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On commutative unipotent groups defined by Seligman

By Tetsuo NAKAMURA

(Received Nov. 25, 1970)

Let F be a field of prime characteristic p, and L a given commutative
Lie p-algebra over F whose p-power is nilpotent of exponent m. In
Seligman constructs a commutative unipotent group defined over F, of ex-
ponent p™, whose Lie algebra is F-isomorphic to L. In general this commuta-
tive unipotent group is not isomorphic to direct sum of Witt groups over the
base field. (cf. example in [1]) The aim of the paper is to show that this
group is isomorphic to direct sum of Witt groups over a purely inseparable
extension of the base field.

The author wishes to thank Professor T. Kanno for his invaluable con-
versations and advice.

§1. Preliminaries and construction of the isomorphism.

At first we shall introduce the notations of (for details see § 2).
Let m be a fixed positive integer, p a fixed rational prime. For each integer
b, 1<k<m, let d, be a fixed positive integer. (cf. Remark at the end of
the paper.) Let R be the set of symbols

_ (B
a—<g)
where 1=<k=m, 1=1=5d;, 0=7=<m—Fk. We write k=Fk(a), i=1(a), j=j(a)
in the above setting, and if j(a) >0 we write a—1 for the symbol
( (k(a)) >
(@j(a)y—1/"
Let S be the set of symbols
((k, r)

iy, v/’

where a=<(§)) and b:( v r(r?__r) are in R and where j >m—r. We write

(a;b) =( ()

ij,v /"

Let x(a), y(a), z(a), 'u(s) (eaes R, s=S) be (@|R|+1|S]) algebraically
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independent indeterminates over the rational field @ and we put ¢(s) = u(s)*™"*
for all s S.
We define a family of polynomials ¢,(x, ) € Z[x, t] for a € R by induction
on j(a), as follows:
If j(a@)=0, p.(x, £) =x(a), and for j(a) >0
Palx, t) = p*Px(a)+@q-1(47, t7)
+2 POIO (a5 bY)pu(x?, t7) .
ij;:rn—k(b)
II<j(a)

It follows that ¢u(x, )—p'®x(a) € Z[{x(c);j(c) <j(a@)},t]. There are
uniquely determined polynomials ¢,(x,?) in Q[x, t] (a= R) such that x(a)=
Pap(x, 1), 1) = @a(P(x, 1), 1) for all ae R. For each as R, put fulx,» )=
Galolx, )+o(3, 1), 1) and gu(x, ) =da(—@(x, t), ). Then f.(x, ¥, 1) and gu(x, 1)
are well-defined elements of Z[x, y, t] satisfying the relations;
ey 0a(f (%, 3, 1), 1) = @a(X, )+0a(¥, 1) ; a(8(x, 1), ) = —@a(x, 1) for all a
and

FUf,y,0,2,0)=f(x,f(3,2,1,1);
f(x! y! t)__—_f(yi x’ t);
flo, x, )=x; g, )=0;
glglx, t), y=x; f(g(x ), x t)=0.
Moreover we have
Jalx, ¥, )—x(a)—y(a) € Z[{x(c), ¥(c); j () <j(a)}, 1],
Zo(x, )+x(a) € Z[L{x(c); j(c) <j(a)}, £].

In the followings we write ¢,(x, u), ¢q(x, ), fo(x, ¥, ) and g.(x, u) for @.(x, i),
dalx, 1), folx, ¥, t) and go(x, 1), respectively, since they are also contained in
Q[ x, u] where u(s) are such that u(s)?™ ' =1i(s).

Now we define some new notations as follows;

For each a= R we write a* for the symbol

k(
(i(a) ( rft))—k(a)) -

Iffk(a) < m and j(a) < m—Fk(a), we write a’ for the symbol

(k@ +1))
1 j@/

For fixed & and ¢, let I‘I( ’:) be an automorphism of Z[x, u] over Z such that
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(% )atay = x(a)
T % )utGa; b= ute’; b)
11( * Yata) = xa)

(¥ ) s oy =uta; by

where k(a)=F%, i(a)=1i and 1=<j(a) <m—*k(a)—1 and the other variables are
left fixed.
LEMMA 1. The notations are as above. Then we have

3 wa(x, 1) =H( f(((g))goa:(x, u)  for a with 0=j(a)<m—k(a)—1
and
@ oo, y=TI( *)pux,w)  for be R with k(b)> k+1.

PROOF. Since ¢,(x, u) for k(b) > k+1 does not contain the variables x(a),
x(a’), ul(a; b)) and u((a’; b)) with k(a)==%k, (4) is clear. For j(a)=0, (3) is
trivial. To prove (3) by induction on j(a) we may assume that (3) is true

for a—1, i.e,, H(z(a) )gp(a_l).(x U) = @q-,(x, u). By the definition of ¢ we have

0o (x, u) = p*Px(a)+ @qg-1(xP, u?)

+3 PO (@ ), uT)
bR
Ok
and

©a(x, u) = p*®x(a")+@ea-1> (X7, u?)
+2 pIeN=IO=1t((a’ ; b))pp(xP, uP).
z‘.j? =m—k(bd)
Fo<j(a’)
Since H(f((a(;) )gpm_n,(xp, uP) = @, _,(x?, u?), the result is clear for a by (4).

Next we define a family of polynomials @,(x, v) = Z[x, u] for each a=R
by induction on k(a), as follows:

®) Do(x, u)=q(x, u)  for a with a=a*
and if j(a) < m—Ek(a)
&) 0., 1) =TI(§(3 ) Putz,

a)y-r

+,)5:“R IO (a* b))pj Dy 14 jearea(x, 1)

(®)<
§§b§=fn—k<b>
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where we put @,_.,=0 if b—v & R and where r=m—k(a).

LEMMA 2. (i) For each a= R, @, (x, u)—¢,(x, u) is a linear combination
of {plx, w);jlc)=j(a), k(c) > k(a)} over Z[u].

(i) P IOD(x, W) —D,_,(xP, uP))—x(a) belongs to Z[x, u] and is a linear
combination of {x(c); j(c) =j(a), k(c) > k(a)} over Z[u].

PROOF. We are going to prove (i) and (ii) by induction on k(a). They
are true for k(a)=m. Let k(a) <m and r=m—Fk(a). (i) is clear for ac R
with j(a) =m—k(a) by (5). For j(a) <m—k(a), by (5’) it suffices only to note

that 1‘[(:.2(((1(;)>q)a,(x, u)—.(x, u) is a linear combination of {¢.(x, w); j(c) =j(a),

k(c) > k(a)} over Z[u]. By the induction assumption @,.(x, u)—¢,(x, u) is a
linear combination of {p.(x, u);j(c)<j(a), k(c) > k(a)+1} over Z[u]l. Hence
(i) is true for j(a) < m—k(a) by using Lemma 1. This proves (i).

Next for j(a) < m—k(a) we have by definition

k(a)
i(a)

+3, pOTer; DY P TI Dy rsjearea(, )

I®)<r
J(B)=m—k(b)

—{11( Ka) ) amiy(x?, )

Do(x, W)= @ (x?, u?) =TI( 5 )Parl, w)

i(a)
+b§R PO ((a* b))pj(a)_r(pb—r-uca)(xp, up)}
j(b;Sr
7(0)=m—k(d)
k(a)

=T ( gy )P )= Piamiy (57, u?))

+3 PO D)YPIP Dy s jaria(X, W)

S

b
I <m—kw
- ¢b-r+j(a)(xpy up) } .

Thus using Lemma 1 and induction on k(a) and j(a), (ii) is true for j(a) <
m—k(a). For j(a)=m—k(a) (ii) is clear by the definition of ¢ and @ using

H( f(iz?)d)‘“‘“'(x' u) = @q_1(x, u) and @,(x, u) = ,(x, u) for be R with jb) <r
and j(b) = m—k().

We shall define a family of polynomials X,(x, ) € Z[x, u] for a< R.
They are defined by the following system of equations;

®) R pre-v x5 — @o(x, u) .

y=0

Now we are going to prove that X,(x, u) € Z[x, u]. Its proof is essentially
the same as that of Satz 1in[[2]. For (m+1) independent variables {z;} over
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Q, we put

g .
(7) WJ'(ZO, Zyy Zj) - Wj(z): éong;j—u 1} (0 _S_.] é m) .
For ¢, d= Z[x, u] we write c=d (p¥) if c—d < p*Z[ x, u].

LEMMA 3. Let &, yp.€ Z[x,u] (u=0,1,--,m). Then for any positive
integer e the system of congruences

Sy-:—:)?;z (pe) 0<ﬂ<1)
is equivalent to
W.E=Wuyp) () 0<u<e.

PrROOF. This is Lemma in [2] (p. 129).
LEMMA 4. Let X, (x, u) be defined as above. Then we have

Xa(xy u) & Z[)C, u] .

PrROOF. The proof is by induction on j(a). If j(a)=0, then;X,(x, u)=
®,(x, ). Thus we may assume that X,_,(x,u)e Z[x, u] for 1=v=j(a)—1.
Then we have X,_.(x, w)? = X,_,(x?, u?) (p). By Lemma 3 we have

W jcar-1(Xa-ja(x, WP, o+, Xooo(x, 0)P)

=W jcar-1{Xa-jaxx?, uP), =+, Xooa(x?, u?)) ()

=@, _,(x?, uP).
By Lemma 2 (ii) we have

Q. (x, ) =@, (x?, u?) ()
and by (6)
PO X (x, ) =@ (x, W—W jear-1(Xa-jear(x, WP, -+, Xooi(x, )7)
=0 (p®).

Hence X, (x, uw)e Z[x, u].

PROPOSITION 1. Let X, (x, u) (a € R) be polynomials defined as above, Then
we have Z[x, ul=Z[X, ul.

Proor. Z[x,u]lDZ[X, u] is clear by Lemma 4. Hence it suffices only
to prove Z[ X, ulD Z[x, u]. First we note that X,(x, u)—x(a) is a polynomial
in Z[{x(c); c#a, k(c)=k(a), j(c)<j(a)}, u]. For by Lemma 2 (i) and by the
form of ¢.(x, u) we have

PP X (x, w)—x(a))+p7 PN X,_,(x, w)P—x(a—1)P)
+ - +(Xa—j(a>(-X, u)pj(a)__x(a_j(a))pj(@)
€ Z[{x(c); k(c) > k(a), j (o) =j (@)}, u].

Using induction on j and Lemma 4 we have the result. Now we put x(a)=
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Xo(x, w)+h(x, u), where h(x, u) € Z[{x(c); c # a, k(c) = k(a), j (¢c) £j(a)}, u]. For
ac R with k(a)=m, we have h(x, u)=0. Hence the induction on % and j
completes the proof of the proposition.

By the definition of ¢,(x, u) we have

® Do(x, u) = pa X(x, u), 0)

and

© alp(X(x, u), 0), 0) = Xu(x, u).

By Lemma 2 (i) there are linear forms L.(x) over Z[u] (a € R) such that
(10) Qo (x, u) = Lo(p(x, w)) .

Hence we have

an Pa(X(x, u), 0) = Lalep(x, u)) .

PROPOSITION 2. We have the following identities;
Xo(f (x, 3, w), w) = fo(X(x, w), X(y, w), 0) Sfor all acR.

PROOF.
Xo(f (x, 3, w), u) = Pap(X(f (x, ¥, w), w), 0), 0) (by (9))
= ¢o(Llp(f (x, ¥, w), u)), 0) (by (11))
= ¢a(Llp(x, W)+ ¢(y, w)), 0) (by (1))

= ¢po(L(p(x, u))+L(p(y, u)), 0)
= o (p(X(x, u), 0)+¢(X(y, u), 0), 0) (by (11))
= fo(X(x, w), X(y, u), 0).

§ 2. The main theorem.

Let F be a field of prime characteristic p and «: S— F any function and
we put B(s)=a(s)?'™ for s€S. Let F;=F (B(s); s€S). Then F, is a purely
inseparable extension of F. The commutative unipotent group defined by
Seligman is | R|-dimensional affine space A'?' defined over F with composi-
tion law f and inverse map g such that f(x, y) = f(x, », B) for (x,y) = A'BI X A®
and g(x) =g(x, B) for (x) € A'®'. We denote this algebraic group by Ug. It
is defined over F.

THEOREM. Let U% be defined as above and W**® the (m—k-+1)-dimensional
Witt groups for 1<i=<d;. Then U% is isomorphic to direct sum of Witt groups

m 9k ki
V=11 II W**® over F,.
k=1 1=1

PROOF. As varieties W*?® are (m—k+1)-dimensional affine spaces. Its
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J-th co-ordinates are indexed by ajz((s.) ) Let V be direct sum of Witt

groups W% for 1<k<m, 1<i=d,. Then f(x,¥ 0) and g(x,0) are the
composition law and the inverse map of V, respectively. Let p be a rational
map from Ug to V defined by p(x) = X(x, B). It is defined over F, and is an
isomorphism as algebraic varieties by [Proposition 1 and homomorphism of
groups by Proposition 2. Thus p is an isomorphism over F,. This proves
the theorem.

REMARK. In the definition of the set R of the symbols we have assumed
that all d, are positive. In it is allowed that some d, (k+1) are
zero. This does not disturb the construction of Ug& In this case let R’ be
the set of symbols such that all d; are positive and S’ be the corresponding
set of symbols as S corresponds to R. Then S contains S. We extend
the function a:S—F to «’':S —F by putting a’(s) =0 for s€ S'—S. Then

% can be imbedded naturally in U% and is a direct summand in U% over F.

dyr .
U% is direct sum of U and IIIL W% ® where k&’ are those such that d,, =0
K i=1

dys . dys
in R. The isomorphism of Theorem maps IT II W%® onto ITII W*®. Thus
K i=1 K i=1

U% is also isomorphic to direct sum of Witt groups over F,.
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Tokyo Institute of Technology
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