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On Eichler’s trace formula
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Let G=GL(2, R)* be the subgroup of GL(2, R) consisting of the elements
of GL(2, R) such as det>0. Let H be the complex upper half plane. We
regard G as a group of transformations on H. Let Z(G) be the center of G.
Let I' be a subgroup of G operating on H discontinuously with a fundamental
domain of finite volume. Let ¢ be the canonical homomorphism of G onto
G/Z(G). We fix once for all an element « in G such that al’a™! is commen-
surable with /" and denote by I/ the subgroup of G generated by I' and a.
Let X be a linear character of /7. We assume that X()=1 for e Z(I")=
Z(G)\I" and that the kernel Iy of X in I” is of finite index in I'. Let % be
an even positive integer. We put

&
J(g ©)=(ct+d)*(det g)~ 3
where gzz(? g) By a cusp form of type (I, k, X), we understand a func-

tion ¢(z) on H taking values in the complex number field which satisfies the
following conditions;
i) ¢(z) is holomorphic on H.
i) o(re)=j(, DAG) () for any ye .
iii) In case H/¢(I') is not compact, ¢(z) is regular at every parabolic
point P of I’y and the constant term in the Fourier expansion of ¢
at P vanishes.

The set of all such ¢(z) is denoted by S(I', &, X). Let I'al'= Cj Ia, be a

y=1
disjoint sum. For ¢ € S(I", k, X) we define a linear transformation T=T{"a ")
in S(I', &, X) by

(T a D))= 2 (@, 7 Ka)ples).

In principle, its trace tr T should be computable following the general
method of A. Selberg [3] It has been actually carried out by Shimizu
(in the more general setting than ours), but for some technical difficulties,
the case of weight 2 is omitted. In this note, we follow the method of Eichler,
and compute tr T including the case of weight 2. Since the case where X is

trivial on I' is already treated by Eichler [I], we assume X is non-trivial
on I :
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Let S(I' k) be the space of cusp forms with respect to I’y of weight k%,
i.e. the forms satisfying the above (i), (ii) and (iii) with X =identity in (ii).
Let {X;|]1=<i<r} be the set of distinct characters of I" such that ker X; D I,.
We take X, to be the restriction of X to I'. Let S; (1 <i=<7) be the subspaces
of S(I'y, k) consisting of the forms satisfying (ii) for X =X;. Then S(I'y, k)
is the direct sum of S; (1=<i1=7). Let ¢l (1=i(k)<dim S;) be a basis of S;.

Let us recall fundamental definitions and notation of Eichler: a mero-
morphic automorphic form which vanishes at every parabolic point of I’

and has the principal part of the form ZGW ~CT?"),€+m— at 7z, is called a cusp
—to

form of the second kind. To avoid a confusion (when it seems necessary)

we shall refer to the cusp form of usual sense as to be “of the first kind ".

The integral zktlZ)Tf (t—0)*"2p(0)do is independent of its path, and if we
[

replace z, by z{, then the difference _fr—f ’ is a polynomial of degree 2—2
70 T’

in . Hence as in [1, p. 272] we write simply

(€] d(t)= (r— o) *p(0)do

w1/

and understand that @ is determined by ¢ up to addition of a polynomial of
degree k—2. For any pair of cusp forms ¢, ¢ of the first or second kind, let

I, )= 957§, DE§()z

where %, is a fundamental domain for I’y and 0%, is its boundary. The
value of this integral depends only on ¢ and ¢. Further we have I(¢p, ¢)
=—I(¢), ¢). By [1, p. 282], we can find cusp forms of the second kind {¢iu,}
satisfying

I(@irsy Phaan) = 01501k 5ck'y »
I(¢£(k)r ¢§(k’)) =0.

LEMMA 1. Let fi(z) (1=1, 2) be cusp forms of the first or second kind with
respect to I'y which satisfy

FGgo=iQ@, '@ fz)  for yel.
Then

I(fl;fz):() Zf X1¢X;‘.

PROOF. Let &, ¥y be the fundamental domain of I’, I'y, respectively.
Let {¢;} be the representatives of I'/I"y, and hereafter we fix them. Then,
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I = gy | F@@e

=5 FuR) fo(eddz
0(esF

2ri
where Fi(7) is defined by (1) from f,(z). By the definition
[ Y OVAOLIES A XOR WSOV OLLE

So we have
I(fu £ = (S0 Aled™ i@ fu)de
=0 if X, #Xt.
'‘With this lemma we may assume that
L) =i, OXPla(z)  for yel.
Let us further recall the results of Eichler with some comments. Set
Ki(z, 0) = 2 ¢la(0)¥ far(0)

‘where ¥i,,(0) is defined by (1) from ¢ix(e). For K,(z, o), there exists a
function K,(z, ) which satisfies the following conditions i)~v) [1, p. 290],
{2, p. 222]. Let K(z, 0)= —K(z, 0)+K(z, o), then
i) Kz, 6) is a modular form of weight —(k—2) with respect to I'y in o.
ii) For every cusp form ¢(z) of the first kind

_2_}? . K(z, o)p(o)do = (7).
k
iii) aak 2 Kz, 0)= aak _K(s, 7).

4(This formula is not proved in [1], but can be obtained easily by considering

1 o*!
o j‘ang(Tl, 0') ‘50}‘—_1}{(‘[2, 0')d0'.>

iv) K(z, o) is a holomorphic function in 7 and ¢ except at such points as
o=77, r€ Iy and at the point o =7, K(z, 0¢) is of the form

the in‘tegral

‘where------ denotes a holomorphic function in z and o.
v) For k> 2, Kz, 0) is a cusp form in = of weight £ with respect to
I’y ; in case k=2, K(z, 0)—K(z, 0,) is a cusp form in 7 of weight 2 for any a,.

'(It is not stated explicitly in [I] that K(z, ¢) is a meromorphic function

and a cusp form in z. But this fact can be proved easily by noting iii) and
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¢ k-1
considering the integral j‘ (a—&)"'z—éqk—_;—l((é, r)d&.)
a0 T
We put
7 — -]; o ) ok
K'(z, 0) = i oy DK, o)le;
where

o) ]t = p(pr)(ct+d) H(det p)% for peG,

and for an integer I. For simplicity let us write ¢,(z), ¥ (o) instead of ¢i(7),
¥(0), then

K'(z, 0) = — X 0:(0)¥ (o) + Kz, o)
where

Ki(z, )= pri g UKz, o)ed.
LEMMA 2. For k> 2, Ki(z, o) satisfies
Kz, o)y I*=XG) ' Ki(z, 9),
Kz, o)y =x(NKi(z,0) for yel.
In case k=2, we consider

T SR, =Kz, o)l
S -1 10
= —EI., : Fx] E X(ei) 0(77 0)[51]v
and

[Tir;]‘ S x(e) WKz, 0)— Koz, oo))e; 1%

= g SHE) K, el

and denote anew the left hand sides of the above equations by K(r, o) and
K'(z, 0), respectively. Then we have

K'(z, 0) = =X o O)¥ (o) + Kz, 0)

and K(z, o) satisfies the first two equations with k=2,

PrROOF. The first formula follows from the definition.” To prove the
second we consider

X(enK'(z, o) e7' i —K'(z, 0) .
Then by the same argument as in [1, p. 2907, we can prove
X(eKi(z, o)e7' ] *—Ki(z, 0)

is a holomorphic modular form of weight —(¥—2) in ¢ with respect to I'y.
So we obtained the second formula. As for the case k=2, the statement is
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obvious.
Now we calculate the trace of T=T{ al’). By the definition

tr T=3X KT, ¢;)

=i f, T (e

By the definition
— Do )TY (2)=[K'(z, O)T-— Kz, 6)TJe=s -
So we have

1 ’
tr T =— = { ec NTe— Kz, 0)T:Jeodr .
By lemma 2, and by the same calculation as in lemma 1

tr T = [r—zﬂlll] § K, T Kz, T Jewodz

If Tal'NZ(G)=90, then [ Kz, 0)T.].-sd7 is a differential form on the Riemann
surface H/:«(I"). So we have

_ _[Ii 3_11 /] ;
tr 7=t 2t jag[f{ (z, AT Jemsdr -
In the other case we take some g, =/ al'n Z(G) and fix it, then

_I': Iy , 1 1(20)
tr Ty (K@ T g e ] e

—f (K T [ py K] ar).

‘To compute the second term of the above equation, we divide 0< into disjoint
several pieces, each of which being paired to another by some ¢, €1', 0F =
U(A Ve A,). Then

tr.r, jaﬂ [Ké(r, o)T.— I :’1’11';]“ . i(_{;gl adz'

==(f,+)..)
de(z)

k-l A
== EX(go)L#dlog 0

E‘u

TG

where v(%) is the measure of & with respect to the invariant measure

_‘iﬁﬁdl, r=2x+1y. So we have

ya



338 H. Saito

tr T= £ o@uan+ L1 | K@ DTy e ge.

=0

Let Ke(o)=[1": I'yJLK' (7, )T Je=o (resp. [ : 'y (K (z, o)T—[1": I'y] ' X
X(g)(o6—17)""Jizp), if 'al’ has no element in Z(G) (resp. I'al’ has an element
in z(G)). Then K;(z)dr has poles of the first order at the fixed points of
elements of I'al’ and nowhere else. We put

) S = { %1 v(PA(g) if Tal'NZG)+0

0 otherwise.

Here g, is an arbitrary element in I'a '\ Z(G). Let S, (resp. S;) denote the
sum of residue at elliptic points (resp. at cusps), then

tr T=S,+S,+S, .

To compute S,, S, explicitly let C, (resp. C,, C,;) denote the complete system
of inequivalent elliptic element (resp. hyperbolic, parabolic elements which
fix a cusp of I') in I'al’ by the equivalence relation defined by g~g’ &
g =crgrtyrel’,ecI'NnZ(G). Let I'(g)={yel'| g=crgr forsomeecl'N
Z(G)}. Then by the same way as in [1, p. 292],

- 1 p(g)**? -4
® Si=Z MO gy ZayT " ple)—olay 98

£ge<ey

where p(g), p(g)* are the characteristic roots of g and they are determined
in the following way; if 7, is the fixed point of g in H, then

o(g)= a+d+«/(a+cé)2—4(ad—bc) —crid,
x— ad—bc —(a b
p(g) o(2) for g d)

For a cusp P, we denote by I'(P) (resp. I'y(P)) the union of parabolic elements
in I" (resp. I'y) which fix Pand Z(I'). To compute S, we transform P to oo

by an element in G so that the generator of ¢«(I'(P)) is ((1) i) Let ¢ be
the index of I'y(P) in I'(P), and gj=<(1) C(lgj)) be the representatives of
I'(P)/I'y(P). Then the principal part of [ : I'y]K'(z, 6) at P is of the form

T+e(g )
. 2R
2n1 = xX(gpe q
T, T, T ticlgpy e
9 g eznif;—_ezm' ri

An element which fix P in I'al’ is of the form <g Z) and we may assume

that a and d are positive integers. If a # d, by the same way as in [1, p. 2937,
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the residue at P corresponding to the equivalence class in C, which contains
(8 Z is 0 or X(g) (det 2 b according to a>d, or a<d. We note
here that the other ﬁxed po1nt is also a cusp of I" [5, p. 91, [4, p. 60] and
the residue of Kyr(z)dr at this cusp corresponding to the class of (g Z) is 0,

k
or X(g)-—ﬁ(det g2)' % according to a <d, a>d respectively. We put
: k-1 k-1 _k
@ st=— 5 u(e) MU 147D e gy

g<=02

where a, d are the characteristic roots of g. If a=d, we note that

z:-r—~ 211 o—7 4oy 2q ¢

27r1 [ ik q 1 1

If we denote by ["aI'(P) the union of the parabolic elements which fix P
and I'al'NZ(G) and if we write g= (O d(g)) for g I'al'(P),_then the

residue corresponding to parabolic elements is

g)
1 ezm—qd- 1
Rp=—-( > X&) —— %@ — 3 (&)
9 “ge(Ial (PY/Ty(P)— i
(Fal(P)NZ(6))/T 3P 1—e" @

s > +t > (&)
X ore X cot
29 gerar®/ry®) (&) 291 gerar® /ry@)- (&) qgd *
(L aT(PYNZ(G)) Iy (P)

We put
(5) Sé/ = E RP .
P

Then we have
THEOREM.
tr T=S,+S,+S:+S7.

So, S1, S§ and Sf are given by (2), (3), (4) and (5) respectively.
REMARK. Suppose there exists an element y € GL(2, R) satisfying the
following conditions

y[y*=I, ylal'y*=lal’,
XGerH=%x(g) for g I’ and dety <0.

i) We can choose C, such that yC,;y"*=C,. Then since p(g)=p* (ygr ™),
the above S is equal to the following

1 1 (@)t —p(g)y* -
2 g§C’1X(g) [I(g): ZU)] o(2)—p(2)* (detg) 2.

St
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ii) We can choose the representatives of cups {P} of I' such that

7{P}={P}. Then

RetRyp=—-- ( o+ S 1),

29 “gerar®iry® &CTal TPV/T 4(rP)

hence the above is equal to the following

1 1

S? = —2_ §_l__rj1(—£)_)—:7_’;(?)ji g&=] ar(zl’)/['x(P)X(g) )

Finally this S can easily be seen to be equal to the corresponding term

, s d(g) \*
lim =~ % X X m(g)

in Shimizu [5, p. 13].

(1]
£2]
£3]

{41
{5]

Kyoto University
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