On commutative unipotent groups defined by Seligman

By Tetsuo NAKAMURA

(Received Nov. 25, 1970)

Let F be a field of prime characteristic p, and L a given commutative Lie p-algebra over F whose p-power is nilpotent of exponent m. In [1] Seligman constructs a commutative unipotent group defined over F, of exponent p^m , whose Lie algebra is F-isomorphic to L. In general this commutative unipotent group is not isomorphic to direct sum of Witt groups over the base field. (cf. example in [1].) The aim of the paper is to show that this group is isomorphic to direct sum of Witt groups over a purely inseparable extension of the base field.

The author wishes to thank Professor T. Kanno for his invaluable conversations and advice.

§ 1. Preliminaries and construction of the isomorphism.

At first we shall introduce the notations of [1] (for details see [1] § 2). Let m be a fixed positive integer, p a fixed rational prime. For each integer k, $1 \le k \le m$, let d_k be a fixed positive integer. (cf. Remark at the end of the paper.) Let R be the set of symbols

$$a = \binom{(k)}{ij}$$

where $1 \le k \le m$, $1 \le i \le d_k$, $0 \le j \le m-k$. We write k = k(a), i = i(a), j = j(a) in the above setting, and if j(a) > 0 we write a-1 for the symbol

$$\binom{(k(a))}{i(a)j(a)-1}$$
.

Let S be the set of symbols

$$\binom{(k, r)}{ij, \nu}$$
,

where $a = {(k) \choose ij}$ and $b = {(r) \choose \nu, m-r}$ are in R and where j > m-r. We write

$$(a;b) = {k, r \choose ij, \nu}.$$

Let x(a), y(a), z(a), u(s) $(a \in R, s \in S)$ be (3|R|+|S|) algebraically

independent indeterminates over the rational field Q and we put $t(s) = u(s)^{p^{m-1}}$ for all $s \in S$.

We define a family of polynomials $\varphi_a(x, t) \in \mathbb{Z}[x, t]$ for $a \in \mathbb{R}$ by induction on j(a), as follows:

If
$$j(a) = 0$$
, $\varphi_a(x, t) = x(a)$, and for $j(a) > 0$

$$\varphi_{a}(x, t) = p^{f(a)}x(a) + \varphi_{a-1}(x^{p}, t^{p}) + \sum_{\substack{b \in R \\ f(b) = m-k(b) \\ f(d) \leq f(a)}} p^{f(a)-f(b)-1}t((a; b))\varphi_{b}(x^{p}, t^{p}).$$

It follows that $\varphi_a(x, t) - p^{f(a)}x(a) \in \mathbb{Z}[\{x(c); j(c) < j(a)\}, t]$. There are uniquely determined polynomials $\psi_a(x, t)$ in $\mathbb{Q}[x, t]$ $(a \in \mathbb{R})$ such that $x(a) = \psi_a(\varphi(x, t), t) = \varphi_a(\psi(x, t), t)$ for all $a \in \mathbb{R}$. For each $a \in \mathbb{R}$, put $f_a(x, y, t) = \psi_a(\varphi(x, t) + \varphi(y, t), t)$ and $g_a(x, t) = \psi_a(-\varphi(x, t), t)$. Then $f_a(x, y, t)$ and $g_a(x, t)$ are well-defined elements of $\mathbb{Z}[x, y, t]$ satisfying the relations;

(1)
$$\varphi_a(f(x, y, t), t) = \varphi_a(x, t) + \varphi_a(y, t); \ \varphi_a(g(x, t), t) = -\varphi_a(x, t) \quad \text{for all } a$$
 and

$$f(f(x, y, t), z, t) = f(x, f(y, z, t), t);$$

$$f(x, y, t) = f(y, x, t);$$

$$f(o, x, t) = x; g(o, t) = 0;$$

$$g(g(x, t), t) = x; f(g(x, t), x, t) = 0.$$

Moreover we have

$$f_a(x, y, t) - x(a) - y(a) \in \mathbf{Z}[\{x(c), y(c); j(c) < j(a)\}, t],$$

 $g_a(x, t) + x(a) \in \mathbf{Z}[\{x(c); j(c) < j(a)\}, t].$

In the followings we write $\varphi_a(x, u)$, $\psi_a(x, u)$, $f_a(x, y, u)$ and $g_a(x, u)$ for $\varphi_a(x, t)$, $\psi_a(x, t)$, $f_a(x, y, t)$ and $g_a(x, t)$, respectively, since they are also contained in $\mathbf{Q}[x, u]$ where u(s) are such that $u(s)^{p^{m-1}} = t(s)$.

Now we define some new notations as follows;

For each $a \in R$ we write a^* for the symbol

$$\binom{k(a)}{i(a)} \binom{k(a)}{m-k(a)}$$
.

If k(a) < m and j(a) < m - k(a), we write a' for the symbol

$$\binom{(k(a)+1)}{1 j(a)}$$
.

For fixed k and i, let $\Pi\binom{k}{i}$ be an automorphism of Z[x, u] over Z such that

$$\Pi\binom{k}{i}(x(a)) = x(a')$$

$$\Pi\binom{k}{i}(u((a;b))) = u((a';b))$$

$$\Pi\binom{k}{i}(x(a')) = x(a)$$

$$\Pi\binom{k}{i}(u((a';b))) = u((a;b))$$

where k(a) = k, i(a) = i and $1 \le j(a) \le m - k(a) - 1$ and the other variables are left fixed.

LEMMA 1. The notations are as above. Then we have

(3)
$$\varphi_a(x, u) = \prod {k(a) \choose i(a)} \varphi_{a'}(x, u) \quad \text{for a with } 0 \le j(a) \le m - k(a) - 1$$
and

(4)
$$\varphi_b(x, u) = \prod \binom{k}{i} \varphi_b(x, u)$$
 for $b \in R$ with $k(b) > k+1$.

PROOF. Since $\varphi_b(x, u)$ for k(b) > k+1 does not contain the variables x(a), x(a'), u((a;b)) and u((a';b)) with k(a) = k, (4) is clear. For j(a) = 0, (3) is trivial. To prove (3) by induction on j(a) we may assume that (3) is true for a-1, i. e., $\prod {k(a) \choose i(a)} \varphi_{(a-1)}(x, u) = \varphi_{a-1}(x, u)$. By the definition of φ we have

$$\varphi_{a}(x, u) = p^{j(a)}x(a) + \varphi_{a-1}(x^{p}, u^{p}) + \sum_{\substack{b \in R \\ j(b) = m-k(b) \\ j(b) < j(a)}} p^{j(a)-j(b)-1}t((a; b))\varphi_{b}(x^{p}, u^{p})$$

and

$$\varphi_{a}(x, u) = p^{f(a)}x(a') + \varphi_{(a-1)}(x^p, u^p) + \sum_{\substack{b \equiv R \\ f(b) = m - k(b) \\ f(b) < f(a')}} p^{f(a') - f(b) - 1}t((a'; b))\varphi_b(x^p, u^p).$$
 Since $\prod \binom{k(a)}{i(a)} \varphi_{(a-1)}(x^p, u^p) = \varphi_{a-1}(x^p, u^p)$, the result is clear for a by (4).

Next we define a family of polynomials $\Phi_a(x, u) \in \mathbb{Z}[x, u]$ for each $a \in \mathbb{R}$ by induction on k(a), as follows:

(5)
$$\Phi_a(x, u) = \varphi_a(x, u)$$
 for a with $a = a^*$ and if $j(a) < m - k(a)$

(5')
$$\Phi_{a}(x, u) = \prod_{\substack{i(a) \ j(b) \leq r \ j(b) \leq m-k(b)}} \Phi_{a'}(x, u) + \sum_{\substack{b \leq R \ j(b) \leq r \ j(b) = m-k(b)}} p^{r-j(b)-1} t((a^{*}; b))^{p^{j(a)-r}} \Phi_{b-r+j(a)+1}(x, u)$$

where we put $\Phi_{b-\nu} = 0$ if $b-\nu \in R$ and where r = m-k(a).

LEMMA 2. (i) For each $a \in R$, $\Phi_a(x, u) - \varphi_a(x, u)$ is a linear combination of $\{\varphi_c(x, u); j(c) \leq j(a), k(c) > k(a)\}$ over $\mathbf{Z}[u]$.

(ii) $p^{-j(a)}(\Phi_a(x, u) - \Phi_{a-1}(x^p, u^p)) - x(a)$ belongs to $\mathbb{Z}[x, u]$ and is a linear combination of $\{x(c); j(c) \leq j(a), k(c) > k(a)\}$ over $\mathbb{Z}[u]$.

PROOF. We are going to prove (i) and (ii) by induction on k(a). They are true for k(a) = m. Let k(a) < m and r = m - k(a). (i) is clear for $a \in R$ with j(a) = m - k(a) by (5). For j(a) < m - k(a), by (5') it suffices only to note that $\prod \binom{k(a)}{i(a)} \Phi_{a'}(x, u) - \varphi_a(x, u)$ is a linear combination of $\{\varphi_c(x, u); j(c) \leq j(a), k(c) > k(a)\}$ over $\mathbf{Z}[u]$. By the induction assumption $\Phi_{a'}(x, u) - \varphi_{a'}(x, u)$ is a linear combination of $\{\varphi_c(x, u); j(c) \leq j(a), k(c) > k(a) + 1\}$ over $\mathbf{Z}[u]$. Hence (i) is true for j(a) < m - k(a) by using Lemma 1. This proves (i).

Next for j(a) < m - k(a) we have by definition

$$\begin{split} \boldsymbol{\Phi}_{a}(x, u) - \boldsymbol{\Phi}_{a-1}(x^{p}, u^{p}) &= \prod \binom{k(a)}{i(a)} \boldsymbol{\Phi}_{a'}(x, u) \\ &+ \sum_{\substack{b \in R \\ f(b) < r \\ f(b) = m - k(b)}} p^{r-j(b)-1} t((a^{*}; b))^{p^{j(a)-r}} \boldsymbol{\Phi}_{b-r+j(a)+1}(x, u) \\ &- \left\{ \prod \binom{k(a)}{i(a)} \boldsymbol{\Phi}_{(a-1)'}(x^{p}, u^{p}) \right. \\ &+ \sum_{\substack{b \in R \\ f(b) < r \\ f(b) = m - k(b)}} p^{r-j(b)-1} t((a^{*}; b))^{p^{j(a)-r}} \boldsymbol{\Phi}_{b-r+j(a)}(x^{p}, u^{p}) \right\} \\ &= \prod \binom{k(a)}{i(a)} (\boldsymbol{\Phi}_{a'}(x, u) - \boldsymbol{\Phi}_{(a-1)'}(x^{p}, u^{p})) \\ &+ \sum_{\substack{b \in R \\ f(b) < r \\ f(b) = m - k(b)}} p^{r-j(b)-1} t((a^{*}; b))^{p^{j(a)-r}} \{\boldsymbol{\Phi}_{b-r+j(a)+1}(x, u) \\ &- \boldsymbol{\Phi}_{b-r+j(a)}(x^{p}, u^{p}) \} \; . \end{split}$$

Thus using Lemma 1 and induction on k(a) and j(a), (ii) is true for j(a) < m-k(a). For j(a)=m-k(a) (ii) is clear by the definition of φ and Φ using $\prod \binom{k(a)}{i(a)} \Phi_{(a-1)}(x, u) = \varphi_{a-1}(x, u)$ and $\Phi_b(x, u) = \varphi_b(x, u)$ for $b \in R$ with j(b) < r and j(b) = m-k(b).

We shall define a family of polynomials $X_a(x, u) \in \mathbf{Z}[x, u]$ for $a \in R$. They are defined by the following system of equations;

(6)
$$\sum_{\nu=0}^{j(a)} p^{j(a)-\nu} X_{a-\nu}^{p^{\nu}} = \Phi_a(x, u).$$

Now we are going to prove that $X_a(x, u) \in \mathbb{Z}[x, u]$. Its proof is essentially the same as that of Satz 1 in [2]. For (m+1) independent variables $\{z_j\}$ over

Q, we put

(7)
$$W_j(z_0, z_1, \dots, z_j) = W_j(z) = \sum_{\nu=0}^{j} p z_{\nu}^{p^{j-\nu}}, \quad (0 \le j \le m).$$

For $c, d \in \mathbb{Z}[x, u]$ we write $c \equiv d$ (p^{μ}) if $c - d \in p^{\mu}\mathbb{Z}[x, u]$.

LEMMA 3. Let ξ_{μ} , $\eta_{\mu} \in \mathbb{Z}[x, u]$ ($\mu = 0, 1, \dots, m$). Then for any positive integer e the system of congruences

$$\xi_{\mu} \equiv \eta_{\mu} \qquad (p^e) \qquad 0 < \mu < \nu$$

is equivalent to

$$W_{\mu}(\xi) \equiv W_{\mu}(\eta) \qquad (p^{e+\mu}) \qquad 0 < \mu < \nu$$
 .

PROOF. This is Lemma in [2] (p. 129).

LEMMA 4. Let $X_a(x, u)$ be defined as above. Then we have

$$X_a(x, u) \in \mathbf{Z}[x, u].$$

PROOF. The proof is by induction on j(a). If j(a)=0, then $X_a(x,u)=\Phi_a(x,u)$. Thus we may assume that $X_{a-\nu}(x,u)\in \mathbf{Z}[x,u]$ for $1\leq \nu\leq j(a)-1$. Then we have $X_{a-\nu}(x,u)^p\equiv X_{a-\nu}(x^p,u^p)$ (p). By Lemma 3 we have

$$W_{j(a)-1}(X_{a-j(a)}(x, u)^p, \dots, X_{a-1}(x, u)^p)$$

$$\equiv W_{j(a)-1}(X_{a-j(a)}(x^p, u^p), \dots, X_{a-1}(x^p, u^p)) \qquad (p^{j(a)})$$

$$= \Phi_{a-1}(x^p, u^p).$$

By Lemma 2 (ii) we have

$$\Phi_a(x, u) \equiv \Phi_{a-1}(x^p, u^p)$$
 $(p^{j(a)})$

and by (6)

$$p^{j(a)}X_a(x, u) = \Phi_a(x, u) - W_{j(a)-1}(X_{a-j(a)}(x, u)^p, \dots, X_{a-1}(x, u)^p)$$

$$\equiv 0 \qquad (p^{j(a)}).$$

Hence $X_a(x, u) \in \mathbb{Z}[x, u]$.

PROPOSITION 1. Let $X_a(x, u)$ $(a \in R)$ be polynomials defined as above. Then we have Z[x, u] = Z[X, u].

PROOF. $Z[x, u] \supset Z[X, u]$ is clear by Lemma 4. Hence it suffices only to prove $Z[x, u] \supset Z[x, u]$. First we note that $X_a(x, u) - x(a)$ is a polynomial in $Z[\{x(c); c \neq a, k(c) \geq k(a), j(c) \leq j(a)\}, u]$. For by Lemma 2 (i) and by the form of $\varphi_a(x, u)$ we have

$$\begin{split} p^{j(a)}(X_a(x, u) - x(a)) + p^{j(a)-1}(X_{a-1}(x, u)^p - x(a-1)^p) \\ &+ \dots + (X_{a-j(a)}(x, u)^{p^{j(a)}} - x(a-j(a))^{p^{j(a)}}) \\ &\in \mathbf{Z}[\{x(c); k(c) > k(a), j(c) \leq j(a)\}, u]. \end{split}$$

Using induction on j and Lemma 4 we have the result. Now we put x(a) =

 $X_a(x, u) + h(x, u)$, where $h(x, u) \in \mathbb{Z}[\{x(c); c \neq a, k(c) \geq k(a), j(c) \leq j(a)\}, u]$. For $a \in \mathbb{R}$ with k(a) = m, we have h(x, u) = 0. Hence the induction on k and j completes the proof of the proposition.

By the definition of $\varphi_a(x, u)$ we have

(8)
$$\Phi_a(x, u) = \varphi_a(X(x, u), 0)$$

and

(9)
$$\psi_{a}(\varphi(X(x, u), 0), 0) = X_{a}(x, u).$$

By Lemma 2 (i) there are linear forms $L_a(x)$ over Z[u] ($a \in R$) such that

(10)
$$\Phi_a(x, u) = L_a(\varphi(x, u)).$$

Hence we have

(11)
$$\varphi_a(X(x, u), 0) = L_a(\varphi(x, u)).$$

PROPOSITION 2. We have the following identities;

$$X_a(f(x, y, u), u) = f_a(X(x, u), X(y, u), 0)$$
 for all $a \in R$.

PROOF.

$$X_{a}(f(x, y, u), u) = \phi_{a}(\varphi(X(f(x, y, u), u), 0), 0)$$
 (by (9))
$$= \phi_{a}(L(\varphi(f(x, y, u), u), 0), 0)$$
 (by (11))
$$= \phi_{a}(L(\varphi(x, u) + \varphi(y, u), 0), 0)$$
 (by (1))
$$= \phi_{a}(L(\varphi(x, u)) + L(\varphi(y, u), 0), 0)$$
 (by (11))
$$= \phi_{a}(\varphi(X(x, u), 0) + \varphi(X(y, u), 0), 0)$$
 (by (11))
$$= f_{a}(X(x, u), X(y, u), 0).$$

§ 2. The main theorem.

Let F be a field of prime characteristic p and $\alpha: S \to F$ any function and we put $\beta(s) = \alpha(s)^{p^{1-m}}$ for $s \in S$. Let $F_1 = F$ ($\beta(s)$; $s \in S$). Then F_1 is a purely inseparable extension of F. The commutative unipotent group defined by Seligman is |R|-dimensional affine space $A^{|R|}$ defined over F with composition law \bar{f} and inverse map \bar{g} such that $\bar{f}(x, y) = f(x, y, \beta)$ for $(x, y) \in A^{|R|} \times A^{|R|}$ and $\bar{g}(x) = g(x, \beta)$ for $(x) \in A^{|R|}$. We denote this algebraic group by U_R^{α} . It is defined over F.

THEOREM. Let U_R^a be defined as above and $W^{(k,i)}$ the (m-k+1)-dimensional Witt groups for $1 \le i \le d_k$. Then U_R^a is isomorphic to direct sum of Witt groups $V = \prod_{k=1}^m \prod_{i=1}^{d_k} W^{(k,i)}$ over F_1 .

PROOF. As varieties $W^{(k,i)}$ are (m-k+1)-dimensional affine spaces. Its

j-th co-ordinates are indexed by $a_j = \binom{(k)}{ij}$. Let V be direct sum of Witt groups $W^{(k,i)}$ for $1 \leq k \leq m$, $1 \leq i \leq d_k$. Then f(x,y,0) and g(x,0) are the composition law and the inverse map of V, respectively. Let ρ be a rational map from U_R^α to V defined by $\rho(x) = X(x,\beta)$. It is defined over F_1 and is an isomorphism as algebraic varieties by Proposition 1 and homomorphism of groups by Proposition 2. Thus ρ is an isomorphism over F_1 . This proves the theorem.

REMARK. In the definition of the set R of the symbols we have assumed that all d_k are positive. In [1] it is allowed that some d_k $(k \neq 1)$ are zero. This does not disturb the construction of U_R^{α} . In this case let R' be the set of symbols such that all d_k are positive and S' be the corresponding set of symbols as S corresponds to R. Then S' contains S. We extend the function $\alpha: S \to F$ to $\alpha': S' \to F$ by putting $\alpha'(s) = 0$ for $s \in S' - S$. Then U_R^{α} can be imbedded naturally in $U_R^{\alpha'}$ and is a direct summand in $U_R^{\alpha'}$ over F. $U_R^{\alpha'}$ is direct sum of U_R^{α} and $\prod_{k'} \prod_{i=1}^{d_{k'}} W^{(k',i)}$ where k' are those such that $d_{k'} = 0$ in R. The isomorphism of Theorem maps $\prod_{k'} \prod_{i=1}^{d_{k'}} W^{(k,i)}$ onto $\prod_{k'} \prod_{i=1}^{d_{k'}} W^{(k,i)}$. Thus U_R^{α} is also isomorphic to direct sum of Witt groups over F_1 .

Department of Mathematics, Tokyo Institute of Technology

References

- [1] G. B. Seligman, On some commutative unipotent groups, Invent. Math., 5 (1968), 129-137.
- [2] E. Witt, Zyklische Körper und Algebren der Charakteristik p vom Grad p^n , J. Reine Angew. Math., 176 (1937), 126-140.