for any $f(x)$ in $\mathcal{A}(K)$ we can
find $u(x)$ in $\mathcal{A}(\Omega)$ such that $P(D)u(x)=f(x)$ holds in $\Omega$ .
(2.7) For any characteristic boundary point $x_{0},$

$i$ . $e.$ , the boundary point
where $P_{m}(grad_{x}\varphi(x)|_{x=x_{0}})=0$ holds, the bicharacteristic curve
6( $x_{0}.grad_{x\varphi}(x)|x=x0^{)}$ of $P(D)$ issuing from $(x_{0}, grad_{x}\varphi(x)|_{x=x_{0}})$ inter-
sects $\Omega$ in an open interval.

REMARK. It is clear by condition (2.7) and the definition of bicharacter $\cdot$

istics that the bicharacteristic curve $l_{(x_{0}.-grad_{x\varphi}(x)|x=xo^{)}}$ of $P(D)$ issuing from
$(x_{0}, -grad_{x}\varphi(x)x=x_{0})$ also intersects $\Omega$ in an open interval.

PROOF OF LEMMA 2.2. As in the proof of Lemma 2.1 we extend $f(x)$ to
$R^{n}$ by $f(x)=f(x)\theta(-\varphi(x))$ . On the other hand by condition (2.7) we can de-
compose the set $N=\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega, P_{m}(\xi)=0, \xi=\pm grad_{x}\varphi(x)\}$ into the
form $N_{+}\cup N_{-}$ , where $N_{+}=\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega,$ $P_{m}(\xi)=0$ . $\xi=\pm grad_{x}\varphi(x)$
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and the positive half side of the bicharacteristic curve $l_{(x.\xi)}^{+}$ : $x+tgrad_{\xi}P_{m}(\xi)$

$(t\geqq 0)$ issuing from $(x, \xi)$ does not intersect $\Omega$ } and $ N_{-}=\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega$ ,
$P_{m}(\xi)=0,$ $\xi=\pm grad_{x}\varphi(x)$ and the negative half side of the bicharacteristic
curve $b_{(x.\xi)}^{-}$ : $x+tgrad_{\dot{\sigma}}P_{m}(\xi)(t\leqq 0)$ issuing from $(x, \xi)$ does not intersect $\Omega$ }.
Since the boundary of $\Omega$ is smooth, we easily see that the sets $N_{+}$ and $N_{-}$

are closed. In fact, assume that $(x_{n}, \xi_{n})\in N_{+}$ converges to $(x, \xi)\in N$ but
that $(x, \xi)eN_{+}$ , then the positive half side of the bicharacteristic curve of
$P(D)$ through $(x, \xi)$ intersects $\Omega$ . Hence the smoothness of the boundary of
$\Omega$ assures that a convex cone with vertex at $x$ containing the positive half
side of the bicharacteristic curve through $(x, \xi)$ is contained near $x$ in $\Omega$ .
Therefore the half line $x+tgrad_{\xi}P_{m}(\xi)|_{\xi=\xi_{n}}(t\geqq 0)$ intersects $\Omega$ for sufficiently
large $n$ by the continuity of $grad_{\xi}P_{m}(\xi)$ . This immediately implies that
$(x_{n}, \xi_{n})\not\in N_{+}$ for sufficiently large $n$ . This is a contradiction and we have
proved that the set $N_{+}$ is closed. We also conclude that $N_{-}$ is closed by the
same reasoning.

We use this decomposition of the set $N$ as follows. Since sheaf $C$ is
flabby, the vanishing of $H^{1}(R^{n}, \mathcal{A})$ proves the existence of hyperfunctions

$\tilde{f}_{+}(x)$ and $f_{-}(x)$ such that

(2.8) S. S. $(f(x)-f^{\simeq}+(x)-f_{-}(x))=\emptyset$ ,

(2.9) S. S. $\tilde{f}_{+}(x)\cap N\subset N_{+}$ and S. S. $f_{-}(x)\cap N\subset N_{-}$ ,

(2.10) S. S. $\tilde{f}_{+}(x)$ , S. S. $f_{-}(x)\subset S_{\partial\Omega}^{*}R^{n}$ , where $S_{\partial\rho}^{*}R^{n}$ denotes the conormal
bundle $\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega, \xi=\pm grad_{x}\varphi(x)\}$ .

(About the flabbiness of sheaf $C$ we refer to Kashiwara [1]. See also Sato,
Kawai and Kashiwara [1]. where the shortest proof using the theory of
elliptic pseudo-differential operators is given.)

Using these two hyperfunctions $f_{+}(x)$ and $f_{-}(x)$ , we define $v(x)$ by the
following sum of two integrals along fibers, which make sense as those of
microfunctions. (Cf. Sato [4] \S 6.5.)

(2.11) $v(x)=\int E_{+}(x-y)f_{+}(y)dy+\int E_{-}(x-y)f_{-}(y)dy$ .
Now we investigate the regularity property of $v(x)$ , i. e., the support of the
microfunction $v(x)$ . It is performed in a similar way to the proof of Lemma
2.1 as follows. In fact we easily see that

(2.12) S. S. $E_{+}(x-y)\tilde{f}_{+}(y)\subset\bigcup_{j=1}^{l}S_{j,+}$ ,

where
(i) $S_{1,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y,$ $(y, \theta)\in S$ .S. $\tilde{f}_{+}(y),$ $(\xi, \eta)=(\alpha\zeta, -\alpha\zeta+\beta\theta)_{\nu}$

where $\zeta$ is any non-zero real cotangent vector, $\theta=grad_{y}\varphi(y)$ or
$-grad_{y}\varphi(y)$ , and $\alpha+\beta=1$ with $\alpha,$ $\beta\geqq 0$ },



Global existence of real analytic solutions (I) 493

(ii) $S_{2,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y, \varphi(y)\neq 0, \xi=-\eta\}$ ,

(iii) $S_{3,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y+tgrad_{\zeta}P_{m}(\zeta)(t\geqq 0),$ $P_{m}(\zeta)=0,$ $(y, \theta)$

$\in S$ . S. $\tilde{f}_{+}(y),$ $(\xi, \eta)=(\alpha\zeta, -\alpha\zeta+\beta\theta)$ , where $\zeta$ is a non-zero real co-
tangent vector, $\theta=grad_{y}\varphi(y)$ or $-grad_{y}\varphi(y)$ , and $\alpha+\beta=1$ with
$\alpha,$ $\beta\geqq 0$ },

(iv) $S_{4,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y+tgrad_{\zeta}P_{m}(\zeta)(t\geqq 0),$ $P_{m}(\zeta)=0,$ $\varphi(y)\neq 0_{r}$

$\xi=-\eta=\zeta\neq 0\}$

and
(v) $S_{5,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|\xi=0,$ $(y, \eta)\in S$ . S. $\tilde{f}_{+}(y),$ $ x\neq y+tgrad_{\zeta}P_{m}(\zeta\rangle$

for any $t\geqq 0$ and real cotangent vector $\zeta$ satisfying $P_{m}(\zeta)=0$},

and

(2.13) S. S. $E_{-}(x-y)f_{-}(y)\subset\bigcup_{J=1}^{5}S_{j,-}$ ,

where the sets $S_{j,-}$ are defined by changing the sign of $t$ and replacing
S. S. $f_{+}(y)$ by S. S. $f_{-}(y)$ in the definition of the sets $S_{j,+}$ .

Combining Lemma 1.3 with (2.12) and (2.13), we conclude that

(2.14) S. S. $v(x)$

$\subset\{(x, \xi)\in S^{*}R^{n}|x=y+tgrad_{\xi}P_{m}(\xi)(t\geqq 0), P_{m}(\xi)=0, (y, \xi)\in N_{+}\}$

$\cup\{(x, \xi)\in S^{*}R^{n}|x=y+tgrad_{\xi}P_{m}(\xi)(t\leqq 0), P_{m}(\xi)=0, (y, \xi)\in N_{-}\}$ .
This immediately implies by the definitions of the sets $N_{+}$ and $N_{-}$ that

(2.15) S.S. $ v(x)\cap S^{*}\Omega=\emptyset$ .
On the other hand the relations (2.8) and (1.3) imply that

(2.16) $P(D)v(x)=f(x)$

holds as an equation between microfunctions. Choose $V(x)\in \mathcal{B}(R^{n})$ so that
$\beta(V(x))=v(x)$ . The existence of such a hyperfunction $V(x)$ is assured again by
the following exact sequence (2.18) and the well known fact that $H^{1}(R^{n}, \mathcal{A})=0$.
Then (2.16) means the following relation:

(2.17) $P(D)V(x)=f(x)+g(x)$ ,

where $g(x)\in \mathcal{A}(R^{n})$ , since we have the following exact sequence (2.18) as one
of the fundamental properties of sheaf $C$.

(2.18)
$0\rightarrow \mathcal{A}\rightarrow \mathcal{B}\rightarrow^{\beta}\pi_{*}C\rightarrow 0$

,

where $\pi$ denotes the cannonical surjection from the cotangential sphere bundle
to the base space and $\pi_{*}C$ denotes the direct image of sheaf $C$ under this
mapping. (See Sato $[2]\sim[5].$) Note that the relation $\beta(V(x))=v(x)$ and the
relation (2.15) imply that $V(x)$ is real analytic in $\Omega$ .

Restricting $g(x)$ to a sufficiently large ball $B$ containing $K$ in its interior
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we can apply Lemma 2.1 and find a real analytic function $w(x)$ defined in the
interior of $B$ , which satisfies $P(D)w(x)=g(x)$ there. Subtracting $w(x)$ from
$V(x)$ we obtain by (2.17) the required real analytic function $u(x)$ satisfying
the equation $P(D)u(x)=f(x)$ in $\Omega$ , since $V(x)$ is real analytic in $\Omega$ . This
completes the proof of the lemma.

Now the following theorem, which is only a restatement of Lemma 2.2,
is clear.

THEOREM 2.3. Suppose that the differential operator $P(D)$ satisfies conditions
\langle 1.1) and (1.2). Assume that a compact set $K\subset R^{n}$ has a fundamental system

of neighbourhoods with smooth boundary $\Omega_{\nu}$ , where $\Omega_{\nu}$ is represented as
$\{x\in R^{n}|\varphi_{\nu}(x)<0\}$ by a real valued real analytic function $\varphi_{\nu}(x)$ defined in a
neighbourhood of $\overline{\Omega}_{\nu}$ and $\Omega_{\nu}$ satisfies the following geometrical condition (2.19).
Then $P(D)\mathcal{A}(K)=\mathcal{A}(K)$ holds.

$|(2.19)$ At any characteristic boundary point $x_{0}$ of $\Omega_{\nu}$ , the bicharacteristic
curve of $P(D)$ issuing from $(x_{0}, grad_{x}\varphi_{\nu}|_{x=x_{0}})$ intersects $K$ in a
closed interval.

The proof is similar to that of Lemma 2.2 and we omit the details.
REMARK. If $K$ is a compact convex set in $R^{n}$ , then condition (2.19) is

clearly satisfied.
Now we consider the case where $\partial\Omega$ has some singularities in Lemma 2.1,

namely we investigate the case where the compact set $K$ is the closure of

an open set $\Omega$ of the form $\cap^{p}\Omega_{j}$ , where each $\Omega_{j}$ has smooth boundary and
$j=1$

$\Omega_{j}$ and $\Omega_{k}$ intersects in general position.
THEOREM 2.4. Suppose that the differential operator $P(D)$ satisfies conditions

\langle 1.1) and (1.2). Assume that a compact set $K\subset R^{n}$ is the closure of an open set
$\Omega=\cap\Omega_{j}p$ where each $\Omega_{j}$ satisfies the following regularity conditions (2.20) and

$j=1$

$\ovalbox{\tt\small REJECT}(2.21)$ . Moreover we assume that the compact set $K$ satisfies the following geomet-
rical condition (2.22). Then for any $f(x)$ in $\mathcal{A}(K)$ we can find $u(x)$ in $\mathcal{A}(\Omega)$

such that $P(D)n(x)=f(x)$ holds in $\Omega$ .
$’(2.20)$ $\Omega_{j}$ is represented as $\{x\in R^{n}|\varphi_{j}(x)<0\}$ by a real valued real

analytic function $\varphi_{j}(x)$ defined in a neighbourhood of $\overline{\Omega}_{j}$ .
\langle 2.21) $\{grad_{x}\varphi_{J_{q}}(x)\}_{q=1}^{k}$ are linearly independent as far as $\varphi_{j_{1}}(x)=\ldots=$

$\varphi_{j_{k}}(x)=0$ .
(2.22) If $x_{0}$ satisfies $\varphi_{j_{1}}(x)=$ $=\varphi_{j_{k}}(x)=0$ then for any non-zero $\theta$ that

is a linear combination of $grad_{x}\varphi_{j_{1}}(x)|_{x=x_{0}},$ $\cdots$ $grad_{x}\varphi_{j_{k}}(x)|_{x=x_{0}}$

and that satisfies $P_{m}(\theta)=0$ , the bicharacteristic curve of $P(D)$

through $(x_{0}. \theta)$ intersects $\Omega$ in an open interval.
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PROOF. By using conditions (2.20) and (2.21) we extend $f(x)$ to $R^{n}$ by
$;(x)=f(x)\cdot\theta(-\varphi_{1}(x))\cdot\ldots\theta(-\varphi_{p}(x))$ . This multiplication is possible by con-
dition (2.21). By this definition we have

(2.23) S. S. $f(x)\subset\bigcup_{q=1}^{p}\{(x, \xi)\in S^{*}R^{n}|\varphi_{j}(x)\leqq 0(j=1, \cdots, p),$ $\varphi_{j_{1}}(x)=$ $=\varphi_{J_{q}}(x)$

$=0,$ $\xi$ belongs to the vector space spanned by $\{\pm grad_{x}\varphi_{j_{k}}(x)\}_{k=1}^{q}\}$ .

In the sequel we denote the right hand side of (2.23) by $M$ for short.
We also denote by $N$ the set $\{(x, \xi)\in M|P_{m}(\xi)=0\}$ . Then condition (2.22)

assures us that we can decompose the set $N$ into the union of two closed set
$N_{+}$ and $N_{-}$ just in the same way as in the proof of Lemma 2.1 using the

orientation of the bicharacteristic curves of $P(D)$ through $(x, \xi)$ .
Now we can proceed in a similar way to the proof of Lemma 2.1. We first

decompose $f(x)$ into the form $f_{+}(x)+f_{-}(x)$ so that

(2.24) S. S. $(f(x)-\tilde{f}_{+}(x)-f_{-}(x))=\emptyset$ ,

(2.25) S. S. $\tilde{f}_{+}(x)\cap N\subset N_{+}$ and S. S. $f_{-}(x)\cap N\subset N_{-}$ ,

(2.26) S. S. $f_{+}(x)$ , S. S. $f_{-}(x)\subset M$ .
Secondly we define a microfunction $v(x)$ by the following integral:

(2.27) $v(x)=\int E_{+}(x-y)\tilde{f}_{+}(y)dy+\int E_{-}(x-y)f_{-}(y)dy$ .

Then condition (2.24) assures us that $P(D)v(x)=f(x)$ holds as an equation
between microfunctions. Conditions (2.25) and (2.26) also prove that

(2.28) S.S. $ v(x)\cap S^{*}\Omega=\emptyset$ .
Therefore we have a hyperfunction $V(x)$ which is real analytic in $\Omega$ and
satisfies

(2.29) $P(D)V(x)=f(x)+g(x)$

for some $g(x)$ in $\mathcal{A}(R^{n})$ . Applying Lemma 2.1 as in the proof of Lemma 2.2
to eliminate $g(x)$ from (2.29), we obtain a required real analytic solution $u(x)$

satisfying $P(D)u(x)=f(x)$ in $\Omega$ . This completes the proof of Theorem 2.4.
REMARK. We can also restate Theorem 2.4 in a form analogous to

Theorem 2.3 so that it assures the existence of solutions in the space $\mathcal{A}(K)$ .
However, the modification is clear, so we omit the details.

We can also weaken the regularity condition of the boundary of $K$ as in
the following theorem, which is better to be stated after Theorem 3.1 logically.
However we have preferred to state it here since it gives a good existence
theorem for the space $\mathcal{A}(K)$ .

THEOREM 2.5. Suppose that the differential operator $P(D)$ satisfies conditions
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\langle 1.1) and (1.2). Assume that the compact set $K$ has a fundamental system of
open neighbourhoods $\{\Omega_{j}\}_{j=1}^{\infty}$ which satisfies the following conditions (2.30) and
\langle 2.31). Then $P(D)\mathcal{A}(K)=\mathcal{A}(K)$ holds.

(2.30) For any $x_{0}$ in $\partial\Omega_{j}$ we can insert an open convex cone with vertex at
$x_{0}$ into $\Omega_{j}$ locally.

(2.31) Any bicharacteristic curve of $P(D)$ issuing from $(x, \xi)$ , where $x\in\partial\Omega_{j}$

and $P_{m}(\xi)=0$ , intersects $\Omega_{k}$ in an open interval for some $k$ .
The proof of this theorem is given by the aid of the flabbiness of the

sheaf of germs of hyperfunctions. It is just the same as that of Theorem
3.1 in the next section, hence we omit the detailed proof here. We also refer
the reader to Theorem 6.1 in \S 6, where no regularity conditions on the
boundary of $K$ are assumed.

\S 3. Global existence of real analytic solutions (II) –the open case–

In this section we prove the global existence of real analytic solutions of
the equation $P(D)u(x)=f(x)$ where the differential operator $P(D)$ satisfies
conditions (1.1) and (1.2) and the known function $f(x)$ is real analytic in a
relatively compact open set $\Omega\subset R^{n}$ , whose conditions are specified later on.
The main idea of our proof is as follows: firstly we prove the surjectivity
of the mapping $P(D):\mathcal{A}(\Omega)/\mathcal{A}(\overline{\Omega})\rightarrow \mathcal{A}(\Omega)/\mathcal{A}(\overline{\Omega})$ and secondly we apply Lemma
2.2 to obtain the surjectivity of the mapping $P(D):\mathcal{A}(\Omega)\rightarrow \mathcal{A}(\Omega)$ . The sur-
jectivity of the mapping $P(D):\mathcal{A}(\Omega)/\mathcal{A}(\overline{\Omega})\rightarrow \mathcal{A}(\Omega)/\mathcal{A}(\overline{\Omega})$ is proved in an
analogous way to the proof of Theorem 2.4. (Moreover concerning the first
part of the proof we can sometimes prove the surjectivity of the mapping
$P(D):\mathcal{A}(\Omega)/\mathcal{A}(K)\rightarrow \mathcal{A}(\Omega)/\mathcal{A}(K)$ for sufficiently large compact convex set $K$

or the surjectivity of the mapping $P(D):\mathcal{A}(\Omega)/\leftrightarrow t(R^{n})\rightarrow \mathcal{A}(\Omega)/\mathcal{A}(R^{n})$ . See
the proof of Theorem 3.1 below.) One essential difference from the proof of
Theorem 2.4 is that we should use in this case the flabbiness of sheaf of the
germs of hyperfunctions as well as that of sheaf $C$.

THEOREM 3.1. Suppose that the differential operator $P(D)$ satisfies conditions
(1.1) and (1.2). Assume that a relatively compact open set $\Omega$ with $C^{1}$ -boundary

satisfies the following geometrical condition (3.1). Then $P(D)\mathcal{A}(\Omega)=\mathcal{A}(\Omega)$

holds.

(3.1) Any bicharacteristic curve $A_{(x,\xi)}$ of $P(D)$ issuing from $(x, \xi)$

intersects $\Omega$ in an open interval, where $x$ belongs to $\partial\Omega$ and $\xi$

is a non-zero real cotangent vector satisfying $P_{m}(\xi)=0$ .
REMARK 1. As is clear from the method of the proof given below, the

regularity condition on the boundary of $\Omega$ can be relaxed. In fact it is suf-
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ficient to assume condition (2.30).
REMARK 2. Taking Remark 1 into account we clearly see that for any

relatively compact open convex set $\Omega$ in $R^{n}P(D)\mathcal{A}(\Omega)=\mathcal{A}(\Omega)$ holds if $P(D)$

satisfies conditions (1.1) and (1.2).

PROOF OF THEOREM 3.1. Utilizing the flabbiness of the sheaf of germs
of hyperfunctions we first extend $f(x)$ to $R^{n}$ so that the extension $f(x)$ co-
incides with $f(x)$ in $\Omega$ and has its support in $\overline{\Omega}$ . Then it is clear that the
following relation (3.2) holds.

(3.2) S.S. $f(x)\subset\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega\}$ .
In the sequel we denote by $M$ the right hand side of (3.2). We also denote
by $N$ the set $\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega, P_{m}(\xi)=0\}$ . By the regularity condition
on $\partial\Omega$ and assumption (3.1) we can decompose the set $N$ into the union of
two closed set $N_{+}$ and $N_{-}$ as in the proof of Lemma 2.2, where $ N_{+}=\{(x, \xi)\in$

$S^{*}R^{n}|x\in\partial\Omega,$ $P_{m}(\xi)=0$ , the positive half side of the bicharacteristic curve
$B_{(x.\xi)}^{+}$ : $x+tgrad_{\xi}P_{m}(\xi)(t\geqq 0)$ issuing from $(x, \xi)$ does not intersect $\Omega$ } and
$N_{-}=\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega,$ $P_{m}(\xi)=0$ , the negative half side of the bicharac-
teristic curve $\theta_{(x.\xi)}^{-}$ : $x+tgrad_{\xi}P_{m}(\xi)(t\leqq 0)$ issuing from $(x, \xi)$ does not inter-
sect $\Omega$ }. The regularity condition on $\partial\Omega$ is used to assure the closedness of
the sets $N_{+}$ and $N_{-}$ . (Cf. the proof of Lemma 2.2.) By the aid of the flab-
biness of sheaf $C$ and the vanishing of $H^{1}(R^{n}, \mathcal{A})$ we can decompose $f(x)$ into
the sum of two hyperfunctions $f_{+}(x)+f_{-}(x)$ as microfunctions so that

(3.3) S. S. $\tilde{f}_{+}(x)$ , S. S. $f_{-}(x)\subset M$ ,

(3.4) S. S. $\tilde{f}_{+}(x)\cap N\subset N_{+}$ and S. S. $f_{-}(x)\cap N\subset N_{-}$ .
Consider the microfunction $v(x)$ defined by the following integral:

(3.5) $v(x)=\int E_{+}(x-y)f_{+}(y)dy+\int E_{-}(x-y)f_{-}(y)dy$ .
Then by (1.3) and the definition of $\tilde{f}_{+}(x)$ and $f_{-}(x)$ we have

(3.6) $P(D)v(x)=f(x)$

as microfunctions defined on $S^{*}R^{n}$ . Hence what remains to prove is the
regularity property of $v(x)$ . It is performed in a similar way to the proof
of Lemma 2.2. In fact we easily have also in this case

(3.7) S.S. $E_{+}(x-y)\tilde{f}_{+}(y)\subset\bigcup_{j=1}^{5}S_{j,+}$ ,

where

(i) $S_{1,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y,$ $(\xi, \eta)=(\alpha\zeta, -\alpha\zeta+\beta\theta),$ $(y, \theta)\in$

S. S. $\tilde{f}_{+}(y)$ where $\zeta$ is any non-zero real cotangent vector and
$\alpha+\beta=1$ with $\alpha,$ $\beta\geqq 0$ },
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(ii) $S_{2,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y, y\not\in\partial\Omega, \xi=-\eta\neq 0\}$ ,
(iii) $S_{3,+}=\{(x, y;\xi, \eta)\in S^{*}R^{zn}|x=y+tgrad_{\zeta}P_{m}(\zeta)$ $(t\geqq 0)$ , $P_{m}(\zeta)=0_{f}$

$(\xi, \eta)=(\alpha\zeta, -\alpha\zeta+\beta\theta)$ , $(y, \theta)\in S$ . S. $f_{+}(y)$ , where $\zeta$ is a non-zero
real cotangent vector and $\alpha+\beta=1$ with $\alpha,$ $\beta\geqq 0$ },

(iv) $S_{4,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y+tgrad_{\zeta}P_{m}(\zeta)$ $(t\geqq 0)$ , $P_{m}(\zeta)=0$,
$y\not\in\partial\Omega,$ $\xi=-\eta=\zeta\neq 0$}.

and
(v) $S_{5,+}=\{(x, y;\xi, \eta)\in S^{*}R^{zn}|\xi=0,$ $(y, \eta)\in S$.S. $f_{+}(y),$ $ x\neq y+tgrad_{\zeta}P_{m}(\zeta\rangle$

for any $t\geqq 0$ and real non-zero cotangent vector $\zeta$ satisfying
$P_{m}(\zeta)=0\}$ .

Concerning S. S. $E_{-}(x-y);_{-}(y)$ we have the analogous relation

(3.8) S.S. $E_{-}(x-y)f_{-}(y)\subset\bigcup_{j=1}^{5}S_{j,-}$ ,

where the sets $S_{j}$,-are defined by changing the sign of the parameter $t$ and
replacing S. S. $f_{+}(y)$ by S. S. $f_{-}(y)$ in the definition of the sets $S_{j,+}$ .

Now we combine Lemma 1.3 with relations (3.7) and (3.8). Since the sets
$S_{2,\pm},$ $S_{4,\pm}$ and $S_{5,\pm}$ do not give any contributions to S. S. $v(x)$ by virtue of
Lemma 1.3, we conclude by the aid of Lemma 1.3 that

(3.9) S. S. $v(x)\subset()_{1}A_{j}r=4$

where

(i) $A_{1}=\{(x, \xi)\in S^{*}R^{n}|(x, \xi)\in S.S.f_{*}(x)\}$ ,
(ii) $A_{2}=$ { $(x,$ $\xi)\in S^{*}R^{n}|(x,$ $\xi)\in S$ . S. $f_{-}(x)$ },
(iii) $A_{3}=\{(x, \xi)\in S^{*}R^{n}|x=y+tgrad_{\xi}P_{m}(\xi)(t\geqq 0),$ $P_{m}(\xi)=0$ ,

$(y, \xi)\in S$ . S. $\tilde{f}_{+}(y)$ },
and
(iv) $A_{4}=\{(x, \xi)\in S^{*}R^{n}|x=y+tgrad_{\xi}P_{m}(\xi)(t\leqq 0),$ $P_{m}(\xi)=0$,

$(y, \xi)\in S$ . S. $f_{-(y)\}}$ .
Therefore we have proved that S. S. $ v(x)\cap S^{*}\Omega=\emptyset$ by (3.1) and (3.9). Hence,
taking (3.6) into account, we can find a hyperfunction $V(x)$ defined on $R^{n}$

such that

(3.10) $V(x)$ is real analytic in $\Omega$

and

(3.11) $P(D)V(x)=f(x)+g(x)$ , where $g(x)$ belongs to $\mathcal{A}(R^{n})$ .
These two relations imply that the mapping $P(D):\mathcal{A}(\Omega)/\mathcal{A}(R^{n})\rightarrow \mathcal{A}(\Omega)/\mathcal{A}(R^{n})$

is surjective under condition (3.1). Then we can apply Lemma 2.1 to eliminate
$g(x)$ as in the proof of Lemma 2.2 and conclude that the differential operator
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$P(D):\mathcal{A}(\Omega)\rightarrow \mathcal{A}(\Omega)$ is surjective under condition (3.1). This completes the
proof of the theorem.

Since Theorem 3.1 seems to require too much information concerning the
global shape of $\Omega$ , we modify Theorem 3.1 as follows:

THEOREM 3.2. Suppose that the differential operator $P(D)$ satisfies conditions
(1.1) and (1.2). Let a relatively compact open set $\Omega$ have the form $\{x\in R^{n}|\varphi(x)<0\underline{\}}$

for a real valued real analytic function $\varphi(x)$ defined in a neighbourhood of $\Omega$

satisfying $grad_{x}\varphi(x)\neq 0$ on $\partial\Omega$ . If the open set $\Omega$ satisfies condition (2.7) in
Lemma 2.2 and condition (3.12) below, then $P(D)\mathcal{A}(\Omega)=\mathcal{A}(\Omega)$ holds.

(3.12) There exists a family of open sets $\{N_{j}\}_{j=1}^{p}$ which satisfy the fol-
lowing: For any point $x$ in $\partial\Omega$ we can find some $j$ such that $N_{j}$

is a neighbourhood of $x$ and that for any $bicharacter_{-}istic$ curve
$b_{(x,\xi)}$ of $P(D)$ issuing from $(x, \xi)$ with $P_{m}(\xi)=0,$ $l_{(x,\xi)}\cap(\Omega\backslash \{x\})\cap N_{j}$

is connected.

REMARK. If $\Omega$ is pseudo-convex with respect to $P(D)$ in the sense of
H\"ormander (H\"ormander [1] Definition 8.6.1), then condition (3.12) is clearly
satisfied. In fact the notion of pseudo-convexity in the sense of H\"ormander

concerns only the second order derivatives of $\varphi(x)$ along the bicharacteristics
of $P(D)$ , though condition (3.12) concerns the higher order derivatives also.
The advantages of the way of presentation of condition (3.12) will be better
realized when we treat linear differential operators with variable coefficients.
(Kawai [7], [8]. See also Theorem 3.3’ and Corollary 3.4 of Kawai [3].)

PROOF OF THEOREM 3.2. We first modify the good elementary solutions
of $P(D)$ so that they have smaller singular support. For that purpose we
should allow them not to satisfy (1.3) but to satisfy only (3.13) and (3.14) below.
By the flabbiness of sheaf $C$ we can cut off the microfunction $E_{+}(x)$ to obtain
a microfunction $\tilde{E}_{+}(x)$ such that

(3.13) $P(D)\tilde{E}_{+}(x)=\delta(x)+\nu_{+}(x)$ ,

where
S. S. $\tilde{E}_{+}(x)\subset\{(x, \xi)\in S^{*}R^{n}|x=0$ or $x=tgrad_{\xi}P_{m}(\xi)(0\leqq t\leqq\epsilon)$ ,
$P_{m}(\xi)=0\}$

and
S. S. $\nu_{+}(x)\subset\{(x, \xi)\in S^{*}R^{n}|x=\epsilon grad_{\xi}P_{m}(\xi), P_{m}(\xi)=0\}$ .
Here $\epsilon$ is a sufficiently small positive constant which will be
fixed later.

In the same way we can obtain a microfunction $\tilde{E}_{-}(x)$ which satisfies the
following relation:

(3.14) $P(D)\tilde{E}_{-}(x)=\delta(x)+\nu_{-}(x)$ ,
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where
S. S. $\tilde{E}_{-}(x)\subset\{(x, \xi)\in S^{*}R^{n}|x=0$ or $x=tgrad_{\xi}P_{m}(\xi)(-\epsilon\leqq t\leqq 0)$ ,
$P_{m}(\xi)=0\}$

and
S. S. $\nu_{-}(x)\subset\{(x, \xi)\in S^{*}R^{n}|x=-\epsilon grad_{\xi}P_{m}(\xi), P_{m}(\xi)=0\}$ .

By condition (3.12) we can find a positive $\epsilon$ so small that we can decompose
the set $N=\{(y, \xi)\in S^{*}R^{n}|y\in\partial\Omega, P_{m}(\xi)=0\}$ into the union of two closed sets
$N_{+}$ and $N_{-}$ , where $ N_{+}=\{(y, \xi)\in S^{*}R^{n}|y\in\partial\Omega$ and the portion of the bi-
characteristic curve $l_{(\dot{y}^{+}\xi)}^{e}$ : $x=y+tgrad_{\xi}P_{m}(\xi)(0\leqq t\leqq\epsilon)$ issuing from $(y, \xi)$

with $P_{m}(\xi)=0$ does not intersect $\Omega$ } and $ N_{-}=\{(y, \xi)\in S^{*}R^{n}|y\in\partial\Omega$ and the
portion of the bicharacteristic curve $j_{(\dot{y}^{-}\xi)}^{\epsilon}$ ; $x=y+tgrad_{\xi}P_{m}(\xi)(-\epsilon\leqq f\leqq 0)$

issuing from $(y, \xi)$ with $P_{m}(\xi)=0$ does not intersect $\Omega$ }.
Using this decomposition of the set $N$ we decompose $f(x)$ into the sum

of two microfunctions $f_{+}(x)$ and $f_{-}(x)$ so that
(3.15) S.S. $\tilde{f}_{+}(x)$ , S.S. $f_{-}(x)\subset\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega\}$

and
(3.16) S. S. $f_{+}(x)\cap N\subset N_{+}$ and S. S. $f_{-}(x)\cap N\subset N_{-}$ .

Now consider a microfunction $v(x)$ defined by the following integrals along
fibers.
(3.17) $v(x)=\int\tilde{E}_{+}(x-y)\tilde{f}_{+}(y)dy+\int\tilde{E}_{-}(x-y)f_{-}(y)dy$ .

As is usual we want to prove that S. S. $ v(x)\cap S^{*}\Omega=\emptyset$ . However, in this
case we should first investigate what equation is satisfied by $v(x)$ . By re-
lations (3.13) and (3.14) we easily obtain

(3.18) $P(D)v(x)=f(x)+\int\nu_{+}(x-y)f_{+}(y)dy+\int\nu_{-}(x-y)f_{-}(y)dy$

as an equation for microfunctions. We study the singularities of

$\int\nu_{+}(x-y);_{+}(y)dy$ and $\int\nu_{-}(x-y)f_{-}(y)dy$ .
We first study that of $\int\nu_{+}(x-y)\tilde{f}_{+}(y)dy$. By (3.13) we have

(3.19) $S.S$ . $\nu_{+}(x-y)f_{+}(y)\subset\bigcup_{J=1}^{3}T_{j,+}$ ,

where

(i) $T_{1,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y+\epsilon grad_{\zeta}P_{m}(\zeta),$ $P_{m}(\zeta)=0,$ $(\xi, \eta)$

$=(\alpha\zeta, -\alpha\zeta+\beta\theta),$ $(y, \theta)\in S.S.f_{+}(y)$ , where $\zeta$ is a non-zero real
cotangent vector and $\alpha+\beta=1$ with $\alpha,$ $\beta\geqq 0$},

(ii) $T_{2,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|x=y+\epsilon grad_{\zeta}P_{m}(\zeta),$ $P_{m}(\zeta)=0,$ $ y\not\in\partial\Omega$ ,
$\xi=-\eta=\zeta\neq 0\}$
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and
(iii) $T_{s,+}=\{(x, y;\xi, \eta)\in S^{*}R^{2n}|\xi=0,$ $(y, \eta)\in S$ . S. $\tilde{f}_{+}(y),$ $x\neq y+\epsilon grad_{\zeta}P_{m}(\zeta)$

with a real cotangent vector $\zeta$ satisfying $P_{m}(\zeta)=0$}.

Therefore applying Lemma 1.3 to $\int\nu_{+}(x-y)\tilde{f}_{+}(y)dy$ we conclude by the
’definition of the set $N_{+}$ that

\langle 3.20) S. S. $\int\nu_{+}(x-y)\tilde{f}_{+}(y)dy\cap S^{*}\Omega_{\delta}=\emptyset$ ,

where $\Omega_{\delta}$ is a sufficiently small open neighbourhood of $\overline{\Omega}$ , since the sets $T_{2,*}$

.and $T_{s,+}$ do not give any contribution to S. S. $\int\nu_{+}(x-y)f_{+}(y)dy$ and the con-

tribution from the set $T_{1,+}$ to $S.S.\int\nu_{+}(x-y)\tilde{f}_{+}(y)dy$ has a distance $\delta(\delta\ll 1)$ to

9. Note that we have assumed in (3.12), so to speak, the strict convexity of
$\Omega$ with respect to the bicharacteristic curve of $P(D)$ and also the analyticity
of the boundary $\partial\Omega$ . Hence we can choose such a positive constant $\delta$ .

The same arguments clearly succeed about the integral $\int\nu_{-}(x-y)f_{-}(y)dy$ .
Hence we have proved that

(3.18) $P(D)v(x)=f(x)+h(x)$ ,

where S. S. $ h(x)\cap S^{*}\Omega_{\delta}=\emptyset$ .
Now we investigate the singularities of $v(x)$ . The investigation is quite

similar to the proof of Theorem 3.1. In fact we have

\langle 3.21) $S.S.\tilde{E}_{+}(x-y)\tilde{f}_{+}(y)\subset\bigcup_{j=1}^{5}S_{j.+}^{\prime}$ ,

where $S_{1,+}^{\prime}$ and $S_{2,+}^{\prime}$ are the same as $S_{1,+}$ and $S_{2,+}$ in (3.7) re-
spectively and the definitions of the sets $S_{3,+}^{\prime},$ $S_{4,+}^{\prime}$ and $S_{6,+}^{\prime}$ are
given by restricting the parameter $t$ to the closed interval $[0, \epsilon]$

in the definitions of the sets $S_{3,+},$ $S_{4,+}$ and $S_{6,+}$ in (3.7) respec-
tively, where $t$ has moved in the half line $[0, \infty$).

Concerning S.S. $E_{-}(x-y)f_{-}(y)$ we have the analogous relation by changing the
sign of the parameter $t$ and replacing S. S. $f_{+}(y)$ by S. S. $f_{-}(y)$ .

Therefore we have by Lemma 1.3

(3.22) S.S. $v(x)\subset\bigcup_{j=1}^{4}A_{j}^{\prime}$

where

(i) $A_{1}^{\prime}=$ { $(x,$ $\xi)\in S^{*}R^{n}|(x,$ $\xi)\in S$ . S. $\tilde{f}_{+}(x)$ }
(ii) $A_{2}^{\prime}=$ { $(x,$ $\xi)\in S^{*}R^{n}|(x,$ $\xi)\in S$ . S. $f_{-}(x)$ }
(iii) $A_{3}^{\prime}=\{(x, \xi)\in S^{*}R^{n}|x=y+tgrad_{\xi}P_{m}(\xi)$ $(0\leqq t\leqq\epsilon)$ , $P_{m}(\xi)=0$ ,

$(y, \xi)\in S$ . S. $\tilde{f}_{+}(y)$ }
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and
(iv) $A_{4}^{\prime}=\{(x, \xi)\in S^{*}R^{n}|x=y+fgrad_{\xi}P_{m}(\xi)(-\epsilon\leqq t\leqq 0),$ $\prime {}_{\iota}P_{m}(\xi)=0$,

$(y, \xi)\in S$ . S. $f_{-(y)\}}$ .
The precise reasonings of obtaining (3.22) from (3.21) and Lemma 1.3 are just
the same as in the proof of Theorem 3.1. hence we do not repeat it here.

By (3.18) and (3.22) we can find hyperfunctions $V(x),$ $H(x)$ and $G(x)$ for
which the following conditions $(3.23)\sim(3.26)$ are satisfied.

(3.23) $V(x)$ is real analytic in $\Omega$ .
(3.24) $H(x)$ is real analytic in $\Omega_{\delta}\supset\overline{\Omega}$ .
(3.25) $G(x)$ belongs to $\mathcal{A}(R^{n})$ .
and

(3.26) $P(D)V(x)=f(x)+H(x)+G(x)$ holds on $R^{n}$

These relations imply that the mapping $P(D):\mathcal{A}(\Omega)/\mathcal{A}(\overline{\Omega})\rightarrow \mathcal{A}(\Omega)/\mathcal{A}(\overline{\Omega})$ is
surjective under condition (3.12) only. Next we use the assumption (2.7) to

eliminate $H(x)+G(x)$ in (3.26). In fact (3.24) and (3.25) immediately imply that
$H(x)+G(x)$ belongs to $\mathcal{A}(\overline{\Omega})$ , hence we can find a real analytic function $w(x)$

in $\Omega$ for which $P(D)w(x)=H(x)+G(x)$ holds in $\Omega$ . Therefore subtracting
$w(x)$ from $V(x)$ we clearly obtain the required real analytic solution $u(x)$ of
the equation $P(D)u(x)=f(x)$ in $\Omega$ . This completes the proof of the theorem.

\S 4. Construction of good elementary solutions (II) –the locally hyper-
bolic case–

In this section we firstly give the definition of locally hyperbolic operators

with constant coefficients after Andersson [1] and secondly investigate the
singularities of good elementary solutions of such an operator. By employing
the theory of microfunctions we can clarify the structure of singularities of
such elementary solutions so that the global existence theorem of real analytic

solutions is obtained by their aid in \S 5. We note that the class of linear
differential operators satisfying Definition 4.2 is also considered independently
by Kawai [5]. We also remark that the conditions on lower order terms
imposed in Andersson [1] are redundant for our purpose, since we consider
all problems in the framework of hyperfunctions. Hence the conditions on
lower order terms are redundant even in studying the propagation of analyt-
icity of solutions of such equations, which seems to be the main purpose of
Andersson [1].

To begin with we give the definition of locally hyperbolic operators with
constant coefficients after Andersson [1].
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DEFINiTION 4.1. (Cf. Andersson [1] Definition 3.1.) Let $a(\xi)$ be a homo-
geneous polynomial. For any positive $\epsilon$ , we define $V(a, \epsilon)$ as the set of all
mappings $v(\xi)$ from $S^{n-1}$ to $S^{n-1}$ which is continuous in a neighbourhood of
$\{\xi\in S^{n-1}|a(\xi)=0\}$ and has the property that to every $\xi_{0}\in S^{n-1}$ there are
neighbourhoods $U$ and $V$ of $\xi_{0}$ and $v(\xi_{0})$ respectively such that $a(\xi+s\theta)\neq 0$

if $(\xi, \theta)\in U\times V,$ $|s|<\epsilon$ and ${\rm Im} s\neq 0$ . We also denote $\bigcup_{e>0}V(a, \epsilon)$ by $V(a)$ .
REMARK. Andersson [1] calls the mapping $v(\xi)$ a vector field. The con-

tinuity of $v(\xi)$ in a neighbourhood of $\{a(\xi)=0\}$ , is added here for the sake
$\iota of$ simplicity. By a lemma due to Andersson [1] (Lemma 4.4 in the below)

the assumption of continuity of $v(\xi)$ is sometimes superfluous, for example in
the proof of Theorem 4.8.

DEFINITION 4.2. A linear differential operator $P(D)$ with constant co-
tefficients of order $m$ is called locally hyperbolic with respect to the mapping
$v:S^{n- 1}\rightarrow S^{n-1}$ if

(4.1) $P_{m}(v(\xi))\neq 0$ for any $\xi\in S^{n-1}$

.and
$’(4.2)$ $v(\xi)\in V(P_{m})$

hold.
The name of local hyperbolicity will be partly understood by the follow-

ing Lemma 4.4 due to Andersson [1]. We remark that locally hyperbolic
operators play the role of hyperbolic operators in the framework of micro-
functions. (See for example Kawai [3] Theorems 3.3 and 3.5 and the remarks
following them.) Before stating Lemma 4.4 we recall the definition of lo-
calization of linear differential operator with constant coefficients, which is
.due to Atiyah, Bott and Garding [1]. There is another definition of locali-
zation due to H\"ormander [2], but the definition of Atiyah, Bott and Garding
is more advantageous than that of H\"ormander as far as we are concerned
with real analyticity. (H\"ormander’s deflnition is more advantageous when
.one treats infinite differentiability.)

DEFINITION 4.3 (Atiyah, Bott and Garding [1] Definition 3.26). Let $a(\xi)$

be a homogeneous polynomial of order $m$ . The localization $a_{\xi}(\zeta)$ of the
polynomial $a$ at $\xi\in S^{n-1}$ is by definition the coefficients of the lowest order
term in $\tau$ in the development of $a(\xi+\tau\zeta)$ , namely

($(4.3)$ $a(\xi+\tau\zeta)=\tau^{p}a_{\xi}(\zeta)+O(\tau^{p+1})$ , where $a_{\xi}(\zeta)\not\equiv O$ .
Then Definitions 4.2 and 4.3 clearly give the following
LEMMA 4.4 (Andersson [1] Corollary 3.1). Let $a(D)$ be a homogeneous

locally hyperbolic operator. Then $a_{\xi}(D)$ is hyperbolic with respect to $v(\xi_{0})$ if $\xi$

is sufficiently close to $\xi_{0}$ .
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If we denote by $a(D)$ the principal part of a locally hyperbolic operator
$P(D)$ , then we may consider by the above lemma the inner core of the hyper
bolic operator $a_{\xi_{0}}(D),$ $i$ . $e.$ , the component of $\{\xi\in R^{n}|a_{\xi_{0}}(\xi)\neq 0\}$ containing
$v(\xi_{0})$ . We also denote the closed dual cone of the inner core by $ K(a_{\xi_{0}}, v(\xi_{0})\rangle$

or $K_{\xi_{0}}$ for short. We call $K_{\xi_{0}}$ a positive local propagation cone (relative to,

$v(\xi)$ with vertex at $0$) and $-K_{\xi_{0}},$ $i$ . $e.$ , the cone $\{-x|x\in K_{\xi_{0}}\}$ , a negative local
propagation cone (relative to $v(\xi)$ with vertex at $0$). We also denote by
$x\pm K_{\xi_{0}}$ the positive (negative) local propagation cone relative to $v(\xi)$ with
vertex at $x,$

$i$ . $e.$ , the set $\{y|y=x+x^{\prime}, x^{\prime}\in\pm K_{\xi_{0}}\}$ .
Now we define the good elementary solutions of a locally hyperbolic

differential operator $P(D)$ with constant coefficients.
DEFINITION 4.5. (Good elementary solutions of a locally hyperbolic

operator.) A hyperfunction $E(x)$ satisfying the equation

(1.3) $P(D)E(x)=\delta(x)$

is called a good elementary solution of the linear differential operator $P(D)$

with constant coefficients, which is locally hyperbolic with respect to $v(\xi)$ , if
it satisfies either condition $(4.4)_{+}$ or condition $(4.4)_{-}$ .
$(4.4)_{+}$ S. S. $ E(x)\subset$ { $(x,$ $\xi)\in S^{*}R^{n}|x=0$ or $x\in K_{\xi}$ with $P_{m}(\xi)=0$}.

$(4.4)_{-}$ S. S. $ E(x)\subset$ { $(x,$ $\xi)\in S^{*}R^{n}|x=0$ or $x\in-K_{\xi}$ with $P_{m}(\xi)=0$}.

REMARK. When the differential operator $P(D)$ satisfies conditions ( $ 1.1\rangle$

and (1.2), then $P(D)$ becomes locally hyperbolic with respect to $v(\xi)$ satisfying
$\langle v(\xi), grad_{\xi}P_{m}(\xi)\rangle\neq 0$ when $P_{m}(\xi)=0$ and Definition 4.5 coincides with
Definition 1.1. Moreover if the principal part $P_{m}(D)$ of $P(D)$ is the p-th power
$(p\geqq 2)$ of a homogeneous differential operator $Q(D)$ satisfying conditions ( $ 1.1\rangle$

and (1.2), then the positive (negative) local propagation cone of $P(D)$ with
vertex at $x$ coincides with the positive (negative) half side of the bicharac-
teristic curve of $Q(D)$ through $x$ . Hence in this case we can write down all
the theorems in this section and in the next section only using the notion of
the bicharacteristic curves, though we leave such restatement of the theorems
to the reader.

The analysis developed in \S 1 gives the following
THEOREM 4.6. Suppose that the differential operator $P(D)$ is locally hyper-

bolic with respect to $v(\xi)$ . Then we have two good elementary solutions $ E_{+}(x\rangle$

and $E_{-}(x)$ of $P(D)$ such that $E_{+}(x)$ satisfies condition $(4.4)_{+}$ and $E_{-}(x)$ satisfies
condition $(4.4)_{-}$ .

PROOF. We can proceed just as in the proof of Theorem 1.2. In fact the
convergence of the series given in (1.11) is proved there only assuming that
$P_{m}(\zeta)\neq 0$ and that $\langle z, \zeta\rangle\neq 0$ . Hence what remains to prove is to clarify the
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domain where $P_{m}(\zeta)\neq 0$ . For that purpose we need the following lemma due
to Andersson [1] on the semi-continuity of the inner core of the localized
operator.

LEMMA 4.7. (Andersson [1] Lemma 3.4. See also Atiyah, Bott and Gard-
ing [1] Lemma 5.9.) Suppose that $P(D)$ is locally hyperbolic with respect to
$v(\xi)$ . Denote its principal symbol by $a(\xi)$ . Assume that $M$ is a compact subset
of $\Gamma(a_{\xi_{0}}, v(\xi_{0}))$ for $\xi_{0}\in S^{n-1}$ . Then $M\subset\Gamma(a_{\xi}, v(\xi_{0}))$ for any $\xi\in S^{n-1}$ sufficien $tly$

close to $\xi_{0}$ .
For the proof of this lemma we refer to Andersson [1] pp. 284 and 285

and Atiyah, Bott and Garding [1] p. 151. We note that this lemma implies
as its trivial corollary that $\cup K_{\xi}$ is a closed subset of $R^{n}$ . By this lemma

$\epsilon r$

we can find an open set $\Omega$ in $C^{2n}$ which touches the domain $W$ along the real
axis, where
(4.5) $W=$ { $(z,$ $\zeta)\in C^{2n}|1m\langle z,$ $\zeta\rangle>0,1m\zeta\in-\Gamma(a_{\xi},$ $v(\xi))$ , where $\xi={\rm Re}\zeta$ }.
Then by the inner semi-continuity of $\Gamma(a_{\xi}, v(\xi))$ or, in other words, by the
outer semi-continuity of $K_{\xi}$ , we conclude by (4.5) and the definition of micro-
functions that

(4.6) S. S. $F(x, \xi)\subset\{(x, \xi;\zeta_{x}, \zeta_{\xi})|\langle x, \xi\rangle=0,$ $a(\xi)=0,$ $\zeta_{x}=\xi,$ $\zeta_{\xi}=-\alpha\eta+\beta x$,

where $\eta\in K_{\xi}$ , $\alpha+\beta=1$ and $\alpha,$ $\beta\geqq 0$ } $\cup\{(x, \xi;\zeta_{x}, \zeta_{\xi})|\langle x, \xi\rangle=0$,
$a(\xi)\neq 0$ , $\zeta_{x}=\xi$ , $\zeta_{\xi}=x$ } $\cup\{(x, \xi;\zeta_{x}, \zeta_{\xi})|\langle x, \xi\rangle\neq 0$, $a(\xi)=0$, $\zeta_{x}=0$ ,
$\zeta_{\xi}=-\eta\in K_{\xi}$ with $\eta\neq 0$ }, where we have used the same notations
as in the proof of Theorem 1.2, namely $F(x, \xi)$ is a hyperfunction
in $(x, \xi)$ defined as the boundary value of the holomorphic function
defined by the series (1.11) in $\Omega$ and $(\zeta_{x}, \zeta_{\xi})$ denotes the (real)

cotangent vector at $(x, \xi)$ .
Then we apply Lemma 1.3 to the integral along fiber

(4.7) $E_{+}(x)=\frac{1}{(-2\pi\sqrt{-1})^{n}}\int_{|\xi|=1}F(x, \xi)\omega(\xi)$ ,

and obtain from (4.6) that

(4.8) S. S. $\int_{|\xi|=1}F(x, \xi)\omega(\xi)\subset$ { $(x,$ $\xi)\in S^{*}R^{n}|x=0$ or $x\in K_{\xi}$ with $a(\xi)=0$}.

Therefore the hyperfunction $E_{+}(x)$ defined by (4.7) satisfies condition $(4.4)_{+}$ .
On the other hand it is clear by (1.6) and (1.9) that $E_{+}(x)$ satisfies (1.3), i. e.,
$P(D)E_{+}(x)=\delta(x)$ . Thus we have constructed a good elementary solution $ E_{+}(x\rangle$

of $P(D)$ . In the same way we can construct $E_{-}(x)$ . In fact it is sufficient to
vary $ 1m\zeta$ in $\Gamma(a(\xi), v(\xi))$ in (4.5). Thus we have completed the proof of the
theorem.

REMARK 1. By the aid of the good elementary solutions of a locally



506 T. KAWAI

hyperbolic operator we have the following precise theorem concerning the
propagation of analyticity of solutions of the equation $P(D)u=0$ , which
Andersson [1] seems not to give in the general form.

THEOREM 4.8. Suppose that the differential operator $P(D)$ is locally hyper-
bolic with respect to $v(\xi)$ . Then the singularity of the solution of the equation
$P(D)u=0$ propagates only along the local propagation cones. More precisely,
if there exist a positive constant $c$ and an open set $V\subset S^{*}R^{n}$ which contains
the set { $(x,$ $\xi)\in S^{*}R^{n}|\xi=\eta,$ $x\in y-K_{\eta}$ and $0\leqq\langle y-x,$ $v(\eta)\rangle\leqq c$ } such that
$P(D)u=0$ in $V$ and that $(y, \eta)$ is not contained in the set $\{(z, \xi)\in S^{*}R^{n}|P_{m}(\xi)$

$=0$ and $z\in x+K_{\xi}$ , where $(x, \xi)\in S$ . S. $u(x)\cap\{\langle y-x, v(\xi)\rangle=0\}\}$ , then $(y, \eta)$ does
not belong to S. S. $u(x)$ .

PROOF. By the assumption of the theorem we can choose a relatively
compact open set $\Omega\subset S^{*}R^{n}$ containing $(y, \eta)$ so that the following condition
holds.

(4.9) For any $(x, \xi)$ in $\partial\Omega\cap S$ . S. $u(x)$ , the set $\{(z, \xi)\in S^{*}R^{n}|P_{m}(\xi)=0$

and $z\in x+K_{\xi}$ } does not contain $(y, \eta)$ .
On the other hand since sheaf $C$ is flabby, we can find a hyperfunction $\tilde{u}(x)$

so that $\tilde{u}(x)=u(x)$ in $\Omega,$ $S.S.\tilde{u}(x)$ is contained in $\overline{\Omega}$ and that the set $\{(z, \xi)\in$

$S^{*}R^{n}|P_{m}(\xi)=0$ and $z\in x+K_{\xi}$ } does not contain $(y, \eta)$ for any $(x, \xi)$ in
S.S. $P(D)\tilde{u}(x)$ . Denote $P(D)\tilde{u}(x)$ by $f(x)$ and by $E_{+}(x)$ the good elementary
solution of ${}^{t}P(D)$ , the formal adjoint operator of $P(D)$ , which satisfies con-
dition $(4.4)_{+}$ . Then the following integrals along fibers in (4.10) make sense
and we can apply Lemma 1.3 to obtain the following equalities in (4.10) by
the choice of $\tilde{u}(x)$ .

(4.10) $0=\int\tilde{f}(z)E_{+}(x-z)dz$

$=\int P(D_{z})\tilde{u}(z)E_{+}(x-z)dz$

$=\int\tilde{u}(z)^{t}P(D_{z})E_{+}(x-z)dz$

$=\int\tilde{u}(z)\delta(x-z)dz=\tilde{u}(x)$ holds near $(y, \eta)$ .
This proves the theorem.

REMARK 2. If the linear differential operator $P(D)$ with constant co-
efficients is hyperbolic with respect to the direction $N$, then Theorem 4.6
implies important results of Atiyah, Bott and Garding [1], namely one can
find an elementary solution $E(x)$ of $P(D)$ whose analytic singular support is
contained in the wave front set, i. e., $\cup K_{\xi}$ , where we take the constant

$\epsilon\neq 0$

vector $N$ as $v(\xi)$ . (Atiyah, Bott and Garding [1] Theorems 7.16 and 7.24.)
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We emphasize again the fact that we need no conditions on lower order
terms to obtain such an elementary solution.

One may have a question whether the elementary solution which we
have constructed in Theorem 4.6 has its support in a proper convex cone.
But we have constructed an elementary solution $F(x)$ of $P(D)$ with this
property in Kawai [2] Theorems 6.1.3 and 6.3.1. Hence considering $F(x)$

$-E_{+}(x)$ we easily see by Theorem 4.8 that $f(x)=F(x)-E_{+}(x)$ is real analytic
on $R^{n}$ . Therefore $E_{+}(x)+f(x)$ has its support in a proper convex cone and
its analytic singular support is contained in the wave front set. Thus some
results of Atiyah, Bott and Garding [1] follow trivially from Theorem 4.6.

\S 5. Global existence of real analytic solutions for locally hyperbolic
operators.

In this section we present some theorems concerning the global existence
of real analytic solutions of the equation $P(D)u=f$ assuming that the dif-
ferential operator $P(D)$ is locally hyperbolic. The good elementary solutions
of $P(D)$ constructed in Theorem 4.6 play an essential role in the proof. The
method of the proof is quite similar to that employed in \S 2 and \S 3, hence
we sometimes omit the details of the proof.

To begin with, we consider the case when $f(x)$ belongs to $\mathcal{A}(K)$ for a
compact set $K$ in $R^{n}$ .

LEMMA 5.1. Suppose that the differential operator $P(D)$ is locally hyperbolic
with respect to $v(\xi)$ . Assume that the compact set $K$ is the closure of the open
set $\Omega=\{x\in R^{n}|\varphi(x)<0\}$ , where $\varphi(x)$ is real valued real analytic function
defined in a neighbourhood of $K$ satisfying $grad_{x}\varphi(x)\neq 0$ on $\partial\Omega$ . If the com-
pact set $K$ satisfies the following geometrical condition (5.1), then for any $f(x)$

in $\mathcal{A}(K)$ we can find $u(x)$ in $\mathcal{A}(\Omega)$ such that $P(D)u(x)=f(x)$ holds in $\Omega$ .
(5.1) For any $x_{0}$ in $\partial\Omega$ where $P_{m}(grad_{x}\varphi|_{x=x_{0}})=0$ holds, the positive

local propagation cones $x_{0}+K_{\pm grad_{x\varphi}(x)|_{x=x_{0}}}$ with vertex at $x_{0}$ do
not intersect $\Omega$ .

PROOF. Consider a hyperfunction $\tilde{u}(x)$ defined by the following integral
.along fibers.

\langle 5.2) $\tilde{u}(x)=\int E_{+}(x-y)f(y)\theta(-\varphi(y))dy$ ,

where $E_{+}(x)$ is a good elementary solution constructed in Theorem
4.6 and $\theta(t)$ denotes the l-dimensional Heaviside function.

Now we can proceed just in the same way as in the proof of Lemma 2.1.
$\ln$ fact it is sufficient to replace the term $x=y+tgrad_{\zeta}P_{m}(\zeta)(t\geqq 0)$ by
$\prec x=y+z$ where $z$ belongs to $K_{\zeta}$

’ in the definition of the sets $S_{j}$ , which show
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where the singularity of the integrand of (5.2) lies. Then we can apply
Lemma 1.3 to the integral (5.2) and obtain the following:

(5.3) S. S. $\tilde{u}(x)\subset\{(x, \xi)\in S^{*}R^{n}|$ there exists $y$ in $\partial\Omega$ such that $\xi=grad_{y}\varphi(y)$

or $-grad_{y}\varphi(y)$ and $x\in y+K_{\xi}$ }.

Therefore the hyperfunction $\tilde{u}(x)$ is real analytic in $\Omega$ . As it is clear by ( $ 1.3\rangle$

that $P(D)\tilde{u}(x)=f(x)\theta(-\varphi(x))$ holds, we obtain the required real analytic func-
tion $u(x)$ by restricting $\tilde{u}(x)$ to $\Omega$ . This completes the proof of the lemma.

As in Lemma 2.2 we can improve Lemma 5.1 a little by the aid of both
good elementary solutions $E_{+}(x)$ and $E_{-}(x)$ of $P(D)$ .

LEMMA 5.2. Condition (5.1) in the previous lemma can be replaced by the
following two conditions:

(5.4) For any characteristic boundary point $x_{0}$ , i. e., the point in $\partial\Omega$ where
$P_{m}(grad_{x}\varphi(x)|_{x=x_{0}})=0$ holds, one of the local propagation cones with
vertex at $x_{0}$ , $x_{0}+K_{\xi}$ or $x_{0}-K_{\xi}$ does not intersect $\Omega$ , where $\xi=$

$grad_{x}\varphi(x)|_{x=x_{0}}$ or $-grad_{x}\varphi(x)|_{x=x_{0}}$ .
(5.5) There exists a neighbourhood $V$ of $\partial\Omega$ for which the followings hold:

(i) For any characteristic boundary point $x_{0}$ , if $(x_{0}+K_{\xi})\cap\Omega\neq\emptyset$ then
$V\cap(x_{0}+K_{\xi})\subset\Omega\cup\{x_{0}\}$ . Here $\xi=grad_{x}\varphi(x)|_{x=x_{0}}$ or $-grad_{x}\varphi(x)|_{x=x_{0}}$ .

(ii) For any characteristic boundary point $x_{0}$ , if $(x_{0}-K_{\xi})\cap\Omega\neq\emptyset$ then.
$V\cap(x_{0}-K_{\xi})\subset\Omega\cup\{x_{0}\}$ . Here $\xi=grad_{x}\varphi(x)|_{x=x_{0}}$ or $-grad_{x}\varphi(x)|_{x=x_{0}}$ .

PROOF. We go on just in the same way as in the proof of Lemma 2.2.
To begin with, we decompose the set $N=\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega,$ $P_{m}(\xi)=0_{r}$

$\xi=\pm grad_{x}\varphi(x)\}$ into the form $N_{+}\cup N_{-}$ , where $N_{+}=\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega_{r}$

$P_{m}(\xi)=0,$ $\xi=\pm grad_{x}\varphi(x)$ and the positive local propagation cone $x+K_{\xi}$ with
vertex at $x$ does not intersect $\Omega$ } and $N_{-}=\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega,$ $P_{m}(\xi)=0_{r}$

$\xi=\pm grad_{x}\varphi(x)$ and negative local propagation cone $x-K_{\xi}$ with vertex at $x$

does not intersect $\Omega$ }. Then condition (5.5) combined with the outer semi-
continuity of $K_{\xi}$ (Lemma 4.7) implies that the sets $N_{+}$ and $N_{-}$ are closed.
Now we decompose the hyperfunction $f(x)=f(x)\theta(-\varphi(x))$ by the aid of flab-
biness of sheaf $C$ and the vanishing of $H^{1}(R^{n}, \mathcal{A})$ so that

(5.6) S. S. $(f(x)-\tilde{f}_{+}(x)-f_{-}(x))=\emptyset$ ,

(5.7) $S.S.f_{+}(x)\cap N\subset N_{+}$ and S.S. $f_{-}(x)\cap N\subset N_{-}$

and

(5.8) S. S. $f_{+}(x)$ , S. S. $f_{-}(x)\subset S_{\partial 9}^{*}R^{n}$

hold.
Using these two hyperfunctions $\tilde{f}_{+}(x)$ and $f_{-}(x)$ we define a microfunction
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$v(x)$ by

(5.9) $v(x)=\int E_{+}(x-y)f_{+}(y)dy+\int E_{-}(x-y)f_{-}(y)dy$ .

The investigation of S. S. $v(x)$ is performed in a similar way to the proof
of Le $\int nma$ $2.2$ . In fact in order to investigate S. S. $E_{+}(x-y)f_{+}(y)$ and
S.S. $E_{-}(x-y)f_{-}(y)$ it is sufficient to replace in (2.12) $x=y+tgrad_{\zeta}P_{m}(\zeta)|$

$(t\geqq 0)$
” by “

$x\in y+K_{\zeta}$ and to replace in (2.13) ” $x=y+tgrad_{\zeta}P_{m}(\zeta)(t\leqq 0)$
”

by “
$x\in y-K_{\zeta}$ ”. Next we apply Lemma 1.3 to the integral along fiber (5.9),

we easily see by (5.4) that

(5.10) S.S. $ v(x)\cap S^{*}\Omega=\emptyset$ .
On the other hand by (1.3) we have $P(D)v(x)=f(x)$ as an equation for

microfunctions, hence we can find a hyperfunction $V(x)$ which satisfies

(5.11) $P(D)V(x)=f(x)+g(x)$

where $V(x)\in \mathcal{A}(\Omega)$ and $g(x)\in \mathcal{A}(R^{n})$ . Then we apply Lemma 5.1 to eliminate
$g(x)$ from (5.11) and obtain the required real analytic solution $u(x)$ of the
equation $P(D)u(x)=f(x)$ in $\Omega$ . This ends the proof of the lemma.

It is easy to modify Lemma 5.2 so that it gives the existence theorem in
the space $\mathcal{A}(K)$ as we have done in Theorem 2.3, hence we leave the modi-
fication to the reader. See also Theorem 6.2.

We also have the following analogue of Theorem 2.4.
THEOREM 5.3. Suppose that the differential operator $P(D)$ is locally hyper-

bolic with respect to $v(\xi)$ . Assume that a compact set $K\subset R^{n}$ is the closure of
an open set $\Omega=\cap^{p}\Omega_{j}$ , where each $\Omega_{j}$ satisfies the following regularity conditions

$j=1$

(5.12) and (5.13). Moreover we assume that the compact set $K$ satisfies the fol-
lowing geometrical conditions (5.14) and (5.15). Then for any $f(x)$ in $\mathcal{A}(K)$ we
can find $u(x)$ in $\mathcal{A}(\Omega)$ such that $P(D)u(x)=f(x)$ holds in $\Omega$ .
(5.12) $\Omega_{j}$ is represented as $\{x\in R^{n}|\varphi_{j}(x)<0\}$ by a real valued real analytic

function $\varphi_{j}(x)$ defined in a neighbourhood of $\overline{\Omega}_{j}$ .

(5.13) $\{grad_{x}\varphi_{Jq}(x)\}_{q=1}^{k}$ are linearly independent as far as $\varphi_{j_{1}}(x)=\ldots=\varphi_{j_{k}}(x\rangle$

$=0$ .
(5.14) If $x_{0}$ satisfies $\varphi_{j_{1}}(x)=$ $=\varphi_{j_{k}}(x)=0$ then, for any non-zero $\theta$ that is

a linear combination of $grad_{x}\varphi_{j_{1}}(x)|_{x=x_{0}},$ $\cdots,$ $grad_{x}\varphi_{j_{k}}(x)|_{x=x_{0}}$ and that
satisfies $P_{m}(\theta)=0$ , either $(x_{0}+K_{\theta})\cap\Omega=\emptyset$ or $(x_{0}-K_{\theta})\cap\Omega=\emptyset$ holds.

(5.15) There exists a neighbourhood $V$ of $\partial\Omega$ for which the followings hold:
(i) For any $(x_{0}, \theta)$ in (5.14), if $(x_{0}+K_{\theta})\cap\Omega\neq\emptyset$ , then $V\cap(x_{0}+K_{\theta})\subset\Omega\cup\{x_{0}\}_{-}$

(ii) For any $(x_{0}, \theta)$ in (5.14), if $(x_{0}-K_{\theta})\cap\Omega\neq\emptyset$ , then $V\cap(x_{0}-K_{\theta})\subset\Omega\cup\{x_{0}\}$ .
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The proof of this theorem is quite similar to that of Theorem 2.4, hence
we omit the details.

Now we present two theorems which assures the global existence of real
analytic solution $u(x)$ of the equation $P(D)u(x)=f(x)$ where $f(x)$ belongs to
$\mathcal{A}(\Omega)$ for an open set $\Omega$ .

THEOREM 5.4. Suppose that the differential operator $P(D)$ is locally hyper-
bolic with respect to $v(\xi)$ . Assume that a relatively compact open set $\Omega$ with
$C^{1}$ -boundary satisfies the following geometrical conditions (5.16) and (5.17).
Then $P(D)\mathcal{A}(\Omega)=\mathcal{A}(\Omega)$ holds.

$\ovalbox{\tt\small REJECT}(5.16)$ Let $(x, \xi)$ belong to $N=\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega, P_{m}(\xi)=0\}$ . Then either
$(x+K_{\xi})\cap\Omega=\emptyset$ or $(x-K_{\xi})\cap\Omega=\emptyset$ holds.

\langle 5.17) There exists a neighbourhood $V$ of $\partial\Omega$ for which the following hold:
(i) For any $(x, \xi)$ in $N$, if $(x+K_{\xi})(\backslash ,$ $\Omega\neq\emptyset$ , then $V\cap(x+K_{\xi})\subset\Omega\cup\{x\}$ .
(ii) For any $(x, \xi)$ in $N$, if $(x-K_{\xi})\cap\Omega\neq\emptyset$ , then $V()(x-K_{\xi})\subset\Omega\cup\{x\}$ .
PROOF. To begin with, we extend $f(x)$ to $R^{n}$ by the aid of the flabbiness

of the sheaf of germs of hyperfunctions so that the extension $f(x)$ coincides
with $f(x)$ in $\Omega$ and has its support in $\overline{\Omega}$ . Then it is clear that S.S. $ f(x)\subset$

$\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega\}$ . We decompose the set $N$ into the union of $N_{+}$ and
$N_{-}$ , where $N_{+}=$ { $(x,$ $\xi)\in S^{*}R^{n}|x\in\partial\Omega,$ $P_{m}(\xi)=0$ and $(x+K_{\hat{\sigma}})\cap\Omega=\emptyset$ } and
$N_{-}=$ { $(x,$ $\xi)\in S^{*}R^{n}|x\in\partial\Omega,$ $P_{m}(\xi)=0$ and $(x-K_{\xi})\cap\Omega=\emptyset$ }. By condition (5.17)

and the outer semi-continuity of $K_{\xi}$ (Lemma 4.7) we easily see that $N_{+}$ and
$N_{-}$ are closed. Then we use the flabbiness of sheaf $C$ to decompose $\tilde{f}(x)$ into
the sum of two hyperfunctions $f_{+}(x)+f_{-}(x)$ as microfunctions so that

\langle 5.18) S. S. $f_{+}(x)$ , S. S. $f_{-}(x)\subset\{(x, \xi)\in S^{*}R^{n}|x\in\partial\Omega\}$ ,

\langle 5.19) S. S. $\tilde{f}_{+}(x)\cap N\subset N_{+}$ and S. S. $f_{-}(x)\cap N\subset N_{-}$ .
Now we define a microfunction $v(x)$ by the following integral:

$|(5.20)$ $v(x)=\int E_{\neg}\cdot.(x-y)f_{+}(y)dy+\int E_{-}(x-y)f_{-}(y)dy$ .

As is usual, what is important is to investigate S. S. $E_{+}(x-y)\tilde{f}_{+}(y)$ and
S.S. $E_{-}(x-y)f_{-}(y)$ . It is easy to see, for example, that

\langle 5.21) S.S. $E_{+}(x-y)\tilde{f}_{+}(y)\subset\cup 5S_{j,+}$ , where $S_{j,+}$ is defined in analogous way to
$j=1$

that given in (3.7). We have only to replace “
$x=y+tgrad_{\zeta}P_{m}(\zeta)$

$(t\geqq 0)$
‘’ by “

$x\in y+K_{\zeta}$
” in the definition.

An analogous statement also holds for S. S. $E_{-}(x-y)f_{-}(y)$ . Therefore
Lemma 1.3 shows that

\langle 5.22) S. S. $ v(x)\cap S^{*}\Omega=\emptyset$ .
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Up to now $v(x)$ satisfies the equation $P(D)v(x)=f(x)$ only as microfunctions.
But we can find a real analytic function $u(x)$ which satisfies the equation
$P(D)u(x)=f(x)$ in $\Omega$ by Lemma 5.2. Since the procedure is the same as in
the proof of Theorem 3.1, we omit the details. This ends the proof of the
theorem.

As in Theorem 3.2 we modify Theorem 5.4 in order to localize condition
(5.16) as follows

THEOREM 5.5. Suppose that the differential opera$torP(D)$ is locally hyper-
bolic with respect to $v(\xi)$ . Let a relatively compact open set $\Omega$ have the form
$\{x\in R^{n}|\varphi(x)<0\}$ for a real valued real analytic function $\varphi(x)$ defined in a
neighbourhood of $\overline{\Omega}$ satisfying $grad_{x}\varphi(x)\neq 0$ on $\partial\Omega$ . If the open set $\Omega$ satisfies
conditions (5.4) and (5.17) and condition (5.23) below, then $P(D)\mathcal{A}(\Omega)=\mathcal{A}(\Omega)$

holds.

(5.23) There exists a family of open sets $\{N_{j}\}_{j=1}^{p}$ which satisfy the following:
For any point $x$ in $\partial\Omega$ we can find some neighbourhood $N_{j}$ of $x$ such
that either $(x+K_{\xi})\cap(\overline{\Omega}\backslash \{x\})\cap N_{j}=\emptyset$ or $(x-K_{\xi})\cap(\overline{\Omega}\backslash \{x\})\cap N_{j}=\emptyset$ holds
for any non-zero real cotangent vector satisfying $P_{m}(\xi)=0$ .

Erratum in Kawai [7]. In Theorem 1 of Kawai [7], we have missed out
condition (5.17). We add condition (5.17) to Theorem 1 of Kawai [7].

PROOF. We proceed in the same way as in the proof of Theorem 3.2.
To begin with, we modify good elementary solutions $E_{+}(x)$ and $E_{-}(x)$ in the
following way.

(5.24) $P(D)\tilde{E}_{+}(x)=\delta(x)+\nu_{+}(x)$ , where S. S. $\tilde{E}_{+}(x)\subset\{(x, \xi)\in S^{*}R^{n}|x=0$

or $x\in K_{\xi}\cap\{|x|\leqq\epsilon\}$ , where $P_{m}(\xi)=0$}
and

S. S. $\nu_{+}(x)\subset$ { $(x,$ $\xi)\in S^{*}R^{n}|x\in\{|x|=\epsilon\}\cap K_{\xi}$ , where $P_{m}(\xi)=0$}.
Here $\epsilon$ is a sufficiently small positive number.

(5.25) $P(D)\tilde{E}_{-}(x)=\delta(x)+\nu_{-}(x)$ , where S. S. $\tilde{E}_{-}(x)\subset\{(x, \xi)\in S^{*}R^{n}|x=0$

or $x\in-K_{\xi}\cap\{|x|\leqq\epsilon\}$ , where $P_{m}(\xi)=0$}
and

S. S. $\nu_{-}(x)\subset$ { $(x,$ $\xi)\in S^{*}R^{n}|x\in\{|x|=\epsilon\}\cap(-K_{\xi})$ , where $P_{m}(\xi)=0$}.

These microfunctions $\tilde{E}_{+}(x)$ and $\tilde{E}_{-}(x)$ are obtained by the aid of the flabbiness
of sheaf $C$. Then we define a microfunction $v(x)$ by the following integral:

(5.26) $v(x)=\int\tilde{E}_{+}(x-y)\tilde{f}_{+}(y)dy+\int\tilde{E}_{-}(x-y)f_{-}(y)dy$ .

The microfunction $v(x)$ satisfies

(5.27) $P(D)v(x)=f(x)+h(x)$ ,
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where
S. S. $ h(x)\cap\{(x, \xi)\in S^{*}R^{n}|x\in\overline{\Omega}\}=\emptyset$ .

The relation (5.27) is obtained by conditions (5.23), (5.24) and (5.25) in a similar
way to obtaining (3.18’).

On the other hand S. S. $\tilde{E}_{=},\cdot(x-y)\tilde{f}_{\backslash }\cdot.(y)$ and S. S. $\tilde{E}_{-}(x-y)f_{-}(y)$ , hence S. S. $v(x)$ ,

can be studied in a similar way to obtaining (3.21) and (3.22). There is
nothing new in the reasoning, so we omit the details. As a conclusion we
can prove surjectivity of the mapping

(5.28) $P(D):\mathcal{A}(\Omega)/\mathcal{A}(\overline{\Omega})\rightarrow \mathcal{A}(\Omega)/\mathcal{A}(\overline{\Omega})$

under conditions (5.17) and (5.23). Then we may apply Lemma 5.2 by con-
ditions (5.4) and (5.17) to deduce the surjectivity of the differential operator
$P(D)$ from $\mathcal{A}(\Omega)$ to $\mathcal{A}(\Omega)$ from the surjectivity of the mapping given in (5.28).

Thus we have completed the proof of the theorem.
We end this section by the following remarks.
REMARK 1. When the space dimension $n=2$ , then any linear differential

operator with constant coefficients becomes locally hyperbolic operator.

Moreover in this case following three notions, $i$ . $e.$ , bicharacteristic curve, the
union of positive and negative local propagation cones and the characteristic
line, coincide. Hence we have the following seemingly strong result as a
corollary of Theorem 5.4.

THEOREM 5.7. Assume that the space dimension $n$ is equal to 2. Let a
relatively compact domain $\Omega$ in $R^{2}$ satisfy the following condition:

(5.29) Any characteristic line of $P(D)$ intersects $\Omega$ in an open interval.

Then $P(D)\mathcal{A}(\Omega)=\mathcal{A}(\Omega)$ holds.
We remark that condition (5.29) was found by H\"ormander [1] (and Ehren-

preis) in the discussion of global existence of $C^{\infty}$-solutions. We also note
that if $\Omega=R^{2}$ and the differential operator $P(D)$ is homogeneous, i. e., $P(D)$

$=P_{m}(D)$ , then $P(D)\mathcal{A}(R^{2})=\mathcal{A}(R^{2})$ follows trivially from Theorem $\alpha$ in \S $0$ .
In fact if the differential operator $P(D)$ is hyperbolic (in $R^{n}$) then $P(D)\mathcal{A}(R^{n})$

$=\mathcal{A}(R^{n})$ follows from the uniqueness of Cauchy problem (see Kawai [7]

Theorem 6, where only strictly hyperbolic operators (with variable coefficients)

are treated. But Remark 2 after Theorem 4.6 can be used to generalize the
above quoted theorem to this case), hence at least the case $P(D)=P_{m}(D)$ can
be easily treated if $n=2$ .

REMARK 2. If the differential operator $P(D)$ is elliptic, then $P(D)$ is
clearly a locally hyperbolic operator by the definition. Moreover it is clear
that $K_{\xi}=\{0\}$ for any $\xi\neq 0$ . Therefore we can prove Theorem $\alpha$ in \S $0$ under
the assumption that $\Omega$ is relatively compact by the method employed in this
section.
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\S 6. Remarks on the global existence theorems –duality method–

In this section we restrict ourselves to the consideration of surjectivity
of the differential operator

$P(D):\mathcal{A}(K)\rightarrow \mathcal{A}(K)$ ,

where $K$ is a compact set in $R^{n}$ .
Since the linear topological space $\mathcal{A}(K)$ becomes a DFS-space endowed

with its topological structure by
$\lim_{\rightarrow V\supset K}\mathcal{O}(V)$

(see \S 0), we can apply Serre’s

duality theorem. (About Serre’s duality theorem we refer to Komatsu [1]

for example.) When the differential operator $P(D)$ has complex coefficients,
the results given in this section are at present better than those given by
the use of elementary solutions constructed in Kawai [4], which we do not
discuss here. (See also Kawai [6] Theorem 2.)

Throughout this section we denote by Ch $K$ the convex hull of a compact
set $K$, which is again compact as is well known.

THEOREM 6.1. Suppose that the differential operator $P(D)$ satisfies con-
ditions (1.1) and (1.2). Assume that a compact set $K$ in $R^{n}$ satisfles the following
condition (6.1). Then $P(D)\mathcal{A}(K)=\mathcal{A}(K)$ holds.

(6.1) For any $(x, \xi)$ in $S^{*}R^{n}$ such that $x$ belongs to $ChK$ but not to $K$ and
such that $\xi$ satisfies $P_{m}(\xi)=0$ , there is a point $y$ outside Ch $K$ for which
the segment $\overline{xy}$ does not intersect $K$ and is contained in the bicharac-
teristic curve of $P(D)$ issuing from $(x, \xi)$ .

PROOF. Since $\mathcal{A}(K)$ is a DFS-space and the space $\mathcal{B}_{K}$ , the space of hyper-
functions support in $K$, is the dual space of $\mathcal{A}(K)$ , it is sufficient to prove
that the operator ${}^{t}P(D);\mathcal{B}_{K}\rightarrow \mathcal{B}_{K}$ has the closed range and is injective, where
${}^{t}P(D)$ is the formal adjoint operator of $P(D)$ .

Since the space $\mathcal{B}_{K}$ is an FS-space, it is sufficient to prove that ${}^{t}P(D)\mathcal{B}_{K}$

is sequentially closed. Assume that $\mu_{n}$ belongs to $\mathcal{B}_{K}$ and that ${}^{t}P(D)\mu_{n}=\nu_{n}$

converges to $\nu$ in $\mathcal{B}_{K}$ . As $\mathcal{B}_{K}$ is naturally imbedded into $\mathcal{B}_{ChK}$, we regard
$\mu_{n},$ $\nu_{n}$ and $\nu$ as elements in $\mathcal{B}_{ChK}$ . Then by the definition $\nu_{n}$ converges to $\nu$

in the topology of $\mathcal{B}_{ChK}$. Since Ch $K$ is convex, we can prove by the usual
Fourier transformation techniques (see $e$ . $g$ . Kawai [2] Theorem 4.2.4, especial-
ly its method of the proof) that ${}^{t}P(D)\mathcal{B}_{ChK}$ is closed in $\mathcal{B}_{ChK}$. Therefore we
can find a hyperfunction $\mu$ with its support in Ch $K$, which gatisfies the
equation ${}^{t}P(D)\mu=\nu$ . By the definition, $supp\nu\subset K$. What we want to prove
is that $supp\mu$ is also contained in $K$. On the other hand we have a complete
result concerning the propagation of analyticity of hyperfunction solutions
in Kawai [3] Theorem 3.3’. This theorem combined with condition (6.1) im-
mediately implies that the point $(x, \xi)$ with $x$ in Ch $K\backslash K$ does not belong to
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S.S. $\mu(x)$ , since $(y, \xi)$ does not belong to S.S. $\mu(x)$ and $\nu(x)$ vanishes in Ch $K\backslash K$.
Therefore $\mu(x)$ is real analytic in Ch $K\backslash K$. Since $\mu(x)$ is zero outside Ch $K$

by the definition and any point in Ch $K\backslash K$ can be connected by a line outside
$K$ to a point outside Ch $K$ by condition (6.1), we conclude that $\mu(x)$ is zero
outside $K$. This implies that $supp\mu$ is contained in $K$. Therefore we have
proved that ${}^{t}P(D)\mathcal{B}_{K}$ is closed in $\mathcal{B}_{K}$ . Then by Serre’s duality theorem we
have proved $P(D)\mathcal{A}(K)$ is closed in $\mathcal{A}(K)$ . On the other hand the injectivity
of the operator ${}^{t}P(D);\mathcal{B}_{K}\rightarrow \mathcal{B}_{K}$ is clear, we have proved that $P(D)\mathcal{A}(K)$

$=\mathcal{A}(K)$ . This completes the proof of the theorem.
REMARK. If we can connect the sets $K$ and $ChK$ by a family of real

analytic surfaces, namely, if we can find a real valued real analytic function
$\varphi(x)$ defined in a neighbourhood of Ch $K$ satisfying

(6.2) $\{x|\varphi(x)\leqq 1\}=K$ and $\{x|\varphi(x)\leqq 2\}\supset ChK$

and

(6.3) $grad_{x}\varphi(x)\neq 0$ in $ChK\backslash K$ ,

then we may find that the cotangent vector $\xi$ which plays an essential role
in the proof is only $\pm grad_{x}\varphi(x)$ satisfying $P_{m}(grad_{x}\varphi(x))=0$ . This fact is
easily seen by Theorem 3.3’ in Kawai [3] and the abstract form of Holmgren’s
uniqueness theorem for hyperfunctions depending real analytically on $a$

parameter. (About the abstract form of Holmgren’s uniqueness theorem we
refer to Kawai [1] Corollary of Theorem 5.1.1.) We will deal with these sub-
jects more precisely also for the overdetermined systems of linear differential
equations (with constant coefficients) in our forthcoming papers and omit the
details here. See also Kawai [8] \S 3.

By Theorem 4.8, the following theorem is proved in a similar way to the
above proof.

THEOREM 6.2. Suppose that the differential operator $P(D)$ is locally hyper-
bolic with respect to $v(\xi)$ . Assume that a compact set $K$ in $R^{n}$ satisfies the
following condition (6.4). Then $P(D)\mathcal{A}(K)=\mathcal{A}(K)$ holds.

(6.4) For any $(x, \xi)$ in $S^{*}R^{n}$ such that $x$ belongs to Ch $K$ but not to $K$ and
such that $\xi$ satisfies $P_{m}(\xi)=0$ , either $(x+K_{\xi})\cap K=\emptyset$ or $(x-K_{\xi})\cap K=\emptyset$

holds. Here $x\pm K_{\xi}$ denotes the positive (negative) local propagation cone
relative to $v(\xi)$ with vertex at $x$.

For the proof of this theorem we only need to apply Theorem 4.8 instead
of Theorem $3.3^{\prime}$ of Kawai [3]. Hence we leave it to the reader.

Now we consider the case where the principal symbol of $P(D)$ has
complex coefficients. In this case we use the theorem of propagation of
analyticity for hyperfunction solutions which is proved by the contact trans-
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formation. (See Sato, Kawai and Kashiwara [1].) We also note that an
analogous result for propagation of analyticity of distribution solutions, which
is unsatisfactory for our purpose, is proved by Andersson [2].

THEOREM 6.3. Suppose that the differential operator $P(D)$ satisfies condition
\langle 6.5) below. Assume that a compact set $K$ in $R^{n}$ satisfies the following condition
\langle 6.6). Then $P(D)\mathcal{A}(K)=\llcorner P(K)$ holds.

(6.5) When we denote the principal symbol $P_{m}(\xi)$ of $P(D)$ by $A_{m}(\xi)$

$+\sqrt{-1}B_{m}(\xi)$ , where $A_{m}(\xi)$ and $B_{m}(\xi)$ are real valued for real $\xi$ ,
grad\’e $A_{m}(\xi)$ and $grad_{\xi}B_{m}(\xi)$ are linearly independent whenever
$P_{m}(\xi)=0,$ $\xi\neq 0$ .

(6.6) Let us denote by $\Lambda_{(x_{0},\xi 0)}$ the bicharacteristic plane of $P(D)$ through
$(x_{0}, \xi^{0})$ , where $P_{m}(\xi^{0})=0$ is satisfied, $i$ . $e.$ , the 2-dimensional linear
variety passing through $x_{0}$ which is spanned by $grad_{\xi}A_{m}(\xi)|_{\xi=\xi 0}$

and $grad_{\xi}B_{m}(\xi)|_{\xi=\xi 0}$ . Then for any bicharacteristic plane $\Lambda$ of
$P(D),$ $\Lambda\cap(ChK\backslash K)$ has no relatively compact component.

PROOF. We proceed in a similar way to the proof of Theorem 6.1 by the
aid of the duality between $\mathcal{A}(K)$ and $\mathcal{B}_{K}$ . We want to prove that the as-
sumption that ${}^{t}P(D)\mu_{n}=\nu_{n}$ converges to $\nu$ in $\mathcal{B}_{K}$ , where $\mu_{n}$ belongs to $\mathcal{B}_{K}$ ,
implies the existence of $\mu\in \mathcal{B}_{K}$ for which ${}^{t}P(D)\mu=\nu$ holds. By the Fourier
transformation techniques we can find a hyperfunction $\mu$ in $\mathcal{B}_{ChK}$ for which
${}^{t}P(D)\mu=\nu$ holds. Then the result concerning the propagation of analyticity
of hyperfunction solutions, i. e., the fact that singularities propagate along
the bicharacteristic plane, obviously implies the analyticity of $\mu$ in Ch $K\backslash K$

by condition (6.6) since $\mu$ belongs to $\mathcal{B}_{ChK}$ and $\nu$ belongs to $\mathcal{B}_{K}$ . Therefore,
using the fact that $\mu$ belongs to $\mathcal{B}_{ChK}$ again, we immediately see that $\mu$

vanishes in Ch $K\backslash K$, namely we have proved that $\mu$ belongs to $\mathcal{B}_{K}$ . Therefore
we have proved the surjectivity of the operator $P(D):\mathcal{A}(K)\rightarrow \mathcal{A}(K)$ by Serre’s
duality theorem. This ends the proof of the theorem.

Research Institute for Mathematical
Sciences, Kyoto University
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