On Eichler's trace formula

By Hiroshi SAITO

(Received Sept. 17, 1971)

Let $G=GL(2,R)^+$ be the subgroup of GL(2,R) consisting of the elements of GL(2,R) such as $\det>0$. Let H be the complex upper half plane. We regard G as a group of transformations on H. Let Z(G) be the center of G. Let Γ be a subgroup of G operating on H discontinuously with a fundamental domain of finite volume. Let ℓ be the canonical homomorphism of G onto G/Z(G). We fix once for all an element α in G such that $\alpha\Gamma\alpha^{-1}$ is commensurable with Γ and denote by Γ' the subgroup of G generated by Γ and α . Let χ be a linear character of Γ' . We assume that $\chi(\varepsilon)=1$ for $\varepsilon\in Z(\Gamma)=Z(G)\cap \Gamma$ and that the kernel Γ_{χ} of χ in Γ is of finite index in Γ . Let k be an even positive integer. We put

$$j(g,\tau) = (c\tau + d)^k (\det g)^{-\frac{k}{2}}$$

where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. By a cusp form of type (Γ, k, χ) , we understand a function $\varphi(\tau)$ on H taking values in the complex number field which satisfies the following conditions;

- i) $\varphi(\tau)$ is holomorphic on H.
- ii) $\varphi(\gamma \tau) = j(\gamma, \tau) \chi(\gamma)^{-1} \varphi(\tau)$ for any $\gamma \in \Gamma$.
- iii) In case $H/\iota(\Gamma)$ is not compact, $\varphi(\tau)$ is regular at every parabolic point P of Γ_{χ} and the constant term in the Fourier expansion of φ at P vanishes.

The set of all such $\varphi(\tau)$ is denoted by $S(\Gamma, k, \chi)$. Let $\Gamma \alpha \Gamma = \bigcup_{\nu=1}^{d} \Gamma \alpha_{\nu}$ be a disjoint sum. For $\varphi \in S(\Gamma, k, \chi)$ we define a linear transformation $T = T(\Gamma \alpha \Gamma)$ in $S(\Gamma, k, \chi)$ by

$$(T(\Gamma \alpha \Gamma)\varphi)(\tau) = \sum_{\nu=1}^d j(\alpha_{\nu}, \tau)^{-1} \chi(\alpha_{\nu}) \varphi(\alpha_{\nu} \tau).$$

In principle, its trace tr T should be computable following the general method of A. Selberg [3]. It has been actually carried out by Shimizu [5] (in the more general setting than ours), but for some technical difficulties, the case of weight 2 is omitted. In this note, we follow the method of Eichler, and compute tr T including the case of weight 2. Since the case where χ is trivial on Γ is already treated by Eichler [1], we assume χ is non-trivial on Γ .

334 H. SAITO

The author wishes to express his sincere thanks to Prof. K. Doi and to Prof. H. Hijikata who encouraged him with many suggestions.

Let $S(\Gamma_{\chi}, k)$ be the space of cusp forms with respect to Γ_{χ} of weight k, i. e. the forms satisfying the above (i), (ii) and (iii) with $\chi = \text{identity in (ii)}$. Let $\{\chi_i | 1 \leq i \leq r\}$ be the set of distinct characters of Γ such that $\ker \chi_i \supset \Gamma_{\chi}$. We take χ_i to be the restriction of χ to Γ . Let S_i $(1 \leq i \leq r)$ be the subspaces of $S(\Gamma_{\chi}, k)$ consisting of the forms satisfying (ii) for $\chi = \chi_i$. Then $S(\Gamma_{\chi}, k)$ is the direct sum of S_i $(1 \leq i \leq r)$. Let $\varphi_{i(k)}^i$ $(1 \leq i(k) \leq \dim S_i)$ be a basis of S_i .

Let us recall fundamental definitions and notation of Eichler: a meromorphic automorphic form which vanishes at every parabolic point of Γ and has the principal part of the form $\sum \frac{c_m}{(\tau-\tau_0)^{k+m}}$ at τ_0 is called a cusp form of the second kind. To avoid a confusion (when it seems necessary) we shall refer to the cusp form of usual sense as to be "of the first kind". The integral $\frac{1}{(k-2)!} \int_{\tau_0}^{\tau} (\tau-\sigma)^{k-2} \varphi(\sigma) d\sigma$ is independent of its path, and if we replace τ_0 by τ_0' , then the difference $\int_{\tau_0}^{\tau} -\int_{\tau_0'}^{\tau}$ is a polynomial of degree k-2 in τ . Hence as in [1, p. 272] we write simply

(1)
$$\Phi(\tau) = \frac{1}{(k-2)!} \int_{\tau_0}^{\tau} (\tau - \sigma)^{k-2} \varphi(\sigma) d\sigma$$

and understand that Φ is determined by φ up to addition of a polynomial of degree k-2. For any pair of cusp forms φ , ψ of the first or second kind, let

$$I(\varphi, \, \psi) = \frac{1}{2\pi i} \int_{\partial \mathcal{F}_{\tau}} \Phi(\tau) \psi(\tau) d\tau$$

where \mathcal{F}_{χ} is a fundamental domain for Γ_{χ} and $\partial \mathcal{F}_{\chi}$ is its boundary. The value of this integral depends only on φ and φ . Further we have $I(\varphi, \varphi) = -I(\varphi, \varphi)$. By [1, p. 282], we can find cusp forms of the second kind $\{\psi_{i(k)}^i\}$ satisfying

$$I(\varphi_{i(k)}^i, \psi_{j(k')}^j) = \delta_{ij}\delta_{i(k)j(k')},$$

$$I(\psi_{i(k)}^i, \psi_{j(k')}^j) = 0.$$

LEMMA 1. Let $f_i(\tau)$ (i=1,2) be cusp forms of the first or second kind with respect to Γ_{α} which satisfy

$$f_i(\gamma \tau) = j(\gamma, \tau) \chi_i^{-1}(\gamma) f_i(\tau)$$
 for $\gamma \in \Gamma$.

Then

$$I(f_1, f_2) = 0$$
 if $\chi_1 \neq \chi_2^{-1}$.

PROOF. Let \mathcal{F} , \mathcal{F}_{χ} be the fundamental domain of Γ , Γ_{χ} , respectively. Let $\{\varepsilon_i\}$ be the representatives of Γ/Γ_{χ} , and hereafter we fix them. Then,

$$I(f_1, f_2) = \frac{1}{2\pi i} \int_{\partial \mathcal{F}_{\chi}} F_1(\tau) f_2(\tau) d\tau$$
$$= \frac{1}{2\pi i} \sum \int_{\partial (s_i, \mathcal{F})} F_1(\tau) f_2(\tau) d\tau$$

where $F_i(\tau)$ is defined by (1) from $f_i(\tau)$. By the definition

$$\int_{\partial(\varepsilon_i\mathcal{F})} F_1(\tau) f_2(\tau) d\tau = \chi_1(\varepsilon_i)^{-1} \chi_2(\varepsilon_i)^{-1} \int_{\partial\mathcal{F}} F_1(\tau) f_2(\tau) d\tau.$$

So we have

$$\begin{split} I(f_1, f_2) &= (\sum \chi_1(\varepsilon_i)^{-1} \chi_2(\varepsilon_i)^{-1}) \int_{\partial \mathcal{F}} F_1(\tau) f_2(\tau) d\tau \\ &= 0 \quad \text{if} \quad \chi_1 \neq \chi_2^{-1} \,. \end{split}$$

With this lemma we may assume that

$$\psi_{i(k)}^i(\gamma \tau) = j(\gamma, \tau) \chi_i(\gamma) \psi_{i(k)}^i(\tau)$$
 for $\gamma \in \Gamma$.

Let us further recall the results of Eichler with some comments. Set

$$K_1(\tau, \sigma) = \sum \varphi_{i(k)}^i(\tau) \Psi_{i(k)}^i(\sigma)$$

where $\Psi_{i(k)}^{t}(\sigma)$ is defined by (1) from $\psi_{i(k)}^{t}(\sigma)$. For $K_{1}(\tau, \sigma)$, there exists a function $K_{0}(\tau, \sigma)$ which satisfies the following conditions i)~v) [1, p. 290], [2, p. 222]. Let $K(\tau, \sigma) = -K_{1}(\tau, \sigma) + K_{0}(\tau, \sigma)$, then

- i) $K_0(\tau, \sigma)$ is a modular form of weight -(k-2) with respect to Γ_{χ} in σ .
- ii) For every cusp form $\varphi(\tau)$ of the first kind

$$\frac{1}{2\pi i} \int_{\partial \mathcal{F}_{\mathcal{X}}} K(\tau, \, \sigma) \varphi(\sigma) d\sigma = \varphi(\tau) \, .$$

iii)
$$\frac{\partial^{k-1}}{\partial \sigma^{k-1}} K(\tau, \sigma) = \frac{\partial^{k-1}}{\partial \tau^{k-1}} K(\sigma, \tau).$$

(This formula is not proved in [1], but can be obtained easily by considering the integral $\frac{1}{2\pi i} \int_{\partial \mathcal{F}_{\chi}} K(\tau_1, \sigma) \frac{\partial^{k-1}}{\partial \sigma^{k-1}} K(\tau_2, \sigma) d\sigma$.)

iv) $K(\tau, \sigma)$ is a holomorphic function in τ and σ except at such points as $\sigma = \gamma \tau$, $\gamma \in \Gamma_{\chi}$ and at the point $\sigma = \tau$, $K(\tau, \sigma)$ is of the form

$$K(\tau, \sigma) = \frac{1}{\sigma - \tau} + \cdots$$

where \cdots denotes a holomorphic function in τ and σ .

v) For k > 2, $K_0(\tau, \sigma)$ is a cusp form in τ of weight k with respect to Γ_{χ} ; in case k = 2, $K(\tau, \sigma) - K(\tau, \sigma_0)$ is a cusp form in τ of weight 2 for any σ_0 . (It is not stated explicitly in [1] that $K(\tau, \sigma)$ is a meromorphic function and a cusp form in τ . But this fact can be proved easily by noting iii) and

336 H. Saito

considering the integral $\int_{\sigma_0}^{\sigma} (\sigma - \xi)^{k-2} \frac{\partial^{k-1}}{\partial \tau^{k-1}} K(\xi, \tau) d\xi.$

We put

$$K'(\tau, \sigma) = \frac{1}{[\Gamma : \Gamma_{\chi}]} \sum \chi(\varepsilon_i) K(\tau, \sigma) [\varepsilon_i]_{\tau}^{-k}$$

where

$$\varphi(\tau)[\rho]^{-l} = \varphi(\rho\tau)(c\tau+d)^{-l}(\det \rho)^{\frac{l}{2}} \quad \text{for} \quad \rho \in G$$

and for an integer l. For simplicity let us write $\varphi_i(\tau)$, $\Psi_i(\sigma)$ instead of $\varphi_i^l(\tau)$, $\Psi_i^l(\sigma)$, then

$$K'(\tau, \sigma) = -\sum \varphi_i(\tau) \Psi_i(\sigma) + K'_0(\tau, \sigma)$$

where

$$K_0'(\tau, \sigma) = \frac{1}{\lceil \Gamma : \Gamma_{\tau} \rceil} \sum \chi(\varepsilon_i) K_0(\tau, \sigma) [\varepsilon_i]_{\tau}^{-k}.$$

LEMMA 2. For k > 2, $K'_0(\tau, \sigma)$ satisfies

$$K_0'(\tau, \sigma)[\gamma]_{\tau}^{-k} = \chi(\gamma)^{-1}K_0'(\tau, \sigma),$$

$$K_0'(\tau, \sigma)[\gamma]_{\sigma}^{k-2} = \chi(\gamma)K_0'(\tau, \sigma) \quad \text{for} \quad \gamma \in \Gamma.$$

In case k=2, we consider

$$\frac{1}{[\Gamma:\Gamma_{\chi}]} \sum \chi(\varepsilon_{i})^{-1} (K_{0}(\tau, \sigma) - K_{0}(\tau, \sigma_{0})) [\varepsilon_{i}]_{\sigma}^{0}$$

$$= \frac{1}{[\Gamma:\Gamma_{\chi}]} \sum \chi(\varepsilon_{i})^{-1} K_{0}(\tau, \sigma) [\varepsilon_{i}]_{\sigma}^{0}$$

and

$$\frac{1}{[\Gamma:\Gamma_{\chi}]} \sum \chi(\varepsilon_{i})^{-1} (K(\tau, \sigma) - K_{0}(\tau, \sigma_{0})) [\varepsilon_{i}]_{\sigma}^{0}$$

$$= \frac{1}{[\Gamma:\Gamma_{\chi}]} \sum \chi(\varepsilon_{i})^{-1} K(\tau, \sigma) [\varepsilon_{i}]_{\sigma}^{0}$$

and denote anew the left hand sides of the above equations by $K'_0(\tau, \sigma)$ and $K'(\tau, \sigma)$, respectively. Then we have

$$K'(\tau, \sigma) = -\sum \varphi_i(\tau) \Psi_i(\sigma) + K'_0(\tau, \sigma)$$

and $K'_0(\tau, \sigma)$ satisfies the first two equations with k=2.

PROOF. The first formula follows from the definition. To prove the second we consider

$$\chi(\varepsilon_{j})K'(\tau, \sigma)[\varepsilon_{j}^{-1}]_{\sigma}^{k-2}-K'(\tau, \sigma)$$
.

Then by the same argument as in [1, p. 290], we can prove

$$\chi(\varepsilon_1)K'_0(\tau, \sigma)[\varepsilon_1^{-1}]^{k-2}-K'_0(\tau, \sigma)$$

is a holomorphic modular form of weight -(k-2) in σ with respect to Γ_{χ} . So we obtained the second formula. As for the case k=2, the statement is

obvious.

Now we calculate the trace of $T = T(\Gamma \alpha \Gamma)$. By the definition

tr
$$T = \sum I(\varphi_i T, \psi_i)$$

= $\frac{-1}{2\pi i} \int_{\partial \mathcal{F}_{\sigma}} (\sum \varphi_i(\tau) T \Psi_i(\tau)) d\tau$.

By the definition

$$-\sum \varphi_{i}(\tau)T\Psi_{i}(\tau) = [K'(\tau, \sigma)T_{\tau} - K'_{0}(\tau, \sigma)T_{\tau}]_{\tau=\sigma}.$$

So we have

$$\operatorname{tr} T = \frac{1}{2\pi i} \int_{\partial \mathcal{F}_{\chi}} [K'(\tau, \sigma) T_{\tau} - K'_{0}(\tau, \sigma) T_{\tau}]_{\tau = \sigma} d\tau.$$

By lemma 2, and by the same calculation as in lemma 1

$$\operatorname{tr} T = \frac{[\Gamma : \Gamma_{\chi}]}{2\pi i} \int_{\partial \mathcal{Z}} [K'(\tau, \sigma) T_{\tau} - K'_{0}(\tau, \sigma) T_{\tau}]_{\tau = \sigma} d\tau .$$

If $\Gamma \alpha \Gamma \cap Z(G) = \emptyset$, then $[K'_0(\tau, \sigma)T_{\tau}]_{\tau=\sigma}d\tau$ is a differential form on the Riemann surface $H/\iota(\Gamma)$. So we have

$$\operatorname{tr} T = \frac{ \lceil \varGamma : \varGamma_{\chi} \rceil }{2\pi i} \int_{\partial \mathcal{F}} [K'(\tau, \sigma) T_{\tau}]_{\tau = \sigma} d\tau .$$

In the other case we take some $g_0 \in \Gamma \alpha \Gamma \cap Z(G)$ and fix it, then

$$\operatorname{tr} T = \frac{\left[\Gamma : \Gamma_{\chi}\right]}{2\pi i} \left(\int_{\partial \mathcal{F}} \left[K'(\tau, \sigma) T_{\tau} - \frac{1}{\left[\Gamma : \Gamma_{\chi}\right]} \cdot \frac{\chi(g_{0})}{\sigma - \tau} \right]_{\tau = \sigma} d\tau \right.$$
$$\left. - \int_{\partial \mathcal{F}} \left[K'_{0}(\tau, \sigma) T_{\tau} - \frac{1}{\left[\Gamma : \Gamma_{\chi}\right]} \cdot \frac{\chi(g_{0})}{\sigma - \tau} \right]_{\tau = \sigma} d\tau \right).$$

To compute the second term of the above equation, we divide $\partial \mathcal{F}$ into disjoint several pieces, each of which being paired to another by some $\varepsilon_{\mu} \in \Gamma$, $\partial \mathcal{F} = \bigcup (A_{\mu} \cup \varepsilon_{\mu} A_{\mu})$. Then

$$\begin{split} & [\Gamma: \Gamma_{\mathbf{x}}] \int_{\partial \mathcal{B}} \left[K_{0}'(\tau, \sigma) T_{\tau} - \frac{1}{[\Gamma: \Gamma_{\mathbf{x}}]} \cdot \frac{\chi(g_{0})}{\sigma - \tau} \right]_{\tau = \sigma} d\tau \\ &= \sum_{\mu} \left(\int_{A_{\mu}} + \int_{\varepsilon_{\mu} A_{\mu}} \right) \\ &= -\frac{k - 1}{2} \sum_{\sigma} \chi(g_{0}) \int_{A_{\mu}} d\log \frac{d\varepsilon_{\mu}(\tau)}{d\tau} \\ &= -\frac{k - 1}{2} i v(\mathcal{F}) \chi(g_{0}) \end{split}$$

where $v(\mathcal{F})$ is the measure of \mathcal{F} with respect to the invariant measure $\frac{dx\,dy}{v^2}$, $\tau = x + iy$. So we have

338 H. SAITO

$$\operatorname{tr} T = \frac{k-1}{4\pi} v(\mathcal{F}) \chi(g_0) + \frac{\lceil \Gamma : \Gamma_{\chi} \rceil}{2\pi i} \int_{\partial \mathcal{F}} \left[K'(\tau, \sigma) T_{\tau} - \frac{1}{\lceil \Gamma : \Gamma_{\chi} \rceil} \cdot \frac{\chi(g_0)}{\sigma - \tau} \right]_{\tau = \sigma} d\tau.$$

Let $K_T(\tau) = [\Gamma : \Gamma_\chi][K'(\tau, \sigma)T_\tau]_{\tau=\sigma}$ (resp. $[\Gamma : \Gamma_\chi][K'(\tau, \sigma)T_\tau - [\Gamma : \Gamma_\chi]^{-1} \times \chi(g_0)(\sigma-\tau)^{-1}]_{\tau=\sigma}$), if $\Gamma \alpha \Gamma$ has no element in Z(G) (resp. $\Gamma \alpha \Gamma$ has an element in Z(G)). Then $K_T(\tau)d\tau$ has poles of the first order at the fixed points of elements of $\Gamma \alpha \Gamma$ and nowhere else. We put

(2)
$$S_{0} = \begin{cases} \frac{k-1}{4\pi} v(\mathcal{F}) \chi(g_{0}) & \text{if } \Gamma \alpha \Gamma \cap Z(G) \neq \emptyset \\ 0 & \text{otherwise.} \end{cases}$$

Here g_0 is an arbitrary element in $\Gamma \alpha \Gamma \cap Z(G)$. Let S_1 (resp. S_2) denote the sum of residue at elliptic points (resp. at cusps), then

$$\operatorname{tr} T = S_0 + S_1 + S_2$$
.

To compute S_1 , S_2 explicitly let C_1 (resp. C_2 , C_3) denote the complete system of inequivalent elliptic element (resp. hyperbolic, parabolic elements which fix a cusp of Γ) in $\Gamma \alpha \Gamma$ by the equivalence relation defined by $g \sim g' \Leftrightarrow g' = \varepsilon \gamma g \gamma^{-1}$, $\gamma \in \Gamma$, $\varepsilon \in \Gamma \cap Z(G)$. Let $\Gamma(g) = \{ \gamma \in \Gamma \mid g = \varepsilon \gamma g \gamma^{-1} \text{ for some } \varepsilon \in \Gamma \cap Z(G) \}$. Then by the same way as in [1, p. 292],

(3)
$$S_1 = \sum_{g \in c_1} \chi(g) \frac{1}{[\Gamma(g) : Z(\Gamma)]} \cdot \frac{\rho(g)^{*k-1}}{\rho(g) - \rho(g)^*} (\det g)^{1 - \frac{k}{2}}$$

where $\rho(g)$, $\rho(g)^*$ are the characteristic roots of g and they are determined in the following way; if τ_0 is the fixed point of g in H, then

$$\rho(g) = \frac{a+d+\sqrt{(a+d)^2-4(ad-bc)}}{2} = c\tau_0+d,$$

$$\rho(g)^* = \frac{ad-bc}{\rho(g)} \quad \text{for} \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

For a cusp P, we denote by $\Gamma(P)$ (resp. $\Gamma_{\chi}(P)$) the union of parabolic elements in Γ (resp. Γ_{χ}) which fix P and $Z(\Gamma)$. To compute S_2 we transform P to ∞ by an element in G so that the generator of $\iota(\Gamma(P))$ is $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Let q be the index of $\Gamma_{\chi}(P)$ in $\Gamma(P)$, and $g_j = \begin{pmatrix} 1 & c(g_j) \\ 0 & 1 \end{pmatrix}$ be the representatives of $\Gamma(P)/\Gamma_{\chi}(P)$. Then the principal part of $\Gamma(P)/\Gamma_{\chi}(P)$ at P is of the form

$$\frac{2\pi i}{q} \sum_{g_j} \frac{\chi(g_j) e^{2\pi i \frac{\tau + c(g_j)}{q}}}{e^{2\pi i \frac{\sigma}{q}} - e^{2\pi i \frac{\tau + c(g_j)}{q}}}.$$

An element which fix P in $\Gamma \alpha \Gamma$ is of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ and we may assume that a and d are positive integers. If $a \neq d$, by the same way as in [1, p. 293],

the residue at P corresponding to the equivalence class in C_2 which contains $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ is 0 or $-\chi(g) \frac{a^{k-1}}{d-a} (\det g)^{1-\frac{k}{2}}$ according to a>d, or a< d. We note here that the other fixed point is also a cusp of Γ [5, p. 9], [4, p. 60] and the residue of $K_T(\tau)d\tau$ at this cusp corresponding to the class of $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ is 0, or $-\chi(g) \frac{d^{k-1}}{d-d} (\det g)^{1-\frac{k}{2}}$ according to a< d, a>d respectively. We put

(4)
$$S_2' = -\sum_{g \in C_2} \chi(g) \frac{\text{Min.}(|a|^{k-1}, |d|^{k-1})}{|d-a|} (\det g)^{1-\frac{k}{2}}$$

where a, d are the characteristic roots of g. If a = d, we note that

$$\frac{2\pi i}{q} \left[\frac{e^{2\pi i \frac{\tau}{q}}}{e^{2\pi i \frac{\sigma}{q}} - e^{2\pi i \frac{\tau}{q}}} - \frac{q}{2\pi i} \frac{1}{\sigma - \tau} \right]_{\tau = \sigma} = -\frac{1}{2q}.$$

If we denote by $\Gamma \alpha \Gamma(P)$ the union of the parabolic elements which fix P and $\Gamma \alpha \Gamma \cap Z(G)$ and if we write $g = \begin{pmatrix} d & c(g) \\ 0 & d \end{pmatrix}$ for $g \in \Gamma \alpha \Gamma(P)$, then the residue corresponding to parabolic elements is

$$\begin{split} R_P &= \frac{1}{q} \left(\sum_{\substack{g \in (\Gamma \alpha \Gamma(P)/\Gamma_{\chi}(P)) - \\ (\Gamma \alpha \Gamma(P) \cap Z(G))/\Gamma_{\chi}(P)}} \chi(g) \frac{e^{2\pi i \frac{c(g)}{qd}}}{1 - e^{2\pi i \frac{c(g)}{qd}}} - \frac{1}{2} \chi(g_0) \right) \\ &= -\frac{1}{2q} \sum_{\substack{g \in \Gamma \alpha \Gamma(P)/\Gamma_{\chi}(P) \\ (\Gamma \alpha \Gamma(P) \cap Z(G))\Gamma_{\gamma}(P)}} \chi(g) + \frac{1}{2qi} \sum_{\substack{g \in (\Gamma \alpha \Gamma(P)/\Gamma_{\chi}(P)) - \\ (\Gamma \alpha \Gamma(P) \cap Z(G))\Gamma_{\gamma}(P)}} \chi(g) \cot \frac{c(g)}{qd} \pi. \end{split}$$

We put

$$S_2'' = \sum_{\mathbf{P}} R_{\mathbf{P}}.$$

Then we have

THEOREM.

tr
$$T = S_0 + S_1 + S_2' + S_2''$$
.

 S_0 , S_1 , S_2' and S_2'' are given by (2), (3), (4) and (5) respectively.

REMARK. Suppose there exists an element $\gamma \in GL(2,R)$ satisfying the following conditions

$$\gamma \Gamma \gamma^{-1} = \Gamma$$
, $\gamma \Gamma \alpha \Gamma \gamma^{-1} = \Gamma \alpha \Gamma$,
 $\chi(\gamma g \gamma^{-1}) = \chi(g)$ for $g \in \Gamma'$ and $\det \gamma < 0$.

i) We can choose C_1 such that $\gamma C_1 \gamma^{-1} = C_1$. Then since $\rho(g) = \rho^* (\gamma g \gamma^{-1})$, the above S is equal to the following

$$S_1^* = -\frac{1}{2} \sum_{g \in C_1} \chi(g) \frac{1}{[\Gamma(g) : Z(\Gamma)]} \cdot \frac{\rho(g)^{k-1} - \rho(g)^{*k-1}}{\rho(g) - \rho(g)^*} (\det g)^{1 - \frac{k}{2}}.$$

340 H. SAITO

ii) We can choose the representatives of cups $\{P\}$ of Γ such that $\gamma\{P\}=\{P\}$. Then

$$R_P + R_{\gamma P} = -\frac{1}{2q} \left(\sum_{g \in I \ \alpha \Gamma(P)/\Gamma_{\chi}(P)} \chi(g) + \sum_{g \in \Gamma \alpha \Gamma(\gamma P)/\Gamma_{\chi}(\gamma P)} \chi(g) \right),$$

hence the above is equal to the following

$$S_2^* = -\frac{1}{2} \sum_{P} \frac{1}{[\Gamma(P) : \Gamma_{\chi}(P)]} \sum_{g \in I \ \alpha \Gamma(P)/\Gamma_{\chi}(P)} \chi(g).$$

Finally this S can easily be seen to be equal to the corresponding term

$$\lim_{s\to 0} -\frac{s}{4} \sum_{g=C_s} \chi(g) \left(\frac{d(g)}{m(g)}\right)^{1+s}$$

in Shimizu [5, p. 13].

Kyoto University

References

- [1] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z., 67 (1957), 267-298.
- [2] M. Eichler, Quadratische Formen und Modulfunktionen, Acta Arith., 4 (1958), 217-239.
- [3] A. Selberg, Harmonic analysis and discontinuous groups on weakly symmetric riemannian spaces with applications to Dirichlet series, International Colloquium on zeta-functions, Bombay, 1956, 47-89.
- [4] H. Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math., 77 (1963), 33-71.
- [5] H. Shimizu, On traces of Hecke operators, J. Fac. Sci. Univ. Tokyo, 10 (1963-64), 1-19.