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\S 0. Introduction.

The writer showed the existence of Kleinian groups with fundamental
domains bounded by four circles whose singular sets have positive 1-
dimensional measure ([4]). Further in former paper [5], he investigated the
properties about the computing functions on some Kleinian groups and gave
the results with respect to the local properties of the singular sets of these
groups by using the computing function. Now in the natural way the follow-
ing problem arises; to what extent does the Hausdorff dimension of the
singular sets of Kleinian groups climb up, when the number $N$ of the bound-
ary circles increases? It is conjectured and seems still open that the 2-
dimensional measure of the singular sets of general finitely generated Kleinian
groups is always zero ([1]).

The purpose of this paper is to show the existence of the Kleinian groups
whose singular sets have positive (3/2)-dimensional measure. We shall state
preliminaries and notations about Kleinian groups in \S 1. In \S 2 we shall
introduce the subcomputing function on some Kleinian groups which have
the analogous properties to the computing functions and investigate the re-
lations between this function and the Hausdorff dimension of the singular
set of some Kleinian group. By using this function we shall give the ex-
ample of the Kleinian group whose singular set has positive (3/2)-dimensional

measure in \S 3.

\S 1. Preliminaries and notations.

1. Let $B_{0}$ be a domain bounded by $N(\geqq 3)$ mutually disjoint circles
$\{H_{i}, H_{i}^{\prime}\}_{i=1}^{p}$ and $\{K_{J}\}I=1(2p+q=N)$ . Let $S_{i}(1\leqq i\leqq p)$ be a hyperbolic or loxo-
dromic transformation which transforms the outside of $H_{i}$ onto the inside of
$H_{i}^{\prime}$ . Let $S_{j}^{*}(1\leqq j\leqq q)$ be an elliptic transformation of period 2 which trans-
forms the outside of $K_{j}$ onto the inside of $K_{f}$ . Then $\{S_{i}\}_{i=1}^{p}\cup\{Sf\}3=1$ generates
a discontinuous group $G$ with $B_{0}$ as a fundamental domain. We use the
notation $\mathfrak{G}$ to denote the set of $\{S_{i}\}_{t=1}^{p}$ , their inverses and $\{S_{J}^{*}\}_{J=1}^{q}$ .
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Denote by $ST$ the composed transformation obtained by $S$ and $T$ contained
in $G$ , that is, $ST(z)=S(T(z))$ . Then any element of $G$ has the form

$S=S^{(\nu_{k})}S_{j_{k}}^{*}\cdots S^{(\nu_{1})}S_{j1}^{*}S^{(\nu_{0})}$ ,

where the indices $\nu_{i}$ ($i=0,$ $\cdots$ , k) are non-negative integers and $S^{(\nu_{i}}$) denotes
the product of $\nu_{i}$ generators of $\{S_{i}\}$ or their inverses and $S_{j_{1}}^{*}$ denotes the
generator of $\{S_{j}^{*}\}$ . We call the sum

$m=\sum_{i=0}^{k}\nu_{\iota}+k$

the grade of $S$ and for simplicity we denote by $S^{(m)}$ the element of grade $m$

in $G$ .
The image $S^{(m)}(B_{0})$ of the fundamental domain $B_{0}$ under $S^{(m)}(\in G)$

with grade $m(\geqq 1)$ is bounded by $N$ circles $S^{(m)}(H_{i}),$ $ S^{(m)}(H_{l}\gamma$ and $S^{(m)}(K_{j})$

$(i=1, \cdots, p;j=1, \cdots, q)$ . For the sake of simplicity, we call the outer bound-
ary circle $C^{(m)}$ of $S^{(m)}(B_{0})$ a circle of grade $m$ . The number of circles of
grade $m$ is obviously equal to $N(N-1)^{m-1}$ .

Denote by $D_{m}$ the $N(N-1)^{m-1}$ -ply connected domain bounded by all the
circles of grade $m$ . Evidently $\{D_{m}\}_{m=1}^{\infty}$ is a monotone increasing sequence of
domains. The complementary set $D_{m}^{c}$ of $D_{m}$ with respect to the extended

z-plane consists of $N(N-1)^{m-1}$ mutually disjoint closed discs. The set $E=\bigcap_{m=1}^{\infty}D_{m}^{c}$

is perfect and nowhere dense. We call $E$ the singular set of $G$ .
2. For a linear transformation of the form

$T(z)=\frac{az+b}{cz+d}$ , $ad-bc=1$ , $c\neq 0$ ,

the circle $I_{T}$ : $|cz+d|=1$ is called the isometric circle of the transformation
(see [8]). The radius of $I_{\tau}$ equals $1/|c|$ .

Consider two arbitrary transformations $T$ and $S$ of $G$ . We assume that
$S\neq T^{-1}$ . Denote by $I_{S},$ $I_{\tau- 1}$ and $I_{ST}$ the isometric circles of $S,$ $T^{-1}$ and $ST$,
respectively. Let $g_{S},$ $g_{\tau-1}$ and $g_{ST}$ be their centers, and let $R_{s},$ $R_{T}$ and $R_{ST}$

be radii of $I_{s},$ $I_{T}$ and $I_{ST}$ , respectively. As for these values, the relation

(1.1) $R_{s\tau}=\frac{R_{s}\cdot R_{T}}{|g_{\tau-1}-g_{S}|}=\frac{R_{s}\cdot R_{T}}{|T(\infty)-S^{-1}(\infty)|}$

holds, since $g_{\tau-1}$ and $g_{S}$ are the poles of $T^{-1}(z)$ and $S(z)$ .
3. Denoting by $r^{(m)}$ and $r_{i}^{(m+1)}$ $(i=1, \cdot.. , N-1)$ the radius of the outer

boundary circle $C^{(m)}$ and the radii of $N-1$ inner boundary circles $C_{i^{(m+1)}}$

$(i=1, \cdots, N-1)$ of the image $B_{m}$ of the fundamental domain $B_{0}$ under a trans-
formation $S^{(m)}(\in G)$ , we have the following propositions ([2]).

PROPOSITION 1. There exist positive constants $K_{0}(<1)$ and $k_{0}$ depending
only on $B_{0}$ such that
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(1.2) $k_{0}r^{(m)}\leqq r_{i}^{(m+1)}\leqq K_{0}r^{(m)}$ $(i=1, \cdots N-1)$ .
PROPOSITION 2. There exist positive constants $k(G)$ and $K(G)$ depending

only on $G$ such that

(1.3) $k(G)(R_{s^{(m)}})^{\mu}\leqq(r^{(m)})^{-}2\leqq K(G)(R_{s^{(m)}})^{\mu}\mu_{-}$

where $\mu$ is any positive number and $R_{s^{(m)}}=1/|c^{(m)}|$ is the radius of the iso-
metric circle of $S^{(m)}$ .

Denote by $F_{n_{0}}$ the family of all closed discs bounded by circles of grade
$n(\geqq n_{0})$ . It is easily seen that $F_{n_{0}}$ is a covering of the singular set of our
Kleinian group $G$ and by Proposition 1 we see that the diameter of any disc
of $F_{n_{0}}$ is less than a given $\delta(>0)$ for a sufficiently large $n_{0}$ .

For such a covering $F_{n_{0}}$ we have the following important proposition ([2]).

PROPOSITION 3. Let $F_{n^{\prime}}^{\delta_{0^{k_{0}}}}$ be a covering of $E$ constructed by discs in $F_{n_{0}}$

whose radii are not greater than $\delta/(2k_{0})$ and let $r_{C}$ be the radius of a disc $C$ in
$F_{n}^{\delta/_{0^{k_{0}}}}$, where $k_{0}$ is a positive constant in Proposition 1. Then it holds

(1.4)
$L_{\eta}(E)=\lim_{\delta\sim}\inf_{p_{n_{0}}^{\delta/k}\{0\}}\sum_{C\in F_{n_{0}}^{\delta/k_{0}}}(2r_{C})^{\eta}\leqq J\zeta(\frac{k_{0}}{2})^{-\eta}M_{\eta}(E)$

where $\chi$ is an absolute constant and $M_{\eta}(E)$ denotes the $\eta$-dimensional measure
of $E$.

4. Let $T$ be any fixed generator or its inverse in $\mathfrak{G}$ . Denote by $H_{T}$ and
$H_{\tau-1}$ the boundary circles of $B_{0}$ which are equivalent, that is, $H_{T}=T(H_{\tau-1})$

and further by $D_{T}$ the closed disc bounded by $H_{T}$ . If $H_{T}$ is one of $K_{j}(1\leqq i\leqq q)$ ,
then $H_{\tau- 1}=H_{T}$ .

Let $S^{(n)}=T_{n}T_{n-1}\cdots T_{2}T_{1}(T_{i}\in \mathfrak{G})$ be any element of $G$ with grade $n$ and
take its inverse transformation of $S^{(\mathfrak{n})}$ :

(1.5) $S^{-(n)}(z)=\frac{-d}{c_{n}}\frac{z+b_{n}}{-a_{n}}z^{n}$ $a_{n}d_{n}-b_{n}c_{n}=1$ ,

where $S^{-(n)}$ denotes the inverse $(S^{(n)})^{-1}=T_{1}^{-1}\cdots T_{n}^{-1}$ of $S^{(n)}$ . If we take the
derivative of $S^{-(n)}(z)$ , we obtain easily

(1.6) $|\frac{dS^{-(n)}(z)}{dz}\lceil^{u}2=(\frac{1}{|c_{n}z-a_{n}|})^{\mu}=(\frac{R_{s^{(n)}}}{|S^{(n)}(\infty)-z|})^{\mu}$

Forming the sum of $(N-1)^{n}$ terms with respect to all $S^{(n)}=T_{n}T_{n- 1}\cdots T_{2}T_{1}$

such that $T_{n}\neq T^{-1}$ and $T_{i}\neq T_{i+1}^{-1}(1\leqq i\leqq n-1)$ , we have the following function
denoted by $\chi_{n}^{(\mu:T)}(z)$ :

(1.7) $\chi_{n}^{(\mu;T)}(z)=\sum_{s^{(n)}}(\frac{R_{s^{(n)}}}{|S^{(n)}(\infty)-z|})^{\mu}=\sum_{s^{(n)}}|\frac{dS^{-(n)}(z)}{dz}|^{\frac{l^{l}}{2}}$

The domain of definition of $\chi_{n}^{(\mu;T)}(z)$ is $D_{T}$ . Since $z$ moves on $D_{T}$ and $T_{n}\neq T^{-1}$ ,
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the $(N-1)^{n}$ denominators of (1.7) do not vanish, and hence $x_{4^{l;}}^{(}$
$T$)

$(z)$ is uniformly
continuous in $D_{T}$ . Let $S^{(m)}(\in G)$ be an element with grade $m$ of the form
$S^{(m)}=S^{(m-1)}T$. Noting that $g_{s^{(m)}}=S^{-(m)}(\infty)$ and using the relation (1.1), we
obtain easily

(1.8) $\chi_{n}^{(\mu:T)}(g_{s^{(m)}})=\sum_{s^{(n)}}(\frac{R_{s^{(n)}}}{|S^{(n)}(\infty)-S^{-(m)}(\infty)|})^{\mu}=\sum_{s^{(n)}}(\frac{R_{s^{(m)}s^{(n)}}}{R_{s^{(m)}}})^{\mu}$

We call $\chi_{n}^{(\mu;T)}(z)$ the $\mu$-dimensional computing function of order $n$ on $T$.
There exist $N$ computing functions $\chi_{n}^{(\mu;T)}(z)$ corresponding to the choice of
$T$ from $\mathfrak{G}$ .

By using $\chi_{n}^{(\mu;T)}(z)$ we have the following result.
THEOREM 1 ([5]). The following four propositions are equivalent to each

other.
(1) For any sufficiently small $\epsilon$ there exists a positive integer $n_{0}$ such that

(1.9) $\chi_{n}^{(\mu_{0};T)}(z)>1+\epsilon$ , $(or<1-\epsilon)$ ,

for any $T\in \mathfrak{G}$ and any $z\in E\cap D_{T}$ .
(2) A subsequence $\{x_{n}^{(\mu_{i}:T)}(z)\}(i=1,2, \cdots)$ of $\{\chi_{n}^{(\mu;T)}(z)\}(n=1,2, \cdots)$ on some

fixed $T(\in \mathfrak{G})$ diverges (or converges to zero) at some poin $fz_{0}$ of the singular
set contained in $D_{T}$ , that is,

(1.10) $\lim_{i\rightarrow\infty}x_{n_{t}^{\rho\ell;T)}}^{(}(z_{0})=\infty$ , (or $0$) for some $z_{0}\in E\cap D_{T}$ .
(3) It holds

(1.11) $\lim_{n\rightarrow\infty}x_{n}^{(\mu:T)}(z)=\infty$ , (or $0$)

for any $T(\in \mathfrak{G})$ uniformly on $D_{T}$ .
(4) It holds $ M_{\frac{\mu}{2}}(E)=\infty$ (or $0$) for the singular set $E$ of $G$ .

\S 2. Relation between the computing function and the Hausdorff
dimension of the singular set of the Kleinian group.

5. Let us investigate relations between the computing function and the
Hausdorff dimension of the singular set of the Kleinian group. Given a set
$F$ in the z-plane, the Hausdorff dimension of $F$ is the unique non-negative
number $d(F)$ satisfying

$M_{a}(F)=0$ , if $d>d(F)$

and
$ M_{a}(F)=\infty$ , if $0\leqq d<d(F)$ ,

where $M_{a}(F)$ denotes the d-dimensional Hausdorff measure of $F$.
We get from Theorem 1 and the definition of the Hausdorff dimension

the following propositions ([5]).
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PROPOSITION 4. Let $T$ be any genera$tor$ or its inverse of the Kleinian group
$G$ , that is, $T\in \mathfrak{G}$. Then the Hausdorff dimension $d(E)$ of the singular set $E$ of
$G$ coincides with the following number:

$\sup\{\frac{\mu}{2},\cdot\lim_{n\rightarrow\infty}x_{n^{\prime}}^{(\iota:T)}(z)=\infty,$ $\exists_{z}\in E\cap D_{T}\}$

$=\inf\{-\frac{\mu^{\prime}}{2}$ ; $\lim_{n\infty}\chi_{n}^{(\mu^{\prime}:T)}(z)=0,$
$a_{Z}\in E\cap D_{T}\}$ .

PROPOSITION 5. Let $\mu_{0}$ be the Hausdorff dimension of E. Then $M_{\frac{\mu_{0}}{2}}(E)$

is positive and finite.
In the former paper [5], the writer gave the following problem. Let

$l_{2^{-=d(E)}}^{*}$ be the Hausdorff dimension of $E$. Does $X^{(\mu\cdot;\infty}(z)=\varlimsup_{nr}\chi_{n}^{(\mu;T)}(z)$

equal $\underline{\chi}^{(\mu}$

‘; $T$)
$(z)=\varliminf_{\hslash r}\chi_{n}^{(\mu;T)}(z)$ for any $T(\in \mathfrak{G})$ ? If it is true, is the function

$x^{(\mu:T)}(z)=\lim_{n-}x_{n^{l^{\ell}}}^{(}$
‘; $T$)

$(z)$ always a positive constant on the singular set $E\cap D_{T}$ ?

It is conjectured that this will be 1.
Since three cases that $M_{-\mu_{-},2}(E)$ is zero, finite and infinite, can occur at

any $\mu$ and they are mutually exclusive, we have from Theorem 1 and
Proposition 5 the following theorem.

THEOREM 2. Let $\frac{\mu*}{2}$ be the Hausdorff dimension of E. Then there exists
some positive small $\epsilon$ such that

(2.1) $|x_{n}^{(\mu:T)}(z)-1|<\epsilon$

for any $n$ , any $T(\in \mathfrak{G})$ and any $z\in E\cap D_{T}$ . Therefore it holds

(2.2) $ 0<1-\epsilon\leqq\underline{x}^{(\mu:T)}(z)\leqq X^{(\mu;T)}(z)\leqq 1+\epsilon$

for any $T(\in \mathfrak{G})$ and any $z\in E\cap D_{T}$ .
6. Let us introduce the subcomputing function closely related to the

computing function.
Let $T_{1}$ be any fixed generator of $G$ or its inverse and $S^{(n)}=T_{n}T_{n-1}\cdots T_{2}T_{1}$

$(T_{i}\in \mathfrak{G})$ be any element of $G$ with grade $n(>1)$ for fixed $T_{1}$ defined in (1.5)

of No. 4. Taking the derivative of $S^{-(n)}(z)$ and forming the sum of $(N-1)^{n-1}$

terms with respect to all $S^{(n)}$ for fixed $T_{1}$ such that $T_{n}\neq T^{-1}$ and $T_{i}\neq T_{l+1}^{-1}$

$(1\leqq i\leqq n-1)$ , we have the following function

(2.3) $\sum_{s^{(n-1)}}(\frac{R_{s^{(n-1)}\tau_{1}}}{|S^{(n-1)}T_{1}(\infty)-z|})^{\mu}=\sum_{s(n-1)}|\frac{dT_{1}^{-1}S^{-(n-1)}(z)}{dz}|^{\frac{\mu}{2}}$.
The domain of definition of this function is $D_{T}$ . We denote it by $x_{n}^{(\mu;T.T1)}(z)$ .
Then $x_{n}^{(\mu;T.T_{1})}(z)$ is uniformly continuous in $D_{T}$ from the same reason as in
No. 5. Further we obtain easily
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(2.4) $x_{n}^{(\mu;\tau.\tau_{1})}(g_{s^{(m)}})=\sum_{s^{(n-1)}}(\frac{R_{s^{(n- 1)}\tau_{1}}}{|S^{(n-1)}T_{1}(\infty)-S^{-(m)}(\infty)|})^{\mu}$

$=\sum_{s^{(n-1)}}(\frac{R_{s^{(m}}}{R})_{S^{(n-1)}T_{1}}s^{(m)})^{\mu}$ .
We call $x_{n}^{(\mu:\tau.\tau_{1)}}(z)$ the $\mu$-dimensional subcomputing $T_{1}$-function of order

$n$ on $T$. There exist $N^{2}$ subcomputing functions $\chi_{n}^{(\mu;T.T_{1})}(z)$ in all, since $n>1$

and the first element $T_{1}$ of $S^{(n)}$ and $T(\neq T_{n})$ are any generators or their
inverses $(\in \mathfrak{G})$ of $G$ , respectively.

7. Now let us present some properties of subcomputing function.
(i) At first we have from the definition

\langle 2.5) $\sum_{i=1}^{N}\chi_{n}^{(\mu;\tau.\tau_{i^{)}}}(z)=x_{n}^{(}\mu;T)(z)$ , for any $z\in D_{T}$ .
\langle 2.6) $k(G)\chi_{n}^{(u;T)}(z)\leqq x_{n^{\mu}}^{(}$ : $\tau.\tau_{i}^{-1}$ )

$(z)+\chi_{n}^{(\mu\tau.\tau_{i^{)}}}\dotplus 1(z)\leqq K(G)\chi_{n^{\mu;T)}}^{(}(z)$ .
PROOF. Since (2.5) is obvious, we shall prove (2.6) only. From the defi-

nition, we have

$x_{n}^{(\mu;T,T_{i}^{-1})}(z)+\chi_{n}^{(\mu\tau.\tau_{i)}}\dotplus 1(z)=\sum_{s_{1}^{(n-1)}}(\frac{R_{s_{1}^{(n-1)}\tau_{i}^{-1}}}{|S_{\iota}^{(n-1)}T_{i}(\infty)-z|})^{\mu}+\sum_{s_{2^{n)}}^{(}}(\frac{R_{s_{2}^{(n)}\tau_{i}}}{|S_{2^{(n)}}T_{i}(\infty)-z|})^{\mu}$

for fixed $T_{i}(\in \mathfrak{G})$ . Since it holds

$\sum_{s_{2}^{(n)}}(\frac{R_{s_{2}^{(n)}\tau_{i}}}{|S_{2}^{(n)}T_{i}(\infty)-z|})^{\mu}\leqq k_{1}(G)\sum_{s_{S}^{(n-1)}}(\frac{R_{s_{3}^{(n-1)}\tau_{k}}}{|S_{3^{(n-1)}}T_{k}(\infty)-z|})^{\mu}$ , $(T_{k}\neq T_{i}^{-1})$ ,

we obtain from (2.5)
$x_{n}^{(\mu;\tau.\tau_{i}^{-\iota_{)}}}(z)+\chi_{n^{\beta}}^{(}\dotplus 1^{r.\tau_{i)}}(z)\leqq K(G)\chi_{n}^{(\mu:\tau)}(z)$ ,

where $K(G)=\max(1, k_{1}(G))$ .
Next we shall prove the left inequality. We obtain easily

$\chi_{n}^{(\mu;T)}(z)=\sum_{s^{(n)}}(\frac{R_{s^{(n)}}}{|S^{(n)}(\infty)-z|})^{\mu}$

$=\sum_{s_{4}^{(n-1)}}(\frac{R_{s_{4}^{(n-1)}\tau_{l}^{-1}}}{|S^{(n-1)}T_{i}(\infty)-z|})^{\mu}+\sum_{s_{5}^{(n)}}(\frac{R_{s_{b}^{(n)}}}{|S_{b}^{(n)}(\infty)-z|})^{\mu}$ ,

where $S_{5}^{(n)}=S_{b}^{(n-1)}T_{k}(T_{k}\neq T_{t}^{-1})$ . Since it holds

$\sum_{s_{5}^{(n)}}(\frac{R_{s_{b}^{(n)}}}{|S_{b}^{(n)}(\infty)-z|})^{\mu}\leqq k_{2}(G)\sum_{s_{6}^{(n)}}(\frac{R_{s_{b}^{(n)}\tau_{i}}}{|S_{6}^{(n)}T_{i}(\infty)-z|})^{\mu}$ ,

we have
$k(G)x_{n}^{(\mu:\tau)}(z)\leqq\chi_{n}^{(\mu;\tau.\tau_{i}^{-1})}(z)+\chi_{n^{\mu}}(\dotplus 1^{T.T_{i})}(z)$ ,

where $k(G)=1/\max(1, k_{2}(G))$ .
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(ii) Fix the generators $T$ and $T_{1}$ and take a transformation $S^{(l+n)}=S^{(l)}S^{(n\rangle}$

$=T_{\iota+n}T_{\iota+n-1}\cdots T_{n+1}T_{n}\cdots T_{2}T_{1}$ with grade $l+n$ such that $T_{\iota+n}\neq T^{-1}$ , where $T$

and $T_{j}\in \mathfrak{G}(1\leqq 1\leqq l+n)$ . If we differentiate the inverse transformation
$S^{-(l+n)}(z)=S^{-(n)}S^{-(l)}(z)(z\in D_{r})$ with respect to $z$, we have

$|\frac{dS^{-(l+n)}(z)}{dz}|^{-}2\mu_{-}=(|_{d}^{\underline{dS^{-(}}}\frac{n)(Z^{\prime}}{z^{\prime}})-|.|\frac{dS^{-(l)}(z)}{dz}|)^{-}2\mu$ , $z^{\prime}=S^{-(l)}\langle z$).

Hence we get from (1.6)

(2.7) $(\frac{R_{s^{(l+n)}}}{|S^{(l+n)}(\infty)-z|})^{\mu}=(\frac{R_{s^{(n)}}}{|S^{(n)}(\infty)-S^{-(l)}(z)|}$ . $\frac{R_{s^{(t)}}}{|S^{(l)}(\infty)-z|})^{\mu}$ .
Forming the sum of $(N-1)^{l+n-1}$ terms with respect to all $S^{(l+n)}$ of grade $l+n$

in $G$ for fixed $T_{1}$ such that $T_{\iota+n}\neq T^{-1}$ , we obtain from the definition of the
subcomputing function the following relation

(2.8) $\chi_{l+n^{T.T_{1^{)}}}}^{(\mu;}(z)=\sum_{s^{(\iota)}}\{\chi_{n}^{(\mu;\tau_{n+1}.\tau_{1)}}(S^{-(l)}(z))(\overline{|S^{(l}}\frac{R_{s^{(l)}}}{)(\infty)-z|})^{\mu}\}$ ,

where the domain of definition of $\chi_{l+n}^{(\mu;T.T_{1})}(z)$ and $x_{n}^{(\mu;\tau_{n+1}.\tau_{1})}(z)$ are the $\backslash closed$

discs $D_{T}$ and $D_{r_{n+1}}$ bounded by $H_{T}$ and $H_{r_{n+1}}$ , respectively and $S^{-(l)}=$

$(T_{n+l}\cdots T_{n+1})^{-1}=T_{n+1}^{-1}\cdots T_{n+l}^{-1}$ .
Since $S^{(l)}(\infty)$ and $z$ are contained in $D_{\tau_{\overline{\iota}+^{1}n}}$ and $D_{T}$ , respectively and

$T\neq T_{\overline{\iota}+n}^{1}$ , each denominator of the right hand side in (2.8) does not vanish
and is greater than some positive constant from the assumption about $B_{0}$ .
Noting that $R_{s^{(l)}}$ tends to zero as $ l\rightarrow\infty$ , we have the following inequality:

(2.9)
$\chi_{t+n^{T.T_{1)}}}^{(\mu:}(z)>k_{0}(l)\sum_{s^{(\iota)}}\chi_{n}^{(}\mu;\tau_{n+1}.\tau_{1)}(S^{-(l)}(z))$ ,

where $k_{0}(l)$ is a constant depending only on $l$ and tends to zero for $ l\rightarrow\infty$ .
In the same manner $S^{(n)}(\infty)$ and $S^{-(l)}(z)$ are contained in $D_{\tau_{n}^{-1}}$ and $D_{\tau_{n+1}}$ ,

respectively and hence the factor $|S^{(n)}(\infty)-S^{-(l)}(z)|$ of the denominator of
the right hand side in (2.7) does not vanish from $T_{n}^{-1}\neq T_{n+1}$ and then it is
greater than some positive constant from the assumption about $B_{0}$ . Noting
the above consideration, we can easily find from (2.7) that there is the follow-
ing relation between two computing functions on the same $T$ with different
orders:

(2.10) $K_{1}(n)\chi_{l}^{(\mu;\tau.\tau_{n+1)}}(z)>x_{l+n}^{(\mu;\tau.\tau_{1})}(z)>K_{0}(n)\chi_{\iota^{(\mu;\tau.r_{n+1^{)}}}}(z)$ ,

where $K_{i}(n)(i=0,1)$ denote the constants depending only on $n$ .
(iii) In [5], we got the equi-continuity of the sequence of computing

functions. We have also the same property with respect to the sequence of
subcomputing functions. The proof is analogous to that of computing function.

PROPOSITION 6. (1) Suppose that the sequence of subcomputing functions
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$\{x_{n}^{(\mu:T.T_{1})}(z)\}(n=1,2, \cdots)$ on some $T$ and $T_{1}\in \mathfrak{G}$ converges to a finite number or
$0$ as $ n\rightarrow\infty$ at some point $z^{\prime}$ of the singular set contained in $D_{T}$ . Then the
sequence $\{\chi_{n^{\mu;T.T_{1)}}}^{(}(z)\}(n=1, 2, )$ is equi-continuous on $D_{T}$ , that is, there exists
some positive number $\delta$ depending only on $\epsilon$ such that

(2.11) $|\chi_{n}^{(\mu:\tau,\tau_{1)}}(z)-\chi_{n}^{(\mu:\tau.\tau_{1)}}(z_{0})|<\epsilon$

for any point $z$ contained in $D_{\delta}(z_{0})$ satisfying $|z-z_{0}|<\delta$ , where $D_{\delta}(z_{0})$ denotes
an open disc of radius $\delta$ with center $z_{0}\in D_{T}$ .

( $\mathfrak{Y}$ Suppose that the sequence of subcomputing functions $\{x_{n}^{(\mu,T.T1)}(z)\}$

$(n=1,2, \cdots)$ on some $T$ and $T_{1}\in \mathfrak{G}$ diverges for $ n\rightarrow\infty$ at some point $z^{\prime}$ of the
singular set contained in $D_{T}$ . Put $\eta_{n}^{(\mu;T.T_{1})}(z)=1/x_{n}^{(\mu:TT_{1})}(z)$ . Then the sequence
$\{\eta_{n}^{(\mu;T.T_{1})}(z)\}(n=1,2, \cdots)$ is equi-continuous on $D_{T}$ , that is, there exists some
positive number $\delta$ depending only on $\epsilon$ such that

(2.12) $|\eta\psi^{:\tau.\tau_{1)}}(z)-\eta_{n}^{(\mu;\tau.\tau_{1})}(z_{0})|<\epsilon$

for any poin $tz$ contained in $D_{\delta}(z_{0})$ defined in (1) satisfying $|z-z_{0}|<\delta$ .
8. Suppose that there exists a positive integer $n_{0}$ for any sufficiently

small $\epsilon$ such that

(2.13) $x_{n}^{(\mu_{0};\tau.\tau_{t)}}(z)>\underline{1}\underline{+\epsilon}N$ , (or $<\frac{1-\epsilon}{N})$ ,

for any $T$ and $T_{t}\in \mathfrak{G}$ and any $z\in E\cap D_{\tau}$ . Then it holds from (2.5)

$\chi_{n}^{(\mu_{0}:T)}(z)>1+\epsilon$ , (or $<1-\epsilon$)

for any $T\in \mathfrak{G}$ and any $z\in E\cap D_{T}$ . Therefore we find that (2.13) is the
sufficient condition for Theorem 1.

We shall prove that the converse of the above is also true.
Let us suppose that the third proposition in Theorem 1 establishes, that

is, it holds
$\lim_{nr}x_{n}^{(\mu:T\rangle}(z\rangle$

$=\infty$ , (or $0$)

for any $T(\in \mathfrak{G})$ uniformly on $D_{T}$ .
At first we consider the case where the limit is $0$ . From (2.5) there exists

a certain positive integer $n_{0}$ such that for any sufficiently small $\epsilon$ such that
it holds

(2.14) $\chi_{n^{\mu_{0};T.T_{i^{)}}}}^{(}(z)<\frac{1-\epsilon}{N}$ ,

for any $T$ and $T_{i}\in \mathfrak{G}$ on $E\cap D_{T}$ .
Next we treat the case where the limit is $\infty$ . From (2.6) there exists a

sequence of subcomputing functions $\{\chi_{n}^{(\mu:\tau.\tau_{i})}(z)\}(n=1,2, \cdots)$ such that it holds

(2.15) $\lim_{nr}\chi_{n^{\mu,T,T_{l^{)}}}}^{(}(z)=\infty$
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for any $T$ and $T_{i}(\in \mathfrak{G})$ uniformly on $E\cap D_{T}$ . Hence there exists a certain
positive integer $n_{0}$ for sufficiently small $\epsilon$ such that it holds

(2.16) $\chi_{n^{\mu_{0}}}^{(;r.\tau_{i^{)}}}(z)>\frac{1-\epsilon}{N}$ ,

for any $T$ and $T_{i}\in \mathfrak{G}$ on $E\cap D_{T}$ .
Thus we have the following theorem.
THEOREM 3. The four propositions in Theorem 1 are equivalent to the follow-

ing proposition: there exists a positive integer $n_{0}$ for any sufficiently small $\epsilon$

such that

(2.17) $\chi_{n}^{(\mu_{0}:\tau.r_{i})}(z)>\frac{1+\epsilon}{N}$ , (or $\frac{1-\epsilon}{N})$ ,

for any $T$ and $T_{i}\in \mathfrak{G}$ on $E\cap D_{T}$ .
9. REMARK. Using the properties (i), (ii) and (iii), we can easily find

that the propositions in Theorem 3 are also equivalent to the following two
propositions (A) and (B). The proof is also analogous to that of the computing
function in [5].

(A) The subsequence $\{x\wp_{J^{;TT_{i^{)}}}}\cdot(z)\}(j=1,2, \cdots)$ of $\{\chi_{n}^{(\mu;\tau.\tau_{t)}}(z)\}(n=1,2, \cdots)$

on some $T$ and $T_{i}(\in \mathfrak{G})$ diverges to $\infty$ (or converges to zero) at some point
$z_{0}$ of the singular set contained in $D_{T}$ , that is,

$\varliminf_{j}\chi_{n}^{(\mu_{j};T.T_{j^{)}}}(z_{0})=\infty$ , (or $0$)

for some $z_{0}\in E\cap D_{T}$ .
(B) It holds

$\lim_{n\rightarrow\infty}\chi_{n}^{(\mu;\tau,\tau_{i^{)}}}(z)=\infty$ , (or $0$)

for any $T$ and $T_{j}(\in \mathfrak{G})$ uniformly on $D_{T}$ .
10. We have the following theorem analogous to Theorem 2 with respect

to the subcomputing function from Theorem 3.
THEOREM 4. Let $\mu^{*}/2$ be the Hausdorff dimension of E. Then there exists

some posit$ive$ small $\epsilon$ such that

(2.18) $|\chi_{n^{\mu;T.T_{i^{)}}}}^{(}(z)_{\overline{N}}^{1}--|<\frac{\epsilon}{N}$

for any $n$ , any $T$ and $T_{i}(\in \mathfrak{G})$ and any $z\in E\cap D_{T}$ . Therefore it holds

(2.19) $\frac{1-\epsilon}{N}\leqq\underline{x}^{(\mu;T.T_{i^{)}}}(z)\leqq\overline{x}^{(\mu;T.T_{i)}}(z)\leqq\frac{1+\epsilon}{N}$ , $(\epsilon<1)$ ,

for any $T$ and $T_{i}(\in \mathfrak{G})$ and any $z\in E\cap D_{T}$ , where $\underline{\chi}^{(\mu;T.T_{i^{)}}}(z)=\varliminf_{n-}x_{n^{\mu}}^{(}$

‘: $TT_{i)}(z)$

and $\overline{\chi}^{(\mu^{*};T.T_{i^{)}}}(z)=\varlimsup\chi_{n^{\mu}}^{(;\tau.\tau_{i})}(z)$ .
$ n\rightarrow\infty$

$CoROLLARY$ . Let $\mu^{*}/2$ be the Hausdorff dimension of E. Then it holds
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(2.20) $\frac{1}{K}\leqq\frac{\chi_{n}^{(\mu^{l}:\tau_{1}.r_{2})}(z)}{\chi_{n}^{(\mu^{*}:\tau_{8}.\tau_{4})}(z)}\leqq K$

for any $T_{i}(i=1,2,3,4)(\in \mathfrak{G})$ and any $z,$ $z^{\prime}\in E\cap D_{T}$ , where $K=(1+\epsilon)/(1-\epsilon)(>1)$

is a constant independent of $n,$ $z,$
$z^{\prime}$ and $T_{i}(i=1,2,3,4)(\in \mathfrak{G})$ .

\S 3. Example of the Kleinian groups whose singular sets have positive
(3/2)-dimensional measure.

11. We shall give some theorems which show not only the existence of
the Kleinian groups with title stated in the above, but also interest in them-
selves.

At first we shall give the following
THEOREM 5. Let $P_{1}=P(R, 0)$ and $P_{2}=P(R, \pi)$ be fixed points on the real

axis in the complex z-plane and
$P=P(r,\theta)21$

move on the fixed circle $C_{r}$ : $|z|=r$

$(r\neq R)$ . Then the function $f(P)=\sum\overline{\overline{{}_{i=1}PP_{i}}^{3}}$ of $P$ attains its minimum at the

poin $ts$ on the real axis, where $\overline{PP_{i}}$ denotes the distance between $P$ and $P_{i}$ .
PROOF. By using the polar coordinates, we obtain

$f(r, \theta)=(R^{2}+r^{2}-2Rr\cos\theta)^{\frac{8}{2}}+(R^{2}+r^{2}+2Rr\cos\theta)^{\frac{3}{2}}$ , ($r$ ; fixed).

If we differentiate $f(r, \theta)$ with respect to $\theta$ for fixed $r$, we have

$-\partial\frac{f}{\theta}\partial=-3Rr\sin\theta\{(R_{2^{2}}+r+2Rrco_{2}s\theta)_{2^{-\iota}}^{2}-(R^{2}+r^{2}-2Rr_{\frac{\ovalbox{\tt\small REJECT} f}{2}}\cos\theta)^{-b}2\}(R^{2}+r+2R^{2}r\cos\theta)^{-\iota_{-}}(R+^{-}r^{2}-2Rr\cos\theta)$ .

Hence the values which satisfy the equation $-\frac{f}{\theta}=0\partial\partial$ in $ 0\leqq\theta\leqq 2\pi$ are the ones
which satisfy the following equations

(i) $\sin\theta=0$ and (ii) $(1+a\cos\theta)^{6}=(1-$ acos $\theta)^{6}$ , where $a=2Rr/(R^{2}+r^{2})$

$(\leqq 1)$ . From (i) we obtain the solutions $0$ and $\pi$ . From (ii) we obtain

(3.1) $\cos\theta(a^{4}\cos^{4}\theta+10a^{4}\cos^{2}\theta+5)=0$ .
Hence the values which satisfy the equation (3.1) are those satisfying $\cos\theta=0$

(hence $\theta=\pi/2$ and $3\pi/2$) or

(3.2) $a^{4}\cos^{4}\theta+10a^{2}\cos^{2}\theta+5=0$ .
If we put $x=a^{2}\cos^{2}\theta(0\leqq x\leqq 1)$ , we obtain, as the values which satisfy

(3.2), $x=-5\pm 2\sqrt{5}$ and these contradict $0\leqq x\leqq 1$ . Observing the variation of
$\frac{\partial f}{\partial\theta}$ at $\theta=0,$ $\frac{\pi}{2}\pi$ and $\frac{3}{2}\pi$ , we can show the fact that $f(P)$ attains its

minimum $\theta=\frac{\pi}{2}$ and $\frac{3}{2}\pi$ and its maximum at $\theta=0$ and $\pi$ . $q$ . $e$ . $d$ .
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Next we shall give the following

THEOREM 6 ([6]). Let $P_{1}=P(2, \pi),$ $P_{2}=P(2,$ $\frac{\pi}{3})$ and $P_{3}=P(2,$ $--\pi 3-)$ be

fixed in the complex z-plane, and $P=P(r, \theta)$ move in the fixed closed unit disc
3 1

$U:|z|\leqq 1$ . Then the function $f(P)=\sum_{i=1}--\overline{PP_{i}}^{3}$ attains its minimum at the origin.

The proof of this theorem is given in [6] and [7].

12. The Example. Now let us give the example of Kleinian groups whose
singular sets have positive (3/2)-dimensional measure.

At first we consider the unit circle and denote it by $C_{0,0}$ . Next we
describe the six circles $C_{1,j_{1}}(j_{1}=1, \cdots, 6)$ with equal radii 1 so that $C_{1,j_{1}}$

$(j_{1}=1, \cdots, 6)$ are tangent externally with each other around $C_{0,0}$ and hence
the segments, which join the centers of $C_{1,f_{1}}$ successively, constitute a regular
hexagon $R_{1}$ , where the center of $C_{1,1}$ has a real coordinate $(2, 0)$ . Further we
describe the twelve circles $C_{2,j_{2}}(j_{2}=1,2, \cdots, 12)$ with equal radii 1 so that
$C_{2,j_{2}}$ $(j_{2}=1,2, \cdots , 12)$ are tangent externally with each other around $C_{1,j_{1}}$ and
hence the segments, which join the centers of $C_{2,j_{2}}$ successively, constitute a
regular hexagon $R_{2}$ , where the center of $C_{2,1}$ has a real coordinate $(4, 0)$ .
We continue such procedure by turns. Generally, we describe the $C_{n,j_{n}}$

$(j_{n}=1,2, \cdot.. 6n)$ with equal radii 1 so that $C_{n,j_{n}}(j_{n}=1,2, \cdot. 6n)$ are tangent
externally with each other around $C_{n-1,jn- 1}$ and hence the segments, which
join the centers of $C_{n,j_{n}}$ successively, constitute a regular hexagon $R_{n}$ , where
the center of $C_{n,1}$ has a real coordinate $(2n, 0)$ . We call the first index $i$ and
the second $j_{i}$ of $C_{i,j_{i}}$ i-th rank and $j_{i}$-th emission, respectively. It is obvious
that the total number of circles $C_{0,0}$ and $C_{i,j_{i}}$ $(i=1,2, \cdot.. , n;j_{i}=1,2, 6i)$ is
equal to $3n(n+1)+1$ .

If we make all radii of circles $C_{i,f}$ of all ranks short by $\epsilon$ , we get a
connected domain $D_{n}$ bounded by $3n(n+1)+1$ circles whose radii are all $ 1-\epsilon$ .
Now we shall form a Kleinian group $G$ with fundamental domain $D_{n}$ in the
following; we let these $3n(n+1)+1$ circles $C_{0,0},$ $C_{1,j_{1}}(j_{1}=1,2, 6)$ , $\cdots$ , $C_{n,j_{n}}$

$(j_{n}=1,2, \cdots , 6n)$ correspond to elliptic transformations $S_{0,0},$ $S_{1,j_{1}}(j_{1}=1, \cdots 6)$ ,
... , $S_{n,j_{n}}$ $(j_{n}=1, \cdot.. 6n)$ with period 2. But we require some remarks: (i) two
fixed points of $S_{n,j_{n}}(j_{n}=1, \cdots, 6n)$ are the endpoints of diameters of circles
$C_{n,j_{n}}(j_{n}=1, \cdots, 6n)$ orthogonal to the sides of $R_{n}$ except six transformations
$S_{n,1+in}$ $(i=0$ , $\cdot$ .. 5$)$ and (ii) two fixed points of each of $S_{n,1+in}(i=0, \cdot 5)$ are
intersecting points of the half straight line emanating from the origin and
going through each of the centers of circles $C_{n,1+in}(i=0, \cdots, 5)$ with these
six circles.

Then the singular set $E$ of such Kleinian group $G$ generated by $S_{0,0},$ $S_{1,j_{1}}$

$(j_{1}=1, \cdots, 6),$ $\cdots,$ $S_{n.f_{n}}(j_{n}=1, \cdots, 6n)$ is contained in $R_{n}\cap[\{\bigcup_{i=1}^{n}\bigcup_{J_{i^{=1}}}^{6l}D_{i,j}\}\cup D_{0,0}]$ ,
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where $D_{i,j_{i}}$ denotes the closed disc bounded by $C_{i,j_{i}}$.
13. Let $-2^{-}\mu(\mu>3)$ be the Hausdorff dimension of the singular set of the

Kleinian group defined in No. 12. Then it holds from Theorem 2

(3.3) $|\chi^{(\mu;S0,0)}(z)-1|<\epsilon$

for some $\epsilon$ and any $\nu$ , where 6 $(<1)$ is a positive number independent of
$\nu,$ $S_{0,0}$ and $z(\in E\cap D_{0,0})$ . Hence if we can determine the number $n$ of the
rank of outermost circles $C_{n,j_{n}}(j_{n}=1, \cdots, 6n)$ from the origin so that the
computing functions of $C_{0,0},$ $\chi_{\nu}^{(\mu;S_{0,0)}}(z)$ , are bounded for any $\nu$ and any singular
point $z(\in E\cap D_{0,0})$ , we can show from Theorem 2 the existence of Kleinian
group $G$ with fundamental domain $B_{0}$ whose singular set $E$ has positive
(3/2)-dimensional measure.

Take any point $z\in E\cap D_{0,0}$ and some neighborhood $U(z)$ of $z$ which will
be determined later. Then there exists a center of isometric circle $g_{s^{(m)}}$ which
is contained in $U(z)$ for sufficiently large $m(\geqq m_{0})$ , where $S^{(m)}=S^{(m-1)}S_{0,0}$ .

Consider the $\mu$-dimensional computing function of order $\nu$ on $s_{0,0},$ $ x(\parallel$
;
$s_{0,0)}(z)$ ,

at $z\in E\cap D_{0,0}$ for $\mu>3$ . From the definition of the computing function it
holds that

\langle 3.4) $\chi_{\nu^{\mu:S_{00)}}}^{(}’(g_{s^{(m)}})=\frac{\sum_{s^{(\nu)}}(R_{s^{(m)}s^{(\nu)}})^{\mu}}{(R_{s^{(m)}})^{\mu}}$ .

We modify the right hand side of (3.4) in the following

(3.5) $\frac{\sum_{s^{(\nu)}}(R_{s^{(m)}s^{(\nu)}})^{\mu}}{(R_{s^{(m)}})^{\mu}}=\prod_{j=1}^{\nu}[-\sum_{s^{(j-}}^{s}\frac{\sum_{(j)}(R_{s^{(m)}s^{(j)}})^{\mu}}{1)(R_{s^{(m)}s^{(j- 1)}})^{\mu}}]$ .

Since $\chi_{\nu}^{(\mu;S_{00})}(z)(\nu=1,2, \cdots)$ is equi-continuous in $D_{0,0}$ (No. 8), there exists a
number $\delta$ depending only on any sufficiently small $\epsilon^{\prime}$ such that it holds

(3.6) $|\chi_{\nu}^{(\mu:s0,0)}(z)-\chi_{\nu}^{(\mu;s_{0,0)}}(g_{s^{(m)}})|<\epsilon^{\prime}$ , for $|z-g_{s^{(m)}}|<\delta$ .
Then we have from (3.3) and (3.6)

\langle 3.7) $1+(\epsilon+\epsilon^{\prime})>\chi_{\nu}^{(\mu:S_{0,0)}}(g_{s^{(m)}})>1-(\epsilon+\epsilon^{\prime})>0$ .
We take a closed disc $D_{\delta}(z)$ with center $z$ and radius $\delta$ defined in the above
as a neighborhood $U(z)$ of $z$ and we can determine $g_{s^{(m)}}$ such that it is con-
tained in $D_{\delta}(z)$ .

Now we know that each term of the product in (3.5) tends to 1 from the
well-known theorem about the infinite product. Hence there exists an integer
$j_{0}$ depending only on any given sufficiently small $\epsilon^{*}$ such that it holds
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(3.8) $-\frac{\sum\omega^{(R_{s^{(m)}s^{(j)}})^{\mu}}}{1)(R_{s^{(m)}s^{(j-1)}})^{\mu}}\sum_{s^{(J-}}^{s}>1-\epsilon^{*}$ , $(^{v}j>j_{0})$

for all terms of the product (3.5) except finite $j_{0}$ terms from the first term.
This inequality is equivalent to

(3.9) $\sum_{s^{(j-1)}}(R_{s^{(m)}s^{(j- 1)}})^{\mu}\{\frac{\sum_{s_{k}}(R_{s^{(m)}s^{(j-1)}s_{k}})^{\mu}}{(R_{s^{(m)}s^{(j-1)}})^{\mu}}(1-\epsilon^{*})\}>0$ , $(j>j_{0})$ .

By the definition of the computing function we see easily that

(3.10) $\frac{\sum_{s_{k}}(R_{s^{(m)}s^{(j- 1)}s_{k}})^{\mu}}{(R_{s^{(m)}s^{(j-1)}})^{\mu}}=\frac{\sum_{s_{k}}(R_{s^{(m+j-1)}s_{k}})^{\mu}}{(R_{s^{(m+j-1)}})^{\mu}}=x_{1^{l}}^{(\ell:sc,r_{i^{)}}(g_{s^{(m+j-1)}})}$ ,

$(i=0, j_{i}=0)$ or $(i=1, \cdots n;j_{i}=1, \cdots , 6i)$ ,

where $S^{(m+j-1)}=S^{(m+f-2)}S_{i,j}:$ .
14. In this section we shall estimate the values of $\chi_{1}^{(\mu};s\iota,ii^{)}(g_{s^{(m+j-1)}})$ from

below for all $S_{i,j_{i}}(i=0,$ $j_{i}=0$ or $i=1$ , $\cdot$ .. , $n;j_{i}=1$ , $\cdot$ .. $6_{l)}$ . For convenience
of calculation we suppose that the all radii of the boundary circles $C_{i,j_{2}}$

($i=0,$ $i_{i}=0$ or $i=1,$ $\cdots,$ $n;j_{i}=1,$ $\cdots,$
$6i$) are equal to 1. Moreover, if we

suppose that $\mu$ is very close to 3, we may calculate the values of 3-di-
mensional computing functions of order 1 on $S_{i}$ , $f_{i}\chi_{1}(3;s_{i,!(g_{s^{(m+j-1)}})}i^{)}$ instead of
$\chi_{1}^{(\mu;s_{i,j_{i^{)}(g_{s^{(m+j-1)}})}}}$ as $\chi_{1}^{(u,}$ si, $J_{\iota^{)}}(g_{s^{(m+j-1)}})$ is continuous.

We divide these calculations into the various cases according as the
various ranks of $S_{i,j_{i}}$ .

(a) With respect to the generators $S_{i,j_{i}}(i=0,$ $j_{i}=0$ or $i=1,$ $\cdots$ , $n-4$,
$j_{i}=1,$

$\cdot\cdot.\cdot$ , 6 $i$) from O-th rank to $(n-4)$ -th rank, we use the estimate of $\chi_{1}^{(3:S00)}(z)$

in $D_{0,0}$ . We obtain from (1.1) and Theorem 6 the following inequality

$\chi_{1}^{(s;s_{00)}},(z)=\sum_{s_{k}\neq s_{00}},-|^{\frac{R}{g_{S_{k}}}}-\overline{z|}^{\theta^{-\geqq\chi_{1}^{(\theta;s_{0,0)}}(0)}}s_{k}^{3}=\sum_{s_{k}\neq s_{0,0}}\frac{1}{|g_{S_{k}}|^{s}}$

(3.11) $>\frac{6}{2^{s}}+(\frac{6}{4^{3}}+\overline{(}2\frac{6}{\sqrt{3})^{3}})+(\frac{1}{6^{2}}+\frac{12}{(2\sqrt{7})^{s}})$

$+(\frac{6}{8^{3}}+-\overline{9}\sqrt{3}6-+- 3\frac{\sqrt{13}}{338})>1.15862$ , $(^{\forall}z\in E\cap D_{0,0})$ ,

where the above first, second and third parentheses denote the sum with
respect to circles of second, third and fourth rank, respectively.

(b) Next we shall estimate the values of the computing functions cor-
responding to the circles $C_{n-3,jn-},$ $(j_{n-s}=1, \cdots, 6n-18)$ of $(n-3)$ -th rank. For
this purpose we take the computing function $\chi_{1}^{(3:s_{n-81)}}’(z)$ of the circle $C_{n-3,1}$

of $(n-3)$ -th rank and the first emission as the representative. From Theorems
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5 and 6 we have the following inequality:

$\chi_{1}^{(a:s_{n-3,1)}}(z)=\sum_{s_{k}\neq s_{n- 31}}\frac{R_{s_{k}^{3}}}{|g_{S_{k}}-z|^{3}}$

(3.12) $>\frac{6}{2^{3}}+(\frac{6}{4^{3}}+\frac{6}{(2\sqrt{3})^{3}})+(\frac{1}{6^{2}}+\frac{12}{(2\sqrt{7})^{3}})$

$+(\frac{1}{9^{3}}+\frac{2}{67}\sqrt{67}2+\frac{2}{6}1^{2}\sqrt{61}+\frac{2\sqrt{7}}{27\times 7^{2}}+_{7}^{\underline{2}}\frac{\sqrt 73}{3^{2}}+-\frac{\sqrt 13}{338}+-7^{2_{\overline{3}}})$

$>1.12978$ , $(\forall_{z\in E\cap D_{n-3,1})}$ ,

where Theorem 6 is used in the value $6/2^{3}$ , the first and second parentheses
and Theorem 5 is used in the last parentheses.

(c) With respect to the computing functions corresponding to the circles
$C_{n-2,jn-2}$ $(j_{n-z}=1, \cdot.. , 6n-12)$ of $(n-2)$ -th rank, we shall estimate the value
of $\chi_{1}^{(3:S_{n-2,1})}(z)$ as the representative. We obtain from Theorems 5 and 6

$\chi_{1}^{(3;S_{n}-2,1)}(z)=\sum_{s_{k}\neq s_{n- 2,1}}\frac{R_{s_{k}^{8}}}{|g_{S_{k}}-z|^{\theta}}$

$>\frac{6}{2^{l}}+(\frac{6}{4^{3}}+\frac{6}{(2\sqrt{3})^{3}})$

(3.13) $+(\frac{1}{7^{a}}+++\frac{2}{43}2+\frac{\sqrt{7}}{98}\underline{2}\sqrt{39}\underline{2}\sqrt{37}\sqrt{43}3\overline{9}^{2}37^{2}$)

$+(-9^{1_{a}}+\frac{2\sqrt 6}{67}2+\underline{7}763^{2}72_{3^{-+-}}6\sqrt{7}\underline{2}-+\frac{\sqrt 73}{3^{2}}+\frac{2\sqrt{57}}{57}2+\frac{2\sqrt{61}}{61^{2}})$

$>1.06909$ , $(^{\forall}z\in E\cap D_{n- 2,1})$ ,

where Theorem 6 is used in the value 6/2’ and the first parentheses and
Theorem 5 is used in the second and the third parentheses.

(d) With respect to the computing functions corresponding to the circles
$C_{n-1,jn-1}$ $(j_{n-1}=1, \cdot., 6n-6)$ of $(n-1)$ -th rank, we shall estimate the value of
$\chi_{1}^{(3;S_{n-1,1)}}(z)$ as the representative. We obtain from Theorems 5 and 6

$\chi_{1}^{(s;s_{n-1,1)}}(z)=\sum_{s_{k}\neq s_{n- 1,1}}\frac{R_{s^{3}}}{1g_{S_{k}}}-\overline{z|^{3}}k$

$>\frac{6}{2^{a}}+(\underline{2}1\frac{\sqrt 13}{3^{2}}+^{\underline{2}\sqrt{21}}21^{2}+\frac{2\sqrt{19}}{19^{2}}+\frac{1}{5^{3}})$

(3.14) $+(\frac{1}{7^{3}}+^{\underline{2}\sqrt{31}}+^{\underline{2}\sqrt{}}31^{2}43^{4_{2}3_{-}}+^{\underline{2}\sqrt{37}}3^{-}7^{2^{-}}+\frac{2\sqrt{}}{39}\overline{3_{2}\underline{9}})$

$+(\frac{1}{9^{s}}+\frac{2\underline{\sqrt{}}}{57}2+\frac{2\sqrt{73}}{73^{2}}+\frac{2\sqrt{7}}{27\times 7^{3}}+\frac{2\sqrt{61}}{61^{2}}+\frac{2\sqrt{67}}{67^{2}})$
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$+(111_{3}+-++\underline{4}\sqrt{91}2_{-}\sqrt{11\underline{1}}2_{-}\sqrt 91^{2}1^{-}11^{z}97^{\overline{9_{2}}7_{-}^{-}}+\frac{2\sqrt{}}{93}9_{2}\underline{\overline{3}}+\frac{2\sqrt{103}}{103^{2}})$

$>0.91867$ , $(^{\forall}z\in E\cap D_{n- 1,1})$ ,

where Theorem 6 is used in the value $6/2^{3}$ and Theorem 5 is used in the
values from the first to the fourth parentheses.

(e) With respect to the computing functions corresponding to the circles
$C_{n,j_{n}}$ $(n=1, , 6n)$ of n-th rank, we shall estimate the values of $\chi_{1}^{(3;S_{n1})}(z)$ as
the representative. We use only Theorem 5 and then we have the following

$\chi_{1}^{(s;s_{n’ 1)}}(z)=\sum_{s_{k}\neq s_{n,1}}|g_{S_{k}}-\overline{z|}^{\theta^{-}}R_{s_{k}^{3}}$

$>2^{3_{s^{-+(-}}}4^{3_{3}}+-3\sqrt{3}6-)+(-+-\sqrt 76^{3_{\overline{3}}}98^{-)+(}8^{3_{\theta^{-+}}}\sqrt 3\sqrt 1\overline{3}2\overline{8}8^{-+-}338^{-)}$

(3.15)

$+(103_{3}+\sqrt{}\sqrt 88^{2}\overline{2^{\underline{1}}}72^{1}2^{9}+-)+(12972^{-+-}1\overline{9}2^{\frac{1}{2}+-}7^{\frac{\sqrt 7}{84})}3_{\overline{3}}\sqrt{3}\sqrt{3}+-$

$>0.55744$ , $(^{v}z\in E\cap D_{n,1})$ .
15. Now let us return to the inequality (3.9) Since the first term

$\sum_{s_{k}}(R_{s^{(m)}s^{(j-1)}s_{k}s^{(m)}s^{(j-1)}})^{\mu}/R()^{\mu}$ in the parentheses of (3.9) is approximately equal

to $x_{1}^{(s;s_{i,j_{i^{)}}}}(g_{s^{(m+j- 1)}})$ from (3.10) and we found estimates of these values from
below in all cases $(a)-(e)$ in No. 14, if we substitute these values into the
inequality (3.9), we obtain the following inequality:

$0.15863\sum_{s^{(J-1)}}(1)(R_{s^{(m+j- 1)}})^{\mu}+0.12979\sum_{sU-1)}(2)(R_{s^{(m+j-1)}})^{\mu}$

(3.16)
$+0.06910\sum_{s^{(j-1)}}(3)(R_{s^{(m+j-1)}})^{\mu}-0.0S132\sum_{s^{(j-1)}}(4)(R_{s^{(m+j- 1)}})^{\mu}$

$-0.44255\sum_{s^{(J-1)}}(6)(R_{s^{(m+j- 1)}})^{\mu}>0$ ,

where $\sum^{(i)},$ $(i=1,2,3,4,5)$ denotes the sum of radii of the isometric circles
of transformations whose last element $S_{i,j_{i}}$ of $S^{(j-1)}=S^{(j-2)}S_{i,j_{i}}$ corresponds
to the cases of $(a)-(e)$ in No. 14, respectively and further we take $\epsilon^{*}$ suf-
ficiently small, for example, $10^{-6}$ .

If the left hand side of (3.16) is divided by $(R_{s^{(m)}})^{\mu}$ , and the definition of
the subcomputing function is recalled, the following inequality is given:

$o.15863\sum_{s_{i,j_{i}}}(1)x_{j}^{(\underline{\mu}}|^{s_{0,0},s_{i}}’ J_{i^{)}(g_{s^{(m)}})+0.12979\sum_{s_{i,j_{i}}}\chi_{J^{\underline{\mu}}}^{(}|^{S_{0,0}S_{t,j_{i^{)}}}}(g_{s^{(m)}})}(2)$

(3.17)
$+0.06910\sum_{s_{i,j_{i}}}(3)\chi_{J^{\underline{\mu}}}^{(}i^{s_{0,0},s_{i,j_{i^{)}}}}(g_{s^{(m)}})-0.08132\sum_{s_{i,j_{i}}}(4)x_{P-\dot{i}^{s_{0,0},s_{t,j_{i^{)}}}}}^{t}(g_{s^{(m)}})$

$-0.44255\sum_{s_{tj_{i}}}(6)x^{(}\gamma_{-\dot{i}^{s_{0,0},s_{i,j_{i^{)}}}}}(g_{s^{(m)}})>0$ ,
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where
$\sum_{s_{i\cdot j_{i}}}(1)$

denotes the sum of the subcomputing function with respect to

the right element $S_{i,j_{i}}$ of $S^{(m+j-1)}$ from $0$ to $(n-4)$ -th rank, $\Sigma^{(8)}$ the sum with
$s_{i,j_{i}}$

respect to the element of $(n-3)$ -th rank,
$\sum_{s_{ij_{i}}}(3)$ the sum with respect to the

element of $(n-2)$ -th rank, $\sum^{(4)}$ the Sum with respect to the element of(n–l)\neg th
$s_{tJi}$

rank, and
$\sum_{s_{i,ji}}(6)$

the sum with respect to the element of n-th rank, respectively.

Since $\mu/2$ is the Hausdorff dimension, we can easily prove from Corollary
of Theorem 4 in No. 10 that it holds

(3.18) $\frac{1}{K}\leqq\frac{\chi_{j}^{(\underline{\mu}}\dot{i}^{s_{0,0},s_{i,j_{i^{)}}}}(g_{s^{(m)}})}{\chi_{j1}^{(\underline{\mu}is_{\mathfrak{v},0},s_{k,j_{k^{)}}}}(g_{s^{(m)}})}\leqq K$

for any two subcomputing functions $x_{f-i^{s_{00},s_{i,!i^{)}}}(z)}^{(}$ and $\chi_{J}^{(P_{-|^{S_{0,0},S_{k,j_{k^{)}}}}(z)}^{t}}$ .
Now we divide the inequality (3.17) by any term $x^{(}\gamma_{-i^{s_{0,0},s_{kjk^{)}}}’(g_{s^{(m)}})}$ among

the summations $\sum^{(l)},$ $(l=1, \cdots, 5)$ . Then we obtain from (3.18) the following
$s_{ij_{i}}$

inequality:

$\frac{1}{K}[0.15863\{3(n-4)(n-3)+1\}+0.12979\times 6(n-3)+0.06910\times 6(n-2)]$

(3.19) $-K[0.08132\times 6(n-1)+0.44255\times 6n]$

$>0$ .
If we take a sufficiently large number $n$ , the above inequality is satisfied

and thus the existence of Kleinian groups, whose singular sets have positive
(3/2)-dimensional measure, is proved.

16. Completing the above results, we obtain the following results.
THEOREM 7. Among Kleinian groups whose fundamental domains are

bounded by mutually disjoint $N$ circles, if $N$ is sufficiently large, there exist
ones whose singular sets have positive (3/2)-dimensional measure.

Recalling our results about Poincar\’e theta-series [2], we have the follow-
ing theorem.

THEOREM 8. Among Kleinian groups whose fundamental domains are
bounded by $mu$ tually disjoint $N$ circles, if $N$ is suf7ciently large, there exist
ones, with respect to which the $(-3)$ -dimensional Poincar\’e theta-series $\Theta_{3}(z)$ do
not converge in $D^{*}$ , where $D^{*}$ denotes the compact subdomain of $E^{c}$ given by
deleting the suitable neighborhoods of poles of $\Theta_{8}(z)$ and their transfo $rms$ on $G$

from any compact subdomain $D\subset E^{c}$ .
Considering the Schottky subgroup $c*$ of $G$ given by inversion method

(see [4]), we have the following
THEOREM 9. Among Kleinian groups whose fundamental domains are

bounded by mutually disjoint $N$ circles, if $N$ is sufficiently large, there exist
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Schot $tky$ groups whose singular sets have positive (3/2)-dimensional measure. The
$(-3)$ -dimensional Poincar\’e theta-series $\Theta_{3}(z)$ with respect to such Schottky group
does not converge in $D^{*}$ .

REMARK. 1. The above example shows that there exist Kleinian groups
whose singular sets have the Hausdorff dimension greater than 3/2.

2. It is not necessary to estimate the values of $\chi_{1}^{(3;St,j_{i^{)}}}(g_{s^{(m+j-1)}})$ from
below in the five cases $(a)-(e)$ in No. 14 in order to show only the existence
of Kleinian groups whose singular sets have positive (3/2)-dimensional measure.
For this purpose it is enough to use the estimates of the values in the cases
(c) and (e). It is conjectured that in the Corollary of Theorem 4

$\lim_{nr}\frac{\chi_{n^{\mu}}^{(:\tau_{1}.\tau_{2)}}(z}{\chi_{n}^{(\mu;\tau_{8}.\tau_{4})}(z})_{-})=1$ ,

that is, the value of $K$ is equal to 1, but we can not prove it yet. If it is
true, and $K$ is replaced by 1 in (3.19), we get the solution $ n>10.4\cdots$ and
hence that the least total number $N$ of the boundary circles of $B_{0}$ satisfying
(3.19) is $3\times 11\times 12+1=397$ . If we can estimate the values of computing func-
tions more exactly in No. 14, we may obtain the solution $ n>9\cdots$ . Then the
total number $N$ will become $3\times 10\times 11+1=331$ .
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